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Goals for the lecture 
you should understand the following concepts 

•  the reinforcement learning task 
•  Markov decision process 
•  value functions 
•  value iteration 
•  Q functions 
•  Q learning 
•  exploration vs. exploitation tradeoff 
•  compact representations of Q functions 
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Reinforcement learning (RL) 

Task of an agent embedded in an environment 

repeat forever 
1)  sense world 
2)  reason 
3)  choose an action to perform 
4)  get feedback (usually reward = 0) 
5)  learn 

the environment may be the physical world or an artificial one 
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•  world 
–  30 pieces, 24 locations 

•  actions 
–  roll dice, e.g. 2, 5 
–  move one piece 2 
–  move one piece 5 

•  rewards 
–  win, lose 

•  TD-Gammon 0.0 
–  trained against itself (300,000 games) 
–  as good as best previous BG computer program (also by Tesauro) 

•  TD-Gammon 2 
–  beat human champion 

Example: RL Backgammon Player 
[Tesauro, CACM 1995] 
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Reinforcement learning 

agent 

environment 

state reward action 

s0	
 s1	
 s2	

a0	
 a1	
 a2	


r0	
 r1	
 r2	


•  set of states S	

•  set of actions A	

•  at each time t, agent observes state 

st ∈ S then chooses action at ∈ A	

•  then receives reward rt and changes 

to state st+1	
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Reinforcement learning as a  
Markov decision process (MDP) 

agent 

environment 

state reward action 

s0	
 s1	
 s2	

a0	
 a1	
 a2	


r0	
 r1	
 r2	


•  Markov assumption 

•  also assume reward is Markovian	


 P st+1 | st ,  at ,  st−1,  at−1,  …( ) = P st+1 | st ,  at( )

 P rt | st ,  at ,  st−1,  at−1,  …( ) = P rt | st ,  at( )

Goal: learn a policy π : S → A for choosing actions that maximizes 

  E rt + γ rt+1 + γ
2rt+2 +…"# $%       where 0 ≤ γ <1

for every possible starting state s0	
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Reinforcement learning task 
•  Suppose we want to learn a control policy π : S → A that 

maximizes                     from every state s ∈ S   

G 

0 
0 

0 

0 

0 

0 

0 

0 

100 

0 

0 

100 

0 

γ t

t=0

∞

∑ E rt[ ]

each arrow represents an action a and the associated 
number represents deterministic reward r(s, a)	
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Value function for a policy 

•  given a policy π : S → A define 

V π (s) = γ t

t=0

∞

∑ E rt[ ] assuming action sequence chosen 
according to π starting at state s	


•  we want the optimal policy π* where 

 π
* = argmaxπ V

π (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)	
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Value function for a policy π	

•  Suppose π is shown by red arrows, γ = 0.9	


G 

0 
0 

0 

0 

0 

0 

0 

0 

100 

0 

0 

100 

0 

Vπ(s) values are shown in red	


100 

0 

90 

81 73 

66 
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Value function for an optimal  policy π*	

•  Suppose π*  is shown by red arrows, γ = 0.9	


G 

0 
0 

0 

0 

0 

0 

0 

0 

100 

0 

0 

100 

0 

V*(s) values are shown in red	


100 

0 

90 

100 90 

81 
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Using a value function	


If we know V*(s), r(st, a), and P(st | st-1, at-1) 
we can compute π*(s)	


π *(st ) = argmax
a∈A

r(st ,a)+ γ P(st+1
s∈S
∑ = s | st ,a)V

*(s)%

&
'

(

)
*
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Value iteration for learning V*(s)	


initialize V(s) arbitrarily 
loop until policy good enough 
{ 

loop for s ∈ S	

{ 

loop for a ∈ A	

{ 
 
} 
 

} 
} 

 

Q(s,a)← r(s,a)+ γ P(s ' | s,a)V (s ')
s '∈S
∑

V (s)←maxa Q(s,a)
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Value iteration for learning V*(s)	


•  V(s) converges to V*(s)	


•  works even if we randomly traverse environment instead of 
looping through each state and action methodically 

–  but we must visit each state infinitely often 

•  implication: we can do online learning as an agent roams 
around its environment 

•  assumes we have a model of the world: i.e. know P(st | st-1, at-1) 	


•  What if we don’t? 
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Q learning 

define a new function, closely related to V*	


V *(s) = E r(s,  π *(s))"# $% + γ Es '  | s, π * (s )
V *(s ')"# $%

Q(s,a) = E r(s,  a)[ ]+ γ Es '  | s, a V *(s ')"# $%

if agent knows Q(s, a), it can choose optimal action without 
knowing P(s’ | s, a) 	


π *(s) = argmax
a

Q(s,a) V *(s) = max
a
Q(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a) 	
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Q values 

G 

0
0

0

0

0

0

0
0

100 

0

0

100 

0

r(s, a) (immediate reward) values	


G 

100 

0 

90 

100 90 

81 
81 

72 
81 

81 

72 

90 

81 

Q(s, a) values 

G 

100 

0 

90 

100 90 

81 

V*(s) values	
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Q learning for deterministic worlds 

for each s, a initialize table entry 
observe current state s	

do forever 

 select an action a and execute it 
 receive immediate reward r	

 observe the new state s’	

 update table entry 

 
 s ← s’	


 
 

  	


Q̂(s,a)← 0

Q̂(s,a)← r + γ max
a '
Q̂(s ',a ')
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Updating Q 

100 72 

63 
81 

100 90 

63 
81 

Q̂(s1,aright )← r + γ max
a '
Q̂(s2,a ')

                ← 0 + 0.9max
a '

63,  81,  100{ }
                ← 90

aright
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Q learning for nondeterministic worlds 

for each s, a initialize table entry 
observe current state s	

do forever 

 select an action a and execute it 
 receive immediate reward r	

 observe the new state s’	

 update table entry 

 
 s ← s’	


 
 

  	


Q̂(s,a)← 0

Q̂n (s,a)← (1−α n )Q̂n−1(s,a)+α n r + γ max
a '
Q̂n−1(s ',a ')%

&
'
(

 
α n =

1
1+ visitsn (s,a)

where αn is a parameter dependent 
on the number of visits to the given 
(s, a) pair 
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Convergence of Q learning	


•  Q learning will converge to the correct Q function 

–  in the deterministic case 

–  in the nondeterministic case (using the update rule just 
presented) 

•  in practice it is likely to take many, many iterations 
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Q’s vs. V’s  

•  Which action do we choose when we’re in a given state? 
•  V’s (model-based) 

–  need to have a ‘next state’ function to generate all possible 
states 

–  choose next state with highest V value. 
•  Q’s (model-free) 

–  need only know which actions are legal 
–  generally choose next state with highest Q value. 

V	
 V	


V	


Q	


Q	


20 



Exploration vs. Exploitation	


•  in order to learn about better alternatives, we shouldn’t always 
follow the current policy (exploitation) 

•  sometimes, we should select random actions (exploration) 

•  one way to do this: select actions probabilistically according to: 

where c > 0 is a constant that determines how strongly selection 
favors actions with higher Q values 

P(ai | s) = cQ̂(s, ai )

cQ̂(s, aj )

j
∑
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Q learning with a table 

As described so far, Q learning entails filling in a huge table 
 

A table is a very 
verbose way to 
represent a function 

s0     s1     s2       . . .           sn	


a1	

a2	

a3	


.	


.	


.	

ak	


 . . .   Q(s2, a3)	


. 

. 

. 
actions 

states 
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Q(s, a1)	


Q(s, a2)	


Q(s, ak)	


Representing Q functions  
more compactly 

We can use some other function representation (e.g. a neural net) 
to compactly encode a substitute for the big table 

encoding of 
the state (s)	


or could have one net 
for each possible action 

each input unit encodes 
a property of the state 
(e.g., a sensor value) 
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Why use a compact Q function? 

1.  Full Q table may not fit in memory for realistic problems 
2.  Can generalize across states,  thereby speeding up 

convergence 
 i.e. one instance ‘fills’ many cells in the Q table 

 
Notes 
1.  When generalizing across states, cannot use α=1	

2.  Convergence proofs only apply to Q tables 
3.  Some work on bounding errors caused by using compact 

representations   (e.g. Singh & Yee, Machine Learning 1994) 
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Given: 100 Boolean-valued features 
    10 possible actions 

 
Size of Q table 
10 × 2100 entries 

 
 
Size of Q net (assume 100 hidden units) 
100 × 100   +  100 × 10 = 11,000 weights 

Q tables vs. Q nets 

weights between 
inputs and HU’s  

weights between 
HU’s and outputs  
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Representing Q functions  
more compactly 

•  we can use other regression methods to represent Q functions 
k-NN 

regression trees 

support vector regression 

etc. 
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Q learning with function approximation 

1.  measure sensors, sense state s0	

2.  predict                 for each action a	

3.  select action a to take (with randomization to 

ensure exploration) 
4.  apply action a in the real world 
5.  sense new state s1 and immediate reward r	

6.  calculate action a’ that maximizes 
7.  train with new instance 

 
 

  	


Q̂n (s0,a)

x = s0

y = (1−α )Q̂(s0,a)+α r + γ max
a '
Q̂(s1,a ')$

%
&
'

Q̂n (s1,a ')
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