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Goals for the lecture

(with thanks to Irene Ong, Stuart Russell and Peter Norvig, Jakob Rasmussen,
Jeremy Weiss, Yujia Bao, Charles Kuang, Peggy Peissig, and Becca Willett)

you should understand the following concepts
« dynamic Bayes nets (DBNs)
« continuous-time Bayes nets (CTBNSs)
* point process models
» piecewise constant conditional intensity models (PCIMs)
« multiplicative forest point processes (MFPPs)
 Hawkes processes



Bayesian Network (BN)

Data:
ProtA  ProtB 1
0.5/0.5
Exptl |1 1 >
Expt2 |1 1 parent node
Expt3 child node
Expt4 1
P(ProtB)

Friedman et al. (2000)




Dynamic Bayesian Network (DBN)




Example DBN [Ong et al., ISMB’ 02]
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Another Example [Russell & Norvig]
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Unrolling DBN [Russell & Norvig]
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Figure 17.14  Unrolling a dynamic Bayesian network: slices are replicated to accommo-
date the observation sequence (shaded nodes). Further slices have no effect on inferences
within the observation period.




DBN Algorithms

Forward Algorithm: dynamic programming (equivalent to
variable elimination in this case) to compute probability

of a future variable
Backward Algorithm: past variable
Forward-Backward: compute probability of a state

Viterbi: compute most probable trajectory (use max
rather than sum over hidden variables)

Baum-Welch: EM algorithm (over hidden state variables)
to learn parameters

Structure learning generally by greedy hill-climbing



Viterbi [Russell & Norvig]
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Particle Filtering

Choose number of particles N, and sample N particles

At each subsequent time, from each particle, use
transition to sample value at next time step

Weight particles by likelihood given the evidence

Resample N particles from this new, weighted
distribution
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(a) Propagate (b) Weight (c) Resample




Special Cases of DBNs

* Hidden Markov Models (HMMs)
— One state variable
— One emit variable
— DBNs are factored HMMs

« Kalman Filters: special (original) case of DBNs where

— CPDs are multivariate Gaussians
— Linear dependence on parents, Gaussian noise
— Transition (left-to-right) and Sensing (top-to-bottom) distributions

— Developed to track objects by radar given observations every 10
seconds (or some such time interval)



Irregular Temporal Data Example: Clinical Data

60 yo M presents with sudden onset of
substernal, heavy chest pain 45 minutes
ago that radiates to left arm and neck.
+dyspnea, +diaphoresis, +nausea.

History:

hypertension, Pressure in Spreading Lightheadedness,
hyp erli pi d emia, the chest pain sweaﬂ?o:re n::sea
smoking o
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60 yo M presents with sudden onset of
substernal, heavy chest pain 45 minutes
ago that radiates to left arm and neck.
+dyspnea, +diaphoresis, +nausea.

History:
hypertension,
hyperlipidemia,
smoking

Workup: ECG, cardiac enzymes, chest
XR, CBC + electrolytes, echo

Myocardial Infarction (MI, heart attack)
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60 yo M presents with sudden onset of
substernal, heavy chest pain 45 minutes
ago that radiates to left arm and neck.
+dyspnea, +diaphoresis, +nausea.

History:
hypertension,
hyperlipidemia,

smoking

Workup: ECG, cardiac enzymes, chest
XR, CBC + electrolytes, echo

Myocardial Infarction (MI, heart attack)
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60 yo M Framingham risk score for men:
10pt =60 yo
1 pt = hypertension
2 pt = hyperlipidemia

1 pt = smoking
History:
hypertension, 14 pt 2 16%
hyperlipidemia, 10-year risk of cardiovascular disease
smoking (Wilson et al, Circulation 1998)

9/24/2013 Timeline Analysis for EHRs 15




60 yo M Framingham risk score for men:
10pt =60 yo
1 pt = hypertension
2 pt = hyperlipidemia

1 pt = smoking
History:
hypertension, 14 pt 2 16%
hyperlipidemia, 10-year risk of cardiovascular disease
smoking (Wilson et al, Circulation 1998)

5-year risk of MI?
k-year risk of X?
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60 yo M Framingham risk score for men:
10pt =60 yo
1 pt = hypertension
2 pt = hyperlipidemia

1 pt = smoking
History:
hypertension, 14 pt 2 16%
hyperlipidemia, 10-year risk of cardiovascular disease
smoking (Wilson et al, Circulation 1998)
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Timeline Representations

Continuous-time, discrete-state, with piecewise-constant transition rates

Point process: piecewise-continuous conditional intensity model (PCIM)
(Gunawardana et al., NIPS 2011)

Continuous-time Bayesian networks (CTBNS) (Nodelman et al, UAI 2002)
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Timeline Representations

Continuous-time, discrete-state, with piecewise-constant transition rates
Point process: piecewise-continuous conditional intensity model (PCIM)

(Gunawardana et al., NIPS 2011)

Continuous-time Bayesian networks (CTBNS) (Nodelman et al, UAI 2002)
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Model of Events
Point Processes

Model of Persistent State
CTBNs

9/24/2013
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Intensity Modeling

Event types/inL
Trajectory x: a sequence of time event pairs (t,1);
Rate function A(t[h) for {PCIM: events, CTBN: transitions}

9/24/2013 Timeline Analysis for EHRs
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Intensity Modeling

Event types/inL
Trajectory x: a sequence of time event pairs (t,1);

Rate function A(t[h) for {PCIM: events, CTBN: transitions}

Assumption: A piece-wise constant

Dependency: {PCIM: basis states s in S, CTBN: variable states X}
states s in 2, 2, mapping fromxto §
e.g. PCIM: A, depends on event b in [t-1,t)
e.g. CTBN: A, depends on B=b

9/24/2013 Timeline Analysis for EHRs

21




Intensity Modeling

Event types/inL
Trajectory x: a sequence of time event pairs (t,1);
Rate function A(t[h) for {PCIM: events, CTBN: transitions}
Assumption: A piece-wise constant
Dependency: {PCIM: basis states s in S, CTBN: variable states X}
states s in 2, 2, mapping fromxto §
e.g. PCIM: A, depends on event b in [t-1,t)
e.g. CTBN: A, depends on B=b
Likelihood:

p(x]S,0) = [T T Aot e AeeTis(@)

leL se¥y

M, : count of I given s
T, : cumulative duration until I given s
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Point Process
a.k.a., Piecewise-continuous Conditional Intensity Model (PCIM)

Represent dependencies with trees (Gunawardana et al, NIPS 2011)
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Multiplicative forests

Represent dependencies with trees forests

9/24/2013 Timeline Analysis for EHRs

24




Multiplicative forests

Represent dependencies with trees forests

In CTBNs, multiplicative forests (weiss et al, NIPS 2012):

» Efficiently represent complex dependencies

e Empirically require less data to learn

* Are learned by maximizing change in log likelihood
e Are learned neither in series or in parallel

9/24/2013 Timeline Analysis for EHRs 25




Multiplicative forests

Represent dependencies with trees forests

In CTBNs, multiplicative forests (weiss et al, NIPS 2012):

We can apply * Efficiently represent complex dependencies
multiplicative forests * Empirically require less data to learn
to point processes * Are learned by maximizing change in log likelihood

e Are learned neither in series or in parallel
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Forecasting

Ex ante forecasting
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Forecasting

Ex ante forecasting

Supervised forecasting
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No labels in the forecast region Labels in the forecast region
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Forecasting

Ex ante forecasting Supervised forecasting
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Given data from 1960 to 2005,
will a patient have an Ml between 2005 and 20107?
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age in [50.inf)

hge in [18,inf)

T

Jt.t-1)

Example CTBN/PCIM Structure

hypertension

Lt-1)

angina

age

age in [18,inf)

age in [18,inf)

hoe in [50,inf)

[t'y/

hge in [18.inf)

Goal: recover network-dependent event rates — measured by test set log likelihood
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Result from EHR Data

Main effects
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General Point Process Models
(Rasmussen, 2011)

Proposition 2.2 A conditional intensity function X*(t) uniquely defines a point
process if it satisfies the following conditions for allt and all possible point patterns
before t:

1. X*(t) is well-defined and non-negative,
2. the integral fttn N*(s)ds is well-defined,

3. fti N (s)ds = oo fort — o00.



Concrete Example

Example 2.3 (Hawkes process) Define a point process by the conditional in-
tensity function

() = pt ) exp(=(t—1;)), 2)

t; <t

where 1 and o are positive parameters. Note that each time a new point arrives in
this process, the conditional intensity grows by o and then decreases exponentially



Hawkes Process

N() = u(t) +a )y y(t—t;p),

t; <t

where pu(t) > 0, @ > 0, and ~(¢; 8) is a density on (0,00) depending on some
parameter 5. For more on the Hawkes process, see e.g. Hawkes (1971b,a, 1972);
Hawkes and Oakes (1974).



Hawkes Process
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Figure 2: A simulation of the Hawkes process is shown at the bottom of this plot,
and the corresponding conditional intensity function is shown in the top. Note
that the point pattern is clustered.



One Application

Let events have more than one type: drugs and diagnoses
Let B be vector of coefficients, one per event type

Lasso-penalized Poisson regression is similar to lasso-
penalized logistic regression and can estimate coefficients to
yield A based on time since prior events of various types

Being used now for identifying adverse drug events by finding
drugs with high coefficient for certain conditions in future
(MSCCS, Simpson et al., 2013; current work with Bao, Kuang,
and Willett)



Comments on Temporal Models

DBNs: regular time intervals

Continuous-time models: inference is hard because fill in
values of all variables over all time based on just point
evidence

Point process models: distribution over events (observations)
rather than over values of all variables over all time

Inference and learning are hard: much active research on
these and on alternative intensity functions based on history



