
Computational Learning Theory

www.cs.wisc.edu/~dpage/cs760/

1

Goals for the lecture
you should understand the following concepts

•  PAC learnability
•  consistent learners and version spaces
•  sample complexity
•  PAC learnability in the agnostic setting
•  the VC dimension
•  sample complexity using the VC dimension
•  the on-line learning setting
•  the mistake bound model of learnability
•  the Halving algorithm
•  the Weighted Majority algorithm

2

Learning setting #1

instance space X

+
+

+
-

-

-

•  set of instances X
•  set of hypotheses (models) H	

•  set of possible target concepts C	

•  unknown probability distribution D over instances

c∈C

3

Learning setting #1

•  learner is given a set D of training instances 〈 x, c(x) 〉
for some target concept c in C	

•  each instance x is drawn from distribution D
•  class label c(x) is provided for each x	

•  learner outputs hypothesis h modeling c	

4

True error of a hypothesis

errorD (h) ≡ Px∈D c(x) ≠ h(x)[]

c	
 h	

instance space X

+
+

+
-

-

-

the true error of hypothesis h refers to how often h is wrong on future
instances drawn from probability distribution D

5

Training error of a hypothesis

errorD(h) ≡ Px∈ D c(x) ≠ h(x)[] =
δ(c(x) ≠ h(x))

x∈ D
∑

D

the training error of hypothesis h refers to how often h is wrong on
instances in the training set D

Can we bound errorD (h) in terms of errorD(h) ?

6

Is approximately correct
good enough?

To say that our learner L has learned a concept, should we
require errorD (h) = 0 ?

this is not realistic:
•  unless we’ve seen every possible instance, there may be multiple

hypotheses that are consistent with the training set
•  there is some chance our training sample will be unrepresentative

7

Probably approximately
correct learning?

Instead, we’ll require that
•  the error of a learned hypothesis h is bounded by some constant ε 	

•  the probability of the learner failing to learn an accurate hypothesis

is bounded by a constant δ

8

Probably Approximately Correct (PAC)
learning [Valiant, CACM 1984]

•  Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H	

•  C is PAC learnable by L using H if, for all
c∈ C	

distributions D over X
ε such that 0 < ε < 0.5	

δ such that 0 < δ < 0.5	

•  learner L will, with probability at least (1-δ), output a hypothesis h ∈
H such that errorD (h) ≤ ε, provided time and sample size (from D)
polynomial in

1/ε 	

1/δ	

n	

size(c)	
 9

PAC learning and
consistency

•  Suppose we can find hypotheses that are consistent with
m training instances.

•  We can analyze PAC learnability by determining whether
1.  m grows polynomially in the relevant parameters
2.  the processing time per training example is

polynomial

10

Version spaces

•  A hypothesis h is consistent with a set of training examples D of
target concept c if and only if h(x) = c(x) for each training
example 〈 x, c(x) 〉 in D

 consistent(h,D) ≡ ∀ x,c(x) ∈D() h(x) = c(x)

•  The version space VSH,D with respect to hypothesis space H
and training set D, is the subset of hypotheses from H
consistent with all training examples in D

 VSH ,D ≡ h∈H | consistent(h,D){ }

11

Exhausting the
version space

•  The version space VSH,D is ε-exhausted with respect to
concept c and data set D if every hypothesis h ∈ VSH,D H
has true error < ε	

∀h ∈VSH , D()errorD (h)< ε

12

Exhausting the version space
•  Suppose that every h in our version space VSH,D is consistent

with m training examples
•  The probability that VSH,D is not ε-exhausted (i.e. that it

contains some hypotheses that are not accurate enough)	

≤ H e−εm

k(1− ε)m there might be k such hypotheses

H (1− ε)m k is bounded by |H|	

(1−ε) ≤ e−ε when 0 ≤ ε ≤1≤ H e−εm

(1− ε)m probability a particular hypothesis with error > ε
is consistent with m training instances

Proof:

13

Sample complexity for finite
hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

•  choose m big enough to reduce this probability below δ 	

H e−εm ≤ δ

m ≥
1
ε
ln H + ln 1

δ
$
%&

'
()

$
%&

'
()

•  solving for m we get desired result as long as: 	

log dependence on H	
 ε has stronger influence than δ	

14

PAC analysis example:
learning conjunctions of Boolean literals

•  each instance has n Boolean features
•  learned hypotheses are of the form	
 Y = X1 ∧ X2 ∧¬X5

How many training examples suffice to ensure that with prob ≥ 0.99,
a consistent learner will return a hypothesis with error ≤ 0.05 ?

there are 3n hypotheses (each variable can be present and unnegated,
present and negated, or absent) in H	

m ≥
1
.05

ln 3n() + ln 1
.01
"
#$

%
&'

"
#$

%
&'

for n=10, m ≥ 312 for n=100, m ≥ 2290	

15

PAC analysis example:
learning conjunctions of Boolean literals

•  we’ve shown that the sample complexity is polynomial in relevant
parameters: 1/ε, 1/δ, n	

•  to prove that Boolean conjunctions are PAC learnable, need to
also show that we can find a consistent hypothesis in polynomial
time (the FIND-S algorithm in Mitchell, Chapter 2 does this)	

FIND-S:
 initialize h to the most specific hypothesis l1 ∧ ¬l1 ∧ l2∧¬l2 … ln∧ ¬ln
 for each positive training instance x	

 remove from h any literal that is not satisfied by x	

 output hypothesis h

16

PAC analysis example:
learning decision trees of depth 2

•  each instance has n Boolean features
•  learned hypotheses are DTs of depth 2

using only 2 variables	

H = n
2

!

"#
$

%&
×16

Xi	

Xj	
 Xj	

1	
 0	
 1	
 1	

possible split choices possible leaf labelings

= n(n −1)
2

×16 = 8n(n −1)

17

PAC analysis example:
learning decision trees of depth 2

•  each instance has n Boolean features
•  learned hypotheses are DTs of depth 2

using only 2 variables	

How many training examples suffice to ensure that with prob ≥ 0.99,
a consistent learner will return a hypothesis with error ≤ 0.05 ?

m ≥
1
.05

ln 8n2 − 8n() + ln 1
.01
#
$%

&
'(

#
$%

&
'(

for n=10, m ≥ 224 for n=100, m ≥ 318	

Xi	

Xj	
 Xj	

1	
 0	
 1	
 1	

18

PAC analysis example: ���
K-term DNF is not PAC learnable

•  each instance has n Boolean features
•  learned hypotheses are of the form where

each Ti is a conjunction of n Boolean features or their negations	

 Y = T1 ∨T2 ∨…∨Tk

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters	

m ≥
1
ε

nk ln(3)+ ln 1
δ
$
%&

'
()

$
%&

'
()

however, the computational complexity (time to find consistent h) is not
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be
reduced to learning 3-term DNF)

19

Extensions, Results, Questions

•  k-term DNF not properly PAC-learnable, but PAC-predictable,
or PAC learnable in terms of kCNF

•  negative results for PAC-predictability more robust

•  results not based on NP-hardness of consistency problem, but
on hard crytographic problems (Kearns & Valiant, 1994)
•  can’t PAC-learn Boolean formulae (unless can crack RSA)
•  can’t PAC-learn deterministic finite state machines (same)
	

•  open PAC-learning questions include
•  DNF formulae
•  decision trees

20

What if the target concept is not in
our hypothesis space?

•  so far, we’ve been assuming that the target concept c is in our
hypothesis space; this is not a very realistic assumption

•  even if it is, might want to learn using another class (e.g., kCNF)
•  agnostic learning setting

•  don’t assume c ∈ H	

•  learner returns hypothesis h that makes fewest errors on

training data

•  how many training instances suffice to ensure that errorD (h) ≤
errorD(h) + ε ?	

m ≥
1
2ε 2

ln H + ln 1
δ
$
%&

'
()

$
%&

'
()

21

What if the hypothesis space
is not finite?

•  Q: If H is infinite (e.g. the class of intervals on the real line), what
measure of hypothesis-space complexity can we use in place of
|H| ?

•  A: the largest subset of X for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

22

•  a set of instances D is shattered by a hypothesis space H iff for
every dichotomy of D there is a hypothesis in H consistent with
this dichotomy	

•  the VC dimension of H defined over instance space X is the size
of the largest finite subset of X shattered by H

Shattering and the VC dimension

23

An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines (linear separators) in 2D

1

can find an h consistent with 1
instance no matter how it’s labeled

1

can find an h consistent with 2
instances no matter labeling

2

24

An infinite hypothesis space with a
finite VC dimension

consider: H is set of lines in 2D

1

can find an h consistent with 3
instances no matter labeling
(assuming they’re not colinear)

2

3

+

cannot find an h consistent with 4
instances for some labelings

-

-
+

can shatter 3 instances, but not 4 è the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1	

25

Interesting aside
•  VC-dim of hyperplane in n dimension is n+1

•  Let R be radius of smallest hypersphere
circumscribing the data, and let γ (margin) be
smallest distance of any data point to hyperplane

•  Can replace n in VC-dim with (R/γ)2 if smaller

26

+

+
+

+

-

-

-
-
-

γ

VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) ≤ log2|H|	

	

Proof:

suppose VC-dim(H) = d	

for d instances, 2d different labelings possible
therefore H must be able to represent 2d hypotheses
2d ≤ |H|	

d = VC-dim(H) ≤ log2|H|

27

Sample complexity and the VC dimension

•  using VC-dim(H) as a measure of complexity of H, we can derive
the following bound [Blumer et al., JACM 1989]

m ≥
1
ε
4 log2

2
δ
$
%&

'
()
+ 8VC-dim(H)log2

13
ε

$
%&

'
()

$
%&

'
()

can be used for both finite and infinite hypothesis spaces

m grows log × linear in ε

28

Lower bound on sample complexity
[Ehrenfeucht et al., Information & Computation 1989]

•  there exists a distribution D and target concept in C such that if the
number of training instances given to L is	

m <max 1
ε
log 1

δ
#
$%

&
'(
, VC-dim(C)−1

32ε
*

+
,

-

.
/

then with probability at least δ, L outputs h such that errorD (h) > ε	

29

Comments on PAC learning

•  PAC analysis formalizes the learning task and allows for non-
perfect learning (indicated by ε and δ)

•  finding a consistent hypothesis is sometimes easier for larger
concept classes (PAC-prediction)
•  e.g. although k-term DNF is not PAC learnable, the more

general class k-CNF is
•  PAC analysis has been extended to explore a wide range of cases

•  noisy training data
•  learner allowed to ask queries (active learning)
•  restricted distributions (e.g. uniform) D

•  most analyses are worst case -> negative results, very restricted
concept classes for positive results

•  sample complexity bounds are generally not tight
•  contributed major insights to ensembles, active learning, SVMs, …

30

Learning setting #2: on-line learning

for t = 1 …	

learner receives instance xt
learner predicts h(xt)	

learner receives label c(xt) and updates model h	

	

Now let’s consider learning in the on-line learning setting:

31

The mistake bound model of learning

How many mistakes will an on-line learner
make in its predictions before it learns the
target concept?

the mistake bound model of learning
addresses this question

32

Mistake bound example:
learning conjunctions with FIND-S

FIND-S:
 initialize h to the most specific hypothesis l1 ∧ ¬l1 ∧ l2∧¬l2 … ln∧ ¬ln
 for each positive training instance x	

 remove from h any literal that is not satisfied by x	

 output hypothesis h

consider the learning task
•  training instances are represented by n Boolean features
•  target concept is conjunction of up to n Boolean literals (variable or

its negation)

33

Example: using FIND-S to learn conjunctions

•  suppose we’re learning a concept representing the sports
someone likes

•  instances are represented using Boolean feature that characterize
the sport

Snow 	
 	
(is it done on snow?)
Water 	
 	
	

Road	

Mountain	

Skis	

Board	

Ball 	
 	
(does it involve a ball?)

34

Example: using FIND-S to learn conjunctions

h(x) = false c(x) = true
h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ skis ∧ ¬board ∧¬ball	

x: snow, ¬water, ¬road, mountain, skis, ¬board, ¬ball	
t = 1	

t = 0	
 snow ∧ ¬snow ∧ water ∧¬water ∧ road ∧ ¬road ∧
mountain ∧ ¬mountain ∧ skis ∧ ¬skis ∧ board
∧¬board ∧ ball ∧¬ball	

h:	

x: snow, ¬water, ¬road, ¬mountain, skis, ¬board, ¬ball	
t = 2	

h(x) = false c(x) = false

h: snow ∧ ¬water ∧ ¬road ∧ mountain ∧ ¬ball	

x: snow, ¬water, ¬road, mountain, ¬skis, board, ¬ball	
t = 3	

h(x) = false c(x) = true

35

Mistake bound example:
learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make = n + 1	

Proof:
•  FIND-S will never mistakenly classify a negative (h is always at least

as specific as the target concept)
•  initial h has 2n literals
•  the first mistake on a positive instance will reduce the initial

hypothesis to n literals
•  each successive mistake will remove at least one literal from h	

36

Halving algorithm

 // initialize the version space to contain all h ∈ H	

 VS1 ← H	

	

 for t ← 1 to T do

	
given training instance 〈 xt, c(xt) 〉	

	
h’(xt) = MajorityVote(VSt, xt)	

	

 // eliminate all wrong h from version space (reduce the
 size of the VS by at least half on mistakes)

 VSt+1 ← {h ∈ VSt : h(xt) = c(xt) }	

	

 return VSt+1	

37

Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make =	

Proof:
•  initial version space contains |H| hypotheses
•  each mistake reduces version space by at least half

log2 H!" #$

⎣ a ⎦ is the largest integer
not greater than a	

38

Optimal mistake bound
[Littlestone, Machine Learning 1987]

VC(C) ≤ Mopt (C) ≤ MHalving (C) ≤ log2 C()

mistakes by best algorithm
(for hardest c ∈ C, and
hardest training sequence)

mistakes by Halving algorithm

let C be an arbitrary concept class

39

The Weighted Majority algorithm

given: a set of predictors A = {a1 … an}, learning rate 0 ≤ β < 1	

 for all i initialize wi ← 1	

 for each training instance 〈 x, c(x) 〉 	

	
initialize q0 and q1 to 0	

 	
for each predictor ai	

 if ai(x) = 0 then q0 ←q0 + wi	

 if ai(x) = 1 then q1 ←q1 + wi	

 if q1 > q0 then h(x) = 1	

 else if q0 > q1 then h(x) = 0	

 else if q0 = q1 then h(x) = 0 or 1 randomly chosen

 for each predictor ai do

 if ai(x) ≠ c(x) then wi ← β wi

40

The Weighted Majority algorithm

•  predictors can be individual features or hypotheses or learning
algorithms

•  if the predictors are all of the h ∈ H, then WM is like a weighted
voting version of the Halving algorithm

•  WM learns a linear separator, like a perceptron
•  weight updates are multiplicative instead of additive (as in

perceptron/neural net training)
•  multiplicative is better when there are many features

(predictors) but few are relevant
•  additive is better when many features are relevant

•  approach can handle noisy training data

41

Notes

•  Halving algorithm eliminates inconsistent predictors
on every round

•  Two versions of weighted majority
–  Original only down-weights predictors on rounds

where overall prediction is wrong
–  Also a version that down-weights wrong predictors

on every round
–  Following bound applies to both versions

42

Relative mistake bound for
Weighted Majority

Let
•  D be any sequence of training instances
•  A be any set of n predictors
•  k be minimum number of mistakes made by best predictor in A

for training sequence D
•  the number of mistakes over D made by Weighted Majority using

β =1/2 is at most
2.4(k + log2 n)

43

Comments on mistake bound learning

•  we’ve considered mistake bounds for learning the target concept
exactly

•  Learning with polynomial mistake bound and polynomial update
time implies PAC learning (can turn any such mistake bounded
learner into a PAC learner)

•  some of the algorithms developed in this line of research have had
practical impact (e.g. Weighted Majority, Winnow)
[Blum, Machine Learning 1997]

44

