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Goals for the lecture 
you should understand the following concepts 

•  PAC learnability 
•  consistent learners and version spaces 
•  sample complexity 
•  PAC learnability in the agnostic setting 
•  the VC dimension 
•  sample complexity using the VC dimension 
•  the on-line learning setting 
•  the mistake bound model of learnability 
•  the Halving algorithm 
•  the Weighted Majority algorithm 
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Learning setting #1  

instance space X 

+
+

+
-

-

-

•  set of instances X 
•  set of hypotheses (models) H	


•  set of possible target concepts C	


•  unknown probability distribution D over instances  

c∈C
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Learning setting #1  

•  learner is given a set D of training instances 〈 x, c(x) 〉 
for some target concept c in C	


•  each instance x is drawn from distribution D 
•  class label c(x) is provided for each x	



•  learner outputs hypothesis h modeling c	
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True error of a hypothesis 

errorD (h) ≡ Px∈D c(x) ≠ h(x)[ ]

c	

 h	



instance space X 

+ 
+ 

+ 
- 

- 

- 

the true error of hypothesis h refers to how often h is wrong on future 
instances drawn from probability distribution D 
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Training error of a hypothesis 

errorD(h) ≡ Px∈ D c(x) ≠ h(x)[ ] =
δ(c(x) ≠ h(x))

x∈ D
∑

D

the training error of hypothesis h refers to how often h is wrong on 
instances in the training set D 
 

Can we bound errorD (h) in terms of errorD(h) ?   
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Is approximately correct  
good enough? 

To say that our learner L has learned a concept, should we 
require errorD (h) = 0 ? 
 

this is not realistic: 
•  unless we’ve seen every possible instance, there may be multiple 

hypotheses that are consistent with the training set 
•  there is some chance our training sample will be unrepresentative 
 

7 



Probably approximately 
correct learning? 

Instead, we’ll require that 
•  the error of a learned hypothesis h is bounded by some constant ε 	


•  the probability of the learner failing to learn an accurate hypothesis 

is bounded by a constant δ 
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Probably Approximately Correct (PAC) 
learning [Valiant, CACM 1984] 

•  Consider a class C of possible target concepts defined over a set of 
instances X of length n, and a learner L using hypothesis space H	



•  C is PAC learnable by L using H if, for all 
c∈ C	


distributions D over X 
ε such that 0 < ε  < 0.5	


δ such that 0 < δ  < 0.5	



•  learner L will, with probability at least (1-δ), output a hypothesis h ∈ 
H  such that errorD (h) ≤ ε, provided time and sample size (from D) 
polynomial in 

1/ε 	


1/δ	


n	


size(c)	
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PAC learning and 
consistency 

•  Suppose we can find hypotheses that are consistent with 
m training instances.   

•  We can analyze PAC learnability by determining whether 
1.  m grows polynomially in the relevant parameters 
2.  the processing time per training example is 

polynomial 
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Version spaces 

•  A hypothesis h is consistent with a set of training examples D of 
target concept c if and only if h(x) = c(x) for each training 
example  〈 x, c(x) 〉 in D 

 consistent(h,D) ≡ ∀ x,c(x) ∈D( )  h(x) = c(x)

•  The version space VSH,D with respect to hypothesis space H 
and training set D, is the subset of hypotheses from H 
consistent with all training examples in D 

 VSH ,D ≡ h∈H | consistent(h,D){ }

11 



Exhausting the 
version space 

•  The version space VSH,D is ε-exhausted with respect to 
concept c and data set D if every hypothesis h ∈ VSH,D H 
has true error < ε	



 

∀h ∈VSH , D( )errorD (h)< ε
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Exhausting the version space 
•  Suppose that every h in our version space VSH,D is consistent 

with m training examples 
•  The probability that VSH,D  is not  ε-exhausted (i.e. that it 

contains some hypotheses that are not accurate enough)	



≤ H e−εm

k(1− ε )m there might be k such hypotheses 

H (1− ε )m k is bounded by |H|	



(1−ε) ≤ e−ε  when 0 ≤ ε ≤1≤ H e−εm

(1− ε )m probability a particular hypothesis with error > ε  
is consistent with m training instances  

Proof: 
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Sample complexity for finite 
hypothesis spaces 

[Blumer et al., Information Processing Letters 1987] 

•  choose m big enough to reduce this probability below δ 	



 

H e−εm ≤ δ

m ≥
1
ε
ln H + ln 1

δ
$
%&

'
()

$
%&

'
()

•  solving for m we get desired result as long as: 	



log dependence on H	

 ε has stronger influence than δ	
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PAC analysis example:  
learning conjunctions of Boolean literals 

•  each instance has n Boolean features 
•  learned hypotheses are of the form	

 Y = X1 ∧ X2 ∧¬X5

How many training examples suffice to ensure that with prob ≥ 0.99, 
a consistent learner will return a hypothesis with error ≤ 0.05 ? 

there are 3n hypotheses (each variable can be present and unnegated, 
present and negated, or absent) in H	



m ≥
1
.05

ln 3n( ) + ln 1
.01
"
#$

%
&'

"
#$

%
&'

for n=10, m ≥ 312               for n=100, m ≥ 2290	
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PAC analysis example:  
learning conjunctions of Boolean literals 

•  we’ve shown that the sample complexity is polynomial in relevant 
parameters: 1/ε,  1/δ, n	



•  to prove that Boolean conjunctions are PAC learnable, need to 
also show that we can find a consistent hypothesis in polynomial 
time (the FIND-S algorithm in Mitchell, Chapter 2 does this)	



FIND-S: 
     initialize h to the most specific hypothesis   l1 ∧ ¬l1 ∧ l2∧¬l2 …  ln∧ ¬ln 
     for each positive training instance x	



 remove from h any literal that is not satisfied by x	


     output hypothesis h  
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PAC analysis example:  
learning decision trees of depth 2 

•  each instance has n Boolean features 
•  learned hypotheses are DTs of depth 2 

using only 2 variables	



H  =  n
2

!

"#
$

%&
×16 

Xi	



Xj	

 Xj	



1	

 0	

 1	

 1	



possible split choices possible leaf labelings 

=  n(n −1)
2

×16 =  8n(n −1)
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PAC analysis example:  
learning decision trees of depth 2 

•  each instance has n Boolean features 
•  learned hypotheses are DTs of depth 2 

using only 2 variables	



How many training examples suffice to ensure that with prob ≥ 0.99, 
a consistent learner will return a hypothesis with error ≤ 0.05 ? 

m ≥
1
.05

ln 8n2 − 8n( ) + ln 1
.01
#
$%

&
'(

#
$%

&
'(

for n=10, m ≥ 224               for n=100, m ≥ 318	



Xi	



Xj	

 Xj	



1	

 0	

 1	

 1	
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PAC analysis example: ���
K-term DNF is not PAC learnable 

•  each instance has n Boolean features 
•  learned hypotheses are of the form                                  where 

each Ti is a conjunction of n Boolean features or their negations	


 Y = T1 ∨T2 ∨…∨Tk

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters	



m ≥
1
ε

nk ln(3)+ ln 1
δ
$
%&

'
()

$
%&

'
()

however, the computational complexity (time to find consistent h) is not 
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be 
reduced to learning 3-term DNF) 
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Extensions, Results, Questions 

•  k-term DNF not properly PAC-learnable, but PAC-predictable, 
or PAC learnable in terms of kCNF 

•  negative results for PAC-predictability more robust 

•  results not based on NP-hardness of consistency problem, but 
on hard crytographic problems (Kearns & Valiant, 1994) 
•  can’t PAC-learn Boolean formulae (unless can crack RSA) 
•  can’t PAC-learn deterministic finite state machines (same) 
	



•  open PAC-learning questions include 
•  DNF formulae 
•  decision trees 
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What if the target concept is not in 
our hypothesis space? 

•  so far, we’ve been assuming that the target concept c is in our 
hypothesis space; this is not a very realistic assumption 

•  even if it is, might want to learn using another class (e.g., kCNF) 
•  agnostic learning setting 

•  don’t assume c ∈ H	


•  learner returns hypothesis h that makes fewest errors on 

training data 

•  how many training instances suffice to ensure that errorD (h) ≤ 
errorD(h) + ε ?	



m ≥
1
2ε 2

ln H + ln 1
δ
$
%&

'
()

$
%&

'
()
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What if the hypothesis space 
is not finite? 

•  Q: If H is infinite (e.g. the class of intervals on the real line), what 
measure of hypothesis-space complexity can we use in place of      
|H| ? 

 

•  A: the largest subset of X  for which H can guarantee zero training 
error, regardless of the target function. 

this is known as the Vapnik-Chervonenkis dimension (VC-dimension) 
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•  a set of instances D is shattered by a hypothesis space H iff for 
every dichotomy of D there is a hypothesis in H consistent with 
this dichotomy	



•  the VC dimension of H defined over instance space X is the size 
of the largest finite subset of X shattered by H 

Shattering and the VC dimension 

23 



An infinite hypothesis space with a 
finite VC dimension 

consider: H is set of lines (linear separators) in 2D 

1 

can find an h consistent with 1 
instance no matter how it’s labeled 

1 

can find an h consistent with 2 
instances no matter labeling 

2 
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An infinite hypothesis space with a 
finite VC dimension 

consider: H is set of lines in 2D 
 

1 

can find an h consistent with 3 
instances no matter labeling 
(assuming they’re not colinear) 

2 

3 

+ 

cannot find an h consistent with 4 
instances for some labelings 

- 

- 
+ 

can shatter 3 instances, but not 4 è the VC-dim(H) = 3 
more generally, the VC-dim of hyperplanes in n dimensions = n+1	
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Interesting aside 
•  VC-dim of hyperplane in n dimension is n+1 

•  Let R be radius of smallest hypersphere 
circumscribing the data, and let γ (margin) be 
smallest distance of any data point to hyperplane 

•  Can replace n in VC-dim with (R/γ)2 if smaller 
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VC dimension for finite hypothesis spaces 

for finite H, VC-dim(H) ≤ log2|H|	


	


Proof: 

suppose VC-dim(H) = d	


for d instances, 2d different labelings possible 
therefore H must be able to represent 2d hypotheses 
2d ≤ |H|	


d = VC-dim(H) ≤ log2|H| 
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Sample complexity and the VC dimension 

•  using VC-dim(H) as a measure of complexity of H, we can derive 
the following bound [Blumer et al., JACM 1989] 

m ≥
1
ε
4 log2

2
δ
$
%&

'
()
+ 8VC-dim(H )log2

13
ε

$
%&

'
()

$
%&

'
()

can be used for both finite and infinite hypothesis spaces 

m grows log × linear in ε 
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Lower bound on sample complexity 
[Ehrenfeucht et al., Information & Computation 1989] 

•  there exists a distribution D and target concept in C such that if the 
number of training instances given to L is	



m <max 1
ε
log 1

δ
#
$%

&
'(
, VC-dim(C)−1

32ε
*

+
,

-

.
/

 
then with probability at least δ, L outputs h such that errorD (h) > ε	
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Comments on PAC learning 

•  PAC analysis formalizes the learning task and allows for non-
perfect learning (indicated by ε and δ) 

•  finding a consistent hypothesis is sometimes easier for larger 
concept classes (PAC-prediction) 
•  e.g. although k-term DNF is not PAC learnable, the more 

general class k-CNF is 
•  PAC analysis has been extended to explore a wide range of cases 

•  noisy training data 
•  learner allowed to ask queries (active learning) 
•  restricted distributions (e.g. uniform) D 

•  most analyses are worst case -> negative results, very restricted 
concept classes for positive results 

•  sample complexity bounds are generally not tight 
•  contributed major insights to ensembles, active learning, SVMs, … 
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Learning setting #2: on-line learning  

for t = 1 …	


learner receives instance xt  
learner predicts h(xt)	


learner receives label c(xt) and updates model h	



	



 
Now let’s consider learning in the on-line learning setting: 
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The mistake bound model of learning 

How many mistakes will an on-line learner 
make in its predictions before it learns the 
target concept? 

the mistake bound model of learning 
addresses this question   
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Mistake bound example:  
learning conjunctions with FIND-S 

FIND-S: 
     initialize h to the most specific hypothesis   l1 ∧ ¬l1 ∧ l2∧¬l2 …  ln∧ ¬ln 
     for each positive training instance x	



 remove from h any literal that is not satisfied by x	


     output hypothesis h  

  

consider the learning task 
•  training instances are represented by n Boolean features 
•  target concept is conjunction of up to n Boolean literals (variable or 

its negation) 

33 



Example: using FIND-S to learn conjunctions 

•  suppose we’re learning a concept representing the sports 
someone likes 

•  instances are represented using Boolean feature that characterize 
the sport  

Snow 	

 	

(is it done on snow?) 
Water 	

 	

	


Road	


Mountain	


Skis	


Board	


Ball 	

 	

(does it involve a ball?) 
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Example: using FIND-S to learn conjunctions 

h(x) = false    c(x) = true 
h:    snow ∧ ¬water ∧ ¬road ∧ mountain ∧ skis ∧ ¬board ∧¬ball	



x: snow, ¬water, ¬road, mountain, skis, ¬board, ¬ball	

t = 1	



t = 0	

 snow ∧ ¬snow ∧ water ∧¬water ∧ road ∧ ¬road ∧ 
mountain ∧ ¬mountain ∧ skis ∧ ¬skis ∧ board 
∧¬board ∧ ball ∧¬ball	



h:	



x: snow, ¬water, ¬road, ¬mountain, skis, ¬board, ¬ball	

t = 2	


h(x) = false     c(x) = false  

h:    snow ∧ ¬water ∧ ¬road ∧ mountain ∧ ¬ball	



x: snow, ¬water, ¬road, mountain, ¬skis, board, ¬ball	

t = 3	


h(x) = false     c(x) = true 
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Mistake bound example:  
learning conjunctions with FIND-S 

the maximum # of mistakes FIND-S will make = n + 1	


 
Proof: 
•  FIND-S will never mistakenly classify a negative (h is always at least 

as specific as the target concept) 
•  initial h has 2n literals 
•  the first mistake on a positive instance will reduce the initial 

hypothesis to n literals 
•  each successive mistake will remove at least one literal from h	
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Halving algorithm 

     // initialize the version space to contain all h ∈ H	


     VS1  ← H	


	


     for t ← 1 to T do 

	

given training instance 〈 xt, c(xt) 〉	


	

h’(xt) = MajorityVote(VSt, xt )	



	


 // eliminate all wrong h from version space (reduce the    
    size of the VS by at least half on mistakes) 

  VSt+1  ← {h ∈ VSt : h(xt) = c(xt) }	


	


     return  VSt+1	
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Mistake bound for the Halving algorithm 

the maximum # of mistakes the Halving algorithm will make =	


 
Proof: 
•  initial version space contains |H| hypotheses 
•  each mistake reduces version space by at least half 
 

log2 H!" #$

⎣ a ⎦ is the largest integer  
not greater than a	
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Optimal mistake bound 
[Littlestone, Machine Learning 1987] 

VC(C) ≤  Mopt (C) ≤  MHalving (C) ≤  log2 C( )

# mistakes by best algorithm 
(for hardest c ∈ C, and  
hardest training sequence) 

# mistakes by Halving algorithm 

let C be an arbitrary concept class 
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The Weighted Majority algorithm 

given: a set of predictors A = {a1  … an}, learning rate 0 ≤ β < 1	


 
     for all i initialize wi ← 1	


     for each training instance 〈 x, c(x) 〉 	



	

initialize q0 and q1 to 0	


     	

for each predictor ai	



  if ai(x) = 0 then q0 ←q0 + wi	


  if ai(x) = 1 then q1 ←q1 + wi	



      if q1 > q0 then h(x) = 1	


     else if q0 > q1 then h(x) = 0	


     else if q0 = q1 then h(x) = 0 or 1 randomly chosen 
 
      for each predictor ai do  

  if ai(x) ≠ c(x) then wi ← β wi  
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The Weighted Majority algorithm 

•  predictors can be individual features or hypotheses or learning 
algorithms 

•  if the predictors are all of the h ∈ H, then WM is like a weighted 
voting version of the Halving algorithm 

•  WM learns a linear separator, like a perceptron 
•  weight updates are multiplicative instead of additive (as in 

perceptron/neural net training) 
•  multiplicative is better when there are many features 

(predictors) but few are relevant 
•  additive is better when many features are relevant 

•  approach can handle noisy training data 
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Notes 

•  Halving algorithm eliminates inconsistent predictors 
on every round 

•  Two versions of weighted majority 
–  Original only down-weights predictors on rounds 

where overall prediction is wrong 
–  Also a version that down-weights wrong predictors 

on every round 
–  Following bound applies to both versions  
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Relative mistake bound for  
Weighted Majority 

Let 
•  D be any sequence of training instances 
•  A be any set of n predictors 
•  k be minimum number of mistakes made by best predictor in A 

for training sequence D 
•  the number of mistakes over D made by Weighted Majority using 

β =1/2 is at most 
2.4(k + log2 n)
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Comments on mistake bound learning 

•  we’ve considered mistake bounds for learning the target concept 
exactly 

•  Learning with polynomial mistake bound and polynomial update 
time implies PAC learning (can turn any such mistake bounded 
learner into a PAC learner) 

•  some of the algorithms developed in this line of research have had 
practical impact (e.g. Weighted Majority, Winnow)                   
[Blum, Machine Learning 1997] 
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