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Abstract

We analyze critically the use of classi�ca-
tion accuracy to compare classi�ers on natu-
ral data sets, providing a thorough investiga-
tion using ROC analysis, standard machine
learning algorithms, and standard bench-
mark data sets. The results raise serious con-
cerns about the use of accuracy for comparing
classi�ers and draw into question the conclu-
sions that can be drawn from such studies.
In the course of the presentation, we describe
and demonstrate what we believe to be the
proper use of ROC analysis for comparative
studies in machine learning research. We ar-
gue that this methodology is preferable both
for making practical choices and for drawing
scienti�c conclusions.

1 INTRODUCTION

Substantial research has been devoted to the devel-
opment and analysis of algorithms for building clas-
si�ers, and a necessary part of this research involves
comparing induction algorithms. A common method-
ology for such evaluations is to perform statistical
comparisons of the accuracies of learned classi�ers
on suites of benchmark data sets. Our purpose is
not to question the statistical tests (Dietterich, 1998;
Salzberg, 1997), but to question the use of accuracy
estimation itself. We believe that since this is one of
the primary scienti�c methodologies of our �eld, it is
important that we (as a scienti�c community) cast a
critical eye upon it.

The two most reasonable justi�cations for comparing
accuracies on natural data sets require empirical ver-
i�cation. We argue that a particular form of ROC

analysis is the proper methodology to provide such
veri�cation. We then provide a thorough analysis of
classi�er performance using standard machine learning
algorithms and standard benchmark data sets. The re-
sults raise serious concerns about the use of accuracy,
both for practical comparisons and for drawing scien-
ti�c conclusions, even when predictive performance is
the only concern.

The contribution of this paper is two-fold. We analyze
critically a common assumption of machine learning
research, provide insights into its applicability, and dis-
cuss the implications. In the process, we describe what
we believe to be a superior methodology for the eval-
uation of induction algorithms on natural data sets.
Although ROC analysis certainly is not new, for ma-
chine learning research it should be applied in a princi-
pled manner geared to the speci�c conclusions machine
learning researchers would like to draw. We hope that
this work makes signi�cant progress toward that goal.

2 JUSTIFYING ACCURACY

COMPARISONS

We consider induction problems for which the intent in
applying machine learning algorithms is to build from
the existing data a model (a classi�er) that will be
used to classify previously unseen examples. We limit
ourselves to predictive performance|which is clearly
the intent of most accuracy-based machine learning
studies|and do not consider issues such as compre-
hensibility and computational performance.

We assume that the true distribution of examples to
which the classi�er will be applied is not known in
advance. To make an informed choice, performance
must be estimated using the data available. The
di�erent methodologies for arriving at these estima-
tions have been described elsewhere (Kohavi, 1995;



Dietterich, 1998). By far, the most commonly used
performance metric is classi�cation accuracy.

Why should we care about comparisons of accuracies
on benchmark data sets? Theoretically, over the uni-
verse of induction algorithms no algorithm will be su-
perior on all possible induction problems (Wolpert,
1994; Scha�er, 1994). The tacit reason for comparing
classi�ers on natural data sets is that these data sets
represent problems that systems might face in the real
world, and that superior performance on these bench-
marks may translate to superior performance on other
real-world tasks. To this end, the �eld has amassed
an admirable collection of data sets from a wide vari-
ety of classi�er applications (Merz and Murphy, 1998).
Countless research results have been published based
on comparisons of classi�er accuracy over these bench-
mark data sets. We argue that comparing accuracies
on our benchmark data sets says little, if anything,
about classi�er performance on real-world tasks.

Accuracy maximization is not an appropriate goal for
many of the real-world tasks from which our natural
data sets were taken. Classi�cation accuracy assumes
equal misclassi�cation costs (for false positive and false
negative errors). This assumption is problematic, be-
cause for most real-world problems one type of clas-
si�cation error is much more expensive than another.
This fact is well documented, primarily in other �elds
(statistics, medical diagnosis, pattern recognition and
decision theory). As an example, consider machine
learning for fraud detection, where the cost of missing
a case of fraud is quite di�erent from the cost of a false
alarm (Fawcett and Provost, 1997).

Accuracy maximization also assumes that the class
distribution (class priors) is known for the target envi-
ronment. Unfortunately, for our benchmark data sets,
we often do not know whether the existing distribu-
tion is the natural distribution, or whether it has been
strati�ed. The iris data set has exactly 50 instances of
each class. The splice junction data set (DNA) has
50% donor sites, 25% acceptor sites and 25% non-
boundary sites, even though the natural class distri-
bution is very skewed: no more than 6% of DNA ac-
tually codes for human genes (Saitta and Neri, 1998).
Without knowledge of the target class distribution we
cannot even claim that we are indeed maximizing ac-
curacy for the problem from which the data set was
drawn.

If accuracy maximization is not appropriate, why
would we use accuracy estimates to compare induc-
tion algorithms on these data sets? Here are what we

believe to be the two best candidate justi�cations.

1. The classi�er with the highest accuracy may very
well be the classi�er that minimizes cost, particu-
larly when the classi�er's tradeo� between true
positive predictions and false positives can be
tuned. Consider a learned model that produces
probability estimates; these can be combined with
prior probabilities and cost estimates for decision-
analytic classi�cations. If the model has high clas-
si�cation accuracy because it produces very good
probability estimates, it will also have low cost for
any target scenario.

2. The induction algorithm that produces the
highest accuracy classi�ers may also produce
minimum-cost classi�ers by training it di�erently.
For example, Breiman et al. (1984) suggest that
altering the class distribution will be e�ective
for building cost-sensitive decision trees (see also
other work on cost-sensitive classi�cation (Tur-
ney, 1996)).

To criticize the practice of comparing machine learn-
ing algorithms based on accuracy, it is not su�cient
merely to point out that accuracy is not the metric by
which real-world performance will be measured. In-
stead, it is necessary to analyze whether these candi-
date justi�cations are well founded.

3 ARE THESE JUSTIFICATIONS

REASONABLE?

We �rst discuss a commonly cited special case of the
second justi�cation, arguing that it makes too many
untenable assumptions. We then present the results
of an empirical study that leads us to conclude that
these justi�cations are questionable at best.

3.1 CAN WE DEFINE AWAY THE

PROBLEM?

In principle, for a two-class problem one can repropor-
tion (\stratify") the classes based on the target costs
and class distribution. Once this has been done, max-
imizing accuracy on the transformed data corresponds
to minimizing costs on the target data (Breiman et al.,
1984). Unfortunately, this strategy is impracticable for
conducting empirical research based on our benchmark
data sets. First, the transformation is valid only for
two-class problems. Whether it can be approximated
e�ectively for multiclass problems is an open question.



Second, we do not know appropriate costs for these
data sets and, as noted by many applied researchers
(Bradley, 1997; Catlett, 1995; Provost and Fawcett,
1997), assigning these costs precisely is virtually im-
possible. Third, as described above, generally we do
not know whether the class distribution in a natural
data set is the \true" target class distribution.

Because of these uncertainties we cannot claim to be
able to transform these cost-minimization problems
into accuracy-maximization problems. Moreover, in
many cases specifying target conditions is not just
virtually impossible, it is actually impossible. Of-
ten in real-world domains there are no \true" tar-
get costs and class distribution. These change from
time to time, place to place, and situation to situation
(Fawcett and Provost, 1997).

Therefore the ability to transform cost minimization
into accuracy maximization does not, by itself, justify
limiting our comparisons to classi�cation accuracy on
the given class distribution. However, it may be that
comparisons based on classi�cation accuracy are use-
ful because they are indicative of a broader notion of
\better" performance.

3.2 ROC ANALYSIS AND DOMINATING

MODELS

We now investigate whether an algorithm that gen-
erates high-accuracy classi�ers is generally better be-
cause it also produces low-cost classi�ers for the target
cost scenario. Without target cost and class distribu-
tion information, in order to conclude that the clas-
si�er with higher accuracy is the better classi�er, one
must show that it performs better for any reasonable
assumptions. We limit our investigation to two-class
problems because the analysis is straightforward.

The evaluation framework we choose is Receiver Oper-
ating Characteristic (ROC) analysis, a classic method-
ology from signal detection theory that is now com-
mon in medical diagnosis and has recently begun to
be used more generally in AI (Swets, 1988; Provost
and Fawcett, 1997).

We briey review some of the basics of ROC analy-
sis. ROC space denotes the coordinate system used
for visualizing classi�er performance. In ROC space,
typically the true positive rate, TP , is plotted on the Y
axis and the false positive rate, FP , is plotted on the X
axis. Each classi�er is represented by the point in ROC
space corresponding to its (FP; TP ) pair. For models
that produce a continuous output (e.g., an estimate of
the posterior probability of an instance's class mem-

bership), these statistics vary together as a threshold
on the output is varied between its extremes, with
each threshold value de�ning a classi�er. The result-
ing curve, called the ROC curve, illustrates the error
tradeo�s available with a given model. ROC curves
describe the predictive behavior of a classi�er inde-

pendent of class distributions or error costs, so they
decouple classi�cation performance from these factors.

For our purposes, a crucial notion is whether one
model dominates in ROC space, meaning that all other
ROC curves are beneath it or equal to it. A dominat-
ing model (e.g., model NB in Figure 1a) is at least as
good as all other models for all possible cost and class
distributions. Therefore, if a dominating model exists,
it can be considered to be the \best" model in terms
of predictive performance. If a dominating model does
not exist (as in Figure 1b), then none of the models
represented is best under all target scenarios; in such
cases, there exist scenarios for which the model that
maximizes accuracy (or any other single-number met-
ric) does not have minimum cost.

Figure 1 shows test-set ROC curves on two of the UCI
domains from the study described below. Note the
\bumpiness" of the ROC curves in Figure 1b (these
were two of the largest domains with the least bumpy
ROC curves). This bumpiness is typical of induction
studies using ROC curves generated from a hold-out
test set. As with accuracy estimates based on a sin-
gle hold-out set, these ROC curves may be misleading
because we cannot tell how much of the observed vari-
ation is due to the particular training/test partition.
Thus it is di�cult to draw strong conclusions about the
expected behavior of the learned models. We would
like to conduct ROC analysis using cross-validation.

Bradley (1997) produced ROC curves from 10-fold
cross validation, but they are similarly bumpy.
Bradley generated the curves using a technique known
as pooling. In pooling, the ith points making up each
raw ROC curve are averaged. Unfortunately, as dis-
cussed by Swets and Pickett (1982), pooling assumes
that the ith points from all the curves are actually esti-
mating the same point in ROC space, which is doubtful
given Bradley's method of generating curves.1 For our
study it is important to have a good approximation of
the expected ROC curve.

We generate results from 10-fold cross-validation using
a di�erent methodology, called averaging. Rather than
using the averaging procedure recommended by Swets

1Bradley acknowledges this fact, and it is not germane
to his study. However, it is problematic for us.



0 0.2 0.4 0.6 0.8 1
False positives

0

0.2

0.4

0.6

0.8

1

T
ru

e 
po

si
tiv

es

NB
MC4
Bagged−MC4
IB1
IB3
IB5

(a) Adult

0 0.2 0.4 0.6 0.8 1
False positives

0

0.2

0.4

0.6

0.8

1

T
ru

e 
po

si
tiv

es

NB
MC4
Bagged−MC4
IB1
IB3
IB5

(b) Satimage

Figure 1: Raw (un-averaged) ROC curves from two UCI database domains

and Pickett, which assumes normal-�tted ROC curves
in a binormal ROC space, we average the ROC curves
in the following manner. For k-fold cross-validation,
the ROC curve from each of the k folds is treated
as a function, Ri, such that TP = Ri(FP ). This
is done with linear interpolations between points in
ROC space2 (if there are multiple points with the
same FP , the one with the maximum TP is chosen).
The averaged ROC curve is the function R̂(FP ) =
mean(Ri(FP )). To plot averaged ROC curves we
sample from R̂ at 100 points regularly spaced along
the FP -axis. We compute con�dence intervals of the
mean of TP using the common assumption of a bino-
mial distribution.

3.3 DO STANDARD METHODS

PRODUCE DOMINATING MODELS?

We can now state precisely a basic hypothesis to be in-
vestigated: Our standard learning algorithms produce

dominating models for our standard benchmark data

sets. If this hypothesis is true (generally), we might
conclude that the algorithm with higher accuracy is
generally better, regardless of target costs or priors.3

2Note that classi�cation performance anywhere along a
line segment connecting two ROC points can be achieved
by randomly selecting classi�cations (weighted by the in-
terpolation proportion) from the classi�ers de�ning the
endpoints.

3However, even this conclusion has problems. Accuracy
comparisons may select a non-dominating classi�er because
it is indistinguishable at the point of comparison|yet it
may be much worse elsewhere.

If the hypothesis is not true, then such a conclusion
will have to rely on a di�erent justi�cation. We now
provide an experimental study of this hypothesis, de-
signed as follows.

From the UCI repository we chose ten datasets that
contained at least 250 instances, but for which the ac-
curacy for decision trees was less than 95% (because
the ROC curves are di�cult to read at very high ac-
curacies). For each domain, we induced classi�ers for
the minority class (for Road we chose the class Grass).
We selected several inducers fromMLC++ (Kohavi et
al., 1997): a decision tree learner (MC4), Naive Bayes
with discretization (NB), k-nearest neighbor for sev-
eral k values (IBk), and Bagged-MC4 (Breiman, 1996).
MC4 is similar to C4.5 (Quinlan, 1993); probabilistic
predictions are made by using a Laplace correction at
the leaves. NB discretizes the data based on entropy
minimization (Dougherty et al., 1995) and then builds
the Naive-Bayes model (Domingos and Pazzani, 1997).
IBk votes the closest k neighbors; each neighbor votes
with a weight equal to one over its distance from the
test instance.

The averaged ROC curves are shown in Figures 2
and 3. For only one (Vehicle) of these ten domains
was there an absolute dominator. In general, very few
of the 100 runs we performed (10 data sets, 10 cross-
validation folds each) had dominating classi�ers. Some
cases are very close, for example Adult and Waveform-
21. In other cases a curve that dominates in one area
of ROC space is dominated in another. Therefore, we
can refute the hypothesis that our algorithms produce
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Figure 2: Smoothed ROC curves from UCI database domains

(statistically signi�cantly) dominating classi�ers.

This draws into question claims of \algorithm A is bet-
ter than algorithm B" based on accuracy comparison.
In order to draw such a conclusion in the absence of
target costs and class distributions, the ROC curve for
algorithm A would have to be a signi�cant dominator
of algorithm B. This has obvious implications for ma-
chine learning research.

In practical situations, often a weaker claim is su�-
cient: Algorithm A is a good choice because it is at
least as good as Algorithm B (i.e., their accuracies
are not signi�cantly di�erent). It is clear that this
type of conclusion also is not justi�ed. In many do-
mains, curves that are statistically indistinguishable
from dominators in one area of the space are signi�-

cantly dominated in another. Moreover, in practical
situations typically comparisons are not made with
the wealth of classi�ers we are considering. More of-
ten only a few classi�ers are compared. Considering
general pairwise comparisons of algorithms, there are
many cases where each model in a pair is clearly much
better than the other in di�erent regions of ROC space.
This clearly draws into question the use of single num-
ber metrics for practical algorithm comparison, unless
these metrics are based on precise target cost and class
distribution information.



3.4 CAN STANDARD METHODS BE

COERCED TO YIELD DOMINATING

ROC CURVES?

The second justi�cation for using accuracy to compare
algorithms is subtly di�erent from the �rst. Speci�-
cally, it allows for the possibility of coercing algorithms
to produce di�erent behaviors under di�erent scenar-
ios (such as in cost-sensitive learning). If this can be
done well, accuracy comparisons are justi�ed by argu-
ing that for a given domain, the algorithm with higher
accuracy will also be the algorithm with lower cost for
all reasonable costs and class distributions.

Con�rming or refuting this justi�cation completely is
beyond the scope of this paper, because how best to
coerce algorithms for di�erent environmental condi-
tions is an open question. Even the straightforward
method of stratifying samples has not been evaluated
satisfactorily. We argue that the ROC framework out-
lined so far, with a minor modi�cation, can be used
to evaluate this question as well. We then o�er some
discon�rming evidence.

For algorithms that may produce di�erent models un-
der di�erent cost and class distributions, the ROC
methodology as stated above is not quite adequate.
We must be able to evaluate the performance of the
algorithm, not an individual model. However, one can
characterize an algorithm's performance for ROC anal-
ysis by producing a composite curve for a set of gen-
erated models. This can be done using pooling, or by
using the convex hull of the ROC curves produced by
the set of models, as described in detail by Provost
and Fawcett (1997; 1998).

We can now form a hypothesis for our second potential
justi�cation: Our standard learning algorithms pro-

duce dominating ROC curves for our standard bench-

mark data sets. Con�rming this hypothesis would be
an important step in justifying the common practice of
ignoring target costs and class distributions in class�er
comparisons on natural data. Unfortunately, we know
of no con�rming evidence.

On the other hand, there is discon�rming evidence.
First, consider the results presented above. Naive
Bayes is robust with respect to changes in costs|it
will produce the same ROC curve regardless of the
target costs and class distribution. Furthermore, it
has been shown that decision trees are surprisingly ro-
bust if the probability estimates are generated with
the Laplace estimate (Bradford et al., 1998). If this
result holds generally, the results in the previous sec-
tion would discon�rm the present hypothesis as well.

Second, Bradley's (1997) results provide discon�rming
evidence. Speci�cally, he studied six real-world med-
ical data sets (four from the UCI repository and two
from other sources). Bradley plotted the ROC curves
of six classi�er learning algorithms, consisting of two
neural nets, two decision trees and two statistical tech-
niques. Bradley uses composite ROC curves formed
by training models di�erently for di�erent cost distri-
butions. We have previously criticized the design of
his study for the purpose of answering our question.
However, if the results can be replicated under the
current methodology, they would make a strong state-
ment. Not one of the six data sets had a dominating
classi�er. This implies that for each domain there exist
disjoint sets of conditions for which di�erent induction
algorithms are preferable.

4 RECOMMENDATIONS AND

LIMITATIONS

When designing comparative studies, researchers
should be clear about the conclusions they want to
be able to draw from the results. We have argued
that comparisons of algorithms based on accuracy are
unsatisfactory when there is no dominating classi�er.
However, presenting the case against the use of accu-
racy is only one of our goals. We also want to show
how precise comparisons still can be made, even when
the target cost and class distributions are not known.

If there is no dominator, conclusions must be quali-
�ed. No single number metric can be used to make
very strong conclusions without domain-speci�c infor-
mation. However, it is possible to look at ranges of
costs and class distributions for which each classi�er
dominates. The problems of cost-sensitive classi�ca-
tion and learning with skewed class distributions can
be analyzed precisely.

Even without knowledge of target conditions, a pre-
cise, concise, robust speci�cation of classi�er perfor-
mance can be made. As described in detail by Provost
and Fawcett (1997), the slopes of the lines tangent to
the ROC convex hull determine the ranges of costs
and class distributions for which particular classi�ers
minimize cost. For speci�c target conditions, the cor-
responding slope is the cost ratio times the reciprocal
of the class ratio. For our ten domains, the optimal
classi�ers for di�erent target conditions are given in
Table 1. For example, in the Road domain (see Fig-
ure 3 and Table 1), Naive Bayes is the best classi�er
for any target conditions corresponding to a slope less
than 0:38, and Bagged-MC4 is best for slopes greater



Table 1: Locally dominating classi�ers for ten UCI domains

Domain Slope range Dominator Domain Slope range Dominator

Adult [0, 7.72] NB Pima [0, 0.06] NB
[7.72, 21.6] Bagged-MC4 [0.06, 0.11] Bagged-MC4
[21.6, 1) NB [0.11, 0.30] NB

Breast [0, 0.37] NB [0.30, 0.82] Bagged-MC4
cancer [0.37, 0.5] IB3 [0.82, 1.13] NB

[0.5, 1.34] IB5 [1.13, 4.79] Bagged-MC4
[1.34, 2.38] IB3 [4.79, 1) NB
[2.38, 1) Bagged-MC4 Satimage [0, 0.05] NB

CRX [0, 0.03] Bagged-MC4 [0.05, 0.22] Bagged-MC4
[0.03, 0.06] NB [0.22, 2.60] IB5
[0.06, 2.06] Bagged-MC4 [2.60, 3.11] IB3
[2.06, 1) NB [3.11, 7.54] IB5

German [0, 0.21] NB [7.54, 31.14] IB3
[0.21, 0.47] Bagged-MC4 [31.14, 1) Bagged-MC4
[0.47, 3.08] NB Waveform [0, 0.25] NB
[3.08, 1) IB5 21 [0.25, 4.51] Bagged-MC4

Road [0, 0.38] NB [4.51, 6.12] IB5
(Grass) [0.38, 1) Bagged-MC4 [6.12, 1) Bagged-MC4
DNA [0, 1.06] NB Vehicle [0, 1) Bagged-MC4

[1.06, 1) Bagged-MC4

than 0:38. They perform equally well at 0:38. We
admit that this is not as elegant as a single-number
comparison, but we believe it to be much more useful,
both for research and in practice.

In summary, if a dominating classi�er does not exist
and cost and class distribution information is unavail-
able, no strong statement about classi�er superiority
can be made. However, one might be able to make
precise statements of superiority for speci�c regions of
ROC space. For example, if all you know is that few
false positive errors can be tolerated, you may be able
to �nd a particular algorithm that is superior at the
\far left" edge of ROC space.

We limited our investigation to two classes. This does
not a�ect our conclusions since our results are nega-
tive. However, since we are also recommending an an-
alytical framework, we note that extending our work
to multiple dimensions is an interesting open problem.

Finally, we are not completely satis�ed with our
method of generating con�dence intervals. The
present intervals are appropriate for the Neyman-
Pearson observer (Egan, 1975), which wants to max-
imize TP for a given FP. However, their appropriate-
ness is questionable for evaluating minimum expected
cost, for which a given set of costs contours ROC space
with lines of a particular slope. Although this is an
area of future work, it is not a fundamental drawback
to the methodology.

5 CONCLUSIONS

We have o�ered for debate the justi�cation for the use
of accuracy estimation as the primary metric for com-
paring algorithms on our benchmark data sets. We
have elucidated what we believe to be the top can-
didates for such a justi�cation, and have shown that
either they are not realistic because we cannot specify
cost and class distributions precisely, or they are not
supported by experimental evidence.

We draw two conclusions from this work. First, the
justi�cations for using accuracy to compare classi�ers
are questionable at best. Second, we have described
what we believe to be the proper use of ROC analysis
as applied to comparative studies in machine learning
research. ROC analysis is not as simple as compar-
ing with a single-number metric. However, we believe
that the additional power it delivers is well worth the
e�ort. In certain situations, ROC analysis allows very
strong, general conclusions to be made|both positive
and negative. In situations where strong, general con-
clusions can not be made, ROC analysis allows very
precise analysis to be conducted.

Although ROC analysis is not new, in machine learn-
ing research it has not been applied in a principled
manner, geared to the speci�c conclusions machine
learning researchers would like to draw. We hope that
this work makes signi�cant progress toward that goal.
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Figure 3: Smoothed ROC curves from UCI database domains, cont'd


