Lecture 2: Uncertainty

Deductive Logic-based Systems

- Automated Theorem Provers
- Rule-based Expert Systems
- Planners and Schedulers
- Robots
- Constraint Satisfaction Systems
- Natural Language Processing

Assumptions Inherent in Deductive Logic-based Systems

- All the assertions we wish to make and use are universally true.
- Observations of the world (percepts) are complete and error-free.
- All conclusions consistent with our knowledge are equally viable.
- All the desirable inference rules are truthpreserving.

Completely Accurate Assertions

- Initial intuition: if an assertion is not completely accurate, replace it by several more specific assertions.
- Qualification Problem: would have to add too many preconditions (or might forget to add some).
- Example: Strep Throat if: sore throat and positive culture and lab didn't mistakenly switch samples and swab was sterile and

Complete and Error-Free Perception

- Errors are common: biggest problem in use of Pathfinder for diagnosis of lymph system disorder is human error in feature detection.
- Some tests are impossible, too costly, or dangerous. "We could determine if your hip pain is really due to a lower back problem if we cut these nerve connections."

Consistent Conclusions are Equal

- A diagnosis of either early smallpox or cowpox is consistent with our knowledge and observations.
- But cowpox is more likely (e.g., if the sores are on your cow-milking hand).

Truth-Preserving Inference

- Might want to use abductive or inductive inference.
- Even if our inference rules are truthpreserving, if there's a slight probability of error in our assertions or observations, during chaining (e.g., resolution) these probabilities can compound quickly, and we are not estimating them.

Solution: Reason Explicitly About Probabilities

- Full joint distributions.
- Certainty factors attached to rules.
- Dempster-Shafer Theory.
- Qualitative probability and non-monotonic reasoning.
- Possibility theory (within fuzzy logic, which itself does not deal with probability).
- Bayesian Networks.

Start with the Terminology of Most Rule-based Systems

- Atomic proposition: assignment of a value to a variable (parameter).
- Domain of possible values: variables may be Boolean, Discrete (finite domain), or Continuous (floating point in practice).
- Compound assertions can be built with standard logical connectives.

Rule-based Systems (continued)

- State of the world (model, interpretation): a complete setting of all the variables.
- States are mutually exclusive (at most one is actually the case) and collectively exhaustive (at least one must be the case).
- A proposition is equivalent to the set of all states in which it is true; standard compositional semantics of logic applies.

To Add Probability

- Replace variables with random variables.
- State of the world (setting of all the random variables) will be called an atomic event.
- Apply probabilities or degrees of belief to propositions: $\mathrm{P}($ Weather $=$ sunny $)=0.7$.

Prior Probability

- The unconditional or prior probability of a proposition is the degree of belief accorded to it in the absence of any other information.
- Example: $\mathrm{P}($ Cavity $=$ true $)$ or $\mathrm{P}($ cavity $)$
- Example: $\mathrm{P}($ Weather $=$ sunny $)$
- Example: $\mathrm{P}($ cavity^ $($ Weather $=$ sunny $))$

Distribution of Probability

- Start with an individual random variable.
- Given a random variable X with a set C of possible values, a probability set function P tells how the probability is distributed over various subsets C of C (of particular type). For any $\mathrm{C}, \mathrm{P}(\mathrm{C})$ is 0 or greater; $\mathrm{P}(\mathrm{C})$ is 1 ; for disjoint subsets $C_{1}, C_{2}, \ldots, C_{n}$ of C : $\mathrm{P}\left(\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{C}_{1}\right)+\mathrm{P}\left(\mathrm{C}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{C}_{\mathrm{n}}\right)$.

Simpler Methods

- For discrete random variables, defining a probability distribution is easier, as here:
$\mathrm{P}($ Weather $=$ sunny $)=0.7$
$\mathrm{P}($ Weather $=$ rain $)=0.2$
$\mathrm{P}($ Weather $=$ cloudy $)=0.08$
$\mathrm{P}($ Weather $=$ snow $)=0.02$
- For the continuous case, a probability density function (p.d.f.) often can be used.

Conditional (Posterior) Probability

- $\mathrm{P}(a \mid b)$: the probability of a given that all we know is b.
- $\mathrm{P}($ cavity|toothache $)=0.8$: if a patient has a toothache, and no other information is available, the probability that the patient has a cavity is 0.8 .
- To be precise: $\quad \mathrm{P}=\frac{\mathrm{P}(a \wedge b)}{\mathrm{P}(b)}$

Product Rule

- Equivalent to the previous equation is the following, known as the product rule.

$$
\begin{aligned}
& \mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b) \\
& \mathrm{P}(a \wedge b)=\mathrm{P}(b \mid a) \mathrm{P}(a)
\end{aligned}
$$

The Axioms of Probability

- For any proposition $a, 0 \leq \mathrm{P}(a) \leq 1$
- $\mathrm{P}($ true $)=1$ and $\mathrm{P}(f a l s e)=0$
- The probability of a disjunction is given by

$$
\mathrm{P}(a \vee b)=\mathrm{P}(a)+\mathrm{P}(b)-\mathrm{P}(a \wedge b)
$$

Boldface Notation

- Sometimes we want to write an equation that holds for a vector (ordered set) of random variables. We will denote such a set by boldface font. So Y denotes a random variable, but \mathbf{Y} denotes a set of random variables.
- $Y=y$ denotes a setting for Y, but $\mathbf{Y}=\mathbf{y}$ denotes a setting for all variables in \mathbf{Y}.

P Notation

- $\mathrm{P}(X=x)$ denotes the probability that the random variable X takes the value $x ; \mathbf{P}(X)$ denotes a probability distribution over X.
- For example, if we want to say that observing a value for Y does not change the probability distribution over X, we can write $\mathbf{P}(X \mid Y)=\mathbf{P}(X)$ rather than repeating for every combination of settings for X and Y.

Marginalization \& Conditioning

- Marginalization (summing out): for any sets of variables Y and $\mathrm{Z}: \mathbf{P}(\mathrm{Y})=\sum_{z \in \mathrm{Z}} \mathbf{P}(\mathrm{Y}, \mathrm{z})$
- Conditioning(variant of marginalization):

$$
\mathbf{P}(\mathrm{Y})=\sum_{\mathrm{z} \in \mathrm{Z}} \mathbf{P}(\mathrm{Y} \mid \mathrm{z}) \mathbf{P}(\mathrm{z})
$$

Often want to do this for $\mathbf{P}(Y \mid X)$ instead of $\mathbf{P}(\mathrm{Y})$.
Recall $\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \wedge Y)}{\mathbf{P}(X)}$

Example

$$
\begin{aligned}
& \mathrm{P}(\text { cavity } \mid \text { toothache })=\frac{\mathrm{P}(\text { cavity } \wedge \text { toothache })}{\mathrm{P}(\text { toothache })} \\
& =\frac{0.108+0.012}{0.108+0.012+0.016+0.064}=0.6
\end{aligned}
$$

Related Example

$$
\begin{aligned}
& \mathrm{P}(\neg \text { cavity|toothache })=\frac{\mathrm{P}(\neg \text { cavity } \wedge \text { toothache })}{\mathrm{P}(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Normalization

- In the two preceding examples the denominator ($\mathrm{P}($ toothache $)$) was the same, and we looked at all possible values for the variable Cavity given toothache.
- The denominator can be viewed as a normalization constant α.
- We don't have to compute the denominator -- just normalize 0.12 and 0.08 to sum to 1 .

General Inference Procedure

- Let X be a random variable about which we want to know its probabilities, given some evidence (values \mathbf{e} for a set \mathbf{E} of other variables). Let the remaining (unobserved) variables be \mathbf{Y}. The query is $\mathbf{P}(\mathrm{X} \mid \mathbf{e})$, and it can be answered by

$$
\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(\mathrm{X}, \mathbf{e})=\alpha \sum_{\mathrm{y}} \mathbf{P}(\mathrm{X}, \mathbf{e}, \mathbf{y})
$$

