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Lecture 2: Uncertainty

Deductive Logic-based Systems

• Automated Theorem Provers

• Rule-based Expert Systems

• Planners and Schedulers

• Robots

• Constraint Satisfaction Systems

• Natural Language Processing
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Assumptions Inherent in
Deductive Logic-based Systems

• All the assertions we wish to make and use
are universally true.

• Observations of the world (percepts) are
complete and error-free.

• All conclusions consistent with our
knowledge are equally viable.

• All the desirable inference rules are truth-
preserving.

Completely Accurate Assertions

• Initial intuition: if an assertion is not
completely accurate, replace it by several
more specific assertions.

• Qualification Problem: would have to add
too many preconditions (or might forget to
add some).

• Example: Strep Throat if: sore throat and
positive culture and lab didn’t mistakenly
switch samples and swab was sterile and ….
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Complete and Error-Free
Perception

• Errors are common: biggest problem in use
of Pathfinder for diagnosis of lymph system
disorder is human error in feature detection.

• Some tests are impossible, too costly, or
dangerous.  “We could determine if your
hip pain is really due to a lower back
problem if we cut these nerve connections.”

Consistent Conclusions are Equal

• A diagnosis of either early smallpox or
cowpox is consistent with our knowledge
and observations.

• But cowpox is more likely (e.g., if the sores
are on your cow-milking hand).
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Truth-Preserving Inference

• Might want to use abductive or inductive
inference.

• Even if our inference rules are truth-
preserving, if there’s a slight probability of
error in our assertions or observations,
during chaining (e.g., resolution) these
probabilities can compound quickly, and we
are not estimating them.

Solution: Reason Explicitly
About Probabilities

• Full joint distributions.

• Certainty factors attached to rules.

• Dempster-Shafer Theory.

• Qualitative probability and non-monotonic
reasoning.

• Possibility theory (within fuzzy logic,
which itself does not deal with probability).

• Bayesian Networks.
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Start with the Terminology of
Most Rule-based Systems

• Atomic proposition: assignment of a value
to a variable (parameter).

• Domain of possible values: variables may
be Boolean, Discrete (finite domain), or
Continuous (floating point in practice).

• Compound assertions can be built with
standard logical connectives.

Rule-based Systems (continued)

• State of the world (model, interpretation): a
complete setting of all the variables.

• States are mutually exclusive (at most one is
actually the case) and collectively
exhaustive (at least one must be the case).

• A proposition is equivalent to the set of all
states in which it is true; standard
compositional semantics of logic applies.
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To Add Probability

• Replace variables with random variables.
• State of the world (setting of all the random

variables) will be called an atomic event.

• Apply probabilities or degrees of belief to
propositions: P(Weather=sunny)  = 0.7.

Prior Probability

• The unconditional or prior probability of
a proposition is the degree of belief
accorded to it in the absence of any other
information.

• Example: P(Cavity = true) or P(cavity)

• Example: P(Weather = sunny)

• Example: P(cavity   (Weather = sunny))∧
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Distribution of Probability

• Start with an individual random variable.
• Given a random variable X with a set &�of

possible values, a probability set function P
tells how the probability is distributed over
various subsets C of &�(of particular type).
For any C, P(C) is 0 or greater; P(&) is 1;
for disjoint subsets C1, C2, …, Cn of &:
P(C1 4 C2 4 Cn) = P(C1)+P(C2)+…+P(Cn).

Simpler Methods

• For discrete random variables, defining a
probability distribution is easier, as here:
P(Weather=sunny)=0.7
P(Weather=rain)=0.2
P(Weather=cloudy)=0.08
P(Weather=snow)=0.02

• For the continuous case, a probability
density function (p.d.f.) often can be used.



8

Conditional (Posterior)
Probability

• P(a|b): the probability of a given that all we
know is b.

• P(cavity|toothache) = 0.8: if a patient has a
toothache, and no other information is
available, the probability that the patient has
a cavity is 0.8.

• To be precise: P =  
P( )

P( )

a b

b

∧

Product Rule

• Equivalent to the previous equation is the
following, known as the product rule.

P( ) =  P( | ) P( )

P( ) =  P( | ) P( )

a b a b b

a b b a a

∧
∧
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The Axioms of Probability

• For any proposition a,

• P(true) = 1  and  P(false) = 0

• The probability of a disjunction is given by

0≤ ≤P( ) 1a

P( ) =  P( ) +  P( ) -  P( )a b a b a b∨ ∧

Boldface Notation

• Sometimes we want to write an equation
that holds for a vector (ordered set) of
random variables.  We will denote such a
set by boldface font.  So Y denotes a
random variable, but Y denotes a set of
random variables.

• Y = y denotes a setting for Y, but Y=y
denotes a setting for all variables in Y.
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P Notation

• P(X = x) denotes the probability that the
random variable X takes the value x; P(X)
denotes a probability distribution over X.

• For example, if we want to say that
observing a value for Y does not change the
probability distribution over X, we can write
P(X|Y) = P(X) rather than repeating for
every combination of settings for X and Y.

Marginalization & Conditioning

• Marginalization (summing out): for any sets
of variables Y and Z:

• Conditioning(variant of marginalization):

P P(Y) =  (Y,z)
 z Z∈∑

P P P(Y) =  (Y|z) (z)
 z Z∈∑

Often want to do this for ( ) instead of (Y).

Recall ( ) =  
( )

( )

P P

P
P

P

Y|X

Y|X
X Y

X

∧
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Example

P( | ) =  
P( )

P( )

=   =  0.6

cavity toothache
cavity toothache

toothache

∧

+
+ + +

0108 0 012

0108 0012 0016 0064

. .

. . . .

Related Example

P( | ) =  
P( )

P( )

=   =  0.4

¬
¬ ∧

+
+ + +

cavity toothache
cavity toothache

toothache

0 016 0 064

0108 0012 0016 0064

. .

. . . .
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Normalization

• In the two preceding examples the
denominator (P(toothache)) was the same,
and we looked at all possible values for the
variable Cavity given toothache.

• The denominator can be viewed as a
normalization constant a.

• We don’t have to compute the denominator
-- just normalize 0.12 and 0.08 to sum to 1.

General Inference Procedure

• Let X be a random variable about which we
want to know its probabilities, given some
evidence (values e for a set E of other
variables).  Let the remaining (unobserved)
variables be Y.  The query is P(X|e), and it
can be answered by

P e P e P e y
y

( | ) =   (X, ) =  (X, , )
 

X α α∑


