Instance-Based Learning

www.biostat.wisc.edu/~dpage/cs760/

Goals for the lecture

you should understand the following concepts
* k-NN classification
* k-NN regression
 edited nearest neighbor
« k-d trees for nearest neighbor identification

Nearest-neighbor classification

learning task

e given a training set (xl,yl)---(xn,yn), do nothing
(it's sometimes called a lazy learner)

classification task
* given: an instance x, to classify
* find the training-set instance x; that is most similar to x,
* return the class value y,

The decision regions for nearest-
neighbor classification

Voronoi Diagram: Each polyhedron indicates the region of feature space that
is in the nearest neighborhood of each training instance

k-nearest-neighbor classification

classification task
* given: an instance x, to classify

- find the k training-set instances (x,.y,)-.-(x,.y,) that are
most similar to x,

 return the class value
k

y <= argmax Eé(v,yi) Sa,b) = {

vevalues(Y) ie1

lifa=5b
0 otherwise

(i.e. return the class that the plurality of the neighbors have)

How can we determine
similarity/distance

suppose all features are nominal (discrete)

« Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
* Euclidean distance:

if

d(x;,x ;)= \/E(x — xjf)2 where x, represents the f” feature of x,
f

e Could also use Manhattan distance: sum the differences in
feature values — continuous analog to Hamming distance

How can we determine
similarity/distance

* |f we have a mix of discrete/continuous features:

dxx)= |, - x| iffis continuous
XX)=)1 o
O 1—5(xl.f,xjf) if fis discrete

f

« If all feature are of equal importance, want to apply to
continuous features some type of normalization (values
range 0 to 1) or standardization (values distributed according

to standard normal)

k-nearest-neighbor regression

learning task
e given a training set (xl,yl)---(xn,yn), do nothing

prediction task
* given: an instance x, to make a prediction for

- find the k training-set instances (x,.y,)...(x,.y,) that are
most similar to x,

 return the value

Distance-weighted nearest neighbor

We can have instances contribute to a prediction
according to their distance from x,

classification:
£ 1
y < argmax Ewi o(v,y,) w, = >
vEvalues(Y) iz1 d(-xq 7xi)
regression:

k

Ewi Yi
» i=1
Yy %
-1

w;

l

Speeding up £-NN

k-NN is a “lazy” learning algorithm — does virtually nothing
at training time

but classification/prediction time can be costly when the
training set is large

two general strategies for alleviating this weakness

« don't retain every training instance (edited nearest
neighbor)

* use a smart data structure to look up nearest neighbors
(e.g. a k-d tree)

Edited instance-based learning

» select a subset of the instances that still provide accurate classifications

* incremental deletion
start with all training instances in memory
for each training instance (x;, y,)
if other training instances provide correct classification for (x;, y;)
delete it from the memory

* Incremental growth
start with an empty memory
for each training instance (x;, y;)
If other training instances in memory don’t correctly classify (x;, y;)
add it to the memory

12

10

k-d trees

a k-d tree is similar to a decision tree except that each internal node

« stores one instance

« splits on the median value of the feature having the highest variance

) 4 h
b ' \
7 AR
"“."l \ |' J
| \ Il
------- ey .
\]
hhhhhh .- -—~—--l J
d : :
; ;
\]
T T
“"’9 """" ' :
‘ |
; I
: ¢
] |
\ |
0 2 4 6 10 12 14

Xx>6
f
y>10 y>5
c h
y>4 x>3 x>9 x> 10

Finding nearest neighbors with a k-d tree

» use branch-and-bound search
 priority queue stores
— nodes considered
— lower bound on their distance to query instance

« lower bound given by distance using a single feature

e average case: O(log,n)
e worst case: O(n)

Finding nearest neighbors in a k-d tree

NearestNeighbor(instance ¢)
PQ = {} // minimizing priority queue
best dist = « /I smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty
(node, bound) = PQ.pop();
if (bound = best_dist) /[bound is best bound on all PQ
return best_node.instance I/ so nearest neighbor found
dist = distance(q, node. instance)
if (dist < best_dist)
best dist = dist
best node = node
if (g[node.feature] — node.threshold > 0)
PQ.push(node.left, g[node.feature] — node.threshold)
PQ.push(node.right, 0)
else
PQ.push(node.left, 0)
PQ.push(node.right, node. threshold - g [node.feature])
return best_node. instance

12

10

k-d tree example (Manhattan Distance)

given query
q = (2, 3) x>6
y>10 y>5
/C\ /h\
y>4 x>3 x>9 x> 10
e b g i
y>38 y>11 I/\El y>11.5

ANWON N

distance | best distance | best node | priority queue
i (f, 0)
4.0 4.0 f (c, 0) (h, 4)
10.0 4.0 f (e,0) (h,4) (b, 7)
1.0 1.0 e (d, 1) (h,4) (b, 7)

Strengths of instance-based learning

simple to implement

“training” is very efficient

adapts well to on-line learning

robust to noisy training data (when £ > 1)
often works well in practice

Limitations of instance-based learning

sensitive to range of feature values

sensitive to irrelevant and correlated features, although...

 there are variants that learn weights for different
features

 |later we'll talk about feature selection methods

classification can be inefficient, although edited methods
and k-d trees can help alleviate this weakness

doesn’t provide much insight into problem domain because
there is no explicit model

