
Reinforcement Learning

 www.biostat.wisc.edu/~dpage/cs760/

1

Goals for the lecture
you should understand the following concepts

•  the reinforcement learning task
•  Markov decision process
•  value functions
•  value iteration
•  Q functions
•  Q learning
•  exploration vs. exploitation tradeoff
•  compact representations of Q functions

2

Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever
1)  sense world
2)  reason
3)  choose an action to perform
4)  get feedback (usually reward = 0)
5)  learn

the environment may be the physical world or an artificial one

3

•  world
–  30 pieces, 24 locations

•  actions
–  roll dice, e.g. 2, 5
–  move one piece 2
–  move one piece 5

•  rewards
–  win, lose

•  TD-Gammon 0.0
–  trained against itself (300,000 games)
–  as good as best previous BG computer program (also by Tesauro)

•  TD-Gammon 2
–  beat human champion

Example: RL Backgammon Player
[Tesauro, CACM 1995]

4

Reinforcement learning

agent

environment

state reward action

s0	
 s1	
 s2	

a0	
 a1	
 a2	

r0	
 r1	
 r2	

•  set of states S	

•  set of actions A	

•  at each time t, agent observes state

st ∈ S then chooses action at ∈ A	

•  then receives reward rt and changes

to state st+1	

5

Reinforcement learning as a
Markov decision process (MDP)

agent

environment

state reward action

s0	
 s1	
 s2	

a0	
 a1	
 a2	

r0	
 r1	
 r2	

•  Markov assumption

•  also assume reward is Markovian	

 P st+1 | st , at , st−1, at−1, …() = P st+1 | st , at()

 P rt | st , at , st−1, at−1, …() = P rt | st , at()

Goal: learn a policy π : S → A for choosing actions that maximizes

 E rt + γ rt+1 + γ
2rt+2 +…"# $% where 0 ≤ γ <1

for every possible starting state s0	

6

Reinforcement learning task
•  Suppose we want to learn a control policy π : S → A that

maximizes from every state s ∈ S

G

0
0

0

0

0

0

0

0

100

0

0

100

0

γ t

t=0

∞

∑ E rt[]

each arrow represents an action a and the associated
number represents deterministic reward r(s, a)	

7

Value function for a policy

•  given a policy π : S → A define

V π (s) = γ t

t=0

∞

∑ E rt[] assuming action sequence chosen
according to π starting at state s	

•  we want the optimal policy π* where

 π
* = argmaxπ V

π (s) for all s

we’ll denote the value function for this optimal policy as V*(s)	

8

Value function for a policy π	

•  Suppose π is shown by red arrows, γ = 0.9	

G

0
0

0

0

0

0

0

0

100

0

0

100

0

Vπ(s) values are shown in red	

100

0

90

81 73

66

9

Value function for an optimal policy π*	

•  Suppose π* is shown by red arrows, γ = 0.9	

G

0
0

0

0

0

0

0

0

100

0

0

100

0

V*(s) values are shown in red	

100

0

90

100 90

81

10

Using a value function	

If we know V*(s), r(st, a), and P(st | st-1, at-1)
we can compute π*(s)	

π *(st) = argmax
a∈A

r(st ,a)+ γ P(st+1
s∈S
∑ = s | st ,a)V

*(s)%

&
'

(

)
*

11

Value iteration for learning V*(s)	

initialize V(s) arbitrarily
loop until policy good enough
{

loop for s ∈ S	

{

loop for a ∈ A	

{

}

}
}

Q(s,a)← r(s,a)+ γ P(s ' | s,a)V (s ')
s '∈S
∑

V (s)←maxa Q(s,a)

12

Value iteration for learning V*(s)	

•  V(s) converges to V*(s)	

•  works even if we randomly traverse environment instead of
looping through each state and action methodically

–  but we must visit each state infinitely often

•  implication: we can do online learning as an agent roams
around its environment

•  assumes we have a model of the world: i.e. know P(st | st-1, at-1) 	

•  What if we don’t?

13

Q learning

define a new function, closely related to V*	

V *(s) = E r(s, π *(s))"# $% + γ Es ' | s, π * (s)
V *(s ')"# $%

Q(s,a) = E r(s, a)[]+ γ Es ' | s, a V *(s ')"# $%

if agent knows Q(s, a), it can choose optimal action without
knowing P(s’ | s, a) 	

π *(s) = argmax
a

Q(s,a) V *(s) = max
a
Q(s,a)

and it can learn Q(s, a) without knowing P(s’ | s, a) 	

14

Q values

G

0
0

0

0

0

0

0
0

100

0

0

100

0

r(s, a) (immediate reward) values	

G

100

0

90

100 90

81
81

72
81

81

72

90

81

Q(s, a) values

G

100

0

90

100 90

81

V*(s) values	

15

Q learning for deterministic worlds

for each s, a initialize table entry
observe current state s	

do forever

 select an action a and execute it
 receive immediate reward r	

 observe the new state s’	

 update table entry

 s ← s’	

 	

Q̂(s,a)← 0

Q̂(s,a)← r + γ max
a '
Q̂(s ',a ')

16

Updating Q

100 72

63
81

100 90

63
81

Q̂(s1,aright)← r + γ max
a '
Q̂(s2,a ')

 ← 0 + 0.9max
a '

63, 81, 100{ }
 ← 90

aright

17

Q learning for nondeterministic worlds

for each s, a initialize table entry
observe current state s	

do forever

 select an action a and execute it
 receive immediate reward r	

 observe the new state s’	

 update table entry

 s ← s’	

 	

Q̂(s,a)← 0

Q̂n (s,a)← (1−α n)Q̂n−1(s,a)+α n r + γ max
a '
Q̂n−1(s ',a ')%

&
'
(

α n =

1
1+ visitsn (s,a)

where αn is a parameter dependent
on the number of visits to the given
(s, a) pair

18

Convergence of Q learning	

•  Q learning will converge to the correct Q function

–  in the deterministic case

–  in the nondeterministic case (using the update rule just
presented)

•  in practice it is likely to take many, many iterations

19

Q’s vs. V’s

•  Which action do we choose when we’re in a given state?
•  V’s (model-based)

–  need to have a ‘next state’ function to generate all possible
states

–  choose next state with highest V value.
•  Q’s (model-free)

–  need only know which actions are legal
–  generally choose next state with highest Q value.

V	
 V	

V	

Q	

Q	

20

Exploration vs. Exploitation	

•  in order to learn about better alternatives, we shouldn’t always
follow the current policy (exploitation)

•  sometimes, we should select random actions (exploration)

•  one way to do this: select actions probabilistically according to:

where c > 0 is a constant that determines how strongly selection
favors actions with higher Q values

P(ai | s) = cQ̂(s, ai)

cQ̂(s, aj)

j
∑

21

Q learning with a table

As described so far, Q learning entails filling in a huge table

A table is a very
verbose way to
represent a function

s0 s1 s2 . . . sn	

a1	

a2	

a3	

.	

.	

.	

ak	

 . . . Q(s2, a3)	

.

.

.
actions

states

22

Q(s, a1)	

Q(s, a2)	

Q(s, ak)	

Representing Q functions
more compactly

We can use some other function representation (e.g. a neural net)
to compactly encode a substitute for the big table

encoding of
the state (s)	

or could have one net
for each possible action

each input unit encodes
a property of the state
(e.g., a sensor value)

23

Why use a compact Q function?

1.  Full Q table may not fit in memory for realistic problems
2.  Can generalize across states, thereby speeding up

convergence
 i.e. one instance ‘fills’ many cells in the Q table

Notes
1.  When generalizing across states, cannot use α=1	

2.  Convergence proofs only apply to Q tables
3.  Some work on bounding errors caused by using compact

representations (e.g. Singh & Yee, Machine Learning 1994)

24

Given: 100 Boolean-valued features
 10 possible actions

Size of Q table
10 × 2100 entries

Size of Q net (assume 100 hidden units)
100 × 100 + 100 × 10 = 11,000 weights

Q tables vs. Q nets

weights between
inputs and HU’s

weights between
HU’s and outputs

25

Representing Q functions
more compactly

•  we can use other regression methods to represent Q functions
k-NN

regression trees

support vector regression

etc.

26

Q learning with function approximation

1.  measure sensors, sense state s0	

2.  predict for each action a	

3.  select action a to take (with randomization to

ensure exploration)
4.  apply action a in the real world
5.  sense new state s1 and immediate reward r	

6.  calculate action a’ that maximizes
7.  train with new instance

 	

Q̂n (s0,a)

x = s0

y = (1−α)Q̂(s0,a)+α r + γ max
a '
Q̂(s1,a ')$

%
&
'

Q̂n (s1,a ')

27

