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Goals for the lecture 
you should understand the following concepts 

•  rule-set learning 
•  relational learning 
•  the FOIL algorithm 



Rule sets as a hypothesis space 

Class=yes ←  Outlook=sunny ∧ Humidity≤75%	


Class=yes ←  Outlook=overcast	


Class=yes ←  Outlook=rain ∧ Win ≤20	


•  we can use propositional rule sets as a hypothesis space for a 
learning algorithm 

•  each rule is a conjunction of tests + a class that is implied 
(predicted) when the conjunction is satisfied 



Decision trees and rules 
Any decision tree can be converted into an equivalent set of rules 
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Decision trees and rules 
a small set of rules can represent a large decision tree because of the 
replication problem 
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Rule learning 

•  rule sets can be learned by extracting them from decision trees 
(C4.5 has a module for this) 

•  there are also algorithms for learning rules directly, such as 
SLIPPER [Cohen & Singer, AAAI 1999] 

 

•  the rules we’ve considered so far are expressed in propositional 
logic – they’re not well suited to representing multiple entities and 
relationships among them 

•  let’s consider relational learning methods, which represent their 
hypotheses using a subset of first-order logic 

 



•  suppose we want to learn the general concept of can-reach in a graph, 
given a set of training instances describing a particular graph	

 

Relational learning example 

•  how would you represent this task to a learner? 



•  a relational representation, such as first-order logic, can capture this 
concept succinctly and in a general way 

 can-reach(X1, X2) ← linked-to(X1, X2)	


can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2) 	

 

Relational learning example 



Relational learning example 
consider the task of learning a pharmacophore: the substructure of a 
molecule that interacts with a target of interest 
•  instances for this task consist of interacting (+) and non-interacting 

molecules (-) 

to represent each instance, we’d like to describe 
•  the (variable # of) atoms in the molecule 
•  the possible conformations of the molecule 
•  the bonds among atoms 
•  distances among atoms 
•  etc. 



Relational learning example 
[Finn et al., Machine Learning 1998] 

a multi-relational representation for molecules 



Relational learning example 
[Finn et al., Machine Learning 1998] 

a learned relational rule characterizing ACE inhibitors  



Relational representation 
ACE_inhibitor(A) ← has_zinc_binding_site(A, B) ∧ 

         has_hydrogren_acceptor(A, C) ∧ 
         distance(B, C, 7.9, 0.75) ∧ 
         has_hydrogen_acceptor(A, D) ∧ 
         distance(B, D, 8.5, 0.75) ∧ 
         distance(C, D, 8.5, 0.75) ∧ 
         has_hydrogen_acceptor(A, E) ∧ 
         distance(B, E, 4.9, 0.75) ∧ 
         distance(C, E, 3.1, 0.75) ∧ 
         distance(D, E, 3.8, 0.75)  

has_zinc_binding_site 
has_hydrogen_acceptor 
zinc_binding_site_and hydrogen_acceptor_distance 
hydrogen_acceptor_hydrogen_acceptor_distance 
… 

To learn an equivalent rule with a feature-vector learner, what features 
would we need to represent? 

can easily encode distance between a pair of atoms; but this pharmacophore 
has 4 important atoms with 6 relevant distances among them 



Relational learning example 
[Craven et al., ECML 1998] 

•  test-set accuracy: 31 / 34  

•  consider the task of classifying web pages according their roles 
•  here is a learned rule for recognizing home pages for CS courses 



Relational learning example 
[Page et al., AAAI 2012]  

 

demographics diagnoses 

genetics 

drugs 

labs 

•  Data from electronic health records (EHRs) is being used to learn 
models for risk assessment, adverse event detection, etc. 

•   A patient’s record is described by multiple tables in a relational DB 



The FOIL algorithm for relational learning 
[Quinlan, Machine Learning 1990] 

given: 
•  tuples (instances) of a target relation 
•  extensionally represented background relations 

do: 
•  learn a set of rules that (mostly) cover the positive tuples of the 

target relation, but not the negative tuples 



•  instances of target relation 

 
•  extensionally defined background relations	


Input to FOIL  



The FOIL algorithm for relational learning 

LEARNRULESET(set of tuples T of target relation, background relations B) 
{ 
     S = { }	

     repeat 

 R ← LEARNRULE(T, B) 
 S ← S ∪ R	

 T ← T – positive tuples covered by R	


     until there are no (few) positive tuples left in T	

     return S  
} 

FOIL uses a covering approach to learn a set of rules 



The FOIL algorithm for relational learning 

LEARNRULE(set of tuples T of target relation, background relations B) 
{ 
     R = { }	

     repeat 

 L ← best literal, based on T and B, to add to right-hand side of R	

 R ← R ∪ L	

 T ← new set of tuples that satisfy L	


     until there are no (few) negative tuples left in T  
     return R	

} 



Literals in FOIL 

•  Given the current rule  R(X1, X2, ... Xk) ← L1∧ L2∧ … ∧ Ln    
FOIL considers adding several types of literals 

Xj = Xk	

	

	


Xj ≠ Xk	

	

	


Q(V1, V2, ... Va)	

	

	

¬Q(V1, V2, ... Va)	

 

where Q is a background relation 

at least one of the Vi’s has to be in 
the LHS of the rule, or was  introduced by 
a previous literal  

both Xj and Xk either appear in the LHS 
of the rule, or were introduced by a 
previous literal 



Literals in FOIL (continued) 

Xj = c	

	

	


Xj ≠ c	

	

	


Xj > a	

Xj ≤ a	

Xj >Xk	


Xj ≤ Xk	


 

where Xj and Xk are numeric variables and a  
is a numeric constant 

where c is a constant 



•  suppose we want to learn rules for the target relation can-reach(X1, X2)	

•  we’re given instances of the target relation from the following graph 

 
•  and instances of the background relation linked-to	


FOIL example 



•  the first rule learned covers 10 of the positive instances 
 can-reach(X1, X2) ← linked-to(X1, X2)	


•  the second rule learned covers the other 9 positive instances 
can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2) 	

 

FOIL example 

•  note that these rules generalize to other graphs 



Evaluating literals in FOIL 

•  FOIL evaluates the addition of a literal L to a rule R by 

FOIL _Gain(L,R) = t log2
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•  where 
p0 = # of positive tuples covered by R	

n0 = # of negative tuples covered by R	

p1 = # of positive tuples covered by R ∧ L	

n1 = # of negative tuples covered by R ∧ L	

t = # of positive of tuples of R also covered by R ∧ L	

	


•  like information gain, but takes into account 
•  we want to cover positives, not just get a more “pure” set of tuples 
•  the size of the tuple set grows as we add new variables 



Evaluating literals in FOIL 

FOIL _Gain(L,R) = t Info R0( )− Info R1( )( )

Info Ri( ) = − log2
pi

pi + ni
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•  where R0 represents the rule without L and R1 is the rule with L added 

•  Info(Ri) is the number of bits required to encode a positive in the set of 
tuples covered by Ri	




•  Definition of can-reach: 

 can-reach(X1, X2) ← linked-to(X1, X2)	


 can-reach(X1, X2) ← linked-to(X1, X3) ∧ can-reach(X3, , X2) 	

 

Recall this example 



FOIL example 

can-reach(X1, X2) ← 

FOIL _Gain(L,R) = 9 log2
18

18 + 54
− log2

9
9 + 62

"
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                             = 8.8

•  consider the first step in 
learning the second clause 

can-reach(X1, X2) ← 	

	
linked-to(X1, X3)  



Additional refinements of FOIL 

•  early stopping to prevent overfitting 
•  using m-estimates of rule precision to guide search              

[Džeroski & Bratko, ILP 1992] 
•  type constraints on variables 
•  relational pathfinding to guide search for binary target relations 

[Craven, Slattery & Nigam, ECML 1998] 
•  using intensional background relations                                   

[Pazzani & Kibler, Machine Learning 1992] 

between(X, Y, Z) ← less-than(X, Y) ∧  less-than(Y, Z)	

between(X, Y, Z) ← less-than(Z, Y) ∧  less-than(Y, X)	




Comments on relational learning 

•  enables learning with more expressive hypothesis spaces 
•  but this comes at the cost of having large hypothesis spaces 

•  harder to search 
•  easier to overfit 

•  can take advantage of background knowledge represented as 
extensional relations or logical clauses (rules) 

•  one branch of research in this area – inductive logic programming – 
focuses on learning hypotheses in a logic programming framework 

•  search can be top-down (like FOIL) or bottom-up 
•  many relational learning methods not well suited to handling noisy 

data, representing uncertainty 
•  but in the next lecture we’ll discuss statistical relational learning 

methods which are designed to address these limitations 


