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Goals for the lecture 

you should understand the following concepts 
•  k-NN classification 
•  k-NN regression 
•  edited nearest neighbor 
•  k-d trees for nearest neighbor identification 



Nearest-neighbor classification 

learning task 
•  given a training set                         , do nothing           

(it’s sometimes called a lazy learner) 

classification task 
•  given: an instance xq to classify 
•  find the training-set instance xi that is most similar to xq	


•  return the class value yi	
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The decision regions for nearest-
neighbor classification 
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Voronoi Diagram: Each polyhedron indicates the region of feature space that 
 is in the nearest neighborhood of each training instance 



k-nearest-neighbor classification 

classification task 
•  given: an instance xq to classify 
•  find the k training-set instances                         that are 

most similar to xq	


•  return the class value	
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(i.e. return the class that the plurality of the neighbors have) 
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δ(a,b) =
1 if a = b     
0 otherwise
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How can we determine   
similarity/distance 

suppose all features are nominal (discrete) 
•  Hamming distance: count the number of features for 

which two instances differ 
 
suppose all features are continuous 

•  Euclidean distance: 

•  Could also use Manhattan distance: sum the differences in 
feature values – continuous analog to Hamming distance	
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∑ where xif represents the fth feature of xi	




How can we determine   
similarity/distance 

•  if we have a mix of discrete/continuous features: 

 
 
•  If all feature are of equal importance, want to apply to 

continuous features some type of normalization (values 
range 0 to 1) or standardization (values distributed according 
to standard normal) 
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 xif − x jf   if f is continuous

1−δ xif ,x jf( ) if f is discrete   
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k-nearest-neighbor regression 

learning task 
•  given a training set                         , do nothing 

prediction task 
•  given: an instance xq to make a prediction for 
•  find the k training-set instances                         that are 

most similar to xq	


•  return the value	
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Distance-weighted nearest neighbor 
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We can have instances contribute to a prediction 
according to their distance from xq	
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classification: 

regression: 



Speeding up k-NN 

•  k-NN is a “lazy” learning algorithm – does virtually nothing 
at training time 

•  but classification/prediction time can be costly when the 
training set is large 

•  two general strategies for alleviating this weakness 
•  don’t retain every training instance (edited nearest 

neighbor) 
•  use a smart data structure to look up nearest neighbors 

(e.g. a k-d tree) 



Edited instance-based learning 

•  select a subset of the instances that still provide accurate classifications 

•  incremental deletion 
start with all training instances in memory 
for each training instance (xi, yi) 

if other training instances provide correct classification for (xi, yi) 
delete it from the memory 

•  incremental growth 
start with an empty memory 
for each training instance (xi, yi) 

if other training instances in memory don’t correctly classify (xi, yi) 
add it to the memory 



k-d trees 

a k-d tree is similar to a decision tree except that each internal node 
•  stores one instance 
•  splits on the median value of the feature having the highest variance  
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Finding nearest neighbors with a k-d tree 

•  use branch-and-bound search 
•  priority queue stores 

–  nodes considered 
–  lower bound on their distance to query instance 

•  lower bound given by distance using a single feature 

•  average case:  O(log2n)	

•  worst case:      O(n) 



Finding nearest neighbors in a k-d tree 
NearestNeighbor(instance q) 

 PQ = { }      // minimizing priority queue 
 best_dist = ∞      // smallest distance seen so far 
 PQ.push(root, 0) 
 while PQ is not empty 
  (node, bound) = PQ.pop(); 
  if (bound ≥ best_dist)    // bound is best bound on all PQ 
   return best_node.instance 	
 	
// so nearest neighbor found 
  dist = distance(q, node. instance) 
  if (dist < best_dist) 
   best_dist = dist 
   best_node = node 
  if (q[node.feature] – node.threshold > 0) 
   PQ.push(node.left, q[node.feature] – node.threshold) 
   PQ.push(node.right, 0) 
  else 
   PQ.push(node.left, 0) 
   PQ.push(node.right, node. threshold - q [node.feature]) 
 return best_node. instance 

 
 



k-d tree example (Manhattan Distance) 

distance best distance best node priority queue 
∞ (f, 0) 

4.0 4.0 f (c, 0)  (h, 4) 
10.0 4.0 f (e, 0)  (h, 4)  (b, 7) 
1.0 1.0 e (d, 1)  (h, 4)  (b, 7) 

given query 
q = (2, 3) 
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Strengths of instance-based learning 

•  simple to implement 
•  “training” is very efficient 
•  adapts well to on-line learning 
•  robust to noisy training data (when k > 1) 
•  often works well in practice 



Limitations of instance-based learning 
•  sensitive to range of feature values 

•  sensitive to irrelevant and correlated features, although… 
•  there are variants that learn weights for different 

features 
•  later we’ll talk about feature selection methods 

•  classification can be inefficient, although edited methods 
and k-d trees can help alleviate this weakness 

•  doesn’t provide much insight into problem domain because 
there is no explicit model 


