Review of probability

www.biostat.wisc.edu/~page/cs760/

Goals for the lecture

you should understand the following concepts

- definition of probability
- random variables
- joint distributions
- conditional distributions
- independence
- union rule
- Bayes theorem
- expected values
- multinomial distribution
- probability density function
- normal distribution

Definition of probability

- frequentist interpretation: the probability of an event from a random experiment is the proportion of the time events of same kind will occur in the long run, when the experiment is repeated
- examples
- the probability my flight to Chicago will be on time
- the probability this ticket will win the lottery
- the probability it will rain tomorrow
- always a number in the interval $[0,1]$

0 means "never occurs"
1 means "always occurs"

Sample spaces

- sample space: a set of possible outcomes for some event
- examples
- flight to Chicago: \{on time, late\}
- lottery: \{ticket 1 wins, ticket 2 wins, ...,ticket n wins $\}$
- weather tomorrow:
\{rain, not rain\} or
\{sun, rain, snow\} or
\{sun, clouds, rain, snow, sleet\} or...

Random variables

- random variable: a variable representing the outcome of an event
- example
- X represents the outcome of my flight to Chicago
- we write the probability of my flight being on time as $P(X=$ on-time $)$
- or when it's clear which variable we're referring to, we may use the shorthand P (on-time)

Notation

- uppercase letters and capitalized words denote random variables
- lowercase letters and uncapitalized words denote values
- we'll denote a particular value for a variable as follows

$$
P(X=x) \quad P(\text { Fever }=\text { true })
$$

- we'll also use the shorthand form

$$
P(x) \text { for } P(X=x)
$$

- for Boolean random variables, we'll use the shorthand

$$
\begin{aligned}
& P(\text { fever }) \text { for } P(\text { Fever }=\text { true }) \\
& P(\neg \text { fever }) \text { for } P(\text { Fever }=\text { false })
\end{aligned}
$$

Probability distributions

- if X is a random variable, the function given by $P(X=x)$ for each x is the probability distribution of X
- requirements:

$$
\begin{aligned}
& P(x) \geq 0 \quad \text { for every } x \\
& \sum_{x} P(x)=1
\end{aligned}
$$

Joint distributions

- joint probability distribution: the function given by

$$
P(X=x, Y=y)
$$

- read " X equals x and Y equals y "
- example

x, y	$P(X=x, Y=y)$
sun, on-time	$0.20 \longleftarrow$
rain, on-time	0.20
probability that it's sunny	
and my flight is on time	

Marginal distributions

- the marginal distribution of X is defined by

$$
P(x)=\sum_{y} P(x, y)
$$

"the distribution of X ignoring other variables"

- this definition generalizes to more than two variables, e.g.

$$
P(x)=\sum_{y} \sum_{z} P(x, y, z)
$$

Marginal distribution example

joint distribution

x, y	$P(X=x, Y=y)$
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

x	$P(X=x)$
sun	0.3
rain	0.5
snow	0.2

Conditional distributions

- the conditional distribution of X given Y is defined as:

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

"the distribution of X given that we know the value of Y "

- Rearranging yields product rule, that

$$
P(X=x \mid Y=y) P(Y=y)=P(X=x, Y=y)
$$

Chain Rule

Generalization of the product rule, derived by repeated application of product rule:

$$
\begin{aligned}
& \text { ChainRule : } P\left(x_{1}, \ldots, x_{n}\right)= \\
& P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\prod P\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)
\end{aligned}
$$

Conditional distribution example

joint distribution

conditional distribution for X given $Y=$ on-time

x, y	$P(X=x, Y=y)$		x	$P(X=x \mid Y=$ on-time $)$
sun, on-time	0.20		sun	$0.20 / 0.45=0.444$
rain, on-time	0.20		rain	$0.20 / 0.45=0.444$
snow, on-time	0.05		snow	$0.05 / 0.45=0.111$
sun, late	0.10			
rain, late	0.30			
snow, late	0.15			

Independence

- two random variables, X and Y, are independent if

$$
P(x, y)=P(x) \times P(y) \quad \text { for all } x \text { and } y
$$

Conditional independence

- two random variables, X and Y, are conditionally independent given Z if

$$
P(x, y \mid z)=P(x \mid z) \times P(y \mid z) \quad \text { for all } x, y \text { and } z
$$

Independence example \#1

joint distribution

x, y	$P(X=x, Y=y)$
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

marginal distributions

x	$P(X=x)$
sun	0.3
rain	0.5
snow	0.2
	y
on-time	$P(Y=y)$
late	0.45
	0.55

Are X and Y independent here? NO.

Independence example \#2

joint distribution

x, y	$P(X=x, Y=y)$		x	$P(X=x)$
sun, fly-United	0.27		sun	0.3
rain, fly-United	0.45		rain	0.5
snow, fly-United	0.18		snow	0.2
sun, fly-Delta	0.03		y	$P(Y=y)$
rain, fly-Delta	0.05		fly-United	0.9
snow, fly-Delta	0.02		fly-Delta	0.1

Are X and Y independent here? YES.

Probability of union of events

- the probability of the union of two events is given by:

$$
P(x \vee y)=P(x)+P(y)-P(x, y)
$$

this term needed to

Bayes' Rule (or Theorem)

Recall product rule:

$$
\begin{aligned}
& \mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b) \\
& \mathrm{P}(a \wedge b)=\mathrm{P}(b \mid a) \mathrm{P}(a)
\end{aligned}
$$

Equating right - hand sides and dividing by $\mathrm{P}(a)$:

$$
\mathrm{P}(b \mid a)=\frac{\mathrm{P}(a \mid b) \mathrm{P}(b)}{\mathrm{P}(a)}
$$

For multi - valued variables X and Y :

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}
$$

Why Use Bayes' Rule

- Causal knowledge such as P(stiff neck|meningitis) often is more reliable than diagnostic knowledge such as P (meningitis|stiff neck).
- Bayes' Rule lets us use causal knowledge to make diagnostic inferences (derive diagnostic knowledge).

Normalization with Bayes' Rule

Might be easier to compute $\mathrm{P}($ stiff neck|meningitis) $\mathrm{P}($ meningitis $)$ and $\mathrm{P}($ stiff neck $\mid \neg$ meningitis $) \mathrm{P}(\neg$ meningitis $)$
than to directly estimate
$\mathrm{P}($ stiff neck $)$.

Bayes theorem with normalization

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{P(y \mid x) P(x)}{\sum_{x} P(y \mid x) P(x)}
$$

- this theorem is extremely useful
- there are many cases when it is hard to estimate $P(x \mid y)$ directly, but it's not too hard to estimate $P(y \mid x)$ and $P(x)$

Bayes theorem example

- MDs usually aren't good at estimating $P($ Disorder I Symptom)
- they're usually better at estimating $P($ Symptom I Disorder $)$
- if we can estimate $P(F e v e r \mid F l u)$ and $P(F l u)$ we can use Bayes' Theorem to do diagnosis

$$
P(f l u \mid \text { fever })=\frac{P(\text { fever } \mid \text { flu }) P(\text { flu })}{P(\text { fever } \mid \text { flu }) P(\text { flu })+P(\text { fever } \mid \neg f l u) P(\neg f l u)}
$$

Another Example

- $\mathrm{P}($ stiff neck|meningitis $)=0.5$
- $\mathrm{P}($ meningitis $)=1 / 50,000$
- $P($ stiff neck $)=1 / 20$
- Then $\mathrm{P}($ meningitis|stiff neck $)=$

$$
\begin{aligned}
& \frac{\mathrm{P}(\text { stiff neck } \mid \text { meningitis }) \mathrm{P}(n}{\mathrm{P}(\text { stiff neck })} \\
& \frac{(0.5)(1 / 50,000)}{1 / 20}=0.0002
\end{aligned}
$$

Expected values

- the expected value of a random variable that takes on numerical values is defined as:

$$
E[X]=\sum_{x} x \times P(x)
$$

this is the same thing as the mean (also written μ)

- we can also talk about the expected value of a function of a random variable

$$
E[g(X)]=\sum_{x} g(x) \times P(x)
$$

Variance

- $E\left[(X-\mu)^{2}\right]$
- $E\left[X^{2}\right]-(E[X])^{2}$

Expected value examples

$$
\begin{aligned}
& E[\text { Shoesize }]= \\
& \quad 5 \times P(\text { Shoesize }=5)+\ldots+14 \times P(\text { Shoesize }=14)
\end{aligned}
$$

- Suppose each lottery ticket costs $\$ 1$ and the winning ticket pays out $\$ 100$. The probability that a particular ticket is the winning ticket is 0.001 .

$$
E[\operatorname{gain}(\text { Lottery })]=
$$

$\operatorname{gain}($ winning $) P($ winning $)+\operatorname{gain}($ losing $) P($ losing $)=$ $(\$ 100-\$ 1) \times 0.001-\$ 1 \times 0.999=$

- \$0.90

The binomial distribution

- distribution over the number of successes in a fixed number n of independent trials (with same probability of success p in each)

$$
P(x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- e.g. the probability of x heads in n coin flips

The geometric distribution

- distribution over the number of trials before the first failure (with same probability of success p in each)

$$
P(x)=(1-p) p^{x}
$$

- e.g. the probability of x heads before the first tail

The multinomial distribution

- k possible outcomes on each trial
- probability p_{i} for outcome x_{i} in each trial
- distribution over the number of occurrences x_{i} for each outcome in a fixed number n of independent trials
$\begin{aligned} & \text { vector of outcome } \\ & \text { occurrences }\end{aligned} \quad P(\mathbf{x})=\frac{n!}{\prod_{i}\left(x_{i}!\right)} \prod_{i} p_{i}^{x_{i}}$
- e.g. with $k=6$ (a six-sided die) and $n=30$

$$
P([7,3,0,8,10,2])=\frac{30!}{7!\times 3!\times 0!\times 8!\times 10!\times 2!}\left(p_{1}{ }^{7} p_{2}{ }^{3} p_{3}{ }^{0} p_{4}{ }^{8} p_{5}^{10} p_{6}{ }^{2}\right)
$$

Continuous random variables

- up to now, we've considered only discrete random variables, but we can have RVs describing continuous variables too (weight, temperature, etc.)
- a continuous random variable is described by a probability density function (p.d.f.)

Probability density functions

- a continuous random variable is described by a probability density function $f(x)$

$$
\begin{aligned}
& \forall x f(x) \geq 0 \\
& P[a \leq X \leq b]=\int_{a}^{b} f(x) d x
\end{aligned}
$$

$$
\int f(x) d x=1
$$

The normal (Gaussian) distribution

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Some p.d.f.'s

uniform

