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Independence

• Propositions a and b are  independent if and
only if

• Equivalently (by product rule):

• Equivalently:

P( ) = P( ) P( )a b a b∧
P( | ) = P( )a b a

P( | = P( )b a b)

Illustration of Independence

• We know (product rule) that

P( ) =

P( | ) 

P( ).  By independence:
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Illustration continued

• Allows us to represent a 32-element table
for full joint on Weather, Toothache, Catch,
Cavity by an 8-element table for the joint of
Toothache, Catch, Cavity, and a 4-element
table for Weather.

• If we add a Boolean variable X  to the 8-
element table, we get 16 elements.  A new
2-element table suffices with independence.

Bayes’ Rule
Recall product rule:  

     P( ) =  P( ) P( )

     P( ) =  P( ) P( )

Equating right - hand sides and dividing by P( ):
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Bayes’ Rule with Background
Evidence

Often we’ll want to use Bayes’ Rule

conditionalized on some background

evidence :

     ( , ) =  
( , ) ( | )

( | )
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P e
Y|X
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Example of Bayes’ Rule

• P(stiff neck|meningitis) = 0.5

• P(meningitis) = 1/50,000

• P(stiff neck) = 1/20

• Then P(meningitis|stiff neck) =

P(  | ) P(

P(  )
 =
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Normalization with Bayes’ Rule

• P(stiff neck|meningitis) and P(meningitis)
are relatively easy to estimate from medical
records.

• Prior probability of stiff neck is harder to
estimate accurately.

• Bayes’ rule with normalization:

P P P( ) =   ( ) ( )Y|X X|Y Yα

Normalization with Bayes’ Rule
(continued)

Might

stiff neck meningitis meningitis

stiff neck meningitis meningitis

stiff neck

 be easier to compute

     P(  | ) P( ) and

     P(  | ) P( )

than to directly estimate

     P(  ).

¬ ¬
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Why Use Bayes’ Rule

• Causal knowledge such as P(stiff
neck|meningitis) often is more reliable than
diagnostic knowledge such as
P(meningitis|stiff neck).

• Bayes’ Rule lets us use causal knowledge to
make diagnostic inferences (derive
diagnostic knowledge).

Difficulty with Bayes’ Rule with
More than Two Variables

The definition of Bayes’ Rule extends naturally to

multiple variables:

(  =

      (  ( ).

But notice that to apply it we must know conditional

probabilities like

     P(

for all 2  settings of the s and all settings of the s

(assuming Booleans).  Might as well use full joint.
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Conditional Independence

• X and Y are conditionally independent given
Z if and only if P(X,Y|Z) = P(X|Z) P(Y|Z).

• Y1,…,Yn are conditionally independent given
X1,…,Xm if and only if P(Y1,…,Yn|X1,…,Xm)=
P(Y1|X1,…,Xm) P(Y2|X1,…,Xm) …
P(Ym|X1,…,Xm).

• We’ve reduced 2n2m to 2n2m.  Additional
conditional independencies may reduce 2m.

Benefits of Conditional
Independence

• Allows probabilistic systems to scale up
(tabular representations of full joint
distributions quickly become too large.)

• Conditional independence is much more
commonly available than is absolute
independence.
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Decomposing a Full Joint by
Conditional Independence

• Might assume Toothache and Catch are
conditionally independent given Cavity:
P(Toothache,Catch|Cavity) =
P(Toothache|Cavity) P(Catch|Cavity).

• Then P(Toothache,Catch,Cavity) =[product rule]

P(Toothache,Catch|Cavity) P(Cavity)
=[conditional independence] P(Toothache|Cavity)
P(Catch|Cavity) P(Cavity).

Bayesian Networks: Motivation

• Capture independence and conditional
independence where they exist.

• Among variables where dependencies exist,
encode the relevant portion of the full joint.

• Use a graphical representation for which we
can more easily investigate the complexity
of inference and can search for efficient
inference algorithms.



8

A Bayesian Network is a ...

• Directed Acyclic Graph (DAG) in which …

• … the nodes  denote random variables

• … each node X has a conditional probability
distribution P(X|Parents(X)).

• The intuitive meaning of an arc from X to Y
is that X directly influences Y.

Additional Terminology

• If X and its parents are discrete, we can
represent the distribution P(X|Parents(X))
by a conditional probability table (CPT)
specifying the probability of each value of X
given each possible combination of settings
for the variables in Parents(X).

• A conditioning case is a row in this CPT (a
setting of values for the parent nodes).
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Bayesian Network Semantics

• A Bayesian Network completely specifies a
full joint distribution over its random
variables, as below -- this is its meaning.

• P

• In the above, P(x1,…,xn) is shorthand
notation for P(X1=x1,…,Xn=xn).

( ) =  P( )x x x Parents Xn i i

i = 

n

1

1

,..., | ( )∏

Inference Example

• What is probability alarm sounds, but
neither a burglary nor an earthquake has
occurred, and both John and Mary call?

• Using j for John Calls, a for Alarm, etc.:

P( ) =

P( ) P( ) P( ) P( ) P( ) =

(0.9)(0.7)(0.001)(0.999)(0.998) =  0.00062

j m a b e

j a m a a b e b e
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Chain Rule

• Generalization of the product rule, easily
proven by repeated application of the
product rule.

• Chain Rule:                    P( ) =

P( )P( )...P( )P( )

= P( )
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Chain Rule and BN Semantics

BN semantics: P( ) = P( )

Key Property: ( ) = ( )

provided   .   Says a node is

conditionally independent of its predecessors in the

node ordering given its parents,  and suggests

incremental procedure for network construction.
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Procedure for BN Construction

• Choose relevant random variables.

• While there are variables left:

1.  a next variable  and add a node for it.

2.  Set  to  minimal set of nodes such

          that the Key Property (previous slide) is satisfied.

3. Define the conditional distribution ( ).

Choose

some

P

X

Parents(X )

X |Parents(X )

i

i

i i

Principles to Guide Choices

• Goal: build a locally structured (sparse)
network -- each component interacts with a
bounded number of other components.

• Add root causes first, then the variables that
they influence.
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Conditional Independence Again

• Recall that X is conditionally independent
of its predecessors given Parents(X).

• Markov Blanket of X: set consisting of the
parents of X, the children of X, and the other
parents of the children of X.

• X is conditionally independent of all nodes
in the network given its Markov Blanket.


