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Goals for the lecture 
you should understand the following concepts 

•  test sets 
•  learning curves 
•  validation (tuning) sets 
•  stratified sampling 
•  cross validation 
•  internal cross validation 
•  confusion matrices 
•  TP, FP, TN, FN 
•  ROC curves 
•  confidence intervals for error 
•  pairwise t-tests for comparing learning systems 
•  scatter plots for comparing learning systems 
•  lesion studies 
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Goals for the lecture (continued) 

•  recall/sensitivity/true positive rate (TPR) 
•  precision/positive predictive value (PPV) 
•  specificity and false positive rate (FPR or 1-specificity)  
•  precision-recall (PR) curves 
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Test sets revisited 
How can we get an unbiased estimate of the accuracy of a learned model? 
 
 

labeled data set 

training set test set 

learned model 
 

accuracy estimate 

learning 
method 
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Test sets revisited 

How can we get an unbiased estimate of the accuracy of a 
learned model? 
 
 •  when learning a model, you should pretend that you don’t 

have the test data yet (it is “in the mail”)* 

•  if the test-set labels influence the learned model in any way, 
accuracy estimates will be biased 

* In some applications it is reasonable to assume that you have access 
to the feature vector (i.e. x) but not the y part of each test instance. 
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Learning curves 
How does the accuracy of a learning method change as a function of 
the training-set size? 
 
 this can be assessed by plotting learning curves 

Figure from Perlich et al. Journal of Machine Learning Research, 2003 
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Learning curves 
given training/test set partition 

•  for each sample size s on learning curve 
•  (optionally) repeat n times 

•  randomly select s instances from training set 
•  learn model 
•  evaluate model on test set to determine accuracy a	

•  plot (s, a)     or (s, avg. accuracy and error bars) 
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Validation (tuning) sets revisited 
Suppose we want unbiased estimates of accuracy during the learning 
process (e.g. to choose the best level of decision-tree pruning)? 
 
 training set test set 

learned model 
 

learning process 

training set validation set 

learn 
models select model 

Partition training data into separate training/validation sets 8 



Limitations of using a single 
training/test partition 

•  we may not have enough data to make sufficiently large 
training and test sets 
•  a larger test set gives us more reliable estimate of 

accuracy (i.e. a lower variance estimate) 
•  but… a larger training set will be more representative of 

how much data we actually have for learning process 

•  a single training set doesn’t tell us how sensitive accuracy 
is to a particular training sample 
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Random resampling 
We can address the second issue by repeatedly randomly 
partitioning the available data into training and set sets.  
 
 

labeled data set 

training set test set 

training set test set 

training set test set 

random 
partitions 
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Stratified sampling 
When randomly selecting training or validation sets, we may want to 
ensure that class proportions are maintained in each selected set 
 
 labeled data set 

++++++++++++ - - - - - - - - 
 

training set 
++++++ - - - - 

 

test set 
++++++ - - - - 

 

validation set 
+++ - - 

This can be done via stratified 
sampling: first stratify instances by 
class, then randomly select instances 
from each class proportionally. 
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Cross validation 

labeled data set 

s1 s2 s3 s4 s5 

iteration train on test on 
1 s2   s3   s4     s5  s1 
2 s1   s3   s4    s5  s2 
3 s1   s2    s4     s5  s3 
4 s1   s2    s3    s5  s4 
5 s1   s2    s3    s4  s5  

partition data 
into n subsamples 

iteratively leave one 
subsample out for 
the test set, train on 
the rest 
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Cross validation example 

iteration train on test on correct 
1 s2   s3   s4     s5  s1 11 / 20 
2 s1   s3   s4    s5  s2 17 / 20 
3 s1   s2    s4     s5  s3 16 / 20 
4 s1   s2    s3    s5  s4 13 / 20 
5 s1   s2    s3    s4  s5  16 / 20 

Suppose we have 100 instances, and we want to estimate accuracy 
with cross validation 
 
 

accuracy = 73/100 = 73% 
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Cross validation 
•  10-fold cross validation is common, but smaller values of 

n are often used when learning takes a lot of time 

•  in leave-one-out cross validation, n = # instances 

•  in stratified cross validation, stratified sampling is used 
when partitioning the data 

•  CV makes efficient use of the available data for testing 

•  note that whenever we use multiple training sets, as in 
CV and random resampling, we are evaluating a learning 
method as opposed to an individual learned model 
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Internal cross validation 
Instead of a single validation set, we can use cross-validation within a 
training set to select a model (e.g. to choose the best level of decision-tree 
pruning) 
 
 

training set test set 

learned model 
 

learning process 

learn 
models select model 

s1 s2 s3 s4 s5 
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Example: using internal cross 
validation to select k in k-NN 

given a training set 
1.  partition training set into n folds, s1 … sn 
2.  for each value of k considered 

 for i = 1 to n 
 learn k-NN model using all folds but si 
 evaluate accuracy on si 

3.  select k that resulted in best accuracy for s1 … sn 
4.  learn model using entire training set and selected k 

the steps inside the box are run independently for each training set 
(i.e. if we’re using 10-fold CV to measure the overall accuracy 
of our k-NN approach, then the box would be executed 10 times) 
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Confusion matrices 
How can we understand what types of mistakes a learned model makes? 
 
 

predicted class 

actual class 

figure from vision.jhu.edu 

activity recognition from video 
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Confusion matrix for 2-class problems 

€ 

accuracy =     TP +  TN
TP + FP + FN + TN

true positives 
(TP) 

true negatives 
(TN) 

false positives 
(FP) 

false negatives 
(FN) 

positive 

negative 

positive negative 

predicted 
class 

actual class 
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Is accuracy an adequate measure 
of predictive performance? 

•  accuracy may not be useful measure in cases where 
•  there is a large class skew 

•  Is 98% accuracy good if 97% of the instances are negative? 

•  there are differential misclassification costs – say, 
getting a positive wrong costs more than getting a 
negative wrong 

•  Consider a medical domain in which a false positive results in 
an extraneous test but a false negative results in a failure to 
treat a disease 

•  we are most interested in a subset of high-confidence 
predictions 
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Other accuracy metrics 

true positive rate (recall)  =   TP
actual  pos

  =   TP
TP + FN

true positives 
(TP) 

true negatives 
(TN) 

false positives 
(FP) 

false negatives 
(FN) 

positive 

negative 

positive negative 

predicted 
class 

actual class 

false positive rate  =   FP
actual  neg

  =   FP
TN + FP
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ROC curves 
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Alg 2 

Different methods can 
work better in different 
parts of ROC space.  
This depends on cost of 
false + vs. false - 

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the 
FP-rate as a threshold on the confidence of an instance being positive is 
varied 
 
 

expected curve for 
random guessing 
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ROC curve example 

figure from Bockhorst et al., Bioinformatics 2003  
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ROC curves and misclassification costs 

best operating point when 
FN costs 10× FP 

best operating point when 
cost of misclassifying positives 
and negatives is equal 

best operating point when 
FP costs 10× FN 
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Algorithm for creating an ROC curve 

1.  sort test-set predictions according to confidence that each 
instance is positive 

2.  step through sorted list from high to low confidence 

i.  locate a threshold  between 
instances with opposite classes (keeping instances with 
the same confidence value on the same side of threshold) 

ii.  compute TPR, FPR for instances above threshold 

iii.  output (FPR, TPR) coordinate 
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Plotting an ROC curve  
 

Ex 9  .99    + 
Ex 7  .98    + 
Ex 1  .72     - 
Ex 2  .70    + 
Ex 6  .65    + 
Ex 10  .51     - 
Ex 3  .39     - 
Ex 5  .24    + 
Ex 4  .11     - 
Ex 8  .01     - 
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False positive rate 

TPR= 2/5, FPR= 0/5 

TPR= 2/5, FPR= 1/5 

TPR= 4/5, FPR= 1/5 

TPR= 4/5, FPR= 3/5 

TPR= 5/5, FPR= 3/5 

TPR= 5/5, FPR= 5/5 

instance 
confidence 
positive 

correct 
class 
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Plotting an ROC curve  
 can interpolate between points to get convex hull 

•  convex hull: repeatedly, while possible, perform interpolations that 
skip one data point and discard any point that lies below a line 

•  interpolated points are achievable in theory: can flip weighted coin 
to choose between classifiers represented by plotted points 
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ROC curves 

suppose our TPR is 0.9, and FPR is 0.01 
 
 fraction of instances that 
are positive 

fraction of positive 
predictions that are correct 

0.5 0.989 
0.1 0.909 
0.01 0.476 
0.001 0.083 

Does a low false-positive rate indicate that most positive predictions 
(i.e. predictions with confidence > some threshold) are correct? 
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Other accuracy metrics 

recall (TP rate)  =   TP
actual  pos

  =   TP
TP + FN

true positives 
(TP) 

true negatives 
(TN) 

false positives 
(FP) 

false negatives 
(FN) 

positive 

negative 

positive negative 

predicted 
class 

actual class 

FPTP
TP

    
pos  predicted

TP
   precision 

+
==
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Precision/recall curves 

1.0 

1.0 recall (TPR) 

pr
ec

is
io

n 

ideal point 

default precision 
determined by the 
fraction of instances 
that are positive 

A precision/recall curve plots the precision vs. recall (TP-rate) as a 
threshold on the confidence of an instance being positive is varied 
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Mammography Example: ROC 



Mammography Example: PR 



How do we get one ROC/PR curve 
when we do cross validation? 

Approach 1 
•  make assumption that confidence values are comparable 

across folds 
•  pool predictions from all test sets 
•  plot  the curve from the pooled predictions 

Approach 2 (for ROC curves) 
•  plot individual curves for all test sets 
•  view each curve as a function 
•  plot the average curve for this set of functions 
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Comments on ROC and PR curves 
both 
•  allow predictive performance to be assessed at various levels of 

confidence 
•  assume binary classification tasks 
•  sometimes summarized by calculating area under the curve 

ROC curves 
•  insensitive to changes in class distribution (ROC curve does not 

change if the proportion of positive and negative instances in the test 
set are varied) 

•  can identify optimal classification thresholds for tasks with differential 
misclassification costs 

precision/recall curves 
•  show the fraction of predictions that are false positives 
•  well suited for tasks with lots of negative instances 33 



To Avoid Cross-Validation 
Pitfalls, Ask: 

•  1.  Is my held-aside test data really 
representative of going out to collect 
new data? 
– Even if your methodology is fine, 

someone may have collected features for 
positive examples differently than for 
negatives – should be randomized 

– Example: samples from cancer processed 
by different people or on different days 
than samples for normal controls 
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To Avoid Pitfalls, Ask: 
•  2.  Did I repeat my entire data 

processing procedure on every fold of 
cross-validation, using only the 
training data for that fold? 
– On each fold of cross-validation, did I 

ever access in any way the label of a test 
case?  

– Any preprocessing done over entire data 
set (feature selection, parameter tuning, 
threshold selection) must not use labels 
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To Avoid Pitfalls, Ask: 
•  3.  Have I modified my algorithm so 

many times, or tried so many 
approaches, on this same data set that 
I (the human) am overfitting it? 
– Have I continually modified my 

preprocessing or learning algorithm until I 
got some improvement on this data set? 

–  If so, I really need to get some additional 
data now to at least test on 
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Confidence intervals on error 
Given the observed error (accuracy) of a model over a limited 
sample of data, how well does this error characterize its accuracy 
over additional instances? 
 
Suppose we have 

•  a learned model h	

•  a test set S containing n instances drawn independently of one 

another and independent of h	

•  n ≥ 30 
•  h makes r errors over the n instances 

our best estimate of the error of h is 

errorS (h) =
r
n
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Confidence intervals on error 

With approximately N% probability, the true error lies in the interval 

errorS (h)± zN
errorS (h)(1− errorS (h))

n

where zN is a constant that depends on N (e.g. for 95% confidence, zN =1.96)  
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Confidence intervals on error 
How did we get this? 

1.  Our estimate of the error follows a binomial distribution given by n 
and p (the true error rate over the data distribution) 

2.  Simplest (and most common) way to determine a binomial 
confidence interval is to use the normal approximation 39 



Confidence intervals on error 
2.  When n ≥ 30, and p is not too extreme, the normal distribution is a 

good approximation to the binomial 

3.  We can determine the N% confidence interval by determining what 
bounds contain N% of the probability mass under the normal 
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Empirical Confidence Bounds 
•  Bootstrapping: Given n examples in 

data set, randomly, uniformly, 
independently (with replacement) draw 
n examples – bootstrap sample 

•  Repeat 1000 (or 10,000) times: 
– Draw bootstrap sample 
– Repeat entire cross-validation process 

•  Lower (upper) bound is result such that 
2.5% of runs yield lower (higher) 
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Comparing learning systems 

How can we determine if one learning system provides 
better  performance than another 

•  for a particular task? 
•  across a set of tasks / data sets? 
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Motivating example 

    Accuracies on test sets 
 System 1:    80%   50  75  …  99 
 System 2:    79   49  74  …  98 
              δ :    +1  +1  +1  …  +1 

•  Mean accuracy for System 1 is better, but the 
standard deviations for the two clearly overlap 

•  Notice that System 1 is always better than System 2 
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Comparing systems using a paired t test 

•  consider δ’s as observed values of a set of i.i.d. 
random variables 

•  null hypothesis: the 2 learning systems have the 
same accuracy 

•  alternative hypothesis: one of the systems is more 
accurate than the other  

•  hypothesis test:  
–  use paired t-test to determine probability p that 

mean of δ’s would arise from null hypothesis 
–  if p is sufficiently small (typically < 0.05) then reject 

the null hypothesis 44 



Comparing systems using a paired t test 

1.  calculate the sample mean δ =
1
n

δ i
i=1

n

∑

t = δ

1
n(n −1)

(δ i −δ )
2

i=1

n

∑

2.  calculate the t statistic 

3.  determine the corresponding p-value, 
by looking up t in a table of values for 
the Student's t-distribution with n-1 
degrees of freedom 
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Comparing systems using a paired t test 

t	


f(t)	


for  a two-tailed test, the p-value 
represents the probability mass 
in these two regions 

 
The null distribution of our t 
statistic looks like this 
 
The p-value indicates how far 
out in a tail our t statistic is 
 
If the p-value is sufficiently 
small, we reject the null 
hypothesis, since it is unlikely 
we’d get such a t by chance 
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Why do we use a two-tailed test? 

•  a two-tailed test asks the question: is the accuracy of the 
two systems different 

•  a one-tailed test asks the question: is system A better than 
system B 

•  a priori, we don’t know which learning system will be more 
accurate (if there is a difference) – we want to allow that 
either one might be 47 



Sign Test 

•  If less than 300 examples, we won’t 
have 30 test examples per fold 

•  Prefer leave-one-out cross-validation 
•  Count “wins” for Algorithm A and B over 

the N test examples on which they 
disagree 

•  Let M be the larger of these counts 
•  What is probability under b(N,0.5) that 

either A or B would win at least M times 
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Scatter plots for pairwise  
method comparison 

We can compare the performance of two methods A and B by plotting (A 
performance, B performance) across numerous data sets 
 
 

figure from Freund & Mason, ICML 1999  figure from Noto & Craven, BMC Bioinformatics 2006  
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Lesion studies 

figure from Bockhorst et al., Bioinformatics 2003  

We can gain insight into what contributes to a learning system’s 
performance by removing (lesioning) components of it 
 
The ROC curves here show how performance is affected when various 
feature types are removed from the learning representation 
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