Computational Learning Theory

www.cs.wisc.edu/~dpage/cs760/

Goals for the lecture

you should understand the following concepts

PAC learnability

consistent learners and version spaces
sample complexity

PAC learnability in the agnostic setting

the VC dimension

sample complexity using the VC dimension
the on-line learning setting

the mistake bound model of learnability
the Halving algorithm

the Weighted Majority algorithm

Learning setting #1

instance space X

set of instances X

set of hypotheses (models) H

set of possible target concepts C

unknown probability distribution ZJ over instances

Learning setting #1

 learner is given a set D of training instances (x, c¢(x) ?
for some target concept cin C

« each instance x is drawn from distribution 2
» class label c¢(x) is provided for each x

* learner outputs hypothesis 2 modeling ¢

True error of a hypothesis

the true error of hypothesis 4 refers to how often & is wrong on future
instances drawn from probability distribution 2

errory,(h)= P _,, [c(x) = h(x)]

instance space X
C h

Training error of a hypothesis

the training error of hypothesis / refers to how often & is wrong on
iInstances in the training set D

N 8(c(x) = h(x))
error,(h)= P _ [c(x) » h(x)] _ x€D

Dl

Can we bound error 5, (h) in terms of errorp(h) ?

|s approximately correct
good enough?

To say that our learner L has learned a concept, should we
require error ,(h) =0 7?

this is not realistic:

* unless we've seen every possible instance, there may be multiple
hypotheses that are consistent with the training set

» there is some chance our training sample will be unrepresentative

Probably approximately
correct learning?

Instead, we’ll require that
» the error of a learned hypothesis % is bounded by some constant ¢

» the probability of the learner failing to learn an accurate hypothesis
is bounded by a constant o

Probably Approximately Correct (PAC)
learning (vaiiant, cacm 1984]

Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

C is PAC learnable by L using H if, for all
ce C
distributions 2 over X
esuchthat0<e <0.5
o suchthat0<o <0.5

» learner L will, with probability at least (1-0), output a hypothesis i €
H such that error , (h) < ¢, provided time and sample size (from 2/
polynomial in
1/¢
1/0
n
size(c)

PAC learning and
consistency

« Suppose we can find hypotheses that are consistent with
m training instances.

* We can analyze PAC learnability by determining whether
1. m grows polynomially in the relevant parameters

2. the processing time per training example is
polynomial

10

Version spaces

A hypothesis & is consistent with a set of training examples D of
target concept c if and only if h(x) = ¢(x) for each training
example { x,c(x)> inD

consistent(h,D) = (V(x,c(x)) ED) h(x) = c(x)

The version space VS , with respect to hypothesis space H
and training set D, is the subset of hypotheses from H
consistent with all training examples in D

VSup = {h eH Iconsistent(h,D)}

11

Exhausting the
version space

« The version space VS, is e-exhausted with respect to
concept ¢ and data set D if every hypothesis h € VS, , H
has true error < ¢

(Vh cVs, D)errOrD (h)<e

12

Exhausting the version space

« Suppose that every h in our version space VS, is consistent
with m training examples

« The probability that VS, ; is not e-exhausted (i.e. that it
contains some hypotheses that are not accurate enough)

s|H|e_8m

Proof (1-¢)" probability a particular hypothesis with error > ¢
IS consistent with m training instances

k(1-¢e)" there might be k such hypotheses

|H‘(1 —¢)" kis bounded by IHI

S|H|g“9m (l1-¢e)=ewhenO=<e=<l 13

Sample complexity for finite
hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

» choose m big enough to reduce this probability below 6

|H‘e"€m55

» solving for m we get desired result as long as:

mzl(ln|H|+ln(
£

log dependence on H

1

;)

%

¢ has stronger influence than o

14

PAC analysis example:
learning conjunctions of Boolean literals

 each instance has n Boolean features
* learned hypotheses are of the form Y =X, A X, A =X

How many training examples suffice to ensure that with prob = 0.99,
a consistent learner will return a hypothesis with error < 0.05 ?

there are 3" hypotheses (each variable can be present and unnegated,
present and negated, or absent) in H

mzé(ln(3")+ln(ﬂ%))

for n=10, m = 312 for n=100, m = 2290

15

PAC analysis example:
learning conjunctions of Boolean literals

* we've shown that the sample complexity is polynomial in relevant
parameters: 1/, 1/0,n

« to prove that Boolean conjunctions are PAC learnable, need to
also show that we can find a consistent hypothesis in polynomial
time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize h to the most specific hypothesis [, A =[, A LA=L, ... [A =L
for each positive training instance x
remove from i any literal that is not satisfied by x
output hypothesis A

16

PAC analysis example:
learning decision trees of depth 2

 each instance has n Boolean features

* learned hypotheses are DTs of depth 2 i
using only 2 variables /\

J

7~ I\

| 0 | |

><16 = n(n—l)x

([n
) 2
/ \

possible split choices possible leaf labelings

16 = 8n(n-1)

PAC analysis example:
learning decision trees of depth 2

» each instance has n Boolean features Y.
* learned hypotheses are DTs of depth 2 /\
X.
J

using only 2 variables

%

A NREVAN

| 0 | |

How many training examples suffice to ensure that with prob = 0.99,
a consistent learner will return a hypothesis with error < 0.05 ?

m= L(ln(8n2 —~ 8n)+ln(i))
05 0l

for n=10, m = 224 for n=100, m = 318

18

PAC analysis example:
K-term DNF is not PAC learnable

 each instance has n Boolean features

* learned hypotheses are of the form Y =7, vT, v...vT, where
each T, is a conjunction of n Boolean features or their negations

|Hl < 3" | so sample complexity is polynomial in the relevant parameters

m = l(rzkln(3)+ln(§))

&

however, the computational complexity (time to find consistent #) is not
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be
reduced to learning 3-term DNF)

19

Extensions, Results, Questions

k-term DNF not properly PAC-learnable, but PAC-predictable,
or PAC learnable in terms of KCNF

negative results for PAC-predictability more robust

results not based on NP-hardness of consistency problem, but
on hard crytographic problems (Kearns & Valiant, 1994)

« can’'t PAC-learn Boolean formulae (unless can crack RSA)
« can’t PAC-learn deterministic finite state machines (same)

open PAC-learning questions include
 DNF formulae
« decision trees

20

What if the target concept is not in
our hypothesis space?

so far, we've been assuming that the target concept c is in our
hypothesis space; this is not a very realistic assumption

even if it is, might want to learn using another class (e.g., KCNF)
agnostic learning setting
« don'tassumec € H

» learner returns hypothesis 4 that makes fewest errors on
training data

how many training instances suffice to ensure that error, (h) <
errorp(h) + € ?

mz%(ln|H|+ln(l))
2¢€ 0

21

What if the hypothesis space
IS not finite?

 Q: If His infinite (e.g. the class of intervals on the real line), what
measure of hypothesis-space complexity can we use in place of
|HI ?

* A: the largest subset of X for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

22

Shattering and the VC dimension <

§

X

\

a set of instances D is shattered by a hypothesis space H iff for
every dichotomy of D there is a hypothesis in H consistent with
this dichotomy

the VC dimension of H defined over instance space X is the size
of the largest finite subset of X shattered by H

23

An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines (linear separators) in 2D

can find an /& consistent with 1 can find an & consistent with 2
instance no matter how it's labeled instances no matter labeling

A
A

/
/
4
4
4
/
4
4
4
4
4
4
4
4
/
/
4
4
4
4
4
4
4

v
v

24

An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D

can find an & consistent with 3 cannot find an 4 consistent with 4

instances no matter labeling instances for some labelings
(assuming they’re not colinear)

A . A
4

7
/7

il
-
a4
-
’,¢ l’
e 4
PR 4
~~~~~ ,/
~o PR /
S
l, ““&
U Sso
'/ “~~~
/ -
4
4
' @
4
4

v
v

can shatter 3 instances, but not 4 = the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1 o5



Interesting aside

VC-dim of hyperplane in n dimension is n+171

Let R be radius of smallest hypersphere
circumscribing the data, and let y (margin) be
smallest distance of any data point to hyperplane

Can replace n in VC-dim with (R/y)? if smaller

26



VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) < log,|HI

Proof:
suppose VC-dim(H) =d
for d instances, 2¢ different labelings possible
therefore H must be able to represent 2¢ hypotheses
24 < |HI
d =VC-dim(H) < log,|HI

27



Sample complexity and the VC dimension

» using VC-dim(H) as a measure of complexity of H, we can derive
the following bound [Blumer et al., JACM 1989]

mz= l(410g2 (%) + 8VC-dim(H )log, (E))
£ £

m grows log x linear in ¢

can be used for both finite and infinite hypothesis spaces

28



Lower bound on sample complexity

[Ehrenfeucht et al., Information & Computation 1989]

» there exists a distribution ZJand target concept in C such that if the
number of training instances given to L is

i ( 1) VC-dim(C) - 1]

m < max [—log v
€

then with probability at least 0, L outputs % such that error,, (h) > ¢

29



Comments on PAC learning

PAC analysis formalizes the learning task and allows for non-
perfect learning (indicated by € and 0)

finding a consistent hypothesis is sometimes easier for larger
concept classes (PAC-prediction)

* e.g. although k-term DNF is not PAC learnable, the more
general class k-CNF is

PAC analysis has been extended to explore a wide range of cases
* noisy training data
» |earner allowed to ask queries (active learning)
* restricted distributions (e.g. uniform) D

most analyses are worst case -> negative results, very restricted
concept classes for positive results

sample complexity bounds are generally not tight
contributed major insights to ensembles, active learning, SVMs, ...

30



Learning setting #2: on-line learning

Now let’s consider learning in the on-line learning setting:

forr=1...
learner receives instance x,
learner predicts A(x))
learner receives label c¢(x,) and updates model &

31



The mistake bound model of learning

How many mistakes will an on-line learner
make in its predictions before it learns the
target concept?

the mistake bound model of learning
addresses this question

Noresnmfor|H0nalulu

Honoloulou

No results for

No results for | Hawaai

i
OH, FORGET T \ﬁ;j f/f %
LETS JusT Go VISIT :
MY MOTHER IN FARGO.
)
N
e o
: \
ASY

T

32




Mistake bound example:
learning conjunctions with FIND-S

consider the learning task
« training instances are represented by n Boolean features

» target concept is conjunction of up to n Boolean literals (variable or
its negation)

FIND-S:
initialize h to the most specific hypothesis [, A =[, A LA=L, ... [ A =L
for each positive training instance x
remove from i any literal that is not satisfied by x
output hypothesis A

33



Example: using FIND-S to learn conjunctions

e suppose we're learning a concept representing the sports
someone likes

» instances are represented using Boolean feature that characterize
the sport

Snow (is it done on snow?)
Water

Road

Mountain

Skis

Board

Ball (does it involve a ball?)

34



Example: using FIND-S to learn conjunctions

t=0 h: snow A —isnow A water A\—water A road N\ —road N
mountain A “mountain A skis N\ —skis A\ board
A—board N ball \—ball

r=1 x: snow, water, —road, mountain, skis, =board, = ball
h(x)=false c¢(x)=true

h: snow A —water A\ —road N\ mountain A skis A =board N—-ball

t=2 x: snow, water, —road, “mountain, skis, —board, —ball
h(x)=false c(x)="false

r=3 x: snow, water, —road, mountain, —skis, board, —ball
h(x)=false c(x)=true
h: snow A —water A\ —road N\ mountain A\ —ball
o

[ ]
° 35



Mistake bound example:
learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make =n + 1

Proof:

FIND-S will never mistakenly classify a negative (4 is always at least
as specific as the target concept)

initial 7 has 2n literals

the first mistake on a positive instance will reduce the initial
hypothesis to n literals

each successive mistake will remove at least one literal from A

36



Halving algorithm

// initialize the version space to contain all h € H
VS, < H

forr<—1to T do
given training instance ( x;, ¢(x,)
h’(x,) = MajorityVote(VS, x, )

// eliminate all wrong & from version space (reduce the
size of the VS by at least half on mistakes)
VS < h € VS, 1 h(x) = c(x)

return V§,,,

37



Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make = [log2|H|J

N

Proof:
 initial version space contains |Hl hypotheses
« each mistake reduces version space by at least half

| a | is the largest integer /
not greater than «a

38



Optimal mistake bound
[Littlestone, Machine Learning 1987]

let C be an arbitrary concept class

VC(C) = M, ,(C) = M. (C) = log,(|C])

[N

# mistakes by best algorithm # mistakes by Halving algorithm
(for hardest ¢ € C, and
hardest training sequence)

39



The Weighted Majority algorithm

given: a set of predictors A={a, ...q,},learningrate 0 < < 1

for all i initialize w;, < 1
for each training instance { x, ¢(x) )
initialize g,and ¢, 10 0
for each predictor a,
if a(x)=0then g,<—q,+ w;
if a(x)=1then g, —q, + w,
if g,>q,then h(x) =1
else if g,> g, then h(x) =0
else if g,= g, then h(x) =0 or 1 randomly chosen

for each predictor a; do
if a(x) # c(x) then w, — S w,

40



The Weighted Majority algorithm

predictors can be individual features or hypotheses or learning
algorithms

if the predictors are all of the h € H, then WM is like a weighted
voting version of the Halving algorithm

WM learns a linear separator, like a perceptron

weight updates are multiplicative instead of additive (as in
perceptron/neural net training)

« multiplicative is better when there are many features
(predictors) but few are relevant

« additive is better when many features are relevant
approach can handle noisy training data

41



Notes

e Halving algorithm eliminates inconsistent predictors
on every round

« Two versions of weighted majority

— Original only down-weights predictors on rounds
where overall prediction is wrong

— Also a version that down-weights wrong predictors
on every round

— Following bound applies to both versions

42



Relative mistake bound for
Weighted Majority

Let

« D be any sequence of training instances

* A be any set of n predictors

* k be minimum number of mistakes made by best predictor in A

for training sequence D
« the number of mistakes over D made by Weighted Majority using
B =1/2 is at most
2.4(k +log, n)

43



Comments on mistake bound learning

« we've considered mistake bounds for learning the target concept
exactly

« Learning with polynomial mistake bound and polynomial update
time implies PAC learning (can turn any such mistake bounded
learner into a PAC learner)

« some of the algorithms developed in this line of research have had
practical impact (e.g. Weighted Majority, Winnow)
[Blum, Machine Learning 1997]

44



