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Abstract

We present a computational approach to predict-
ing operons in the genomes of prokaryotic organ-
isms. Our approach uses machine learning meth-
ods to induce predictive models for this task from
a rich variety of data types including sequence
data, gene expression data, and functional anno-
tations associated with genes. We use multiple
learned models that individually predict promot-
ers, terminators and operons themselves. A key
part of our approach is a dynamic programming
method that uses our predictions to map every
known and putative gene in a given genome into
its most probable operon. We evaluate our ap-
proach using data from the E. coli K-12 genome.

Introduction

The availability of complete genomic sequences and mi-
croarray expression data calls for new computational
methods for uncovering the regulatory apparatus of
cells. We have begun a research project at the Univer-
sity of Wisconsin that is developing machine learning
approaches for predicting new regulatory elements, such
as transcription-control signals and operons, and regu-
latory relationships among genes using a rich variety of
data sources, including genomic sequence data and ex-
pression data. In this paper we present an approach to
predicting previously unknown operons in prokaryotic
organisms. Our approach first involves learning a model
that is able to estimate the probability that an arbitrary
sequence of genes constitutes an operon. Given such a
learned model, the second component of our approach is
a dynamic programming method that is able to assign
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every gene in the given genome to its most probable
operon. With these two components together we are
able to predict an operon map for an entire genome.
We evaluate our approach using data from the E. coli
K-12 genome.

Several other research groups (Overbeek et al. 1999;
Tamames et al. 1997) have recently addressed the task
of predicting functionally coupled genes by identifying
clusters of genes that are conserved across different
genomes. Although the task we consider is somewhat
different (we are interested in sequences of genes that
are transcribed together, not just functionally related),
we consider these methods to be complementary to ours
in that they are based on cross-genome information,
whereas our approach is based on information present
within a single genome. Functional annotation associ-
ated with genes and inter-gene spacing have also been
used to predict operons (Blattner et al. 1997). Our
approach differs from this work in that it uses (i) other
features in addition to these two, (ii) a machine learning
method to determine how much to weight each feature
in its predictions, and (iii) a dynamic programming al-
gorithm to produce a consistent operon map.

Other research groups have also used dynamic pro-
gramming to find a consistent interpretation of the pre-
dictions made by learned models (Snyder & Stormo
1993; Xu, Mural, & Uberbacher 1994). These previ-
ous efforts have addressed the task of assembling pre-
dicted exons into gene models. In contrast, our work
formulates a dynamic programming approach to assign-
ing genes to their most likely operons.

One notable aspect of our approach is that it ex-
ploits a rich variety of data types that provide useful
evidence for the task of predicting operons. The data
types that our learned models consider include microar-
ray expression data, DNA sequence features, spatial
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Figure 1: Our multi-level learning approach to discovering
gene regulatory mechanisms. The tasks at the highest level
represent those that are motivating our research. The task
at the middle level represents the main focus of this paper.
Those at the lowest level represent learning tasks that we
address in order to make better predictions for the middle
level task. The arrows represent the flow of predictions.

features (e.g., the relative positions of genes), and func-
tional annotations for genes. As our experiments in-
dicate, all of these data types provide some predictive
value for our task. There has been much recent interest
in uncovering the regulatory interactions among genes
using microarray expression data (Eisen et al. 1998;
Brown et al. 1999; Friedman et al. 2000). These
approaches, unlike our method, have not incorporated
other types of data as evidence.

Another compelling aspect of our approach is that
it involves a multiple machine learning tasks operating
at different levels of detail. As stated previously, the
main task that we consider here is predicting which se-
quences of genes constitute operons. This task does
not represent the overall goal of our work, however,
but only an intermediate step in being able to attack
such problems as inferring networks of regulatory in-
teractions, and discovering new subclasses of sequences
involved in controlling gene transcription. Moreover,
we hypothesize that the operon prediction task can be
improved by first identifying certain control sequences,
such as promoters and terminators, in the genome. The
recognition of these sequences is itself not a well un-
derstood task, and thus we also address the learning
subtasks of constructing predictive models of these se-
quences. Figure 1 illustrates the relationships among
the learning tasks motivating our work, and the sub-
tasks that we address here. The predictions made
by a model learned at one level are passed to one or
more learning components at the next higher level to
be used as input features. This idea of decompos-
ing a given learning task into several, simpler subtasks
has been around for some time (Fu & Buchanan 1985;
Shapiro 1987), and has been applied more recently
in robotics and simulated robotic systems (O’Sullivan
1998; Stone 1998).

The organization of the rest of the paper is as follows.
In the next section, we describe in more detail the task
of recognizing operons and discuss the available data.
The two subsequent sections review and elaborate on
our recent work (Craven et al. 2000) in learning mod-

els that can be used to score candidate operons. The
first of these sections describes the machine learning
approach we use, and the second describes the prob-
lem representation. We then present the main contri-
bution of this paper, which is a dynamic programming
approach to making whole-genome operon predictions
using our learned operon models. The penultimate sec-
tion presents a detailed empirical evaluation of this ap-
proach, and the final section provides discussion and
conclusions.

Problem Domain

Currently, our primary task is to predict operons in the
E. coli genome, although the approach we are develop-
ing is applicable to other prokaryotic organisms. The
genome of E. coli, which was sequenced at the Uni-
versity of Wisconsin (Blattner et al. 1997), consists of
a single circular chromosome of double-stranded DNA.
The chromosome of the particular strain of E. coli (K-
12) in our data set has 4,639,221 base pairs. E. coli has
approximately 4,400 genes, which are located on both
strands.

The definition of operon that we use throughout the
paper is a sequence of one or more genes that, under
some conditions, are transcribed as a unit. There are
several aspects of this definition that are important to
note. First, genes that are transcribed individually are
included in this definition; we refer to these special cases
as singleton operons. Second, our definition treats as
multiple operons those cases (such as rpsU-dnaG-rpoD
in E. coli) in which multiple promoters and/or termi-
nators result in different subsequences of a larger gene
sequence being transcribed under different conditions.
We consider each of the distinct gene sequences that
can be transcribed as a unit to be an operon.

Figure 2 illustrates the concept of an operon. The
transcription process is initiated when RNA polymerase
binds to a promoter before the first gene in an operon.
The RNA polymerase then moves along the DNA using
it as a template to produce an RNA molecule. When
the RNA polymerase gets past the last gene in the
operon, it encounters a special sequence called a ter-
minator that signals it to release the DNA and cease
transcription.

The data that we have available for learning a model
of operons, some of which come from the RegulonDB
(Salgado et al. 2000), include the following:

• complete DNA sequence of the genome,

• beginning and ending positions of 3,033 genes and
1,372 putative genes,

• positions and sequences of 438 known promoters, and
289 known terminators (147 rho-dependent and 142
rho-independent),

• functional annotation codes characterizing 1,668
genes; these are taken from a three-level, 123-leaf hi-
erarchy (Riley 1996),
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Figure 2: The concept of an operon. The curved line rep-
resents part of the E. coli chromosome and the rectangu-
lar boxes on it represent genes. An operon is a sequence of
genes, such as [g2, g3, g4] that is transcribed as a unit. Tran-
scription is controlled via an upstream sequence, called a
promoter, and a downstream sequence, called a terminator.
A promoter enables the molecule performing transcription
to bind to the DNA, and a terminator signals the molecule
to detach from the DNA. Each gene is transcribed in a par-
ticular direction, determined by which of the two strands it
is located. The arrows in the figure indicate the direction of
transcription for each gene.

• gene expression data characterizing the activity lev-
els of the 4,097 genes and putative genes across 39
experiments,

• 365 known operons.

It is estimated (F. Blattner, personal communication)
that there are several hundred undiscovered operons in
E. coli. Our immediate goal is to predict these operons
using a model learned from the data described above.

An interesting aspect of our learning task is that we
do not have a set of known non-operons to use as neg-
ative examples. The nature of scientific inquiry is such
that several hundred operons have been identified in
E. coli, but little attention has been focused on identi-
fying sequences of genes that do not constitute operons.

We are able, however, to assemble a set of 6633 pu-
tative non-operons by exploiting the fact that operons
rarely overlap with each other. Given this rule, we gen-
erate a set of negative examples by enumerating every
sequence of consecutive genes, from the same strand,
that overlaps, but does not coincide with a known
operon. We know that some of these generated non-
operons are actually true operons, because operons do
overlap in some cases. However, the probability of this
is small and our learning algorithms are robust in the
presence of noisy data.

Machine Learning Approach

In recent work (Craven et al. 2000), we have applied
several machine learning algorithms to the task of dis-
tinguishing operons from non-operons. In this section
we review the application of one particular algorithm,
naive Bayes, to this task.

Given a candidate operon – any consecutive sequence
of genes on the same strand – we would like to estimate
the probability that the candidate is an operon given
the available data. Bayes’ rule tells us we can determine
this as follows:

Pr(O|D) =
Pr(D|O) Pr(O)

Pr(D)
(1)

where O is a random variable indicating whether or not
a candidate is an actual operon, and D represents the
data we have available to make our determination.

The heart of the task is to estimate the likelihood
of the data of interest given the two possible outcomes
for O. Using naive Bayes, we make the assumption that
our features are independent of one another given the
class and therefore make the following approximation:

Pr(D|O) ≈
∏

i

Pr(Di|O) (2)

where Di is the ith feature.
All of our features provide numeric characterizations

of candidate operons. To represent the conditional dis-
tribution of each feature given the class, we use a his-
togram approach. The first step of this procedure is
to choose the “cutpoints” that define the bins. This
procedure selects the bin boundaries such that each bin
contains about 150 training examples (pooling positive
and negative examples). Should some bin have no ex-
amples of one class, we assume 0.5 examples of that
class fell into that bin. This smoothing method avoids
zero-valued probabilities which cause Bayes’ rule to pro-
duce zero as its estimated probability. We have also
tried using kernel density estimates to represent our
conditional distributions, but we found that the predic-
tive accuracy of this method was no better than our
histogram approach.

Problem Representation

In this section we describe the features that our learn-
ing method uses to assess the probability that a given
candidate actually is an operon.

Length and Spacing Features

We use several features that relate to the size and inter-
genic spacing of operons and non-operons:
• Operon size: The number of genes in the candidate

operon.

• Within-operon spacing: The mean and the maximum
spacing (# DNA base pairs) between the genes con-
tained in a candidate operon, e.g., the distances be-
tween g2 and g3 and between g3 and g4 in Figure 2.
Since the genes in an operon are transcribed to-
gether, there might be constraints on inter-gene spac-
ing. This feature is not defined for singleton operons
(operons consisting of one gene).

• Distance to neighboring genes: The distances to the
preceding (g1 in Figure 2) and following (g5 in Fig-
ure 2) genes. Notice that these genes are not part of
the candidate operon.

• Directionality of the neighboring genes: These are two
Boolean-valued features, indicating whether or not
the directionality of the preceding and following genes
individually match the directionality of the genes
within the candidate operon. Recall that all the genes
within an operon are transcribed in the same direc-
tion.



We refer to these last two features collectively as our
neighboring genes features.

Functional Annotation Features

Since the genes in an operon typically act together to
perform some common function, we expect the func-
tions of the individual genes to be related to each other.
The functions of many genes in E. coli have been de-
scribed using a three-level hierarchy (Riley 1996). The
levels of this hierarchy represent broad, intermediate,
and detailed functions. For example one path from the
root to a leaf in this hierarchy is : root→metabolism of
small molecules→carbon energy metabolism→anaerobic
respiration.

We measure the “functional distance” between two
genes in terms of how deeply into this hierarchy they
match: genes with completely identical functions have
a distance of 0, genes with identical broad and inter-
mediate functions only have a distance of 2, genes with
identical broad functions only have a distance of 4, and
genes without common function have a distance of 6.
In cases where the function is unknown for one or both
genes at a given level, we split the difference: e.g., if
two genes share a broad function but the intermediate
function of one is unknown, the distance is 5.

Given the distance measure between the annotations
for pairs of genes, we use three features to measure the
functional homogeneity of a candidate operon. Col-
lectively, we refer to these as the functional annotation
features. The first feature represents the mean pair-
wise functional distance for genes within the candidate
operon. This feature is computed simply by comput-
ing the functional distance between each pair of genes
in the candidate operon and then computing the mean
of these pairwise distances. We also consider the func-
tional distance between the gene preceding the candi-
date and genes within the candidate. Specifically, we
compute the mean of the pairwise distances between
the preceding gene and each of the genes within the
operon. The third feature is analogous except that it
uses the first gene after the candidate operon.

Transcription Signal Features

Another type of evidence associated with operons are
transcription control signals, such as promoters and ter-
minators. Thus, to decide if a given sequence of genes
represents an operon or not, we would like to look up-
stream from the first gene in the sequence to see if we
find a promoter, and to look downstream from the last
gene to see if we find a terminator. The task of recog-
nizing promoters and terminators, however, is not eas-
ily accomplished. Although there are known examples
of both types of sequences, the sufficient and neces-
sary conditions for them are not known. Thus, to use
promoters and terminators as evidence for operons, we
first need some method that can be used to predictively
identify them.

Our approach is to use the known examples of these
two types of signals to learn statistical models for

predicting them. Specifically, we induce interpolated
Markov models (IMMs) (Jelinek & Mercer 1980) that
characterize the known promoters and terminators.
IMMs have been used previously for modeling biological
sequences (Salzberg et al. 1998), although the partic-
ular task here is somewhat different. An interpolated
Markov model consists of a set of Markov models of
different orders. An IMM makes a prediction in a given
case by interpolating among the statistics represented
in the models of different order.

We learn three separate IMMs, each of which is
trained to recognize a particular type of signal: pro-
moter, rho-dependent terminator, or rho-independent
terminator. Our training set for promoters consists of
438 sequences, each of which is 81 bases long and con-
tains a promoter in it. Since these promoter sequences
are aligned to a common reference point (the first base
transcribed), we can obtain statistics about the likeli-
hood of a particular base at a particular position in a
promoter. The terminator data set is similar, except
that it consists of 289 sequences of length 58.

Our IMMs represent the probability of seeing each
of the possible DNA bases at each position in the given
signal. To assess the probability that a given sequence S
is a promoter (or terminator), we calculate the product
of the IMM’s estimated probability of seeing each base
in the sequence.

Pr(S|model) =

n
∏

i=1

IMM(Si) (3)

Here Si is the base at the ith position in sequence S
and n is the length of the sequence we are evaluating.

To assess the probability of seeing a given base in
a particular position, our IMM interpolates between a
0th-order Markov model and a 1st-order Markov model.

IMM(Si) =
λi−1,1(Si−1) Pri,1(Si) + λi,0 Pri,0(Si)

λi−1,1(Si−1) + λi,0
(4)

The notation Pri,1(Si) represents the probability of see-
ing base Si at the ith position under a 1st-order model,
and Pri,0(Si) represents the same under a 0th-order
model. Whereas the 0th-order model simply represents
the marginal probabilities of seeing each base at the
given position, the 1st-order model represents the con-
ditional probabilities of seeing each base given the pre-
vious base in the sequence Si−1.

Pr
i,0

(Si) = Pr
i

(Si) Pr
i,1

(Si) = Pr
i

(Si|Si−1) (5)

We use a simple scheme to set the values of the λ
parameters, which represent the amount of weight we
give each model being interpolated. For all positions i,
λi,0 is set to 1. The parameter λi−1,1(Si−1) is set to 1 if
the training data included at least m occurrences of the
base Si−1 at position i−1, and is set to 0 otherwise. The
intuition here is that we trust a 1st-order probability
only if we had sufficient data from which to estimate it.
In all of our experiments, we set m to 40.



Once we have induced our promoter and terminator
IMMs, we can use them to look for instances of these
two signals in the neighborhood of a candidate operon.
We do this by “scanning” the promoter model along
the 300 bases immediately preceding the first gene in a
candidate operon, and similarly by scanning the termi-
nator model along the 300 bases immediately following
the last gene in the candidate. In scanning a model, we
move it one base at a time. From this scanning process,
we get a sequence of predicted probabilities; one for
each position of the model. In the case of terminators,
we actually have two separate IMMs to consider (the
model for rho-dependent terminators and the model for
rho-independent terminators) to get the probability for
each position. We combine the estimates of these two
models by assuming that the given sequence S could
represent either a rho-dependent or a rho-independent
terminator, and that these two possibilities are inde-
pendent of one another.

In order to convert these two sequences of predicted
probabilities into features that can be used to classify
a candidate operon, we keep track of the greatest pre-
dicted probability for each scan. In other words, we
characterize a candidate operon by two features: the
promoter feature is the strongest predicted promoter we
find upstream from the candidate, and the terminator
feature is the strongest predicted terminator we find
downstream.

Gene Expression Features

Recent microarray technology (Nature Genetics Supple-
ment 1999) enables simultaneous measurement of the
messenger RNA (mRNA) levels of thousands of genes
under various experimental conditions. The Wiscon-
sin E. coli Genome Project has begun generating such
data, and for the work presented in this paper we use
data from the first 39 experiments. Since our expression
data comes from cDNA arrays, we have two measure-
ments (fluorescence intensities) for each gene in each
experiment: the relative amount of mRNA under some
experimental condition versus the relative amount un-
der some baseline condition. We refer to these two sets
of measurements from a given array as the two chan-
nels of the array. From this data, we compute two sets
of features for our learning algorithm. The first set of
features is based on the ratios of the two measurements,
and the second set is based on the raw measurements
themselves.

For the features based on ratios, we associate with
each gene gk a vector ~rk of length m, where m is the
number of experiments and the elements of the vector
are the measured ratios for the gene. In some cases, an
element of a vector may be undefined, due to measure-
ment problems in these experiments. Since the genes
within an operon are coordinately controlled, we expect
the expression vectors of two such genes to be more
correlated than the expression vectors of two randomly
chosen genes. Hence, the first set of features we use
for classifying candidate operons are based on pairwise

correlations between the expression vectors of genes of
interest. We use a correlation metric similar to one that
has been used previously for analyzing gene expression
data (Eisen et al. 1998). The correlation between the
vector for kth gene and the vector for the lth gene is
given by:

corr(~rk , ~rl) =

∑

~rk(j),~rl(j) defined

~rk(j)

Φ~rk,~rl

~rl(j)

Φ~rl,~rk

|~rk(j), ~rl(j) defined|
. (6)

Here ~rk(j) and ~rl(j) represent the jth vector values
for ~rk and ~rl (the ratios for the jth experiment), and
Φ~x,~y is defined as follows:

Φ~x,~y =

√

√

√

√

√

∑

~x(j),~y(j) defined

~x(j)2

|~x(j), ~y(j) defined|
(7)

In computing the correlation between a pair of genes, we
consider only those experiments for which both genes
have defined ratios (i.e., neither vector has a missing
element for the specified position).

We use three features based on these correlations to
characterize a candidate operon c: (i) the mean corre-
lation of every pair of genes in c, (ii) the correlation
between the first gene in c and the previous gene in the
sequence, (iii) the correlation between the last gene in
c and the next gene in the sequence.

The ratio correlation measure is appropriate to iden-
tify genes that have similar expression profiles. How-
ever, we expect an even stronger association among
genes that are in the same operon. Since these genes are
transcribed together, the absolute amount of transcript
produced should be similar. Consequently, we also de-
rive features from the raw measurements (fluorescence
intensities).

For these features, we treat each channel as a separate
experiment, but since the conditions on the baseline
channels from some experiments are the same, we merge
data from these experiments after normalizing by the
total signal intensity over the array.

The basic idea of the features we compute using raw
intensity values is the following. Given a candidate
operon and a single experiment, how likely is it that
we would see the intensity values we recorded for the
genes in the candidate if these genes were actually in
the same operon? Our approach is based on the model
that each intensity value is the result of some true un-
derlying signal (the amount of transcript present) plus
normally distributed random noise. Let ~acj be a vec-
tor of expression values from the jth experiment for the
genes in candidate operon c. If c actually is an operon,
the likelihood of the observed measurements ~acj is given
by:

Pr(~acj |O = true) ∝
∏

i

N(~acj(i), µcj , σcj). (8)

Here O is the random variable indicating whether or
not the candidate c is an operon, ~acj(i) represents the



intensity value of the ith gene in the candidate for the
jth experiment, and N(~acj(i), µcj , σcj) represents the
density value of ~acj(i) under a normal distribution with
parameters µcj and σcj . In our model, µcj represents
the true signal for the operon in this experiment, and
σcj represents the standard deviation of the noise for
the given operon and experiment. Our approach esti-
mates µcj by the mean of the intensity values in the
jth experiment for the genes in the candidate. The pa-
rameter σcj is estimated from the training set operons.
In particular, we fit a linear function in (µj , σj) space,
where each data point in this space is determined from
a known operon in the training set (singletons are ig-
nored). This model accounts for two sources of noise;
one that depends on signal strength (Chen, Dougherty,
& Bittner 1997), and one that does not.

We also consider the marginal probability of seeing
the observed intensity values:

Pr(~acj) ∝
∏

i

λj exp(−λj~acj(i)). (9)

Here we assume that the distribution of intensity values
over all genes in an experiment is exponential. The
parameter λj is determined by the maximum likelihood
estimate from all of the data in an experiment.

Now to assess a candidate operon we compute the fol-
lowing likelihood ratio in which we consider all experi-
ments and treat them as independent of one another:

L(c) =

∏

j Pr(~acj |O = true)
∏

j Pr(~acj)
(10)

Using this approach, we calculate three features for a
candidate operon c: (i) the likelihood ratio L(c) for all
of the genes c, (ii) the likelihood ratio for the first gene
in c and the previous gene in the sequence, and (iii) the
likelihood ratio for the last gene in c and the next gene
in the sequence.

Collectively, we refer to all six of the features de-
scribed in this section (the three ratio-based features
and the three absolute features) as the expression data
features.

Constructing a Whole-Genome

Operon Map

Up to this point, our discussion has focused on the task
of classifying isolated operons. However, we are pri-
marily interested in making operon predictions not for
isolated candidates, but for entire genomes. In this sec-
tion, we address the task of predicting operon maps.
We define an operon map to be a set of predictions
that assigns every gene in a given genome to one or
more operons. Recall that our definition of an operon
is a sequence of one or more genes that are transcribed
as a unit under some conditions.

In our discussion here, we will focus on a special case
of an operon map – one that assigns each gene in a
genome to exactly one operon. We refer to this spe-
cial case as a one-operon-per-gene map. We address

g1 g2 g3

map 1

map 4

map 3

map 2

Figure 3: Alternative operon maps for a run of genes. The
top of the figure shows a run of three genes 〈g1, g2, g3〉.
Below this run are shown the four possible one-operon-per-
gene operon maps for this run. Each map assigns every
gene to exactly one hypothesized operon, where operons are
indicated by bars connecting genes. For example, map 1
assigns all three genes to the same operon, and map 4 assigns
each gene to its own operon.

this special case for several reasons. First, we believe
that it provides a pretty good approximation to the true
operon map of a given organism. In other words, under
most conditions, most genes are part of only one operon.
Second, we believe that this one-operon-per-gene map
will be more accurately predicted and easier to interpret
than a general operon map. And third, we have devel-
oped an efficient algorithm for finding the optimal one-
operon-per-gene map given certain assumptions. Fig-
ure 3 illustrates the concept of a one-operon-per-gene
map.

The remainder of this section describes our algorithm
for determining the optimal one-operon-per-gene map.
First, we address the issue of how to evaluate a given
map, and then we describe a dynamic programming
algorithm for finding the optimal map.

Evaluating a Map

We have already discussed how we can evaluate a candi-
date operon, now we turn our attention to the matter of
evaluating a candidate operon map. That is, given sev-
eral competing operon maps, how can we score them
so that we can decide which one appears to be most
probable.

We define a run of genes to consist of a sequence of
consecutive genes that is uninterrupted by either (i) an
RNA gene, (ii) a gene on the opposite strand, or (iii) a
known operon1. We assume that operons do not include
RNA genes and that they do not “bridge” genes on the
opposite strand. Thus we can process each run of genes
separately when building an operon map. Under these
assumptions, the first gene in a run must be the first
gene in some operon, and the last gene in a run must
be the last gene in some operon.

Given a candidate operon map for a run of genes R

1When conducting computational experiments, we re-
quire that such a known operon be in the training set; oth-
erwise it is treated as any other candidate operon.



we can evaluate it by determining how probable the
map is given the run:

Pr(map|R) =
Pr(R|map) Pr(map)

Pr(R)
. (11)

Assuming a uniform prior over the maps under consid-
eration, this simplifies to:

Pr(map|R) ∝ Pr(R|map). (12)

Thus we can evaluate a map by asking how probable the
run of genes is given the map. Assuming that the genes
are independent of one another we have the following:

Pr(R|map) =
∏

gi∈R

∑

oj∈map

Pr(gi|oj) Pr(oj). (13)

Here gi represents the ith gene in the run R, oj repre-
sents the jth candidate operon in the map, and Pr(oj)
represents the probability that oj actually is an operon.

To understand the motivation for this formulation,
consider a clustering problem in which we want to find
the centers of a fixed number of clusters (e.g. a mix-
ture of Gaussians) One way to evaluate a particular
clustering is to ask how probable the available data is
given the cluster centers. This is typically done by as-
suming that the data points are independent, and then
considering the probability of each point given the clus-
tering. The probability of a point under the clustering
is typically given by the product of the probability that
each cluster would have emitted the point and the prior
probability for the cluster. Our task is analogous in the
following way. We want to partition the run of genes
into operons, thus each gene is like a data point and
each hypothesized operon in the map is analogous to
a cluster. To determine the probability of each gene
given the map, we ask how likely it is that the gene is
explained by each operon.

We can simplify the expression above because there is
a deterministic relationship between candidate operons
and genes. Either a gene is included in a candidate
operon or it is not. Therefore, the term Pr(gi|oj) is 1
for exactly one operon in the map, and 0 for the rest.
Thus we have:

Pr(R|map) =
∏

gi∈R

Pr(oj) (14)

where oj is the operon that encompasses gi in the given
map. Instead of taking into account each gene in the
run, as we do in this expression, we can simply consider
the length of each operon in the map. Making this
simplification and taking the logarithm of Pr(R|map),
we get our score for a given operon map:

Score(map) ≡ log Pr(R|map) =
∑

oj∈map

|oj | × logPr(oj).

(15)
Here |oj | indicates the length (in terms of genes) of
operon oj . Pr(oj), the probability that some candidate
is an operon, is determined by the learned model for
recognizing operons that we described earlier.

Dynamic Programming Approach

Now that we have discussed how to score a candidate
operon map, we turn our attention to the task of finding
the optimal map for a run of genes. The notion of
optimality here is the best one-operon-per-gene map,
given the scoring scheme described above.

Given a run of genes R = 〈g1...gl〉, suppose we score
each candidate operon in this run using the approach
above and store these scores in a two-dimensional ar-
ray S. The element S(i, j) in this array holds the score
of the operon of length j that ends at position i in the
run.

Now, using a dynamic programming approach, we fill
in an array M to determine the optimal map. The ele-
ment M(i) represents the score of the best map through
position i. This partial map, represented by M(i), must
assign every gene in 〈g1...gi〉 to exactly one operon, and
none of these operons may extend beyond gi. The final
element of the array M(l) therefore represents the best
map that assigns every gene in the run to exactly one
operon, none of which extends beyond the run. This
is what we have defined as the optimal one-operon-per-
gene map.

We initialize the array M by setting M(0) = 0, and
we use the following recurrence relation to determine
the value for every other value M(i):

M(i) = max















S(i, 1) + M(i − 1),
S(i, 2) + M(i − 2),

...
S(i, i) + M(i − i).

(16)

In order to recover the optimal map, we simply need
to keep track of how we obtained the maximum value
for each element M(i). In other words, we need to
keep track of the length of the last operon in the map
represented by each M(i).

It is easy to see that this algorithm can be imple-
mented using a pair of nested loops in which the outer
loop ranges over i, and the inner loop ranges over the
possible alternatives for determining a given M(i). The
time complexity of this approach is thus O(l2) where l
is the length of the run being processed.

Theorem 1 Given any run of l genes, the algorithm
returns an optimal (maximum scoring) one-operon-per-
gene map of that run, and M(l) is the score of this
optimal map.

Proof: Actually we prove the following stronger result:
for each 1 ≤ k ≤ l, the algorithm finds an optimal
operon map ending with the operon of length k (i.e.,
the operon consisting of the last k genes in the run),
and S(l, k)+M(l−k) is the score of this map. Because
every operon map must end with an operon having some
length 1 ≤ k ≤ l, and because the algorithm returns the
map having the maximum S(l, k) + M(l− k) (to which
M(l) is then set), this result implies the theorem.



Consider an arbitrary run R of l genes. For any
1 ≤ k ≤ l, let map(R, k) denote the operon map com-
puted by the algorithm for R that ends in the operon
of length k (last k genes in R). Let |map(R, k)| denote
the number of operons in this map. We show by induc-
tion on |map(R, k)| that map(R, k) is optimal among
the operon maps that end with the operon of length k,
and S(l, k)+M(l−k) is the score of map(R, k). For the
base case, |map(R, k)| = 1 so R must consist of exactly
k genes. Hence there exists only one operon map end-
ing with the operon of length k, which is map(R, k),
so it necessarily is optimal. Furthermore, the score
of map(R, k) is simply S(l, k) + 0 = S(l, k) + M(0) =
S(l, k) + M(l − k) as desired.

For the inductive case, |map(R, k)| ≥ 1. Consider the
map consisting of all but the last operon in map(R, k).
By the inductive hypothesis, this map must be an op-
timal map for the run R′, where R′ consists of the
first l − k genes in R. This map for R′ must end in
an operon of some length 1 ≤ k′ ≤ l − k. There-
fore we may denote this map for R′ as map(R′, k′).
Again by the inductive hypothesis, its score must be
S(l− k, k′) + M(l− k − k′). Because map(R′, k′) is op-
timal for R′ and R′ is the run from 1 to l− k, M(l− k)
= S(l − k, k′) + M(l − k − k′). Because map(R, k) is
map(R′, k′) followed by the operon consisting of the fi-
nal k genes in R (which has score S(l, k)), the score of
map(R, k) is S(l, k) + M(l − k) as desired. It remains
to verify that map(R, k) is optimal among maps of R
ending with the operon of length k. Suppose for the
sake of contradiction that some other operon map for
R also ends with the operon consisting of the last k
genes of R yet scores higher than map(R, k), i.e., has a
score higher than S(l, k) + M(l − k). Then this operon
map must begin with a better (higher scoring) map for
R′ than the score of M(l − k), contradicting that our
map for R′ was optimal.

Empirical Evaluation

In this section we evaluate the predictive accuracy of
our approach. We run 10-fold cross-validation experi-
ments with a data set consisting of 365 known operons
and 6633 sequences of genes thought not to be operons.2

There are several questions that we want to answer in
our experiments:

• What is the overall accuracy of our approach?

• How does the accuracy of our constructed operon

2Of the 6633 non-operons, only 5145 actually appear in
some test set. The reason for this is subtle. We randomly
distribute the known operons into the 10 test sets. For each
known operon, we assign all of the overlapping negative ex-
amples to the same test set except for those examples that
also overlap a known operon in the corresponding training
set. This process ensures that no test-set example overlaps
an example in the corresponding training set. Since non-
operons can overlap multiple known operons, this process
leads to 1488 non-operons not appearing in any test set.

map compare to the accuracy obtained by classify-
ing isolated candidate operons?

• What is the predictive value of individual features?

To address the first two questions above, we consider
two approaches to classifying candidate operons. In the
first, we use our learned naive Bayes models to classify
candidate operons. These classifications are made inde-
pendent of one another. In the second approach, we (i)
use our learned models to assign a probability to each
candidate operon, and then (ii) use our dynamic pro-
gramming approach to construct a genome-wide operon
map based on the predicted probabilities. Since this
second step enforces a global consistency to our predic-
tions by assigning every gene to exactly one operon, it
effectively changes the classifications of some candidate
operons.

As a baseline, we also consider the expected accuracy
that results from randomly selecting operon maps from
a uniform distribution over the possible maps. We can
determine this expected value by computing for each
candidate operon c in a test set, the probability that the
candidate would be a predicted operon in a randomly
chosen map:

Pr(c ∈ map) =
1

2|c|+1−b−e
. (17)

Here |c| represents the length of the operon, b = 1 if the
candidate is at the beginning of a run of genes and b = 0
otherwise, and e = 1 if the candidate is at the end of a
run of genes and e = 0 otherwise. This probability tells
us how frequently a positive example would be correctly
classified or a negative example would be incorrectly
classified in a randomly selected map.

For each training/test set split, we learn new pro-
moter and terminator IMMs, leaving out of these
model’s training sets those promoters and terminators
that are associated with test-set operons. In this way,
we can ensure that our operon predictions are not bi-
ased by using information that is closely linked to a
given test case (i.e., a known promoter or terminator),
that we would not have in the case of a currently undis-
covered operon.

Table 1 shows the overall accuracy rates for this ex-
periment, as well as the false positive and true positive
rates. The false positive (FP) rate is defined as FP

FP+TN
,

and the true positive (TP) rate is defined as TP
TP+FN

.
The first row shows the results for the learned operon
models when they are treated as classifiers. The sec-
ond row shows the results when we use our dynamic
programming method to construct an operon map, and
use the map to classify operon candidates. The net ef-
fect of altering our predictions by constructing a map
is that we do not correctly identify as many true oper-
ons, but on the other hand, we do not predict nearly
as many false positives. Overall, the accuracy of the
predictions made by the map are slightly better than
the predictions made by the classifiers alone. We con-
sider this to be an encouraging result, especially since



Table 1: Predictive accuracy for the learned models alone
(naive Bayes), the operon map made from the predictions of
the learned models, and for randomly chosen operon maps.

method acc. (%) FP rate (%) TP rate (%)
naive Bayes 90.0 8.9 74.5
operon map 94.1 4.0 67.7
random map 87.0 9.1 30.8

the operon map has the added benefit of ensuring that
our operon predictions are consistent with one another
(given the one-operon-per-gene assumption). Also note
that this task is difficult in that the number of “non-
operon” gene sequences that overlap a true operon is
generally quadratic in the length of the true operon.
Thus, there are many opportunities for an inaccurate
prediction to reduce the accuracy of our predictions on
true operons. Finally, note that the accuracy criterion
we use here is very stringent. A classification is con-
sidered either right or wrong; there is no partial credit
for cases in which we predict the extent of an operon
almost correctly.

We perform two experiments to evaluate the contri-
bution of our individual features to the predictive accu-
racy of our models. In the first experiment, we consider
making our predictions using only a single feature, or
a small group of closely related features. We collec-
tively refer to both of these cases as “feature groups.”
In the second experiment, we learn models that leave
out a single feature group. Table 2 shows the accuracy
of operon maps made using models that consist of sin-
gle feature groups, and Table 3 shows the accuracy of
operon maps made using models that leave one feature
group out. For reference, both tables also include the
result from Table 1 for the naive Bayes models that use
all features.

Tables 2 and 3 illustrate several interesting points.
First, the features vary quite a bit in their predictive
accuracy. Second, none of the individual feature groups
is as predictive as the model as a whole. This result
indicates the value of combining evidence from a variety
of sources.

Table 3 shows that, in most cases, leaving a single
feature group out of the model does not adversely affect
its predictive accuracy. The feature group that has the
most impact when left out is the functional annotation
group. This result is somewhat disappointing since we
suspect that including this feature biases our results
to some extent. The explanation for this concern is
that since the functional annotation codes have been
assigned to genes manually by people with knowledge
of the known operons, they possibly allow information
about true operons to “leak” into our test sets. We
conjecture that the known operons are more consistent
and complete in their functional annotation than many
true, but unknown operons. Unfortunately, we do not
know how to estimate the extent of this bias nor correct
for it.

Table 2: Predictive accuracy for the operon maps made
using individual feature groups.

representation FP rate (%) TP rate (%)
using all features 4.0 67.7
functional annotation 4.5 65.7
within-operon spacing 5.9 59.4
expression data 5.5 46.6
promoter 4.6 44.1
terminator 7.2 41.3
operon size 15.0 37.7
neighboring genes 4.5 37.2

Table 3: Predictive accuracy for the operon maps made
leaving out individual feature groups.

representation FP rate (%) TP rate (%)
leaving out none 4.0 67.7
terminator 3.9 68.7
promoter 4.1 68.7
neighboring genes 4.4 68.7
expression data 4.2 68.1
operon size 3.4 67.9
within-operon spacing 3.6 66.3
functional annotation 4.3 61.0

This issue of some features being more informative
for our labeled examples than they will be in general
also crops up in the case of our promoter and termina-
tor features. However, in this case, we ensure that our
experiments are not biased by leaving out of the pro-
moter (terminator) training sets those promoters (ter-
minators) associated with test-set operons.

We can get a better sense of the predictive value
of our models by considering ROC (receiver operating
characteristic) curves. An ROC curve shows the re-
lationship between the true positive and false positive
rates as we vary a threshold on the confidence of our
predictions. For example, the results in the first row in
Table 1 were determined by treating our naive Bayes
model as a classifier; when the posterior probability of
a candidate operon was greater than 0.5, we classified
it as an operon. The ROC curve shown in the upper
left part of Figure 4, on the other hand, shows how the
accuracy of this model changes as we vary the thresh-
old on this posterior probability. We get a single ROC
curve from our 10 learned models by pooling the test-set
predictions of these models. This curve is informative
since, unlike the overall accuracy numbers in Table 1, it
does not depend on prior probabilities of the two classes
or any particular misclassification costs (this is a prop-
erty of ROC curves). Figure 4 also illustrates that our
learned models have considerable predictive value. A
model that guessed randomly would result in an ROC
“line” defined by: TP rate = FP rate.
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Figure 4: ROC plots. The ROC curve in the upper left plot represents our naive Bayes model, and the point in this figure
represents the predictive accuracy of the operon map produced by our dynamic programming algorithm. The other seven
plots in this figure illustrate the predictive power of individual feature groups. Each of these plots shows (i) the ROC curve
for predictions made leaving out the given feature group, (ii) the ROC curve for predictions made using only the given feature
group, and (iii) the points corresponding to operon maps constructed from both of these models. Additionally for reference,
each plot repeats the ROC curve from the upper left plot (for the model that uses all of the features).



Note that this curve represents the accuracy of the
naive Bayes model classifying candidate operons inde-
pendently of one another. It is not obvious how we can
generate ROC curves for our operon maps, but we can
compare the predictive accuracy of our operon maps to
the ROC curve for our naive Bayes models by plotting
the operon map as a single point in this space. The plot
in the upper left part of Figure 4 shows that this point
lies above the ROC curve for the naive Bayes model.
This result indicates that the operon map results in
accuracy that is superior to the accuracy of the naive
Bayes predictions alone.

ROC curves can also provide a better indication of
the predictive value of our individual features. The
other plots in Figure 4 provide an ROC analysis of our
individual feature groups. Each of these plots shows
(i) the ROC curve for predictions made leaving out the
given feature group, (ii) the ROC curve for predictions
made using only the given feature group, and (iii) the
points corresponding to operon maps constructed from
both of these models. Additionally for reference, each
plot repeats the ROC curve from the upper left plot
(for the model that uses all of the features).

Figure 4 reinforces several points that were made ear-
lier. First, no individual feature group is as predictive
as the models that use all features. Second, in most
cases, leaving out an individual feature group does not
weaken predictive accuracy. Third, the process of con-
structing an operon map, which enforces consistency
among predictions, nearly always provides a boost in
predictive accuracy.

Conclusions

We have presented an approach to predicting operons
in prokaryotic genomes that involves two major com-
ponents. The first component involves learning naive
Bayes models that use a rich variety of data types –
sequence data, expression data, etc. – to estimate the
probability that a given sequence of genes constitutes
and operon. The second component is a dynamic pro-
gramming method that constructs an operon map for an
entire genome or part of one. By assigning every gene
to its most probable operon, the operon map provides
a consistent interpretation of the predictions made by
the model.

The empirical evaluation of our approach indicated
that operons can be predicted with fairly high accuracy,
and there is value in combining evidence from various
data sources. Moreover, the operon maps produced by
our dynamic programming method are more accurate
than the individual predictions generated by the naive
Bayes models.

Another lesson of our experiments pertains to the
relative value of gene expression data. There is cur-
rently great interest in identifying sets of related genes
and discovering regulatory relationships using expres-
sion data like ours. Our results suggest a cautionary
note here: we were able to obtain much more accurate

operon predictions by considering other types of data
in conjunction with expression data.

There are several main issues that we plan to inves-
tigate in future research. First, there are additional
sources of evidence, such as the binding sites of various
regulatory proteins, that we plan to incorporate into
our models. Second, we are investigating alternative
representations for several of our feature types, includ-
ing expression data and terminators. We believe that
our current terminator models do not provide much pre-
dictive value because they use a representation which
is unable to capture important information about RNA
base pairing. We are currently developing an approach
to predicting terminators that uses stochastic context
free grammars, which are able to represent base-pairing
information. Third, since more gene expression data is
becoming available, we will be incorporating this ad-
ditional data into our predictions. Moreover, we plan
to investigate methods for handling this data that take
into account the relationships among the experiments
that are generating the data (some experiments are
much more closely related than others). Fourth, we
plan to begin addressing the top-level learning tasks
shown in Figure 1 that motivated our work on the
operon prediction task.

A fundamental challenge facing the computational bi-
ology community is determining the functions of genes
in newly determined genomes, and the relationships
among these genes. We argue that this task is best
addressed by employing a wide array of data sources
as evidence, and we believe that the work presented
here represents a promising first step in this general
approach.
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