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Representation Size

• At first glance it would appear that the
space to represent a Bayes Net is
necessarily quadratic (possible number of
arcs) in the number of random variables.

• But recall we also must represent the CPT
of each node, which in general will have
size exponential in the number of parents of
the node.

Canonical Distributions

• Often CPTs fall into one of several common
categories or canonical distributions.

• These canonical forms are based on
regularities that permit much more compact
representations.
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Deterministic Nodes

• A deterministic node has its value specified
exactly by the values of its parents, with no
uncertainty.

• Different types of deterministic nodes,
including logical and numerical.

Deterministic Nodes: Logical

• Value of a child node is determined by a
logical expression over the parent nodes.

• Might be negation, disjunction, conjunction,
or a more complex expression.

• Example: The relationship between Boolean
variables Canadian, US, and Mexican as
parents and the child node North American
is the child is a disjunction of the parents.
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Deterministic Nodes: Numerical

• The value of the child node is a numerical
function of the parent values.

• If the parent nodes are prices of the same
model car at different dealers, and the child
is the price paid by a careful shopper, the
child is the minimum of the parents.

• Might also have differences, sums, or more
complex numerical functions.

Noisy-OR

• Analogous to logical-OR, except we are
uncertain about the degree to which each
parent can cause the child to be true.

• Captures the intuition that the causal
relationship between parent and child can
be inhibited.

• The degree of uncertainty or inhibition can
vary from one parent to the next.
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Noisy-OR Assumptions

• Parents and child are Boolean variables.

• Inhibition of one parent is independent of
the inhibitions of any other parents; e.g.,
whatever prevents Malaria from causing
Fever is independent of whatever inhibits
Flu from causing Fever.

• All possible causes are listed.  In practice
this constraint is not an issue because...

…Can Add a Leak Node

• A leak node is an additional parent of a
Noisy-OR node.

• Covers “miscellaneous cases.”

• Easier to see after a definition of Noisy-OR.
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Definition of Noisy-OR

• A child node is false only if its true parents
are inhibited.

• The probability of such inhibition is the
product of the inhibition probabilities for
each parent.

• So the probability the child node is true is 1
minus the product of the inhibition
probabilities for the true parents.

Value of Noisy-OR

• To represent a Noisy-OR CPT, we need
only specify the inhibition probability for
each parent node.

• If a node has n parents, then this
representation requires only n probabilities
in constrast with the 2n ordinarily required.
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The Basic Inference Task in
Bayesian Networks

• Given some observed event (some
assignment of values to a set of evidence
variables), compute the posterior
probability distribution over a set of query
variables.

• Variables that are neither evidence variables
nor query variables are hidden variables.

• Most common query: P(X|e).

Generality of Approach

• A Bayes Net is flexible enough that any
variable can be the query variables, and any
variables can be evidence variables.

• Algorithms we consider are easily extended
to handle queries with multiple query
variables.
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Example Query

• P(Burglary  | JohnCalls=true,
MaryCalls=true)  

=  <0.284,0.716>

• How can we compute such answers?

• One approach is to compute entire full joint
distribution represented by the network, and
use our earlier algorithm.  But this would
defeat the entire purpose of Bayes Nets.

Inference By Enumeration

•

• Recall the ENUMERATEJOINTASK procedure based
on the preceding equation, which computed
the answers to queries given the full joint
represented as a table.

• We will modify ENUMERATEJOINTASK to use the
Bayes Net instead of the table.  Need only
get desired table entries using Bayes Net.

P e P e y
y

( | ) =   ( , , )X Xα ∑
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Getting a Full Joint Table Entry
from a Bayes Net

• Recall:

• A table entry for X1 = x1,…,Xn = xn is simply
P(x1,…,xn) which can be calculated based on
the Bayes Net semantics above.

• Recall example:

P( ) =  P( )x ,...,x x |Parents(X )n i i

i=

n

1

1
∏

P( ) =  P( ) P( )

                               P( )P( )P( )

a,j,m, b, e j|a m|a

a| b, e b e

¬ ¬
¬ ¬ ¬ ¬

Example of Full Procedure

• Query: P(Burglary |JohnCalls=true,
MaryCalls=true)

• P(B|j,m) =

• Solve without the normalization constant
for both B = true and B = false, and then
compute the normalization constant and the
final probabilities.

α ( )P
ae

B,e,a,j,m∑∑
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Example (Continued)

P( ) =   P( )P( )P( )P( )P( )

 P( ) P( ) P( )P( )P( )   Go to

CPTs in Bayes Net to pull out numbers (Fig. 16.8).

Repeat with  instead of  throughout.  Resulting

numbers are 0.000592 and 0.001494 respectively.

b|j,m b e a|b,e j|a m|a

b e a|b,e j|a m|a

b b

ae

ae

α ∑∑
∑∑=

¬

.

Example (Continued)

Normalizing: 0.000592  +  0.001494  =  1.0.

 =  1.0 / 0.002086  479.

( ) =  < 0.284,0.716 >.

α α
α ≈
P Burglary
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Some Observations

• The number of terms in the sum is
exponential in the number of hidden
variables.

• Many sub-expressions are repeated on
multiple branches.  Each could be computed
once and saved … leads to the idea of
variable elimination.

Variable Elimination by Example
P( ) =    P( ) P( ) P( ) P( ) P( )B|j,m B e a|B,e j|a m|a

ae

α ∑∑

.70

.01

.90

.05

.63

.0005

.95

.05

.94

.06

.29

.71

.001

.999

f (A)M f (A)J f (A) f (A)M J×
m a|

m a|¬
× j a|

j a|¬ = m j a, |

m j a, |¬

f (A,B,E)Ab ¬b
e ¬ e e ¬ e

a

¬ a
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V.E. by Example (Continued)

(.63)(.95)

(.0005)(.05)

(.63)(.94)

(.0005)(.06)

(.63)(.29)

(.0005)(.71)

(.63)(.001)

(.0005)(.999)

b ¬b
e ¬ e e ¬ e

a m j a( , | )

¬ ¬a m j a( , | )

f (A,B,E) f (A) f (A))A J M× ×(

Because A is a hidden variable, we sum out A (for each

column,  sum the cases based on  and ) to get:a a¬

.59853 .59223 .18310 .00113

b e∧ b e∧ ¬ ¬ ∧b e ¬ ∧ ¬b e
f (B,E)AJM

.002

.998

.001197

.598

.59853

.59223

.18310

.00113

.000366

.00113

.5992

.0015

After summing out E:

f ( )E e f (B,E)AJM f ( ) f (B,E)E AJMe ×

e

¬ e
× =

Variable Elimination by Example
(Continued): Now Eliminate

(Sum Out) E

b

¬ b
f (B)EAJM

b b¬ b ¬ b
e e

¬ e ¬ e
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Multiply by B and Normalize

.5992

.0015

.001

.999

.000599

.001499

Complete the solution by normalizing the final table.

f (B)EAJM f ( )B b

× =b

¬b

b

¬b

b

¬b


