
Instance-Based Learning

 www.biostat.wisc.edu/~dpage/cs760/

Goals for the lecture

you should understand the following concepts
•  k-NN classification
•  k-NN regression
•  edited nearest neighbor
•  k-d trees for nearest neighbor identification

Nearest-neighbor classification

learning task
•  given a training set , do nothing

(it’s sometimes called a lazy learner)

classification task
•  given: an instance xq to classify
•  find the training-set instance xi that is most similar to xq	

•  return the class value yi	

€

x1,y1()… xn,yn()

The decision regions for nearest-
neighbor classification

x1	

x2	

Voronoi Diagram: Each polyhedron indicates the region of feature space that
 is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

classification task
•  given: an instance xq to classify
•  find the k training-set instances that are

most similar to xq	

•  return the class value	

€

ˆ y ←
v∈values(Y)
argmax δ(v, yi

i=1

k

∑)

€

x1,y1()… xk,yk()

(i.e. return the class that the plurality of the neighbors have)

€

δ(a,b) =
1 if a = b
0 otherwise

$
%

How can we determine
similarity/distance

suppose all features are nominal (discrete)
•  Hamming distance: count the number of features for

which two instances differ

suppose all features are continuous

•  Euclidean distance:

•  Could also use Manhattan distance: sum the differences in
feature values – continuous analog to Hamming distance	

€

d(xi,x j) = xif − x jf()
2

f
∑ where xif represents the fth feature of xi	

How can we determine
similarity/distance

•  if we have a mix of discrete/continuous features:

•  If all feature are of equal importance, want to apply to

continuous features some type of normalization (values
range 0 to 1) or standardization (values distributed according
to standard normal)

€

d(xi,x j) =
 xif − x jf if f is continuous

1−δ xif ,x jf() if f is discrete

$
%
&

' & f
∑

k-nearest-neighbor regression

learning task
•  given a training set , do nothing

prediction task
•  given: an instance xq to make a prediction for
•  find the k training-set instances that are

most similar to xq	

•  return the value	

€

ˆ y ← 1
k

yi
i=1

k

∑

€

x1,y1()… xk,yk()

€

x1,y1()… xn,yn()

Distance-weighted nearest neighbor

€

ˆ y ←
wi yi

i=1

k

∑

wi
i=1

k

∑

We can have instances contribute to a prediction
according to their distance from xq	

€

ˆ y ←
v∈values(Y)
argmax wi δ(v, yi

i=1

k

∑)

€

wi =
1

d(xq,xi)
2

classification:

regression:

Speeding up k-NN

•  k-NN is a “lazy” learning algorithm – does virtually nothing
at training time

•  but classification/prediction time can be costly when the
training set is large

•  two general strategies for alleviating this weakness
•  don’t retain every training instance (edited nearest

neighbor)
•  use a smart data structure to look up nearest neighbors

(e.g. a k-d tree)

Edited instance-based learning

•  select a subset of the instances that still provide accurate classifications

•  incremental deletion
start with all training instances in memory
for each training instance (xi, yi)

if other training instances provide correct classification for (xi, yi)
delete it from the memory

•  incremental growth
start with an empty memory
for each training instance (xi, yi)

if other training instances in memory don’t correctly classify (xi, yi)
add it to the memory

k-d trees

a k-d tree is similar to a decision tree except that each internal node
•  stores one instance
•  splits on the median value of the feature having the highest variance

x > 6	

f	

y > 10	

c	

y > 5	

h	

y > 4	

e	

x > 3	

b	

x > 9	

g	

x > 10	

i	

y > 11.5	

j	

y > 8	

d	

y > 11	

a	

Finding nearest neighbors with a k-d tree

•  use branch-and-bound search
•  priority queue stores

–  nodes considered
–  lower bound on their distance to query instance

•  lower bound given by distance using a single feature

•  average case: O(log2n)	

•  worst case: O(n)

Finding nearest neighbors in a k-d tree
NearestNeighbor(instance q)

 PQ = { } // minimizing priority queue
 best_dist = ∞ // smallest distance seen so far
 PQ.push(root, 0)
 while PQ is not empty
 (node, bound) = PQ.pop();
 if (bound ≥ best_dist) // bound is best bound on all PQ
 return best_node.instance 	
 	
// so nearest neighbor found
 dist = distance(q, node. instance)
 if (dist < best_dist)
 best_dist = dist
 best_node = node
 if (q[node.feature] – node.threshold > 0)
 PQ.push(node.left, q[node.feature] – node.threshold)
 PQ.push(node.right, 0)
 else
 PQ.push(node.left, 0)
 PQ.push(node.right, node. threshold - q [node.feature])
 return best_node. instance

k-d tree example (Manhattan Distance)

distance best distance best node priority queue
∞ (f, 0)

4.0 4.0 f (c, 0) (h, 4)
10.0 4.0 f (e, 0) (h, 4) (b, 7)
1.0 1.0 e (d, 1) (h, 4) (b, 7)

given query
q = (2, 3)

q	

x > 6	

f	

y > 10	

c	

y > 5	

h	

y > 4	

e	

x > 3	

b	

x > 9	

g	

x > 10	

i	

y > 11.5	

j	

y > 8	

d	

y > 11	

a	

Strengths of instance-based learning

•  simple to implement
•  “training” is very efficient
•  adapts well to on-line learning
•  robust to noisy training data (when k > 1)
•  often works well in practice

Limitations of instance-based learning
•  sensitive to range of feature values

•  sensitive to irrelevant and correlated features, although…
•  there are variants that learn weights for different

features
•  later we’ll talk about feature selection methods

•  classification can be inefficient, although edited methods
and k-d trees can help alleviate this weakness

•  doesn’t provide much insight into problem domain because
there is no explicit model

