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ABSTRACT

Belief networks are popular tools for encoding uncertainty in expert systems.

These networks rely on inference algorithms to compute beliefs in the context of

observed evidence. One established method for exact inference on belief networks

is the Probability Propagation in Trees of Clusters (PPTC) algorithm, as devel-

oped by Lauritzen and Spiegelhalter and re�ned by Jensen et al. [1, 2, 3] PPTC

converts the belief network into a secondary structure, then computes probabil-

ities by manipulating the secondary structure. In this document, we provide a

self-contained, procedural guide to understanding and implementing PPTC. We

synthesize various optimizations to PPTC that are scattered throughout the liter-

ature. We articulate undocumented, \open secrets" that are vital to producing a

robust and e�cient implementation of PPTC. We hope that this document makes

probabilistic inference more accessible and a�ordable to those without extensive

prior exposure.

Keywords: Arti�cial intelligence, Bayesian network, belief network, causal

network, evidence, expert systems, join tree, probabilistic inference, probability

propagation, reasoning under uncertainty.
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1. INTRODUCTION

1.1. Purpose

An increasing number of academic and commercial endeavors use be-

lief networks1 to encode uncertain knowledge in complex domains. These

networks rely on inference algorithms to compute beliefs of alternative hy-

potheses in the context of observed evidence. However, the task of realiz-

ing an inference algorithm is not trivial. Much e�ort is spent synthesizing

methods that are scattered throughout the literature and converting them

to algorithmic form. Additional e�ort is spent addressing undocumented,

lower-level issues that are vital to producing a robust and e�cient imple-

mentation. These issues exist, in the words of one colleague, as \open

secrets" within the probabilistic inference community.

This document is addressed to interested researchers and developers who

do not have extensive prior exposure to algorithms for probabilistic infer-

ence. We describe, in procedural fashion, the Probability Propagation

in Trees of Clusters (PPTC) method for probabilistic inference, as de-

veloped by Lauritzen and Spiegelhalter and re�ned by Jensen et al. [1, 2, 3]

We focus on the steps required to make PPTC work. We synthesize vari-

ous published optimizations to PPTC, and we articulate the \open secrets"

that are crucial to a robust and e�cient implementation of PPTC. PPTC is

an established method for exact probabilistic inference; other exact meth-

ods include cutset conditioning [6, 7, 8] and symbolic probabilistic inference

(SPI) [9, 10]. A review of approximate methods can be found in [11].

Our goal is for the reader to be able to use this document to imple-

ment PPTC without additional help. We hope that this document makes

probabilistic inference more accessible and a�ordable to those that are not

entrenched in the belief networks community. More e�ort can then be

spent conducting research and developing applications that make use of

this technology.

1.2. What is PPTC?

PPTC is a method for performing probabilistic inference on a belief net-

work. Consider the belief network shown in Figure 1. An example of prob-

abilistic inference would be to compute the probability that A = on, given

the knowledge that C = on and E = o� . In general, probabilistic infer-

ence on a belief network is the process of computing P (V = v j E = e), or

simply P (v j e), where v is a value of a variable V and e is an assignment of

values to a set of variables E in the belief network. Basically, P (v j e) asks:

1Belief networks are also referred to as causal networks and Bayesian networks in

the literature. Comprehensive introductions to belief networks can be found in [4, 5].
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 a   on  off
P(C|A) =

on   .7  .3

off  .2  .8

      P(c|a)

 a   on  off
P(D|B) =

on   .9  .1

off  .5  .5

      P(d|b)

 a   on  off
P(E|C) =

on   .3  .7

off  .6  .4

      P(e|c)

 a   on  off

on   .5  .5

off  .4  .6

P(B|A) =

      P(b|a)

A

GCB

F

HED

on  off

.5  .5

  P(a)

P(A) =

P(F|DE) =

 d   e   on  off

on  on   .01 .99

on  off  .01 .99

off on   .01 .99

off off  .99 .01

         P(f|de)

P(G|C) =

on   .8  .2

 c   on  off

off  .1  .9

      P(g|c)

P(H|EG) =

 g   h   on  off

on  on   .05 .95

on  off  .95 .05

off on   .95 .05

off off  .95 .05

         P(h|eg)

Figure 1. A belief network.

Suppose that I observe e on a set of variables E, what is the probability

that the variable V has value v, given e?

PPTC works in two steps. First, a belief network is converted into

a secondary structure. Then, probabilities of interest are computed by

operating on that secondary structure.

1.3. Overview Of Document

In Section 2, we describe notational conventions and fundamental con-

cepts that are used throughout the document. Then in Section 3, we in-

troduce belief networks and their secondary structures. In Sections 4 and

5 we describe the creation of the secondary structure, beginning with the

belief network. We integrate evidence into the above framework in Section

6. These sections constitute the essence of PPTC inference. Having laid

these foundations, we discuss some optimization opportunities in Section 7

and low-level implementation issues in Section 8.



5

2. NOTATION

We specify PPTC using the following notational conventions and funda-

mental concepts.

2.1. Variables And Values

We denote variableswith italic uppercase letters (A, B, C), and variable

values with italic lowercase letters (a, b, c). We instantiate a variable A

by assigning it a value a; we call a an instantiation of A.

Sets of variables are denoted by boldface uppercase letters (X,Y, Z), and

their instantiations by boldface lowercase letters (x, y, z). We instantiate

a set of variables X by assigning a value to each variable in X; we denote

this assignment with x, and call x an instantiation of X.

2.2. Potentials And Distributions

2.2.1. Potentials We de�ne a potential [1] over a set of variables X

as a function that maps each instantiation x into a nonnegative real num-

ber; we denote this potential as �X. We use the notation �X(x) to denote

the number that �X maps x into; we call �X(x) an element. Potentials

can be viewed as matrices and implemented as tables, so we will also refer

to them as matrices and tables.

2.2.2. Operations On Potentials We de�ne two basic operations on

potentials: marginalization and multiplication [2]. Suppose we have a

set of variables Y, its potential �Y , and a set of variables X where X � Y.

The marginalization of �Y into X is a potential �X, where each �X(x)

is computed as follows:

1. Identify the instantiations y1;y2; : : : that are consistent with x.

2. Assign to �X(x) the sum �Y(y1) + �Y(y2) + : : :

This marginalization is denoted as follows:

�X =
X
YnX

�Y :

Given two sets of variables X and Y and their potentials �X and �Y ,

the multiplication of �X and �Y is a potential �Z, where Z = X [ Y,

and each �Z(z) is computed as follows:

1. Identify the instantiation x and the instantiation y that are consistent

with z.
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2. Assign to �Z(z) the product �X(x)�Y(y).

This multiplication of potentials is denoted as follows:

�Z = �X�Y :

2.2.3. Probability Distributions A probability distribution, or sim-

ply a distribution, is a special case of a potential. Given a set of variables

X, we use the notation P (X) to denote the probability distribution of

X, or simply the probability of X. P (X) is a potential over X whose

elements add up to 1. We denote the elements of P (X) as P (x), and we

call each element P (x) the probability of x. With this notation, we haveX
x

P (x) = 1:

Another important notion is that of conditional probability. Given sets

of variables X and Y, we use the notation P (X j Y) to denote the con-

ditional probability of X given Y, or simply the probability of X

given Y. P (X j Y) is a collection of probability distributions indexed by

the instantiations of Y; each P (X j y) is a probability distribution over X.

We denote the elements of P (X j y) as P (x j y), and we call each element

P (x j y) the probability of x given y. With this notation, we have, for

each instantiation y, X
x

P (x j y) = 1:

Note that P (X) is a special case of P (X j Y) where Y = ;.
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3. BELIEF NETWORKS AND THEIR SECONDARY STRUC-

TURES

3.1. Belief Networks

Belief networks are used by experts to encode selected aspects of their

knowledge and beliefs about a domain. Once constructed, the network

induces a probability distribution over its variables.

3.1.1. De�nition A belief network over a set of variablesU = fV1; : : : ; Vng
consists of two components:

� A directed acyclic graph (DAG) G: Each vertex in the graph

represents a variable V , which takes on values v1; v2; etc.
2 The par-

ents of V in the graph are denoted by �V , with instantiations �V ;

the family of V , denoted by FV, is de�ned as fV g [�V . The DAG

structure encodes a set of independence assertions, which restrict

the variety of interactions that can occur among variables. These

assertions are discussed more precisely in Section 3.1.3 below.

� A quanti�cation of G: Each variable in G is quanti�ed with a condi-
tional probability table P (V j �V ). While P (V j �V ) is technically

a function of FV, it is most helpful to think of it in the following way:

for each instantiation �V , real numbers in [0; 1] are assigned to each

value v, such that they add up to 1. When �V 6= ;, P (V j �V ) is

called the conditional probability of V given �V ; when �V = ;,
P (V j �V ), or simply P (V ), is called the prior probability of V .

These components induce a joint probability distribution over U,

given by

P (U) =

nY
i=1

P (Vi j CVi
);

where V1, . . . , Vn are the variables in the network.

3.1.2. Example Refer to the example belief network shown in Figure

1. This network is over the set of variables U = fA, B, C, D, E, F , G,
Hg, each variable having values fon; o� g. P (F j DE) is an example of a

conditional probability; P (A) is an example of a prior probability. The

network's joint probability distribution is the product of the conditional

and prior probabilities:

P (U) = P (A)P (B j A)P (C j A)P (D j B)P (E j C)P (F j DE)P (G j C)P (H j EG):

2We will not distinguish between a vertex and the variable it represents.
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3.1.3. Independence Assertions In addition to the numbers in the

tables, a belief network also encodes independence assertions, which do not

depend on how the network is quanti�ed. An independence assertion is

a statement of the form X and Y are independent given Z: for all

combinations of values x, y, and z, P (x j z) = P (x j yz).3 In other words,

if we are given z, then knowing y would not a�ect our belief in x. The

independence assertions in a belief network are important because PPTC

uses them to reduce the complexity of inference.

The pattern of arcs in the DAG encodes the following independence

assertions: each variable is independent of its nondescendants, given its

parents. Two or more independence assertions can logically imply a new in-

dependence assertion, using a mechanism of manipulating such statements

known as the graphoid axioms [12]. A graph-theoretic relation known as

d-separation captures all such derivable independences encoded by the

DAG [13]. In other words, Z d-separates X and Y in the DAG i�, in the

network, X and Y are independent given Z, with respect to the graphoid

axioms.4

3.2. The Secondary Structure

While experts typically use belief networks to encode their domain,

PPTC performs probabilistic inference on a secondary structure that we

characterize in Section 3.2.1 below.

3.2.1. De�nition Given a belief network over a set of variables U =

fV1; : : : ; Vng, we de�ne a secondary structure that contains a graphical and
a numerical component. The graphical component consists of the following:

� An undirected tree T : Each node in T is a cluster (nonempty set)

of variables. The clusters satisfy the join tree property: given two

clusters X and Y in T , all clusters on the path between X and Y

contain X \ Y.5 For each variable V 2 U, the family of V , FV
(Section 3.1.1), is included in at least one of the clusters.

� Sepsets: Each edge in T is labeled with the intersection of the adja-

cent clusters; these labels are called separator sets, or sepsets.6

The numerical component is described using the notion of a belief po-

tential. A belief potential is a function that maps each instantiation of

a set of variables into a real number (Section 2.2.1). Belief potentials are

de�ned over the following sets of variables:

3Or, equivalently, P (xy j z) = P (x j z)P (y j z).
4An intuitive discussion on d-separation can be found in [14].
5We will not distinguish between a cluster and its variables.
6Note that if a sepset is included as a cluster, the resulting cluster tree would still

satisfy the join tree property.
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� Clusters: Each cluster X is associated with a belief potential �X that

maps each instantiation x into a real number.

� Sepsets: Each sepset S is associated with a belief potential �S that

maps each instantiation s into a real number.

The belief potentials are not arbitrarily speci�ed; they must satisfy the

following constraints:

� For each cluster X and neighboring sepset S, it holds thatX
XnS

�X = �S: (1)

When Equation 1 is satis�ed for a cluster X and neighboring sepset

S, we say that �S is consistent with �X. When consistency holds

for every cluster-sepset pair, we say that the secondary structure is

locally consistent.

� The belief potentials encode the joint distribution P (U) of the belief

network according to

P (U) =

Q
i
�XiQ
j
�Sj

; (2)

where �Xi
and �Sj are the cluster and sepset potentials, respectively.

A key step in PPTC is the construction of a secondary structure that

satis�es the above constraints. Such a secondary structure has the following

important property: for each cluster (or sepset) X, it holds that �X =

P (X) [2]. Using this property, we can compute the probability distribution

of any variable V , using any cluster (or sepset) X that contains V , as

follows:

P (V ) =
X

XnfVg

�X: (3)

The secondary structure has been referred to in the literature as a join

tree, junction tree, tree of belief universes, cluster tree, and clique tree,

among other designations. In this document, we use the term join tree

to refer to the graphical component, and the term join tree potential

to refer generically to a cluster or sepset belief potential. We will also use

the term join tree to refer to the entire secondary structure, as it is being

created; the meaning of join tree will be clear from the context. In Section

4, we show how to build a join tree from the DAG of a belief network, and

in Section 5, we describe how PPTC manipulates the join tree potentials

so that they satisfy Equations (1) and (2).
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ABD AD ACEADE

DEF

DE

AE

EG

EGH

CEGCE

φAD

φAD

φ ABD

Sepset EG
Cluster DEF

etc.

=
=

ABDφ

 a   d     (ad)

on  on  on     .225

on  on  off    .025

on  off on     .125

on  off off    .125

off on  on     .180

off on  off    .020

off off on     .150

off off off    .150

on  on    .35

on  off   .15

off on    .33

off off   .17

 a   b   d       (abd)

Figure 1. An example of a secondary structure.

3.2.2. Example Figure 1 illustrates part of a secondary structure ob-

tained from the belief network in Figure 1. The tree contains clusters

fABD, ACE, ADE, CEG, DEF , EGHg and sepsets fAD, AE, CE,
DE, EGg, each with a belief potential � over its variables. For example,

�ABD and �AD are illustrated in Figure 1. Note that �ABD and �AD
satisfy the local consistency requirement, since we have

�AD =
X
B

�ABD :

Local consistency also holds for the other cluster-sepset pairs. Finally,

the belief potentials encode the joint distribution of the belief network by

satisfying

P (U) =
�ABD �ACE �ADE �CEG �DEF �EGH

�AD �AE �CE �DE �EG
:

3.2.3. Independence Assertions The complete set of independence

assertions encoded by the join tree can be speci�ed as follows [15]. Begin

with a secondary structure over the set of variables U, in which the sepsets

are included as clusters. Let X, Y, and Z be subsets of U. The tree

shows X to be independent of Y given Z if, for each X 2 X and Y 2 Y,

the chain between any cluster containing X and any cluster containing Y

passes through a cluster Z.



11

4. BUILDING JOIN TREES FROM BELIEF NETWORKS

In this section, we begin with the DAG of a belief network, and ap-

ply a series of graphical transformations that result in a join tree. These

transformations involve a number of intermediate structures, and can be

summarized as follows:

1. Construct an undirected graph, called a moral graph, from the

DAG.

2. Selectively add arcs to the moral graph to form a triangulated

graph.

3. From the triangulated graph, identify select subsets of nodes, called

cliques.

4. Build a join tree, starting with the cliques as clusters: connect the

clusters to form an undirected tree satisfying the join tree property,

inserting the appropriate sepsets.

Steps 2 and 4 are nondeterministic; consequently, many di�erent join

trees can be built from the same DAG.

4.1. Constructing The Moral Graph

Let G be the DAG of a belief network. The moral graph GM corre-

sponding to G is constructed as follows [1, 16]:

1. Create the undirected graph Gu by copying G, but dropping the di-

rections of the arcs.

2. Create GM from Gu as follows: For each node V , identify its parents

�V in G. Connect each pair of nodes in �V by adding undirected

arcs to Gu.

Figure 1 illustrates this transformation on the DAG from Figure 1. The

undirected arcs added to Gu are called moral arcs, shown as dashed lines

in the �gure.

4.2. Triangulating The Moral Graph

An undirected graph is triangulated i� every cycle of length four or

greater contains an edge that connects two nonadjacent nodes in the cycle.

We describe a procedure for triangulating an arbitrary undirected graph,

adapted from Kj�rul� [17]:
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A

GCB

F

HED

A

GCB

F

HED

Moral GraphBelief-Network Structure

Figure 1. Constructing the moral graph.

1. Make a copy of GM ; call it G0
M
.

2. While there are still nodes left in G0
M
:

(a) Select a node V from G0
M
, according to the criterion described

below.

(b) The node V and its neighbors in G0
M

form a cluster. Connect

all of the nodes in this cluster. For each edge added to G0
M
, add

the same corresponding edge to GM .

(c) Remove V from G0
M
.

3. GM , modi�ed by the additional arcs introduced in the previous steps,

is now triangulated.

To describe the criterion for selecting the nodes in Step 2a, we rely on

the following notion of a weight:

� The weight of a node V is the number of values of V .

� Theweight of a cluster is the product of the weights of its constituent

nodes.

The criterion for selecting nodes to remove is now stated as follows:

Choose the node that causes the least number of edges to be added in Step

2b, breaking ties by choosing the node that induces the cluster with the

smallest weight.7

7We access the next node to be removed by keeping the remaining nodes of G0

M
in

a binary heap. Each node V is associated with a primary key (the number of edges
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A

GCB

F

HED

Edges

Added

Induced

Cluster

Eliminated

Vertex

H      EGH      none

G      CEG      none

F      DEF      none

C      ACE      (A,E)

B      ABD      (A,D)

D      ADE      none

E      AE       none

A      A        none

Triangulated Graph Elimination Ordering

Figure 2. Triangulating the moral graph.

Figure 2 depicts the triangulated graph, as obtained from the moral

graph in Figure 1. The dashed lines in the �gure indicate the edges added

to triangulate the moral graph. We also show the elimination order-

ing of the nodes, so that the interested reader can trace each step in the

triangulation process.

In general, there are many ways to triangulate an undirected graph. An

optimal triangulation is one that minimizes the sum of the state space sizes

of the cliques (Section 4.3) of the triangulated graph. The task of �nding

an optimal triangulation is NP-complete [19]. However, the node-selection
criterion in Step 2a is a greedy, polynomial-time heuristic that produces

high-quality triangulations in real-world settings [17].

4.3. Identifying Cliques

A clique in an undirected graph G is a subgraph of G that is com-

plete and maximal. Complete means that every pair of distinct nodes is

connected by an edge. Maximal means that the clique is not properly

contained in a larger, complete subgraph. Golumbic [20] o�ers an e�cient

algorithm for identifying the cliques of an arbitrary triangulated graph;

added if V were selected next) and a secondary key (the weight of the cluster induced

if V were selected next). When V is removed, each of V 's neighbors needs to have its

keys recalculated, and, therefore, its position in the heap modi�ed. Removing a node

V costs O(k lgn) time, where k is the number of neighbors of V in G0

M
, and n is the

number of nodes remaining in G0

M
. A more detailed discussion on binary heaps can be

found in [18].
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this algorithm relies on a particular ordering of the nodes, which can be

generated according to Tarjan and Yannakakis [21].

By adapting the triangulation procedure in Section 4.2, though, we can

identify the cliques of the triangulated graph as it is being constructed.

Our procedure relies on the following two observations:

� Each clique in the triangulated graph is an induced cluster from step

2b of Section 4.2.

� An induced cluster can never be a subset of a subsequently induced

cluster.

These observations suggest that we can extract the cliques during the

triangulation process by saving each induced cluster that is not a subset of

any previously saved cluster. Revisiting Figure 2, we see that the cliques of

the triangulated graph are EGH , CEG, DEF , ACE, ABD, and ADE.

4.4. Building an optimal join tree

From this point on, we no longer need the undirected graph. We seek to

build an optimal join tree by connecting the cliques obtained in Section 4.3

above.8 To build an optimal join tree, we must connect the cliques so that

the resulting clique tree satis�es the join tree property and an optimality

criterion that we will de�ne below. The join tree property is essential for

the tree to be useful for probabilistic inference, and the optimality criterion

favors those join trees that minimize the computational time required for

inference.

Given a set of n cliques, we can form a clique tree by iteratively inserting

edges between pairs of cliques, until the cliques are connected by n�1 edges.
We can also view this task as iteratively inserting sepsets between pairs of

cliques, until the cliques are connected by n� 1 sepsets [22]. We take this

latter approach in specifying how to build an optimal join tree. We divide

our speci�cation of the algorithm into two parts: First, in Section 4.4.1, we

provide a generic procedure that forms a clique tree by iteratively selecting

and inserting candidate sepsets. Then, in Section 4.4.2, we show how the

sepsets must be chosen, in order for the clique tree to be an optimal join

tree.

4.4.1. Forming The Clique Tree The following procedure builds an

optimal join tree by iteratively selecting and inserting candidate sepsets

[22]; the criterion in Step 3a is speci�ed later in Section 4.4.2 below.

8The cliques of the triangulated graph will become the clusters of the join tree;

hence, we will use the terms clique and cluster interchangeably in this section. However,

in general, a join tree need not be a clique tree.
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Building an Optimal Join Tree

1. Begin with a set of n trees, each consisting of a single clique, and an

empty set S.

2. For each distinct pair of cliques X and Y:9

(a) Create a candidate sepset, labeled X \Y, with backpointers to

the cliques X and Y. Refer to this sepset as SXY.

(b) Insert SXY into S.

3. Repeat until n� 1 sepsets have been inserted into the forest.

(a) Select a sepset SXY from S, according to the criterion speci�ed

in Section 4.4.2. Delete SXY from S.
(b) Insert the sepset SXY between the cliquesX andY only ifX and

Y are on di�erent trees in the forest.10 (Note that the insertion

of such a sepset would merge two trees into a larger tree.)

4.4.2. Choosing The Appropriate Sepsets In order to describe how

to choose the next candidate sepset, we de�ne the notions of mass and

cost, as follows:

� The mass of a sepset SXY is the number of variables it contains, or

the number of variables in X \Y.

� The cost of a sepset SXY is the weight of X plus the weight of Y,

where weight is de�ned as follows:

{ The weight of a variable V is the number of values of V .

{ The weight of a set of variables X is the product of the weights

of the variables in X.

With these notions established, we can now state how to select the next

candidate sepset from S whenever we execute Step 3a in Section 4.4.1 [22]:

� For the resulting clique tree to satisfy the join tree property, we must

choose the candidate sepset with the largest mass.

� When two or more sepsets of equal mass can be chosen, we can opti-

mize the inference time on the resulting join tree by breaking the tie

as follows: choose the candidate sepset with the smallest cost.

The basis for this method of building an optimal join tree can be found

in [22].

9There will be n(n� 1)=2 such pairs.
10Otherwise, a cycle would form.
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4.4.3. Example Starting with the clique set fABD, ACE, ADE,
CEG, DEF , EGHg from Figure 2, we choose the connecting sepsets AD,

AE, CE, DE, and EG based on their mass. These cliques and sepsets

form the join tree structure illustrated in Figure 1.

4.4.4. Implementation Notes Similar to the triangulation algorithm,

we can implement the set of candidate sepsets S as a binary heap, ranking

each sepset according to a primary key (mass) and a secondary key (cost).

Note that some of the candidate sepsets in Step 2a of Section 4.4.1 are

empty. If the original DAG of the belief network is not fully connected,

then some of these empty candidate sepsets will be included in the �nal

join tree. This outcome is acceptable; however, one optimization involves

disallowing empty sepsets, and terminating Step 3 when n�1 sepsets have
been chosen, or when S is empty. If Step 3 terminates because of the latter

case alone, the resulting join tree will actually be a join forest. Section 7.2

discusses how to deal with such forests.
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Join Tree Structure

Inconsistent Join Tree

Consistent Join Tree

Graphical
Transformation

Belief Network

Propagation

P(V)

Marginalization

Initialization

Figure 1. Block diagram of PPTC with no evidence.

5. PRINCIPLES OF INFERENCE

Having built a join tree structure, we now provide procedures for comput-

ing the join tree's numerical component, so that it satis�es the conditions

in Section 3.2.1. We show how to compute the probability distribution

P (V ), for any variable V , using this join tree. Note that computing P (V )

corresponds to probabilistic inference in the context of no evidence. We

address the more general problem of computing P (V j e), in the context of
evidence e, later in Section 6.

5.1. Overview

Figure 1 illustrates the overall control for PPTC with no evidence. We

trace the steps in this �gure as follows:

� Graphical Transformation. Transform the DAG of a belief network

into a join tree structure, using the procedures in Section 4 above.

� Initialization (Section 5.2). Quantify the join tree with belief poten-

tials so that they satisfy Equation (2). The result is an inconsistent

join tree, as this initial assignment of belief potentials does not meet

the local consistency requirements of Equation (1).
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� Global Propagation (Section 5.3). Perform an ordered series of local

manipulations, called message passes, on the join tree potentials.

The message passes rearrange the join tree potentials so that they

become locally consistent; thus, the result of global propagation is a

consistent join tree, which satis�es both Equations (1) and (2).

� Marginalization (Section 5.4). From the consistent join tree, compute

P (V ) for each variable of interest V .

5.2. Initialization

The following procedure assigns initial join tree potentials, using the

conditional probabilities from the belief network:

1. For each cluster and sepset X, set each �X(x) to 1:

�X  � 1:

2. For each variable V , perform the following: Assign to V a cluster X

that contains FV;
11 call X the parent cluster of FV. Multiply �X

by P (V j �V ):

�X  � �XP (V j �V ):

After initialization, the conditional distribution P (V j �V ) of each vari-

able V has been multiplied into some cluster potential. The initialization

procedure satis�es Equation (2) as follows:

NQ
i=1

�Xi

N�1Q
j=1

�Sj

=

QQ
k=1

P (Vk j CVk
)

1
= P (U);

where N is the number of clusters, Q is the number of variables, and �Xi

and �Sj are the cluster and sepset potentials, respectively.

Figure 2 illustrates the initialization procedure on the tables of cluster

ACE and sepset CE from the secondary structure of Figure 1. In this

example, ACE is the parent cluster of FC and FE, but not FA. Thus,

after initialization, �ACE = P (C j A)P (E j C), and �CE = 1.

5.3. Global Propagation

Having initialized the join tree potentials, we now perform global prop-

agation in order to make them locally consistent. Global propagation con-

sists of a series of local manipulations, called message passes, that occur

11The triangulation procedure in Section 4.2 guarantees that such a cluster exists.
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on  on  on   1 × .7 × .3 = .21

on  on  off  1 × .7 × .7 = .49

on  off on   1 × .3 × .6 = .18

on  off off  1 × .3 × .4 = .12

off on  on   1 × .2 × .3 = .06

off on  off  1 × .2 × .7 = .14

off off on   1 × .8 × .6 = .48

off off off  1 × .8 × .4 = .32

φ ACE

 a   c   e   Initial Values
Values

Initial

etc.

on  on     1

on  off    1

off on     1

off off    1

φCE

c   e

CEACE

P(C | A)
P(E | C)

Figure 2. Initialization of cluster ACE and sepset CE.

between a cluster X and a neighboring cluster Y. A message pass from X

to Y forces the belief potential of the intervening sepset to be consistent

with �X (see Equation (1)), while preserving the invariance of Equation

(2). Global propagation causes each cluster to pass a message to each of

its neighbors; these message passes are ordered so that each message pass

will preserve the consistency introduced by previous message passes. When

global propagation is completed, each cluster-sepset pair is consistent, and

the join tree is locally consistent.

In Section 5.3.1, we describe a single message pass between two adjacent

clusters. Then in Section 5.3.2, we explain how global propagation achieves

local consistency by coordinating multiple message passes.

5.3.1. Single Message Pass Consider two adjacent clusters X and Y

with sepset R, and their associated belief potentials �X, �Y , and �R. A

message pass from X to Y occurs in two steps:

1. Projection. Assign a new table to R, saving the old table:

�oldR  � �R:
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�R  �
X
XnR

�X: (1)

2. Absorption. Assign a new table to Y, using both the old and the

new tables of R:

�Y  � �Y
�R

�old
R

: (2)

For any instantiation r of R, Jensen [23] shows that �old
R
(r) = 0 only

if �R(r) = 0. Whenever this occurs, set 0=0 = 0.

Equations (1) and (2) assign new potentials to R and Y; however, the

left-hand side of Equation (2) remains constant, thus preserving the invari-

ance of Equation (2):

 Q
i
�XiQ
j
�Sj

!
�old
R

�R

�Y

�old
Y

=

 Q
i
�XiQ
j
�Sj

!
�old
R

�R

�old
Y

�R
�
old

R

�old
Y

= P (U):

5.3.2. Coordinating Multiple Messages Given a join tree with n clus-

ters, the PPTC global propagation algorithm begins by choosing an ar-

bitary cluster X, and then performing 2(n�1) message passes, divided into
two phases. During the Collect-Evidence phase, each cluster passes

a message to its neighbor in X's direction, beginning with the clusters

farthest from X. During the Distribute-Evidence phase, each cluster

passes messages to its neighbors away fromX's direction, beginning with X

itself. The Collect-Evidence phase causes n� 1 messages to be passed,
and the Distribute-Evidence phase causes another n � 1 messages to

be passed.

Global propagation

1. Choose an arbitrary cluster X.

2. Unmark all clusters. Call Collect-Evidence(X).

3. Unmark all clusters. Call Distribute-Evidence(X).

COLLECT-EVIDENCE(X)

1. Mark X.

2. Call Collect-Evidence recursively on X's unmarked neighboring

clusters, if any.

3. Pass a message fromX to the cluster which invokedCollect-Evidence(X).
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ABD AD AE CE CEG

DEF EGH

EGDE

COLLECT-EVIDENCE DISTRIBUTE-EVIDENCE

ADE

1

8

3

6

5

9

41027

ACE

Figure 3. Message passing during global propagation.

DISTRIBUTE-EVIDENCE(X)

1. Mark X.

2. Pass a message from X to each of its unmarked neighboring clusters,

if any.

3. Call Distribute-Evidence recursively on X's unmarked neighbor-

ing clusters, if any.

The net result of this message passing is that each cluster passes its

information, as encoded in its belief potential, to all of the other clusters

in the join tree. Note that in this message-passing scheme, a cluster passes

a message to a neighbor only after it has received messages from all of its

other neighbors. This condition assures local consistency of the join tree

when global propagation is completed [2, 23].

5.3.3. Example Figure 3 illustrates the PPTC propagation step on

the join tree from Figure 1. Here, ACE is the starting cluster. During

the Collect-Evidence phase, messages are passed in ACE's direction,

beginning with the clusters ABD, DEF , and EGH ; these messages are

indicated by the solid arrows. During the Distribute-Evidence phase,

messages are passed away from cluster ACE, beginning with ACE; these

messages are indicated by the dashed arrows. The numbers indicate one

possible message passing order.

5.4. Marginalization

Once we have a consistent join tree, we can compute P (V ) for each

variable of interest V as follows:
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off  .180 + .020 + .150 + .150 = .500

on   .225 + .025 + .125 + .125 = .500  

 a                  P(a)

ABDφΣP(A) = 

BD

=

on   .225 + .125 + .180 + .150 = .680

off  .025 + .125 + .020 + .150 = .320

 d                  P(d)

ABDφΣP(D) = 

AB

=

φ ABD

ABDφ =

on  on  on     .225

on  on  off    .025

on  off on     .125

off on  on     .180

off on  off    .020

off off on     .150

off off off    .150

 a   b   d       (abd)

on  off off    .125

Figure 4. Marginalization example.

1. Identify a cluster (or sepset) X that contains V .12

2. Compute P (V ) by marginalizing �X according to Equation (3), re-

peated for convenience:

P (V ) =
X

XnfVg

�X:

Figure 4 illustrates an example of marginalization. The cluster potential

�ABD is from the consistent join tree of Figure 1. �ABD is marginalized

once to compute P (A), and then marginalized again to compute P (D).

12The parent cluster of FV is a convenient choice, but see Section 10.2 for a discussion

of more optimal choices.
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6. HANDLING EVIDENCE

We are now able to compute P (V ) for any variable V . In the following

sections, we show how to modify the procedures in Section 5 in order to

compute P (V j e) in the context of evidence e. First we introduce obser-

vations, the simplest notion of evidence, in Section 6.1. Then, in Sections

6.2{6.6, we show how to compute P (V j e) for sets of observations e. Fi-
nally, in Section 6.7, we extend the above procedures to handle more general

notions of evidence.

6.1. Observations And Likelihoods

Observations are the simplest forms of evidence. An observation is a

statement of the form V = v. Collections of observations may be denoted

by E = e, where e is the instantiation of the set of variables E. Observa-

tions are also referred to as hard evidence.

To encode observations in a form suitable for PPTC, we de�ne the notion

of a likelihood. Given a variable V , the likelihood of V , denoted as �V ,

is a potential over fV g; in other words, �V maps each value v to a real

number (see Section 2.2.1). We encode an arbitrary set of observations e

by using a likelihood �V for each variable V , as follows:

� If V 2 E|that is, if V is observed|then assign each �V (v) as follows:

�V (v) =

�
1; when v is the observed value of V

0; otherwise

� If V 62 E|that is, if the value of V is unknown|then assign �V (v) =

1 for each value v.

Note that when there are no observations, the likelihood of each variable

consists of all 1's. Table 1 illustrates how likelihoods are used to encode

the observations C = on and E = o� , where C and E are variables from

the join tree in Figure 1.

6.2. PPTC Inference With Observations

Figure 1 illustrates the overall control for PPTC with observations. We

modify the control from Figure 1 to incorporate observations, as follows:

� Initialization (Section 6.3). We modify initialization from Section 5.2

by introducing an additional step: for each variable V , we initialize

the likelihood �V .
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Variable �V (v)

V v = on v = o�

A 1 1

B 1 1

C 1 0

D 1 1

E 0 1

F 1 1

G 1 1

H 1 1

Table 1. Likelihood encoding of C = on; E = o� .

Join Tree Structure

Inconsistent Join Tree

Consistent Join Tree

Graphical
Transformation

P(V | )e

1.  Marginalization
2.  Normalization

Belief Network

Propagation

2.
1. Initialization

Observation entry

Figure 1. Block diagram of PPTC with observations.
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� Observation Entry (Section 6.4). Following initialization, we encode

and incorporate observations into the join tree; this step results in

further modi�cation of the join tree potentials.

� Normalization (Section 6.5). To compute P (V j e) for a variable of

interest V , we perform marginalization and an additional step called

normalization.

6.3. Initialization With Observations

We keep track of observations by maintaining a likelihood for each vari-

able. We initialize these likelihoods by adding step 2b to the initialization

procedure below:

1. For each cluster and sepset X, set each �X(x) to 1:

�X  � 1:

2. For each variable V :

(a) Assign to V a cluster X that contains FV; multiply �X by

P (V j �V ):

�X  � �XP (V j �V ):

(b) Set each likelihood element �V (v) to 1:

�V  � 1:

6.4. Observation Entry

Note that upon completion of initialization, the likelihoods encode no

observations. We incorporate each observation V = v by encoding the

observation as a likelihood, and then incorporating this likelihood into the

join tree, as follows:

1. Encode the observation V = v as a likelihood �new
V

.

2. Identify a cluster X that contains V .13

3. Update �X and �V :

�X  � �X�
new

V
: (1)

�V  � �new
V

:

13The parent cluster of FV is a convenient choice, but see Section 10.2 for a discussion

of more optimal choices.
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By entering a set of observations e as described above, we modify the

join tree potentials, so that all subsequent probabilities derived from the join

tree are probabilities of events that are conjoined with evidence e. In other

words, instead of computing P (X) and P (V ), we compute P (X; e) and

P (V; e), respectively. Note also that the join tree encodes P (U; e) instead

of P (U) (see Equation (2)).

6.5. Normalization

After the join tree is made consistent through global propagation, we

have, for each cluster (or sepset) X, �X = P (X; e), where e denotes the

observations incorporated into the join tree according to Section 6.4 [2].

When we marginalize a cluster potential �X into a variable V , we obtain

the probability of V and e:

P (V; e) =
X

XnfVg

�X:

Our goal is to compute P (V j e), the probability of V given e. We obtain

P (V j e) from P (V; e) by normalizing P (V; e) as follows:

P (V j e) =
P (V; e)

P (e)
=

P (V; e)P
V

P (V; e)
: (2)

The probability of the observations P (e) is often referred to as a normal-

izing constant.

6.6. Handling Dynamic Observations

Suppose that after computing P (V j e1), we wish to compute P (V j e2),
where e2 is a di�erent set of observations from e1. We could start anew by

building a join tree structure, initializing its potentials, entering the new

set of observations e2, performing global propagation, and marginalizing

and normalizing. However, this amount of additional work is not neces-

sary, because we can directly modify the join tree potentials in response to

changes in the set of observations. We can imagine a dynamic system in

which the consistent join tree is the steady state, and incoming observa-

tions disturb this steady state. In this subsection, we re�ne the control of

PPTC by adding procedures to handle such dynamic observations.

6.6.1. Overall Control Figure 2 shows the control for PPTC with

dynamic observations. Note that there are two dotted paths going from

consistent join tree to inconsistent join tree, one labeled global update and

the other global retraction. Depending on how we change the set of obser-

vations, we must perform one of these two procedures. A global update
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Inconsistent Join Tree

Consistent Join Tree

Join Tree Structure

Graphical
Transformation

P(V | )e

1.  Marginalization
2.  Normalization

Propagation

2.
1. Initialization

Observation entry

Update

Global Retraction

Global

Belief Network

Figure 2. Block diagram of PPTC with dynamic observations.

is used to incorporate new observations, while a global retraction is re-

quired for modifying or retracting previous observations. Global retraction

requires reinitialization of the join tree potentials, because undoing an ob-

servation involves restoring table elements that have been zeroed out by

previous observations. To describe these procedures more precisely, we �rst

establish some basic notions of changes in observations.

6.6.2. Updates And Retractions To describe changes in observations,

we establish the notion of an observed state. The observed state of a

variable V is its observed value v, if V is observed; otherwise, the observed

state of V is unknown, and we say that V is unobserved.

Suppose we change a set of observations e1 to a di�erent set of obser-

vations e2. Then the observed state of each variable V undergoes one of

three changes:

� No change. If V is unobserved in e1, it remains unobserved in e2. If

V = v in e1, then V = v in e2.
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� Update. V is unobserved in e1, and V = v in e2 for some value v.

� Retraction. V = v1 in e1. In e2, V is either unobserved, or V = v2,

where v2 6= v1.

We can now state how we should handle changes in observations. Sup-

pose we have a consistent join tree that incorporates the set of observations

e1, and we wish to compute P (V j e2) for variables of interest V , where
e2 is di�erent from e1. We incorporate e2 into the join tree by performing

one of the following:

� Global update (Section 6.6.3). We perform a global update if, for each

variable V , the observed state of V is unchanged or updated from e1
to e2.

� Global retraction (Section 6.6.4). We perform a global retraction if,

for some variable V , the observed state of V is retracted.

6.6.3. Global Update A global update executes an observation en-

try (see Section 6.4 above) for each variable V whose observed state is

updated to V = v. Global updating destroys the consistency of the join

tree; we restore consistency by performing a global propagation. However,

if the belief potential of only one cluster X is modi�ed through global

updating, then it is su�cient to unmark all clusters and call Distribute-

Evidence(X).

6.6.4. Global Retraction We perform a global retraction as fol-

lows:

1. For each variable V , update the likelihood �V to reect any changes

in V 's observed state.

2. Reinitialize the join tree tables according to Section 6.3.

3. Incorporate each observation in e2 according to Section 6.4.

We cannot handle retractions in the same way that we handle updates,

because in a retraction, we are trying to recover join tree potential elements

that have been zeroed out by previous observations. Our only recourse,

therefore, is to reinitialize the join tree tables and then enter the new set

of observations.14

14Observations can be introduced without zeroing out the cluster tables by using alter-

native propagation methods|examples include \fast retraction" [24, 25] and \cautious

propagation" [26]. Applications of these methods include conict analysis, sensitivity

analysis, and processing counterfactual queries. Compared to PPTC propagation, these

alternative methods require more storage and computation, and generally do not handle

all possible retractions of observations.
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6.7. More Sophisticated Notions Of Evidence

Observations are the simplest and most common type of evidence en-

countered. However, we can use likelihoods to represent more sophisticated

types of evidence. We introduce these more general notions of evidence in

Sections 6.7.1. Then we describe PPTC with evidence in a manner parallel

to our description of PPTC with observations.

6.7.1. Evidence And Likelihoods In general, a likelihood �V on a

variable V can be interpreted as assigning a relative weight �V (v) to each

value v, according to how likely is the case that V = v. When �V (v) is the

same for all values v, we say that �V encodes no information on variable

V .15

The following terminology is commonly used to classify di�erent types

of evidence on a variable V , according to the form that the likelihood �V
takes:

� Virtual Evidence. Virtual evidence, or soft evidence, is the most
general type of evidence. Virtual evidence on a variable V is repre-

sented by a likelihood �V where each �V (v) is a real number in [0; 1]

[4].

� Finding. A �nding is represented by a likelihood �V where each

�V (v) is a 0 or a 1. Essentially, a �nding declares the zeroed values to

be impossible. Naturally, a �nding should allow at least one possible

value.

� Observation. An observation is a special case of a �nding where

�V (v) = 1 for exactly one value v. An observation declares, with

certainty, that V = v.

6.7.2. Evidence Entry Upon completion of initialization, no evidence

is encoded by the likelihoods or incorporated into the join tree. We incor-

porate each piece of evidence on a variable V by executing the following

procedure:

1. Encode the evidence on variable V as a likelihood �new
V

.

2. Identify a cluster X that contains V .16

3. Update �X and �V :

�X  � �X
�new
V

�V
: (3)

�V  � �new
V

:

Note that Equation (1) is a specialized version of Equation (3) above.

15Typically, we encode this no-information state with a vector of 1's.
16The parent cluster of FV is a convenient choice, but see Section 10.2 for a discussion

of more optimal choices.
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6.7.3. Handling Dynamic Evidence We can easily extend PPTCwith

dynamic observations (Section 6.6) to handle dynamic evidence. In dis-

cussing changes of evidence, we generalize the notion of observed state to

the notion of evidence state: the evidence state of a variable V is its like-

lihood �V . We extend the notation e to represent the combined evidence

state of all variables, and we refer to e as an evidence con�guration.

Consider a change in evidence con�guration from e1 to e2. For each

variable V , denote its evidence state in e1 as �V , and its evidence state

in e2 as �new
V

. We classify the change from �V to �new
V

as one of the

following:

� No change. �V = �new
V

.

� Update. For every value v, �V (v) = 0 implies �new
V

(v) = 0.

� Retraction. For some value v, �V (v) = 0 and �new
V

(v) 6= 0.

We can now state how we should handle changes in evidence. Suppose

we have a consistent join tree that incorporates the evidence con�guration

e1, and we wish to compute P (V j e2) for variables of interest V , where
e2 is di�erent from e1. We incorporate e2 into the join tree by performing

one of the following:

� Global update. We perform a global update if, for each variable V ,

the evidence state of V is unchanged or updated from e1 to e2.

� Global retraction. We perform a global retraction if, for some variable

V , the evidence state of V is retracted.

We perform a global update by executing an evidence entry (Section

6.7.2) for each variable V whose evidence state is updated from �V to

�new
V

. We perform a global retraction as follows:

1. For each variable V , update the likelihood �V to reect any changes

in V 's observed state.

2. Reinitialize the join tree tables according to Section 6.3.

3. For each variable V where �V (v) 6= 1 for some v, incorporate �V
according to Section 6.7.2.



31

7. PPTC OPTIMIZATIONS

In this section, we discuss some optimizations to PPTC that we im-

plemented, optimizations that can signi�cantly reduce the computation

required for inference in certain situations. We assume that the reader has

mastered the material in the previous sections and has a basic understand-

ing of computer algorithms.

7.1. Query-Driven Message Passing

In this section, we summarize a modi�ed version of PPTC called query-

driven PPTC. Unlike the version of PPTC presented in previous sections,

query-driven PPTC does not establish and maintain consistency through-

out the join tree; instead, it passes messages only in response to individual

variable queries P (V j e). This optimization is useful in diagnostic ap-

plications: for example, where the user constructs a belief network with

many variables, and then queries only a few variables.

Query-driven PPTC exploits the following observation: to marginal-

ize the cluster potential �X to obtain P (V; e), we need only to ensure

that �X = P (X; e). A call to Collect-Evidence(X) would ensure this

condition [23]. However, query-driven PPTC uses a modi�ed version of

Collect-Evidence(X) that recurses on a neighbor Y only if Y has not

previously passed a message to X. Query-driven PPTC keeps track of the

messages that have been passed by maintaining a set of Boolean quantities

called message ags. Each message ag is denoted asMX(Y) and is in-

terpreted as follows: the message agMX(Y) is TRUE if a message pass

from Y to X would leave �X unchanged; otherwise,MX(Y) is FALSE.

We use the notationMX(Y) to emphasize that the message ags can be

stored locally: given a cluster X, we can store the message agsMX(Y),

for all neighbors Y, as part of the local information on X.

A message ag MX(Y) is set to TRUE during a message pass from

X to Y. As additional variable queries are processed, additional message

ags are set to TRUE. Message ags, however, can be set to FALSE, or

invalidated, by dynamic evidence:

� Evidence update. Suppose a cluster X incorporates an evidence up-

date according to the procedure in Section 6.7.2. Then all message

passes in the direction away from cluster X are invalidated; these

message passes need to be recomputed if a subsequent variable query

requests them.

� Evidence retraction. To process changes in evidence that involve re-

traction, we employ the familiar procedure of reinitializing the join
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tree tables and entering the evidence anew. All message passes are

invalidated.

7.2. Inference On Forests Of Join Trees

If the initial belief network is not fully connected, then the procedures in

Section 4 yield a join tree with empty sepsets. We can optimize PPTC by

disallowing these empty sepsets and performing inference on a forest of join

trees. By maintaining each join tree separately, we avoid the computational

cost of passing messages that serve only to rescale the cluster potentials.

In maintaining separate join trees, we must also, in general, maintain

separate normalization constants for each join tree [27]. First, we note that

the normalization constant P (e) for a join tree that incorporates evidence

e can be computed, using any cluster X where �X = P (X; e), as follows:

P (e) =
X
x

P (X; e) =
X
x

�X:

Therefore, P (e) can be computed by calling Collect-Evidence on some

clusterX, and then marginalizing �X as described above. But this marginal-

ization e�ectively occurs during the normalization phase of a variable query,

as seen in the denominator of Equation (2).

Now let's consider a forest of join trees T1, . . . , Tn with corresponding

normalization constants P (e1), . . . , P (en). Since the disconnected join

trees are independent of one another, the probability of evidence P (e) for

the entire join forest can be calculated as follows:

P (e) = P (e1 : : : en) =

nY
i=1

P (ei):

Suppose we query a variable V in T1. We choose a clusterX that contains

V , call Collect-Evidence(X), and obtain �X = P (V; e1). But if we

want to compute P (V; e), we must also compute the other normalization

constants:

P (V; e) = P (V; e1 : : : en) = P (V; e1 j e2 : : :en)P (e2 : : :en)

= P (V; e1)P (e2 : : : en) = P (V; e1)
Q
i6=1

P (ei);

where each normalization constant P (ei) is computed by marginalizing a

cluster in the join tree Ti.
However, if we are interested only in computing P (V j e), we do not need

the other normalization constants:

P (V j e) =
P (V; e)

P (e)
=
P (V; e1)P (e2 : : :en)

P (e1 j e2 : : :en)
=
P (V; e1)

P (e1)
:
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j1

j0

j2

k0l0 k1l1k1l0k0l1

JKL

Figure 1. Evidence shrinking on a single cluster. Cluster JKL is shrunk by the

�nding J 6= j1 and the observation L = l1, reducing its e�ective size from 12 to

4. The unshaded cells represent the cluster elements that remain active after the

shrinking process.

7.3. Evidence Shrinking

Evidence shrinking is an optimization of PPTC that uses �ndings (and

observations) to reduce e�ective cluster sizes. As an example, let us focus

on a particular cluster JKL in a join tree that has just processed the

�ndings J 6= j1 and L = l1 (Figure 1). How should this evidence a�ect

cluster JKL? Mathematically, we would multiply all of the shaded cells in

Figure 1 by zero. But in practice, we do not want to do this, because the

0's will not a�ect the results of subsequent message passes involving JKL.

Both the introduction of these 0's and their subsequent propagation would

involve unnecessary, and often, costly computation.

Evidence shrinking avoids this unnecessary processing of 0s by restruc-

turing the cluster JKL so that only the unshaded cells|the cells that would

not have been multipled by 0|are involved in further computation. This

restructuring process can be performed in time proportional to the reduced

cluster size. Further details on this restructuring are discussed in Section

8.2.

Two properties of evidence shrinking contribute to its potential for sig-

ni�cant computational savings. First, the 0's in a likelihood �V a�ects

all clusters containing the variable V . Second, if we restrict our evidence

to observations, as is the case for many existing implementations, then

each observation on a variable V e�ectively reduces the size of each cluster

(and sepset) containing V by an entire dimension. These two properties of

evidence shrinking are illustrated in Figure 2.
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Figure 2. Evidence shrinking on a join tree. Observation C = on reduces the

matrices of clusters containing C by a dimension. Similarly, observation E = o�

reduces the matrices of clusters containing E by a dimension. Note that the

sepset CE becomes empty; it passes a message composed of a single number

P (C = on;E = o� j eT1), where eT1 is the evidence in the subtree T1 from which

the message through CE originates.
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Figure 1. Interaction between cluster and sepset arrays. X denotes a cluster

ADE and S denotes a neighboring sepset AE. The shaded cells denote potential

elements; next to each potential element is the instantiation of variables that

indexes it. Each cluster element �X(x) has a corresponding sepset element �S(s)

(and �oldS (s)), where s is consistent with x; this correspondence is illustrated by

the dashed arrows.

8. ARRAY-LEVEL TECHNIQUES

\The devil is in the details," it is often said. This is de�nitely the case

when implementing PPTC. In this section, we address some array-level

issues that are not normally discussed in the probabilistic literature; yet,

they must be addressed by any programmer who wishes to build an e�cient

implementation of PPTC. We present some techniques that, through addi-

tional precomputation prior to inference, can reduce the overhead during

message passing. Additional array-level techniques are presented in Section

10.1.

8.1. Cluster-Sepset Mappings

In this section we describe an auxiliary data structure, called a cluster-

sepset mapping, that is crucial to an e�cient implementation of PPTC

inference. Recall that a message pass consists of two steps: projection and

absorption (see Section 5.3.1). Both projection and absorption depend on

a precise interaction between a cluster potential and a sepset potential.

These potentials are typically implemented as arrays, and the interaction

between these arrays is illustrated in Figure 1.
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Figure 2. Example of a cluster-sepset mapping. For each cluster instantiation x,

the cluster-sepset mapping �X;S stores the array index of the consistent sepset

instantiation s. The solid arrows illustrate the resulting correspondence between

between cluster elements �X(x) and sepset elements �S(s). Both projection and

absorption use the same cluster-sepset mapping; the only di�erence is in the

actual arithmetic performed.

In both projection and absorption, the key step is to locate, for each clus-

ter element �X(x), the corresponding sepset element �S(s) (and �old
S
(s)),

where s is consistent with x. But in order to locate �S(s), we need not just

the instantiation s, but the array index of s. Computing the array index of

s requires a number of operations involving x and the array dimensions of

X and S. For a given message pass, this computation needs to be applied

to each cluster instantiation x. Furthermore, these array indices must be

recomputed during the next message pass involving X and S, unless they

are somehow stored for future retrieval.

We avoid unnecessary recomputation of these array indices by precom-

puting them while building the join tree. Speci�cally, for each cluster X

and neighboring sepset S, we compute an array �X;S over the instantia-

tions x, such that each array element �X;S(x) stores the array index of the

instantiation s that is consistent with x. We call �X;S a cluster-sepset

mapping. Figure 2 illustrates an example of a cluster-sepset mapping.

A cluster-sepset mapping �X;S can be computed in time proportional to

the number of instantiations of X. Cluster-sepset mappings signi�cantly

reduce the running time of inference because they enable corresponding

elements to be located using simple array lookups, not repeated array index

calculations.
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Figure 3. Zeroing of cluster elements by the observation D = o� .

8.2. Evidence Shrinking

Suppose we incorporate the observation D = o� into the cluster X from

Figure 2, using the observation entry procedure in Section 6.4. This would

cause certain elements of X to be zeroed, as illustrated in Figure 3. These

0's will continue to be visited during subsequent message passes involving

X, even though they will not a�ect the results of any computations.

Evidence shrinking (Section 7.3) seeks to avoid these extraneous and

costly element accesses. The computational gains of evidence shrinking

hinge on restructuring the clusters so that only the active elements|the

elements that are not zeroed by the evidence|are visited during subsequent

message passes. We can implement this restructuring by maintaining, for

each cluster, an auxiliary array of indices called a shrink mapping. A

shrink mapping on a cluster X is an array �X that points to the active

elements of �X. The e�ective size of the shrink mapping is the number of

active elements in X. During projection or absorption, the active elements

of X are accessed by visiting the elements of the shrink mapping. The

shrink mapping amounts to an additional level of indirection. Figure 4

illustrates an example of a shrink mapping.

Shrink mappings can be updated in time proportional to the reduced

cluster size. One programming solution involves using a procedure that

generates all instantiations of the cluster variables and their element indices

by recursing over the values of each variable. We would implement evidence

shrinking by modifying this procedure to recurse only over the possible

values of the variables in that cluster.
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Figure 4. Shrink mapping example. Cluster X is shrunk by the observation

D = o� . The shrink mapping �X points to the cluster elements consistent with

this observation. This reduces the e�ective cluster size, and with it, the running

time of any message passes involving that cluster.
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9. CONCLUSION

PPTC is one of the most recognized algorithms for exact probabilistic in-

ference in belief networks. In this document, we provided a self-contained,

procedural guide to understanding and implementing PPTC. We synthe-

sized methods that are scattered throughout the literature, and we articu-

lated these methods in algorithmic form. In addition, we discussed undocu-

mented, lower-level issues that are vital to producing a robust and e�cient

implementation of PPTC. We hope that this document makes probabilis-

tic inference more accessible to the increasing number of researchers and

developers who are making use of this technology.
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10. ADDITIONAL OPTIMIZATIONS

In this appendix, we outline some additional optimization opportunities

for PPTC and provide the relevant references.

10.1. Zero compression

Zero compression is an extension of PPTC that can save signi�cant

computation under certain circumstances. Here, we summarize the ba-

sic ideas of zero compression, but the interested reader can �nd a more

thorough treatment in the original paper by Jensen and Andersen [28].

Zero compression is designed to take advantage of conditional probability

tables P (V j �V ) whose row entries:

� contain 0's, implying some logical or functional relationship between

variable V and its parents �V ;

� contain extreme probabilities that are close to 0.

These situations occur often in practice; for example, in engineering ap-

plications that model small failure probabilities.
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10.1.1. Annihilating zeros During initialization, each conditional prob-

ability P (V j �V ) is multipled into some cluster potential �X. Let us �rst

focus on a particular conditional probability distribution P (V j �V ). The

0's in P (V j �V ) cause the corresponding elements in �X to be zero as

well. After performing global propagation, some of these 0's will propagate

throughout the entire join tree.

Suppose now, that the user enters evidence and performs another global

propagation. During this propagation, computational resources are ex-

pended adding and multiplying potential elements by 0. This expenditure

becomes more wasteful as the number of 0s increases. Zero compression,

as presented in [28], addresses this wasteful propagation as follows:

1. Build a join tree. Initialize the cluster potentials with the conditional

probabilities P (V j �V ).

2. Perform a global propagation|a Collect-Evidence followed by a

Distribute-Evidence.

3. For each cluster X, visit each element �X(x), identifying and anni-

hilating the 0 elements. The annihilation step should restructure the

internals of X so that subsequent messages passes involving X do not

visit these 0 elements.

10.1.2. Annihilating \small" elements Zero compression can speed

up exact inference in a join tree because its e�ective cluster sizes are re-

duced. We can reduce the e�ective cluster sizes further by annihilating

elements with probabilities close to zero; this elimination of \small" ele-

ments results in a join tree that performs approximate inference. Details

on how to select appropriate annihilation thresholds for each cluster are

contained in [28]. Note that unlike the strict zero-compression scheme in

Section 10.1.1 above, annihiliating small elements destroys the consistency

of the join tree. This loss of consistency can be remedied by a global prop-

agation; in the case of query-driven PPTC, this loss of consistency can be

properly accounted for by invalidating the appropriate message ags.

The above approximation scheme can result in signi�cant computational

gains, depending on the topology and quanti�cation of the original belief

network and the amount of error tolerated by the user. In some scenarios,

the total number of elements not annihilated may be orders of magnitude

smaller than the original number of elements. For example, [28] discusses

some experiments on a real-world belief network, in which the inference

time is reduced by 96{99 percent for a total removed probability mass of

0.1 percent.

10.1.3. Dynamic zero compression With appropriate data structur-

ing, a form of zero compression that dynamically compresses cluster matri-

ces during inference can be implemented. When a cluster element evaluates
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to 0 or a su�ciently small number, that element would be annihilated im-

mediately.

10.2. Dynamic restructuring of cluster trees

Recall that for marginalization and evidence entry, we are asked to

\choose a cluster X that contains the variable V ." In each of these sit-

uations, we conveniently chose the parent cluster of V . However, by choos-

ing these clusters more judiciously, we can often, for a given query, reduce

the number of message passes, or choose message passes involving smaller

clusters.17 The range of message-passing options expands further if we

allow the possibility of dynamically restructuring cluster trees by translo-

cating sepsets in a manner that preserves the join tree property [27].

10.3. Optimizations at the arithmetic-expression level

The join tree is a convenient, intermediate structure for performing in-

ference on multiply-connected belief networks. Its construction is validated

by fundamental results from the theory of conditional independence [12],

and the local message-passing and marginalization strategies are both in-

tuitive and mathematically well-founded. However, this formulation of the

inference problem often masks additional opportunities for optimization.

D'Ambrosio exposes some of these opportunities by rede�ning the inference

task at a \smaller grain size": optimizing the computation of individual

terms, as opposed to individual marginal distributions [29]. Given this for-

mulation, the challenge is to construct optimal arithmetic expressions for

speci�c queries, taking advantage of conditional independencies and partial

results cached from previous computations. Li and D'Ambrosio present one

approach in their recent improvement of the SPI algorithm [10]. Darwiche

and Provan also address probabilistic inference at the arithmetic-expression

level [30]; their approach generates and optimizes expression dags o�-line,

then evaluates these dags on-line in response to dynamic evidence. They

describe a method, based on PPTC, for generating such expressions; these

expressions can be used to answer queries with respect to evidence about a

prede�ned set of variables. The size of a generated expression, using their

method, is proportional to the total size of the cluster and sepset tables in

the join tree. More importantly, the method they use for updating these

expressions associates validity ags with individual arithmetic operations,

thus leading to optimizations that are more re�ned than those achieved by

the message ags, as suggested in Section 7.1.

17Note that variables can be viewed as sepsets: a cluster incorporates evidence on V

by \absorbing" from V , and a probability distribution P (V ) is computed by \projecting"

from an appropriate cluster.
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