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Goals for the lecture 
(with thanks to Irene Ong, Stuart Russell and Peter Norvig, Jakob Rasmussen, 
Jeremy Weiss, Yujia Bao, Charles Kuang, Peggy Peissig, and Becca Willett) 
 
you should understand the following concepts 

•  dynamic Bayes nets (DBNs) 
•  continuous-time Bayes nets (CTBNs) 
•  point process models 
•  piecewise constant conditional intensity models (PCIMs) 
•  multiplicative forest point processes (MFPPs) 
•  Hawkes processes 



Note: direction of arrow 
indicates dependence 

not causality 
Friedman et al. (2000) 
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Dynamic Bayesian Network (DBN) 



Example DBN [Ong et al., ISMB’02] 
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Figure 17.2 Bayesian network structure and conditional distributions describing the um-
brella world.

The conditional distribution P E X is called the sensor model, because it describes howSENSOR MODEL

the “sensors”—that is, the evidence variables, are affected by the actual state of the world.
Notice the direction of the dependence: the “arrow” goes from state to sensor values because
the state of the world causes the sensors to take on particular values. In the umbrella world,
for example, the rain causes the umbrella to appear. (The inference process, of course, goes
in the other direction; the distinction between the direction of modelled dependencies and the
direction of inference is one of the principal advantages of Bayesian networks.)

Combining the conditional independence assertions in Equations (17.1) and (17.2), we
obtain a very simple structure for the Bayesian network describing the whole system. Fig-
ure 17.2 shows the network structure for the umbrella example, including the conditional dis-
tributions for the transition and sensor models.

The structure in the figure assumes a first-orderMarkov process, because the probability
of rain is assumed to depend only on whether it rained the previous day. Whether such an
assumption is reasonable depends on the domain itself. The first-order Markov assumption
says that the state variables contain all the information needed to characterize the probability
distribution for the next time slice. Sometimes the assumption is exactly true—for example,
if a particle is executing a random walk along the –axis, changing its position by atRANDOM WALK

each time step, then using the –coordinate as the state gives a first-order Markov process.
Sometimes the assumption is only approximate, as in the case of predicting rain just based on
whether it rained the previous day. There are two possible fixes if the approximation proves
too inaccurate:

1. Increasing the order of theMarkov process model. For example, we could add
as a parent of , which might give slightly more accurate predictions.

2. Increasing the set of state variables. For example, we could add and
to help in predicting the weather.

Exercise 17.1 asks you to show that the first solution—increasing the order—can always be
reformulated as an increase in the set of state variables, keeping the order fixed. Notice that
adding state variablesmay improve predictive power but also increases the prediction require-
ments, since we also have to predict the new variables. Thus, we are looking for a “self-
sufficient” set of variables, which really means that we have to understand the “physics” of



Unrolling DBN [Russell & Norvig] Section 17.5. Dynamic Bayesian Networks 415

alent to the semi-infinite network obtained by unrolling for ever. Slices added beyond the last
observation have no effect on inferences within the observation period and can be omitted.)
Once the DBN is unrolled, one can use any of the inference algorithms—variable elimination,
join-tree methods, and so on—described in Chapter 16.
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Figure 17.14 Unrolling a dynamic Bayesian network: slices are replicated to accommo-
date the observation sequence (shaded nodes). Further slices have no effect on inferences
within the observation period.

Unfortunately, a naive application of unrollingwould not be particularly efficient. If we
want to perform filtering or smoothingwith a long sequence of observations , the unrolled
network would require space and thus grows without bound as more observations are
added. Moreover, if we simply run the inference algorithm anew each time an observation is
added, the inference time per update will also increase as .

Looking back to Section 17.2, we see that constant time and space per filtering update
can be achieved if the computationcan be done in a recursive fashion. Essentially, the filtering
update inEquation (17.3) works by summing out the state variables of the previous time step to
get the distribution for the new time step. Summing out variables is exactly what the variable
elimination (Figure 16.9) algorithm does, and it turns out that running variable elimination
with the variables in temporal order exactly mimics the operation of the recursive filtering
update in Equation (17.3). The modified algorithm keeps at most two slices in memory at any
one time: starting with slice 0, we add slice 1, then sum out slice 0, then add slice 2, then
sum out slice 1, and so on. In this way, we can achieve constant space and time per filtering
update. (The same performance can be achieved by making suitable modifications to the join
tree algorithm.) Exercise 17.9 asks you to verify this fact for the umbrella network.

So much for the good news; now for the bad news. It turns out that the “constant” for
the per-update time and space complexity is, in almost all cases, exponential in the number
of state variables. What happens is that as the variable elimination proceeds, the factors grow
to include all the state variables (or, more precisely, all those state variables that have parents
in the previous time slice). Thus, inference in a DBN is more or less identical to inference in
the equivalent HMM. The only exception is when the DBN represents two or more entirely
separate processes that do not influence each other and do not share observations.

This grim fact is somewhat hard to accept. What it means is that even though we can use
DBNs to represent very complex temporal processes with many sparsely connected variables,
we cannot reason efficiently about those processes. The DBN model itself, which represents
the prior joint distribution over all the variables, is factorable into its constituent CPTs, but
the posterior joint distribution conditioned on an observation sequence—that is, the forward
message—is generally not factorable. So far, no-one has found away around this problem, de-
spite the fact that many important areas of science and engineeringwould benefit enormously



DBN Algorithms 

•  Forward Algorithm: dynamic programming (equivalent to 
variable elimination in this case) to compute probability 
of a future variable 

•  Backward Algorithm: past variable 
•  Forward-Backward: compute probability of a state 
•  Viterbi: compute most probable trajectory (use max 

rather than sum over hidden variables) 
•  Baum-Welch: EM algorithm (over hidden state variables) 

to learn parameters 
•  Structure learning generally by greedy hill-climbing 



Viterbi [Russell & Norvig] 
Section 17.3. Hidden Markov Models 399

Rain
1

Rain
2

Rain
3

Rain
4

Rain
5

(a)

(b)

true

false

true

false

true

false

true

false

true

false

.8182 .5155 .0361 .0334 .0210

.1818 .0491 .1237 .0173 .0024

m
1:1

m
1:5

m
1:4

m
1:3

m
1:2

Figure 17.5 (a) Possible state sequences for can be viewed as paths through a graph

of the possible states at each time step. (States are shown using square nodes to avoid con-

fusion with nodes in a Bayesian network.) (b) Operation of the Viterbi algorithm for the um-

brella observation sequence . For each time step , we have

shown the values of the message m which gives the probability of the best sequence reach-

ing each state at time . Also, for each state, the bold arrow leading into it indicates its best

predecessor.

The algorithm we have just described is called theViterbi algorithm, after its inventor.VITERBI ALGORITHM

Like the filtering algorithm, its complexity is linear in , the length of the sequence. Unlikefil-
tering, however, its space requirement is also linear in . This is because the Viterbi algorithm

needs to keep the pointers that identify the best sequence leading to each state.

17.3 HIDDEN MARKOV MODELS

The preceding section developed algorithms for temporal probabilistic reasoning using a very

general framework, independent of the specific form of the transition and sensor models. In
this and the following two sections, we discuss more concrete models and applications that

illustrate the power of the basic algorithms and in some cases allow further improvements.

We begin with the hiddenMarkovmodel orHMM. AnHMM is a temporal probabilis-HIDDEN MARKOV
MODEL

tic model in which the state of the process is described by a single, discrete random variable.
The possible values of the variable are the possible states of the world. The umbrella example

described in the preceding section is therefore an HMM, since it has just one state variable,

. Additional state variables can be added to a temporal model while staying within the

HMM framework, but only by combining all the state variables into a single “megavariable”

whose values are all possible tuples of values of the individual state variables. HMMs usually

have a single, discrete evidence variable as well, but this restriction is less important.

We will see that the restriction to a single, discrete state variable allows for a very sim-



Particle Filtering 

•  Choose number of particles N, and sample N particles 
•  At each subsequent time, from each particle, use 

transition to sample value at next time step 
•  Weight particles by likelihood given the evidence 
•  Resample N particles from this new, weighted 

distribution 

418 Chapter 17. Probabilistic Reasoning over Time

function PARTICLEFILTERING( ,N,dbn) returns a set of samples for the next time step
inputs: , the new incoming evidence

N, the number of samples to be maintained
dbn, a DBN with slice 0 variables X and slice 1 variables X and E

static: S, a vector of samples of size N
local variables: W, a vector of weights of size N

if is empty then /* initialization phase */
for i = 1 to N do

S[i] sample from P X
else do /* update cycle */
for i = 1 to N do

S[i] sample from P X X
W[i] P X

S WEIGHTEDSAMPLEWITHREPLACEMENT(N,S,W)
return S

Figure 17.16 The particle filtering algorithm implemented as a recursive update operation
with state (the set of samples). Each of the sampling steps involves sampling the relevant
slice variables in topological order, much as in PRIORSAMPLE.[[expand into code?]] The
WEIGHTEDSAMPLEWITHREPLACEMENT operation can be implemented as an
algorithm.

true

false

(a) Propagate (b) Weight (c) Resample

Raint Raint+1Raint+1Raint+1

Figure 17.17 The particlefiltering update cycle for the umbrella DBN with , show-
ing the sample populationsof each state. (a) At time , 8 samples indicate and 2 indicate

. Each is propagated forward by sampling the next state using the transition model. At
time , 7 samples indicate and 3 indicate . (b) is observed at

. Each sample is weighted by its likelihood for the observation, as indicated by the size
of the circles. (c) A new set of 10 samples is generated by weighted random selection from
the current set, resulting in 4 samples that indicate and 6 that indicate .

receives weight x . The total weight of the samples in x after seeing is
therefore

x x x
Now for the resampling step. Since each sample is replicated with probability proportional
to its weight, the number of samples in state x after resampling is proportional to the total



Special Cases of DBNs 

•  Hidden Markov Models (HMMs) 
–  One state variable 
–  One emit variable 
–  DBNs are factored HMMs 

•  Kalman Filters: special (original) case of DBNs where 
–  CPDs are multivariate Gaussians 
–  Linear dependence on parents, Gaussian noise 
–  Transition (left-to-right) and Sensing (top-to-bottom) distributions 
–  Developed to track objects by radar given observations every 10 

seconds (or some such time interval) 



Irregular Temporal Data Example: Clinical Data 
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Point Process 
 a.k.a., Piecewise-continuous Conditional Intensity Model (PCIM) 
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General	
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(Rasmussen,	
  2011)	
  

Proof. By (1), we get that

λ∗(t) =
f∗(t)

1− F ∗(t)
=

d
dtF

∗(t)

1− F ∗(t)
= −

d

dt
log(1− F ∗(t)). (5)

Integrating both sides, we get by the fundamental theorem of calculus that

∫ t

tn

λ∗(s)ds = −(log(1− F ∗(t))− log(1− F ∗(tn))) = − log(1− F ∗(t)),

since F ∗(tn) = 0 here (point tn+1 falls on top of tn with probability zero, since
the point process is simple). Isolating F ∗(t) we get (4), and (3) then follows by
differentiating F ∗(t) with respect to t, again using the fundamental theorem of
calculus. !

Proposition 2.2 A conditional intensity function λ∗(t) uniquely defines a point
process if it satisfies the following conditions for all t and all possible point patterns
before t:

1. λ∗(t) is well-defined and non-negative,

2. the integral
∫ t

tn
λ∗(s)ds is well-defined,

3.
∫ t

tn
λ∗(s)ds → ∞ for t → ∞.

Proof. The distribution of the point process is well-defined, if all interevent times
have well-defined densities, i.e. f∗(t) should be a density function for all t, or
equivalently F ∗(t) should be a cumulative distribution function. From the three
assumptions and (4) it follows that

• 0 ≤ F ∗(t) ≤ 1,

• F ∗(t) is a non-decreasing function of t,

• F ∗(t) → 1 for t → ∞,

which means that the distributions of the interevent times are well-defined. Unique-
ness follows from Proposition 2.1, since F ∗(t) is uniquely obtained from λ∗(t) using
(4). !

Note that item 3. in Proposition 2.2 implies that the point process continuous
forever, a property which is often not desireable for practical use - luckily we can
get rid of this assumption. If we remove this, the proof still holds except that item
3. in the proof has to be removed. Now F ∗(t) → p for some probability p < 1, so
we have to understand what it means when the cumulative distribution function
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Concrete	
  Example	
  

the conditional density f∗ and its corresponding cumulative distribution function
F ∗. Then the conditional intensity function (or hazard function) is defined by

λ∗(t) =
f∗(t)

1− F ∗(t)
. (1)

The conditional intensity function can be interpreted heuristically in the following
way: consider an infinitisemal interval around t, say dt, then

λ∗(t)dt =
f∗(t)dt

1− F ∗(t)

=
P(point in dt|Ht)

P(point not before t|Ht)

=
P(point in dt, point not before t|Ht)

P(point not before t|Ht)

= P(point in dt|point not before t,Ht)

= P(point in dt|Ht)

= E[N(dt)|Ht].

Here N(A) denotes the number of points falling in an interval, and the last equality
follows from the assumption that no points coincide, so that there is either zero
or one point in an infinitisemal interval. In other words, the conditional intensity
function specifies the mean number of events in a region conditional on the past.

We consider a few examples of point processes where the conditional intensity
has particular functional forms:

Example 2.2 (Poisson process) The (inhomogeneous) Poisson process is among
other things characterised by the number of points in disjoint sets being indepen-
dent. The conditional intensity function inherets this independence. The Poisson
process is quite simply the point process where the conditional intensity function
is independent of the past, i.e. the conditional intensity function is equal to the
intensity function of the Poisson process, λ∗(t) = λ(t).

Example 2.3 (Hawkes process) Define a point process by the conditional in-
tensity function

λ∗(t) = µ+ α
∑

ti<t

exp(−(t− ti)), (2)

where µ and α are positive parameters. Note that each time a new point arrives in
this process, the conditional intensity grows by α and then decreases exponentially
back towards µ. In other words, a point increases the chance of getting other
points immediately after, and thus this is model for clustered point patterns. A
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Hawkes	
  Process	
  simulation of the process with parameters (µ,α) = (0.5, 0.9) is shown in Figure 2
together with its conditional intensity function (in Section 4 we will learn how to
make such a simulation). The so-called Hawkes process is a generalization of this
process and has the conditional intensity function

λ∗(t) = µ(t) + α
∑

ti<t

γ(t− ti;β),

where µ(t) ≥ 0, α > 0, and γ(t;β) is a density on (0,∞) depending on some
parameter β. For more on the Hawkes process, see e.g. Hawkes (1971b,a, 1972);
Hawkes and Oakes (1974).
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Figure 2: A simulation of the Hawkes process is shown at the bottom of this plot,
and the corresponding conditional intensity function is shown in the top. Note
that the point pattern is clustered.

Example 2.4 (Self-correcting process) What do we do if we want a point
process for regular point patterns? Exchanging the plus for a minus in the Hawkes
process will not work, since a conditional intensity function has to be non-negative.
We can instead use

λ∗(t) = exp

(

µt−
∑

ti<t

α

)

,

where µ and α are positive parameters. Now the intensity rises as time passes,
but each time a new point appears we multiply by a constant exp(−α) < 1, and
thus the chance of new points decreases immediately after a point has appeared;
in other words, this is a regular point process. A simulation point pattern and the
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One	
  Applica]on	
  

•  Let	
  events	
  have	
  more	
  than	
  one	
  type:	
  drugs	
  and	
  diagnoses	
  

•  Let	
  β	
  be	
  vector	
  of	
  coefficients,	
  one	
  per	
  event	
  type	
  

•  Lasso-­‐penalized	
  Poisson	
  regression	
  is	
  similar	
  to	
  lasso-­‐
penalized	
  logis]c	
  regression	
  and	
  can	
  es]mate	
  coefficients	
  to	
  
yield	
  λ	
  based	
  on	
  ]me	
  since	
  prior	
  events	
  of	
  various	
  types	
  

•  Being	
  used	
  now	
  for	
  iden]fying	
  adverse	
  drug	
  events	
  by	
  finding	
  
drugs	
  with	
  high	
  coefficient	
  for	
  certain	
  condi]ons	
  in	
  future	
  
(MSCCS,	
  Simpson	
  et	
  al.,	
  2013;	
  current	
  work	
  with	
  Bao,	
  Kuang,	
  
and	
  Willep)	
  



Comments	
  on	
  Temporal	
  Models	
  

•  DBNs:	
  regular	
  ]me	
  intervals	
  

•  Con]nuous-­‐]me	
  models:	
  inference	
  is	
  hard	
  because	
  fill	
  in	
  
values	
  of	
  all	
  variables	
  over	
  all	
  ]me	
  based	
  on	
  just	
  point	
  
evidence	
  

•  Point	
  process	
  models:	
  distribu]on	
  over	
  events	
  (observa]ons)	
  
rather	
  than	
  over	
  values	
  of	
  all	
  variables	
  over	
  all	
  ]me	
  

•  Inference	
  and	
  learning	
  are	
  hard:	
  much	
  ac]ve	
  research	
  on	
  
these	
  and	
  on	
  alterna]ve	
  intensity	
  func]ons	
  based	
  on	
  history	
  


