Independence

- Propositions a and b are independent if and only if $\mathrm{P}(a \wedge b)=\mathrm{P}(a) \mathrm{P}(b)$
- Equivalently (by product rule): $\mathrm{P}(a \mid b)=\mathrm{P}(a)$
- Equivalently: $\mathrm{P}(b \mid a)=\mathrm{P}(b)$

Illustration of Independence

- We know (product rule) that
$\mathrm{P}($ toothache, catch, cavity, Weather $=$ cloudy $)=$
$\mathrm{P}($ Weather $=$ cloudy \mid toothache, catch, cavity $) \times$
$\mathrm{P}($ toothache, catch, cavity). By independence:
$\mathrm{P}($ Weather $=$ cloudy \mid toothache, catch, cavity $)=$
$\mathrm{P}($ Weather $=$ cloudy $)$. Therefore we have that
$\mathrm{P}($ toothache, catch, cavity, Weather $=$ cloudy $)=$
$\mathrm{P}($ Weather $=$ cloudy $) \times \mathrm{P}($ toothache, catch, cavity $)$.

Illustration continued

- Allows us to represent a 32-element table for full joint on Weather, Toothache, Catch, Cavity by an 8-element table for the joint of Toothache, Catch, Cavity, and a 4-element table for Weather.
- If we add a Boolean variable X to the 8element table, we get 16 elements. A new 2-element table suffices with independence.

Bayes' Rule

Recall product rule:

$$
\begin{aligned}
& \mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b) \\
& \mathrm{P}(a \wedge b)=\mathrm{P}(b \mid a) \mathrm{P}(a)
\end{aligned}
$$

Equating right - hand sides and dividing by $\mathrm{P}(a)$:

$$
\mathrm{P}(b \mid a)=\frac{\mathrm{P}(a \mid b) \mathrm{P}(b)}{\mathrm{P}(a)}
$$

For multi - valued variables X and Y :

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}
$$

Bayes' Rule with Background

 EvidenceOften we'll want to use Bayes' Rule conditionalized on some background evidence \mathbf{e} :

$$
\mathbf{P}(Y \mid X, \mathbf{e})=\frac{\mathbf{P}(X \mid Y, \mathbf{e}) \mathbf{P}(Y \mid \mathbf{e})}{\mathbf{P}(X \mid \mathbf{e})}
$$

Example of Bayes’ Rule

- $\mathrm{P}($ stiff neck|meningitis $)=0.5$
- $\mathrm{P}($ meningitis $)=1 / 50,000$
- $\mathrm{P}($ stiff neck $)=1 / 20$
- Then $\mathrm{P}($ meningitis $\mid s t i f f$ neck $)=$ $\frac{\mathrm{P}(\text { stiff neck } \mid \text { meningitis }) \mathrm{P}(\text { meningitis })}{\mathrm{P}(\text { stiff neck })}=$ $\frac{(0.5)(1 / 50,000)}{1 / 20}=0.0002$

Normalization with Bayes' Rule

- P (stiff neck|meningitis) and P (meningitis) are relatively easy to estimate from medical records.
- Prior probability of stiff neck is harder to estimate accurately.
- Bayes' rule with normalization:

$$
\mathbf{P}(Y \mid X)=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Normalization with Bayes' Rule (continued)

Might be easier to compute
$\mathrm{P}($ stiff neck \mid meningitis $) \mathrm{P}$ (meningitis) and
$\mathrm{P}($ stiff neck $\mid \neg$ meningitis $) \mathrm{P}(\neg$ meningitis $)$
than to directly estimate
$\mathrm{P}($ stiff neck $)$.

Why Use Bayes' Rule

- Causal knowledge such as P (stiff neck|meningitis) often is more reliable than diagnostic knowledge such as P (meningitis|stiff neck).
- Bayes' Rule lets us use causal knowledge to make diagnostic inferences (derive diagnostic knowledge).

Difficulty with Bayes' Rule with More than Two Variables

The definition of Bayes' Rule extends naturally to multiple variables:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{m} \mid Y_{1}, \ldots, Y_{n}\right)= \\
& \quad \alpha \mathbf{P}\left(Y_{1}, \ldots, Y_{n} \mid X_{1}, \ldots, X_{m}\right) \mathbf{P}\left(X_{1}, \ldots, X_{m}\right) .
\end{aligned}
$$

But notice that to apply it we must know conditional probabilities like

$$
\mathrm{P}\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{m}\right)
$$

for all 2^{n} settings of the $Y \mathrm{~s}$ and all 2^{m} settings of the $X \mathrm{~s}$ (assuming Booleans). Might as well use full joint.

Conditional Independence

- X and Y are conditionally independent given Z if and only if $\mathbf{P}(X, Y \mid Z)=\mathbf{P}(X \mid Z) \mathbf{P}(Y \mid Z)$.
- Y_{l}, \ldots, Y_{n} are conditionally independent given X_{l}, \ldots, X_{m} if and only if $\mathbf{P}\left(Y_{l}, \ldots, Y_{n} \mid X_{l}, \ldots, X_{m}\right)=$ $\mathbf{P}\left(Y_{l} \mid X_{l}, \ldots, X_{m}\right) \mathbf{P}\left(Y_{2} \mid X_{l}, \ldots, X_{m}\right) \ldots$ $\mathbf{P}\left(Y_{m} \mid X_{l}, \ldots, X_{m}\right)$.
- We've reduced $2^{\mathrm{n}} 2^{\mathrm{m}}$ to $2 \mathrm{n} 2^{\mathrm{m}}$. Additional conditional independencies may reduce 2^{m}.

Benefits of Conditional Independence

- Allows probabilistic systems to scale up (tabular representations of full joint distributions quickly become too large.)
- Conditional independence is much more commonly available than is absolute independence.

Decomposing a Full Joint by Conditional Independence

- Might assume Toothache and Catch are conditionally independent given Cavity: $\mathbf{P}($ Toothache, Catch \mid Cavity $)=$ $\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity) .
- Then $\mathbf{P}($ Toothache, Catch,Cavity $)=_{\text {[product rule] }}$ \mathbf{P} (Toothache, Catch \mid Cavity) \mathbf{P} (Cavity)
$={ }_{\text {[conditional independence] }} \mathbf{P}($ Toothache \mid Cavity) \mathbf{P} (Catch \mid Cavity) \mathbf{P} (Cavity).

Bayesian Networks: Motivation

- Capture independence and conditional independence where they exist.
- Among variables where dependencies exist, encode the relevant portion of the full joint.
- Use a graphical representation for which we can more easily investigate the complexity of inference and can search for efficient inference algorithms.

A Bayesian Network is a ...

- Directed Acyclic Graph (DAG) in which ...
- ... the nodes denote random variables
- ... each node X has a conditional probability distribution $\mathrm{P}(X \mid \operatorname{Parents}(X))$.
- The intuitive meaning of an arc from X to Y is that X directly influences Y.

Additional Terminology

- If X and its parents are discrete, we can represent the distribution $\mathbf{P}(X \mid$ Parents $(X))$ by a conditional probability table (CPT) specifying the probability of each value of X given each possible combination of settings for the variables in Parents (X).
- A conditioning case is a row in this CPT (a setting of values for the parent nodes).

Bayesian Network Semantics

- A Bayesian Network completely specifies a full joint distribution over its random variables, as below -- this is its meaning.
- $\mathrm{P}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1} \mathrm{P}\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- In the above, $\left.\mathrm{P}=1 x_{l}, \ldots, x_{n}\right)$ is shorthand notation for $\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$.

Inference Example

- What is probability alarm sounds, but neither a burglary nor an earthquake has occurred, and both John and Mary call?
- Using j for John Calls, a for Alarm, etc.:
$\mathrm{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e)=$
$\mathrm{P}(j \mid a) \mathrm{P}(m \mid a) \mathrm{P}(a \mid \neg b \wedge \neg e) \mathrm{P}(\neg b) \mathrm{P}(\neg e)=$
$(0.9)(0.7)(0.001)(0.999)(0.998)=0.00062$

Chain Rule

- Generalization of the product rule, easily proven by repeated application of the product rule.
- Chain Rule: $\mathrm{P}\left(x_{1}, \ldots x_{n}\right)=$
$\mathrm{P}\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) \mathrm{P}\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \ldots \mathrm{P}\left(x_{2} \mid x_{1}\right) \mathrm{P}\left(x_{1}\right)$
$=\prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid x_{i-1}, \ldots, x_{i}\right)$

Chain Rule and BN Semantics

BN semantics: $\mathrm{P}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
Key Property: $\mathbf{P}\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)=\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ provided $\operatorname{Parents}\left(X_{i}\right) \subseteq X_{1, \ldots, X_{i-1} .}$ Says a node is conditionally independent of its predecessors in the node ordering given its parents, and suggests incremental procedure for network construction.

Procedure for BN Construction

- Choose relevant random variables.
- While there are variables left:

1. Choose a next variable X_{i} and add a node for it.
2. Set $\operatorname{Parents}\left(X_{i}\right)$ to some minimal set of nodes such that the Key Property (previous slide) is satisfied.
3. Define the conditional distribution $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$.

Principles to Guide Choices

- Goal: build a locally structured (sparse) network -- each component interacts with a bounded number of other components.
- Add root causes first, then the variables that they influence.

Conditional Independence Again

- Recall that X is conditionally independent of its predecessors given $\operatorname{Parents}(X)$.
- Markov Blanket of X : set consisting of the parents of X, the children of X, and the other parents of the children of X.
- X is conditionally independent of all nodes in the network given its Markov Blanket.

