
Ensembles of Classifiers

www.biostat.wisc.edu/~dpage/cs760/

1

Goals for the lecture

you should understand the following concepts
•  ensemble
•  bootstrap sample
•  bagging
•  boosting
•  random forests
•  error correcting output codes

2

What is an ensemble?

a set of learned models whose individual decisions are combined in
some way to make predictions for new instances

x

h1(x)

h2 (x)

h3(x)

h4 (x)

h5 (x)

h(x)

3

When can an ensemble be more accurate?
•  when the errors made by the individual predictors are

(somewhat) uncorrelated, and the predictors’ error rates are
better than guessing (< 0.5 for 2-class problem)

•  consider an idealized case…

error rate of ensemble
is represented by
probability mass in this box
= 0.026

Figure from Dietterich, AI Magazine, 1997
4

How can we get diverse classifiers?

•  In practice, we can’t get classifiers whose errors are completely
uncorrelated, but we can encourage diversity in their errors by
•  choosing a variety of learning algorithms
•  choosing a variety of settings (e.g. # hidden units in neural

nets) for the learning algorithm
•  choosing different subsamples of the training set (bagging)
•  using different probability distributions over the training

instances (boosting)
•  choosing different features and subsamples (random forests)

5

Bagging (Bootstrap Aggregation)
[Breiman, Machine Learning 1996]

learning:
given: learner L, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

for i ← 1 to T do

 D(i) ← m instances randomly drawn with replacement from D	

hi ← model learned using L on D(i)	

	

classification:
given: test instance x	

predict y ← plurality_vote(h1(x) … hT(x))	

	

	

regression:
given: test instance xt	

predict y ← mean(h1(x) … hT(x))	

	

	

	

6

Bagging

•  each sampled training set is a bootstrap replicate
•  contains m instances (the same as the original training set)
•  on average it includes 63.2% of the original training set
•  some instances appear multiple times

•  can be used with any base learner

•  works best with unstable learning methods: those for which small
changes in D result in relatively large changes in learned models

7

Empirical evaluation of bagging with C4.5

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

Bagging reduced error of C4.5 on most data sets; wasn’t harmful on any
8

Boosting

•  Boosting came out of the PAC learning community

•  A weak PAC learning algorithm is one that cannot PAC learn for
arbitrary ε and δ, although its hypotheses are slightly better than
random guessing

•  Suppose we have a weak PAC learning algorithm L for a concept
class C. Can we use L as a subroutine to create a strong PAC
learner for C?
•  Yes, by boosting! [Schapire, Machine Learning 1990]
•  The original boosting algorithm was of theoretical interest, but

assumed an unbounded source of training instances

•  A later boosting algorithm, AdaBoost, has had notable practical
success

9

AdaBoost
[Freund & Schapire, Journal of Computer and System Sciences, 1997]

 given: learner L, # stages T, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

for all i : w1(i) ← 1/m // initialize instance weights	

for t ← 1 to T do

 for all i : pt(i) ← wt(i) / (Σj wt(j)) // normalize weights
 ht ← model learned using L on D and pt	

	
εt ← Σi pt(i)(1 - δ(ht(xi), yi)) // calculate weighted error
 if εt > 0.5 then
 T ← t – 1	

	
 	
break
	
βt ← εt / (1 – εt)	

	
for all i where ht(xi) = yi // downweight correct examples
 wt+1(i) ← wt(i) βt 	

	

return:
	

	

	

	

	

	

h(x) = argmaxy log 1
βt

"

#$
%

&'t=1

T

∑ δ ht (x), y() 10

Implementing weighted instances with
AdaBoost

•  AdaBoost calls the base learner L with probability distribution pt
specified by weights on the instances

•  there are two ways to handle this
1.  Adapt L to learn from weighted instances; straightforward for

decision trees and naïve Bayes, among others
2.  Sample a large (>> m) unweighted set of instances

according to pt ; run L in the ordinary manner

11

Empirical evaluation of boosting with C4.5

Figure from Dietterich, AI Magazine, 1997

12

Bagging and boosting with C4.5

Fi
gu

re
 fr

om
 D

ie
tte

ric
h,

 A
I M

ag
az

in
e,

 1
99

7

13

Empirical study of bagging vs. boosting
[Opitz & Maclin, JAIR 1999]

•  23 data sets
•  C4.5 and neural nets as base learners
•  bagging almost always better than single

decision tree or neural net
•  boosting can be much better than bagging
•  however, boosting can sometimes reduce accuracy

(too much emphasis on outliers?)

14

Random forests
[Breiman, Machine Learning 2001]

given: candidate feature splits F, training set D = {〈x1, y1〉… 〈xm, ym〉 }	

for i ← 1 to T do

 D(i) ← m instances randomly drawn with replacement from D	

hi ← randomized decision tree learned with F, D(i)	

	

randomized decision tree learning:
to select a split at a node

 R ← randomly select (without replacement) f feature splits from F
 (where f << |F|)	

 choose the best feature split in R

do not prune trees

classification/regression:
as in bagging	

	

	

15

Learning models for multi-class problems

•  consider a learning task with k > 2 classes
•  with some learning methods, we can learn one model to predict

the k classes

•  an alternative approach is to learn k models; each represents

one class vs. the rest

•  but we could learn models to represent other encodings as well

16

Error correcting output codes
[Dietterich & Bakiri, JAIR 1995]

•  ensemble method devised specifically for problems with many classes

•  represent each class by a multi-bit code word
•  learn a classifier to represent each bit function

17

Classification with ECOC

•  to classify a test instance x using an ECOC ensemble with T classifiers

1.  form a vector h(x) = 〈h1(x) … hT(x) 〉 where hi(x) is the prediction of
the model for the ith bit

2.  find the codeword c with the smallest Hamming distance to h(x)
3.  predict the class associated with c

d −1
2

"
#"

$
%$

recall, ⎣x⎦ is the largest
integer not greater than x	

•  if the minimum Hamming distance between any pair of codewords is d,
we can still get the right classification with single-bit errors

18

Error correcting code design

a good ECOC should satisfy two properties
1.  row separation: each codeword should be well separated in

Hamming distance from every other codeword
2. column separation: each bit position should be uncorrelated

with the other bit positions

7 bits apart

6 bits apart

d = 7 so this code can correct 7 −1

2
"
#"

$
%$
= 3 errors

19

ECOC evaluation with C4.5

Figure from Bakiri & Dietterich, JAIR, 1995
20

ECOC evaluation with neural nets

Figure from Bakiri & Dietterich, JAIR, 1995
21

Comments on ensembles

•  They very often provide a boost in accuracy over base learner

•  It’s a good idea to evaluate an ensemble approach for almost
any practical learning problem

•  They increase runtime over base learner, but compute cycles are
usually much cheaper than training instances

•  Some ensemble approaches (e.g. bagging, random forests) are
easily parallelized

•  Prediction contests (e.g. Kaggle, Netflix Prize) usually won by
ensemble solutions

•  Ensemble models are usually low on the comprehensibility scale,
although see work by

 [Craven & Shavlik, NIPS 1996]

 [Domingos, Intelligent Data Analysis 1998]

 [Van Assche & Blockeel, ECML 2007]

22

