Independence

- Propositions *a* and *b* are independent if and only if $P(a \land b) = P(a) P(b)$
- Equivalently (by product rule): P(a|b) = P(a)
- Equivalently: P(b|a) = P(b)

Illustration of Independence

We know (product rule) that P(toothache, catch, cavity, Weather = cloudy) = P(Weather = cloudy|toothache, catch, cavity) × P(toothache, catch, cavity). By independence: P(Weather = cloudy|toothache, catch, cavity) = P(Weather = cloudy). Therefore we have that P(toothache, catch, cavity, Weather = cloudy) = P(Weather = cloudy) × P(toothache, catch, cavity).

Illustration continued

- Allows us to represent a 32-element table for full joint on *Weather, Toothache, Catch, Cavity* by an 8-element table for the joint of *Toothache, Catch, Cavity,* and a 4-element table for *Weather*.
- If we add a Boolean variable *X* to the 8element table, we get 16 elements. A new 2-element table suffices with independence.

Bayes' Rule with Background Evidence

Often we'll want to use Bayes' Rule conditionalized on some background evidence **e**:

$$\mathbf{P}(Y|X,\mathbf{e}) = \frac{\mathbf{P}(X|Y,\mathbf{e}) \mathbf{P}(Y|\mathbf{e})}{\mathbf{P}(X|\mathbf{e})}$$

Normalization with Bayes' Rule (continued)

Might be easier to compute

P(stiff neck | meningitis) P(meningitis) andP(stiff neck | ¬meningitis) P(¬meningitis) than to directly estimate

P(*stiff neck*).

Why Use Bayes' Rule

- Causal knowledge such as P(*stiff* neck|meningitis) often is more reliable than diagnostic knowledge such as P(meningitis/stiff neck).
- Bayes' Rule lets us use causal knowledge to make diagnostic inferences (derive diagnostic knowledge).

Difficulty with Bayes' Rule with More than Two Variables

The definition of Bayes' Rule extends naturally to multiple variables:

 $\mathbf{P}(X_1,\ldots,X_m|Y_1,\ldots,Y_n) =$

 $\boldsymbol{\alpha} \mathbf{P}(Y_1,\ldots,Y_n|X_1,\ldots,X_m) \mathbf{P}(X_1,\ldots,X_m).$

But notice that to apply it we must know conditional probabilities like

 $\mathbf{P}(y_1,\ldots,y_n|x_1,\ldots,x_m)$

for all 2^n settings of the *Y*s and all 2^m settings of the *X*s (assuming Booleans). Might as well use full joint.

Decomposing a Full Joint by Conditional Independence

- Might assume *Toothache* and *Catch* are conditionally independent given *Cavity*: P(*Toothache*,*Catch*/*Cavity*) = P(*Toothache*/*Cavity*) P(*Catch*/*Cavity*).
- Then P(Toothache, Catch, Cavity) = [product rule]
 P(Toothache, Catch/Cavity) P(Cavity)

 $=_{[conditional independence]} \mathbf{P}(Toothache/Cavity) \\ \mathbf{P}(Catch/Cavity) \mathbf{P}(Cavity).$

A Bayesian Network is a ...

- Directed Acyclic Graph (DAG) in which ...
- ... the nodes denote random variables
- ... each node *X* has a conditional probability distribution P(*X*|*Parents*(*X*)).
- The intuitive meaning of an arc from *X* to *Y* is that *X* directly influences *Y*.

Additional Terminology

- If X and its parents are discrete, we can represent the distribution P(X|Parents(X)) by a *conditional probability table (CPT)* specifying the probability of each value of X given each possible combination of settings for the variables in *Parents(X)*.
- A *conditioning case* is a row in this CPT (a setting of values for the parent nodes).

Procedure for BN Construction

- Choose relevant random variables.
- While there are variables left:
 - 1. Choose a next variable X_i and add a node for it.
 - Set *Parents(Xi)* to **some** minimal set of nodes such that the Key Property (previous slide) is satisfied.
 - 3. Define the conditional distribution $\mathbf{P}(X_i | Parents(X_i))$.

Conditional Independence Again

- Recall that *X* is conditionally independent of its predecessors given *Parents*(*X*).
- *Markov Blanket* of *X*: set consisting of the parents of *X*, the children of *X*, and the other parents of the children of *X*.
- *X* is conditionally independent of all nodes in the network given its Markov Blanket.