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Goals for the lecture

you should understand the following concepts
* rule-set learning
* relational learning
* the FoIL algorithm



Rule sets as a hypothesis space

we can use propositional rule sets as a hypothesis space for a
learning algorithm

each rule is a conjunction of tests + a class that is implied
(predicted) when the conjunction is satisfied

Class=yes <— Outlook=sunny A Humidity<75%

Class=yes < Outlook=overcast

Class=yes <— Outlook=rain A Win <20



Decision trees and rules

Any decision tree can be converted into an equivalent set of rules

Outlook

sunny rain
overcast

Humidity o Wind
y

> 75% <75% > 20 <20

no yes no yes

Class=yes <— Outlook=sunny A Humidity<75%
Class=yes < Outlook=overcast

Class=yes < Outlook=rain A Wind<20



Decision trees and rules

a small set of rules can represent a large decision tree because of the
replication problem
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Rule learning

rule sets can be learned by extracting them from decision trees
(C4.5 has a module for this)

there are also algorithms for learning rules directly, such as
SLIPPER [Cohen & Singer, AAA/ 1999]

the rules we’ve considered so far are expressed in propositional
logic — they're not well suited to representing multiple entities and
relationships among them

let's consider relational learning methods, which represent their
hypotheses using a subset of first-order logic



Relational learning example

* suppose we want to learn the general concept of can-reach in a graph,
given a set of training instances describing a particular graph
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* how would you represent this task to a learner?
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Relational learning example

» arelational representation, such as first-order logic, can capture this
concept succinctly and in a general way

can-reach(X,, X,) < linked-to(X,, X,)

can-reach(X,, X,) < linked-to(X;, X;) A can-reach(X; , X,)
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Relational learning example

consider the task of learning a pharmacophore: the substructure of a
molecule that interacts with a target of interest

 instances for this task consist of interacting (+) and non-interacting
molecules (-)

to represent each instance, we'd like to describe
» the (variable # of) atoms in the molecule
» the possible conformations of the molecule
« the bonds among atoms
« distances among atoms
« eftc.



Relational learning example
[Finn et al., Machine Learning 1998]

a multi-relational representation for molecules

Molecule |[Target 1|... [Target n Molecule | Bond_ID |Atom_1_ID |Atom_2 ID |Bond_Type
moll inactive 1 nactive maoll bondl al a2 aromatic
mol2 active mactive .

Molecular Bioactivity Bonds
Molecule | Conformer |[Atom_ID |Atom_Type | X_Coordinate |Y_Coordinate | Z_Coordinate
moll confl al carbon 2.58 -1.23 0.69

3D Atom Locations




Relational learning example
[Finn et al., Machine Learning 1998]

a learned relational rule characterizing ACE inhibitors

Molecule A is an ACE inhibitor if
for some conformer Conf of A:

molecule A contains a zinc binding site B;
molecule A contains a hydrogen acceptor C;
the distance between B and C in Conf is 7.9 +/- .75;
molecule A contains a hydrogen acceptor D;
the distance between B and D in Conf is 8.5 +/- .75;
the distance between C and D in Conf is 2.1 +/- .75;
molecule A contains a hydrogen acceptor E;
the distance between B and E in Conf is 4.9 +/- .75;
the distance between C and E in Conf is 3.1 +/- .75;
the distance between D and E in Conf is 3.8 +/- .75.




Relational representation

ACE_inhibitor(A) < has_zinc_binding_site(A, B) A

has_hydrogren_acceptor(A, C) A
distance(B, C, 7.9, 0.75) A

has _hydrogen_acceptor(A, D) A
distance(B, D, 8.5, 0.75) A
distance(C, D, 8.5, 0.75) A

has _hydrogen_acceptor(A, E) A
distance(B, E, 4.9, 0.75) A
distance(C, E, 3.1, 0.75) A
distance(D, E, 3.8, 0.75)

To learn an equivalent rule with a feature-vector learner, what features
would we need to represent?

has_zinc_binding_site

has hydrogen_acceptor

zinc_binding_site_and hydrogen_acceptor_distance
hydrogen _acceptor hydrogen_acceptor_distance

can easily encode distance between a pair of atoms; but this pharmacophore
has 4 important atoms with 6 relevant distances among them



Relational learning example
[Craven et al., ECML 1998]

« consider the task of classifying web pages according their roles
* here is a learned rule for recognizing home pages for CS courses

course(A) «
has-word(A, instructor),
— has-word (A, good),
link-from(A, B),
has-word(B, assign),
= link-from(B, C)

» test-set accuracy: 31/ 34



Relational learning example
[Page et al., AAAI 2012]

« Data from electronic health records (EHRS) is being used to learn
models for risk assessment, adverse event detection, etc.

« A patient’s record is described by multiple tables in a relational DB

demographics diagnoses
PatientID|Gender Birthdate PatientID| Date Physician Symptoms  Diagnosis
P1 M 3/22/63 Pl | 1/1/01  Smith | palpitations hypoglycemic

Pl 2/1/03  Jones fever. aches influenza

labs PanemID. Date | Lab Test Result | PatientID‘ SNP1 .SNPZ .SNPSOOK genetics

Pl 1/1/01 blood glucose 42

i Pl AA | AB BB
Pl 1/9/01 |blood glucose 45

p2 AB @ BB AA

drugs PatientID | Date Prescribed = Date Filled | Physician | Medication | Dose | Duration

Pl 5/17/98 5/18/98 Jones prilosec 10mg 3 months



The FoIL algorithm for relational learning
[Quinlan, Machine Learning 1990]

given:
» tuples (instances) of a target relation
« extensionally represented background relations

do:

* learn a set of rules that (mostly) cover the positive tuples of the
target relation, but not the negative tuples



Input to FOIL

» instances of target relation
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(7,4) (1,5) (1,7) (8,0) (8,1) (8,2) (8,3) (8,4) (8,5) (8,6)
(8,7) (8,8)

« extensionally defined background relations

linked-to = {{(0,1), (0,3}, (1,2), (3,2), (3,4),
(4,5), (4,6), (6,8), (7,6), (7,8)}



The FolIL algorithm for relational learning

FOIL uses a covering approach to learn a set of rules

LEARNRULESET(set of tuples T of target relation, background relations B)

{
S=4{1}
repeat
R <— LEARNRULE(T, B)
S—SUR
T < T — positive tuples covered by R
until there are no (few) positive tuples leftin T
return §



The FolIL algorithm for relational learning

LEARNRULE(set of tuples T of target relation, background relations B)

{

R={}

repeat
L < best literal, based on T and B, to add to right-hand side of R
R<—RUL
T <— new set of tuples that satisfy L

until there are no (few) negative tuples left in T

return R



Literals in FOIL

« Given the currentrule R(X,,X,,..X,) = L,ALA ... AL,
FOIL considers adding several types of literals

Xj = X both X, and X, either appear in the LHS
of the rule, or were introduced by a

X, =X, previous literal

oWV, v, ..V)

at least one of the V.’s has to be in
the LHS of the rule, or was introduced by

a previous literal
~Q(V,, Vs, .. V.) P

where Q is a background relation



Literals in FOIL (continued)

X, >a
X, <a
X, >X,
X; = X,

where c Is a constant

where X; and X, are numeric variables and a
IS @ numeric constant



FOIL example

« suppose we want to learn rules for the target relation can-reach(X,, X,)
« we’re given instances of the target relation from the following graph
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« and instances of the background relation linked-to

linked-to = {{0,1), (0,3), (1,2), (3,2), (3,4),
(4,5), (4,6), (6,8), (7,6), (7,8)}



FOIL example

» the first rule learned covers 10 of the positive instances
can-reach(X,, X,) < linked-to(X,, X,)

« the second rule learned covers the other 9 positive instances
can-reach(X,, X,) < linked-to(X;, X;) A can-reach(X; , X,)
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Evaluating literals in FOIL

« FoOIL evaluates the addition of a literal L to a rule R by

FOIL _Gain(L.R) = t(log2 P

~log, Py )
p+tn po"'noJ

* where
p, = # of positive tuples covered by R
n, = # of negative tuples covered by R
p,; = # of positive tuples covered by R A L
n, = # of negative tuples covered by R A L
t = # of positive of tuples of R also covered by R A L

 like information gain, but takes into account
* we want to cover positives, not just get a more “pure” set of tuples
» the size of the tuple set grows as we add new variables



Evaluating literals in FOIL

FOIL_Gain(L,R) = t(Info(R, ) - Info(R,))

* where R, represents the rule without L and R, is the rule with L added

« Info(R,) is the number of bits required to encode a positive in the set of
tuples covered by R,

Info(Rl.) = —log, ( p.lj_" n)




Recall this example

* Definition of can-reach:
can-reach(X,, X,) < linked-to(X,, X,)

can-reach(X,, X,) < linked-to(X;, X;) A can-reach(X; , X,)
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FOIL example
@: 0.2 Il 0.4 0,5 ( 06> oy B 1

« consider the first step in
learning the second clause

CE
can-reach(X,, X,) <
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linked-to(X;, X)
)
| 18 9
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Additional refinements of FOIL

early stopping to prevent overfitting

using m-estimates of rule precision to guide search
[DZeroski & Bratko, ILP 1992]

type constraints on variables

relational pathfinding to guide search for binary target relations
[Craven, Slattery & Nigam, ECML 1998]

using intensional background relations
[Pazzani & Kibler, Machine Learning 1992]

between(X, Y, Z) < less-than(X, Y) A less-than(Y, Z)
between(X, Y, Z) < less-than(Z, Y) A less-than(Y, X)



Comments on relational learning

enables learning with more expressive hypothesis spaces
but this comes at the cost of having large hypothesis spaces
* harder to search
« easier to overfit

can take advantage of background knowledge represented as
extensional relations or logical clauses (rules)

one branch of research in this area — inductive logic programming —
focuses on learning hypotheses in a logic programming framework

search can be top-down (like FOIL) or bottom-up

many relational learning methods not well suited to handling noisy
data, representing uncertainty

« but in the next lecture we’'ll discuss statistical relational learning
methods which are designed to address these limitations



