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Example: Diabetes Diagnosis
Patient 

#

Plasma

gluc. 

Diastolic BP 

(mm Hg)

Fold test 

(mm)

2-hr 

Insulin

BMI

(kg/m2)

pedigree

function

Age

(yrs)

diabetes

diagnosis

1 85 66 29 0 26.6 0.351 31 no

2 183 64 0 0 23.3 0.672 32 yes

3 89 66 23 94 28.1 0.167 21 no

4 137 40 35 168 43.1 2.288 33 yes

5 116 74 0 0 25.6 0.201 30 no5 116 74 0 0 25.6 0.201 30 no

6 78 50 32 88 31 0.248 26 yes

7 197 70 45 543 30.5 0.158 53 yes

… … … … … … … … …

768 166 72 19 175 25.8 0.587 51 yes



Example: Diabetes Diagnosis



Example: Diabetes Diagnosis



Example: Diabetes Diagnosis
training labels for the 

examples to identify 

their class

training examples 

with features



Example: Diabetes Diagnosis
Learn a classification function 

that can discriminate between 

the two classes



Example: Credit Card Application

Age 

(yrs)

Income ($) Rent/Own?

(binary)

Monthly

Rent/Mort.

Manager’s

Decision

1 Greg J. 38 65,000 rent 1,050 yes

2 James T. 24 21,000 rent 350 no

3 Hannah M. 45 98,000 own 2,400 no

4 Rashard K. 19 19,500 own 400 yes4 Rashard K. 19 19,500 own 400 yes

5 Xavier N. 29 75,000 rent 1,570 no

6 Jillian A. 29 39,000 own 1,000 yes

7 Ramon H. 35 103,000 rent 3,000 yes

… … … … … … …

2000 Mary C. 55 45,000 rent 1,200 no

Learn a classification function to determine who gets a credit card.



Example: Handwritten Digit Recognition
Learn a classification function 

that can discriminate between 

multiple classes

In this example, the classification 

function discriminates between 

4s and not 4s. So, still an 

example of a 2-class problem



Goal of Classification: Generalization
Learn a classification function 

that can discriminate between 

the two classes

Classification function can also 

generalize to unseen examples, 

and classify them correctly
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Setting Up The SVM Problem

Find a linear classification function (a 

hyperplane) f(x) = w’x – b such that 

sign(f(x)) = +1, when diabetes

sign(f(x)) = -1, when not diabetes



The SVM Problem

Find a linear classification function (a 

hyperplane) f(x) = w’x – b such that 

sign(f(x)) = +1, when diabetes

sign(f(x)) = -1, when not diabetes



The Notion of Margin

The data set is linearly separable. 

There exist many different classifiers! 

Which one is the best?

The hyperplane is shown along with its 

margin, or how much it separates the 

two classes.



The Notion of Margin

The data set is linearly separable. 

There exist many different classifiers! 

Which one is the best?

Do we want a skinny margin? Or a 

fat margin?



The Notion of Margin
If we want to learn a classifier that 

generalizes best, need one that 

achieves the maximum margin.



A Theoretical Digression

• When we have infinitely many solutions that 

reduce the error (variance), which one should we 

pick? 

• We introduce a bias! Our bias is toward simpler • We introduce a bias! Our bias is toward simpler 

solutions (minimal complexity).

• How do we measure complexity of hyperplanes 

with respect to data? Vapnik-Chervonenkis

dimension



A Theoretical Digression: VC Dimension
• Complexity for a class of functions H is measured by VC Dimension

• A given set of ℓ points can be labeled in 2ℓ ways.

• If for each labeling, some function f from H can be found which 
correctly assigns those labels, we say that that set of points is 
shattered by H.

• The VC dimension for the set of functions H is defined as the 
maximum number of training points that can be shattered



h ≤ 4R2

γ2

A Theoretical Digression: VC Dimension

Vladimir Vapnik showed that there is a connection between 
VC dimension and margin (Vapnik, 1995)

To minimize the VC 

dimension (and hence 

complexity), we have to 

maximize the margin!

VC dimension

margin maximize the margin!margin



Formulating the SVM

w
′
x− β = 0

w
′
x− α = 0

Distance of a point in 

Class      to the margin is 
|w′

x−α|
‖w‖

Distance of a point in 

Class      to the margin is 
|w′

x−β|
‖w‖



Formulating the SVM
Distance between the

hyperplanes is the margin

γ = |α−β|
‖w‖

w
′
x− β = 0

w
′
x− α = 0

Distance of a point in 

Class      to the margin is 
|w′

x−α|
‖w‖

Distance of a point in 

Class      to the margin is 
|w′

x−β|
‖w‖



Formulating the SVM
Distance between the

hyperplanes is the margin

γ = |α−β|
‖w‖

w
′
x− β = 0

w
′
x− α = 0

Set                        and

,, then the 

margin is

which should be maximized. 

α = b+ 1
β = b− 1

γ = 2

‖w‖



Formulating the SVM
We are given labeled data points

(xi, yi)
ℓ
i=1

We need to learn a hyperplane

w
′
x− b = 0

such that

1. all the points in class

with labels y = +1, lie above the 

1

‖w‖
1

‖w‖

with labels yi = +1, lie above the 

margin, that is

2. all the points in class

with labels yi = -1, lie below the 

margin, that is

3. the margin is maximized

γ = 2

‖w‖

w
′
x− b = 0

w
′
xi − b ≥ 1

w
′
xi − b ≤ −1

w
′
x− b = 1

w
′
xi − b = −1



Formulating the SVM

1

‖w‖
1

‖w‖

Maximizing                        is 

equivalent to minimizing

γ = 2

‖w‖

1

2
‖w‖2

with the constraints that

w
′
xi − b ≥ 1

w
′
xi − b ≤ −1

yi = +1

yi = −1
when

when

w
′
x− b = 0

w
′
x− b = 1

w
′
xi − b = −1

Optimization problem for a support vector 

machine:

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ



• Convex, quadratic minimization problem called the primal 
problem. Guaranteed to have a global minimum.

• Further properties of the formulation can be studied by 
deriving the dual problem

Optimization problem for a support vector machine:

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

deriving the dual problem

• Introduce Lagrange multipliers,                , one for each 
constraint (hence data point). These are the dual variables.

• Construct the Lagrangian function of primal and dual 
variables (note that by definition all              )

{αi}ℓi=1

αi ≥ 0

L(w, b, αi) =
1

2
w
′
w −∑ℓ

i=1 αi [yi(w
′
xi − b)− 1]



Differentiate the Lagrangian with respect to the primal 

variables

Lagrangian function of a support vector machine

L(w, b, αi) =
1

2
w
′
w −∑ℓ

i=1 αi [yi(w
′
xi − b)− 1]

∇wL(w, b, αi) = 0 : w =

ℓ∑
αiyixi∇w i

∑

i=1

i i i

∇bL(w, b, αi) = 0 :
ℓ∑

i=1

αiyi = 0

These are the first order optimality conditions. We can 
now eliminate the primal variables by substituting the 
first order conditions into the Lagrangian.



support vector machine primal problem

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

support vector machine dual problem

max −1

2

ℓ∑

i=1

ℓ∑

j=1

αiαjyiyjx
′
ixj +

ℓ∑

i=1

αi−
2

∑

i=1

∑

j=1

∑

i=1

s.t.

ℓ∑

i=1

αiyi = 0,

αi ≥ 0, ∀i = 1 . . . ℓ

Why bother with the dual, and solving for α?

• convex optimization problem. No duality gap

• Dual has fewer constraints. Easier to solve

• Dual solution is sparse. Easier to represent
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Characteristics of the Solution
Recall the first order condition:

w =

ℓ∑

i=1

αiyixi
The final solution is a linear

combination of the training data!

Additional optimality condition: complementarity slackness

0 ≤ αi ⊥ yi(w
′
x− b)− 1 ≥ 0

αi = 0 and yi(w
′
xi − b) > 1 (point not on hyperplane)

or
αi > 0 and yi(w

′
xi − b) = 1 (point on hyperplane)



Characteristics of the Solution
Recall the first order condition:

w =

ℓ∑

i=1

αiyixi
The final solution is a sparse linear

combination of the training data!

only support vectors have αi > 0 

(non-zero). All other vectors have 

αi = 0, and this makes the solution 

sparse!

αi = 0 and yi(w
′
xi − b) > 1 (point not on hyperplane)

or
αi > 0 and yi(w

′
xi − b) = 1 (point on hyperplane)



Characteristics of the Solution
Recall the first order condition:

w =

ℓ∑

i=1

αiyixi
The final solution is a sparse linear

combination of the training data!

only support vectors have αi > 0 

(non-zero). All other vectors have 

αi = 0, and this makes the solution 

sparse!

solution does not change if all 

other vectors with αi = 0 are 

deleted!
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Linearly Inseparable Data
So far, assumed that the data is 

linearly separable. However, this 

assumption is not valid in most real-

world applications.

Need to extend hard-margin 

support vector machines to be able 

to handle noisy datato handle noisy data

This results in the soft-margin 

support vector machine



Soft-margin Support Vector Machine
hard-margin support vector machine

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

soft-margin support vector machine

min 1

2
‖w‖2 + C

ℓ∑

i=1

ξi

s.t. yi(w
′
xi − b) ≥ 1−ξi ∀i = 1 . . . ℓ

ξi ≥ 0



Soft-margin Support Vector Machine
hard-margin support vector machine

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

soft-margin support vector machine

min 1

2
‖w‖2 + C

ℓ∑

i=1

ξi

s.t. yi(w
′
xi − b) ≥ 1−ξi ∀i = 1 . . . ℓ

ξi ≥ 0

errors (slack variables) to 

measure loss of 

misclassified data points



Soft-margin Support Vector Machine
hard-margin support vector machine

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

regularization constant

soft-margin support vector machine

min 1

2
‖w‖2 + C

ℓ∑

i=1

ξi

s.t. yi(w
′
xi − b) ≥ 1−ξi ∀i = 1 . . . ℓ

ξi ≥ 0

errors (slack variables) to 

measure loss of 

misclassified data points

regularization constant

that trades off between 

complexity and loss



Soft-margin Dual
hard-margin svm dual

min 1

2
‖w‖2

2

s.t. yi(w
′
xi − b) ≥ 1 ∀i = 1 . . . ℓ

max −1

2

ℓ∑

i=1

ℓ∑

j=1

αiαjyiyjx
′
ixj +

ℓ∑

i=1

αi

s.t.

ℓ∑

i=1

αiyi = 0,

αi ≥ 0, ∀i = 1 . . . ℓ

soft-margin svm dual

max − 1

2

∑ℓ

i=1

∑ℓ

j=1 αiαjyiyjx
′
ixj +

∑ℓ

i=1 αi

s.t.
∑ℓ

i=1 αiyi = 0
0 ≤ αi ≤ C, ∀i = 1 . . . ℓ



Some things to note about the Dual

max − 1

2

∑ℓ

i=1

∑ℓ

j=1 αiαjyiyjx
′
ixj +

∑ℓ

i=1 αi

s.t.
∑ℓ

i=1 αiyi = 0
0 ≤ αi ≤ C, ∀i = 1 . . . ℓ

Note that the dual solution Note that the dual solution 

depends only on the inner 

products of the training data.

This is an important 

observation that allows us to 

extend linear SVMs to handle 

nonlinear data.

Note that the regularization 

constant is set by the user.

This is an important parameter 

that can cause dramatically 

different behaviors on the 

same data set.
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Nonlinear Data Sets
No linear classifier can classify this nonlinear data.

[
x1
x2

]
→




x2
1√

2x1x2
x2
2





Naïve solution: Transform the input data into 

a higher dimension using the following 

nonlinear transformation:



No linear classifier exists in 2-d 

space, but a linear classifier 

can classify this nonlinear 

data in 3-d space!

Nonlinear Data Sets

[
x1
x2

]
→




x2
1√

2x1x2
x2
2





Naïve solution: Transform the input data into 

a higher dimension using the following 

nonlinear transformation:



Linear classifier in 3-d space

becomes non-linear in 2-d 

space!

Nonlinear Data Sets

[
x1
x2

]
→




x2
1√

2x1x2
x2
2





Naïve solution: Transform the input data into 

a higher dimension using the following 

nonlinear transformation:



Naïve Approach: Explicit Transformation
transform data to a 

higher dimensional 

feature space

train a classifier in 

the high dimensional 

space using support 

vector machines

project the learned

classifier back to the 

original space



Naïve Approach: Explicit Transformation
transform data to a 

higher dimensional 

feature space

Recall that SVM training relies only on 
train a classifier in 

the high dimensional 

space using support 

vector machines

project the learned

classifier back to the 

original space

Recall that SVM training relies only on 

inner products of the training data. 

In this case, it will rely on the inner-

products of the transformed data



Inner Products in Feature Space

Let two points in the original input space be

x = (x1, x2)
z = (z1, z2)

After transformation, in the high-dimensional 

feature space, they become

φ(x) = (x2
1
,
√
2x1x2, x

2

2
)

φ(z) = (z2
1
,
√
2z1z2, z

2

2
)

What do inner products in this 

transformed feature space look like?



The Kernel Trick

〈φ(x), φ(w)〉=〈(x2
1
, x2
2
,
√
2x1x2), (w

2

1
, w2

2
,
√
2w1w2)〉

=x2
1
w2
1
+ x2

2
w2
2
+ 2x1w1x2w2

=(x1w1 + x2w2)
2

=〈x,w〉2



The Kernel Trick

inner products in 

high-dimensional 

feature space inner products in the 

〈φ(x), φ(w)〉=〈(x2
1
, x2
2
,
√
2x1x2), (w

2

1
, w2

2
,
√
2w1w2)〉

=x2
1
w2
1
+ x2

2
w2
2
+ 2x1w1x2w2

=(x1w1 + x2w2)
2

=〈x,w〉2

feature space inner products in the 

original input space

the two inner products are related 

to each other through the kernel function 



Better Approach: The Kernel Trick
transform data to a 

higher dimensional 

feature space

Use a kernel function to train a classifier in 

the high dimensional 

space using support 

vector machines

project the learned

classifier back to the 

original space

Use a kernel function to

directly learn a nonlinear 

classifier! 

No need for explicit 

transformations

Can use existing

approaches with 

slight modification!



The Kernel Trick

Use a kernel function to

linear support vector machine

max −1

2

ℓ∑

i=1

ℓ∑

j=1

αiαjyiyjx
′
ixj +

ℓ∑

i=1

αi

s.t.

ℓ∑

i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1 . . . ℓ
Use a kernel function to

directly learn a nonlinear 

classifier! 

No need for explicit 

transformations

Can use existing

approaches with 

slight modification!

0 ≤ αi ≤ C ∀i = 1 . . . ℓ

kernel support vector machine

max − 1

2

ℓ∑

i=1

ℓ∑

j=1

αiαjyiyjκ(xi, xj) +
ℓ∑

i=1

αi

s.t.

ℓ∑

i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1 . . . ℓ



Some Popular Kernels

Some popular kernels

• Linear kernel: κ(x, z) = 〈x, z〉

• Polynomial kernel: κ(x, z) = (〈x, z〉+ c)d, c, d ≥ 0

• Gaussian kernel: κ(x, z) = e−
‖x−z‖2

σ , σ > 0•

• Sigmoid kernel: κ(x, z) = tanh−1 η〈x, z〉+ θ

Kernels can also be constructed from other kernels:

• Conical (not linear) combinations, κ(x, z) = a1κ1(x, z) + a2κ2(x, z)

• Products of kernels, κ(x, z) = κ1(x, z)κ2(x, z)

• Products of functions, κ(x, z) = f1(x)f2(z), f1, f2 are real valued func-
tions.



Polynomial Kernels                 
κ(x, z) = (〈x, z〉+ 1)d



Gaussian Kernels                 
κ(x, z) = exp− ‖x−z‖2

σ



Gaussian Kernels                 
κ(x, z) = exp− ‖x−z‖2

σ
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Regularization and Over-fitting

min 1

2
‖w‖2 + C

ℓ∑

i=1

ξ

s.t. yi(w
′
xi − b) ≥ 1− ξi ∀i = 1 . . . ℓ

ξ ≥ 0

soft-margin support vector machine

The regularization parameter, C, is 

chosen a priori, defines the relative 

trade-off between norm (complexity / 

smoothness / capacity) and loss (error 

penalization)

We want to find classifiers that

minimize (regularization + C ・・・・ loss)

kernel support vector machine

max −1

2

ℓ∑

i=1

ℓ∑

j=1

αiαjyiyjκ(xi,xj) +
ℓ∑

i=1

αi

s.t.

ℓ∑

i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1 . . . ℓ

minimize (regularization + C ・・・・ loss)

Regularization

• introduces inductive bias over solutions

• controls the complexity of the solution

• imposes smoothness restriction on 

solutions

As C increases, the effect of the 

regularization decreases and the SVM 

tends to overfit the data



The Effect of C on Classification

C = 0.001



The Effect of C on Classification

C = 0.01



The Effect of C on Classification

C = 0.1



The Effect of C on Classification

C = 1



The Effect of C on Classification

C = 10



The Effect of C on Classification

C = 100



SVM Algorithms over the Years

• Earliest solution approaches: Quadratic Programming 
Solvers (CPLEX, LOQO, Matlab QP, SeDuMi)

• Decomposition methods: SVM chunking (Osuna et. 
al., 1997); implementation: SVMlight (Joachims, 1999)

• Sequential Minimization Optimization (Platt, 1999); • Sequential Minimization Optimization (Platt, 1999); 
implementation: LIBSVM (Chang et. al., 2000)

• Interior Point Methods (Munson and Ferris, 2006), 

Successive Over-relaxation (Mangasarian, 2004)    

• Co-ordinate Descent Algorithms (Keerthi et. al., 2009), 
Bundle Methods (Teo et. al., 2010)


