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Goals for the lecture 

you should understand the following concepts 
•  ensemble 
•  bootstrap sample 
•  bagging 
•  boosting 
•  random forests 
•  error correcting output codes 
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What is an ensemble? 

a set of learned models whose individual decisions are combined in 
some way to make predictions for new instances 
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When can an ensemble be more accurate? 
•  when the errors made by the individual predictors are 

(somewhat) uncorrelated, and the predictors’ error rates are 
better than guessing (< 0.5 for 2-class problem) 

•  consider an idealized case… 

error rate of ensemble 
is represented by 
probability mass in this box 
= 0.026 

Figure from Dietterich, AI Magazine, 1997 
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How can we get diverse classifiers? 

•  In practice, we can’t get classifiers whose errors are completely 
uncorrelated, but we can encourage diversity in their errors by 
•  choosing a variety of learning algorithms 
•  choosing a variety of settings (e.g. # hidden units in neural 

nets) for the learning algorithm 
•  choosing different subsamples of the training set (bagging) 
•  using different probability distributions over the training 

instances (boosting) 
•  choosing different features and subsamples (random forests) 
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Bagging (Bootstrap Aggregation) 
[Breiman, Machine Learning 1996] 

learning: 
given: learner L, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

for i ← 1 to T do 

 D(i) ← m instances randomly drawn with replacement from D	

hi ←  model learned using L on D(i)	

	


 
classification: 
given: test instance x	

predict y ← plurality_vote( h1(x) … hT(x) )	

	

	

regression: 
given: test instance xt	

predict y ← mean( h1(x) … hT(x) )	

	

 
	

	


6 



Bagging 

•  each sampled training set is a bootstrap replicate 
•  contains m instances (the same as the original training set) 
•  on average it includes 63.2% of the original training set 
•  some instances appear multiple times 

•  can be used with any base learner 

•  works best with unstable learning methods: those for which small 
changes in D result in relatively large changes in learned models 
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Empirical evaluation of bagging with C4.5 
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Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any 
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Boosting 

•  Boosting came out of the PAC learning community 

•  A weak PAC learning algorithm is one that cannot PAC learn for 
arbitrary ε and δ, although its hypotheses are slightly better than 
random guessing 

•  Suppose we have a weak PAC learning algorithm L for a concept 
class C.  Can we use L as a subroutine to create a strong PAC 
learner for C? 
•  Yes, by boosting!  [Schapire, Machine Learning 1990] 
•  The original boosting algorithm was of theoretical interest, but 

assumed an unbounded source of training instances 

•  A later boosting algorithm, AdaBoost, has had notable practical 
success 
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AdaBoost 
[Freund & Schapire, Journal of Computer and System Sciences, 1997] 

 given: learner L, # stages T, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

 
for all i :  w1(i) ← 1/m                                          // initialize instance weights	

for t ← 1 to T do 

 for all i :  pt(i) ← wt(i) / (Σj wt(j))                    // normalize weights 
 ht ← model learned using L on D and pt	


	
εt ← Σi pt(i)(1 - δ(ht(xi), yi))                       // calculate weighted error 
 if εt > 0.5 then 
  T ← t – 1	

	
 	
break 
	
βt ← εt / (1 – εt)	

	
for all i  where ht(xi) = yi                        // downweight correct examples 
  wt+1(i) ← wt(i) βt            	


	

return:  
	

	

	

	

 
	

	


h(x) = argmaxy log 1
βt
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Implementing weighted instances with 
AdaBoost 

•  AdaBoost calls the base learner L with probability distribution pt 
specified by weights on the instances 

•  there are two ways to handle this 
1.  Adapt L to learn from weighted instances; straightforward for 

decision trees and naïve Bayes, among others 
2.  Sample a large (>> m) unweighted set of instances 

according to pt ; run L in the ordinary manner 
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Empirical evaluation of boosting with C4.5 

Figure from Dietterich, AI Magazine, 1997 
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Bagging and boosting with C4.5 
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Empirical study of bagging vs. boosting 
[Opitz & Maclin, JAIR 1999]  

•  23 data sets 
•  C4.5 and neural nets as base learners 
•  bagging almost always better than single  

decision tree or neural net 
•  boosting can be much better than bagging 
•  however, boosting can sometimes reduce accuracy 

(too much emphasis on outliers?) 
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Random forests 
[Breiman, Machine Learning 2001] 

given: candidate feature splits F, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

for i ← 1 to T do 

 D(i) ← m instances randomly drawn with replacement from D	

hi ←  randomized decision tree learned with F, D(i)	

	


 
randomized decision tree learning: 
to select a split at a node 

 R ← randomly select (without replacement) f feature splits from F 
         (where f << |F| )	

 choose the best feature split in R 

do not prune trees 
 
classification/regression: 
as in bagging	
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Learning models for multi-class problems 
 
•  consider a learning task with k > 2 classes 
•  with some learning methods, we can learn one model to predict 

the k classes 

 
•  an alternative approach is to learn k models; each represents 

one class vs. the rest 

 
•  but we could learn models to represent other encodings as well 

16 



Error correcting output codes 
[Dietterich & Bakiri, JAIR 1995] 

 
•  ensemble method devised specifically for problems with many classes 

•  represent each class by a multi-bit code word 
•  learn a classifier to represent each bit function 
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Classification with ECOC 
 
•  to classify a test instance x using an ECOC ensemble with T classifiers 

1.  form a vector h(x) = 〈h1(x) … hT(x) 〉 where hi(x) is the prediction of 
the model for the ith bit 

2.  find the codeword c with the smallest Hamming distance to h(x) 
3.  predict the class associated with c 
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2
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recall, ⎣x⎦ is the largest 
integer not greater than x	


 

•  if the minimum Hamming distance between any pair of codewords is d, 
we can still get the right classification with          single-bit errors 
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Error correcting code design 
  

a good ECOC should satisfy two properties 
1.  row separation: each codeword should be well separated in 

Hamming distance from every other codeword 
2. column separation: each bit position should be uncorrelated 

with the other bit positions 

7 bits apart 

6 bits apart 
 
d = 7 so this code can correct 7 −1

2
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= 3 errors
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ECOC evaluation with C4.5 

Figure from Bakiri & Dietterich, JAIR, 1995 
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ECOC evaluation with neural nets 

Figure from Bakiri & Dietterich, JAIR, 1995 
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Comments on ensembles 

•  They very often provide a boost in accuracy over base learner 

•  It’s a good idea to evaluate an ensemble approach for almost 
any practical learning problem 

•  They increase runtime over base learner, but compute cycles are 
usually much cheaper than training instances 

•  Some ensemble approaches (e.g. bagging, random forests) are 
easily parallelized 

•  Prediction contests (e.g. Kaggle, Netflix Prize) usually won by 
ensemble solutions 

•  Ensemble models are usually low on the comprehensibility scale, 
although see work by 

 [Craven & Shavlik, NIPS 1996] 

 [Domingos, Intelligent Data Analysis 1998] 

 [Van Assche & Blockeel, ECML 2007] 
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