
Efficient Graph-Based Image Segmentation

Pedro F. Felzenszwalb

Artificial Intelligence Lab, Massachusetts Institute of Technology

pff@ai.mit.edu

Daniel P. Huttenlocher

Computer Science Department, Cornell University

dph@cs.cornell.edu

Abstract

This paper addresses the problem of segmenting an image into regions. We define

a predicate for measuring the evidence for a boundary between two regions using a

graph-based representation of the image. We then develop an efficient segmentation

algorithm based on this predicate, and show that although this algorithm makes greedy

decisions it produces segmentations that satisfy global properties. We apply the al-

gorithm to image segmentation using two different kinds of local neighborhoods in

constructing the graph, and illustrate the results with both real and synthetic images.

The algorithm runs in time nearly linear in the number of graph edges and is also fast

in practice. An important characteristic of the method is its ability to preserve detail

in low-variability image regions while ignoring detail in high-variability regions.

Keywords: image segmentation, clustering, perceptual organization, graph algorithm.

1 Introduction

The problems of image segmentation and grouping remain great challenges for com-

puter vision. Since the time of the Gestalt movement in psychology (e.g., [17]), it

has been known that perceptual grouping plays a powerful role in human visual per-

1

ception. A wide range of computational vision problems could in principle make

good use of segmented images, were such segmentations reliably and efficiently com-

putable. For instance intermediate-level vision problems such as stereo and motion

estimation require an appropriate region of support for correspondence operations.

Spatially non-uniform regions of support can be identified using segmentation tech-

niques. Higher-level problems such as recognition and image indexing can also make

use of segmentation results in matching, to address problems such as figure-ground

separation and recognition by parts.

Our goal is to develop computational approaches to image segmentation that are

broadly useful, much in the way that other low-level techniques such as edge detection

are used in a wide range of computer vision tasks. In order to achieve such broad

utility, we believe it is important that a segmentation method have the following

properties:

1. Capture perceptually important groupings or regions, which often reflect global

aspects of the image. Two central issues are to provide precise characterizations

of what is perceptually important, and to be able to specify what a given seg-

mentation technique does. We believe that there should be precise definitions

of the properties of a resulting segmentation, in order to better understand the

method as well as to facilitate the comparison of different approaches.

2. Be highly efficient, running in time nearly linear in the number of image pixels.

In order to be of practical use, we believe that segmentation methods should

run at speeds similar to edge detection or other low-level visual processing

techniques, meaning nearly linear time and with low constant factors. For

example, a segmentation technique that runs at several frames per second can

be used in video processing applications.

While the past few years have seen considerable progress in eigenvector-based

methods of image segmentation (e.g., [14, 16]), these methods are too slow to be

practical for many applications. In contrast, the method described in this paper

has been used in large-scale image database applications as described in [13]. While

there are other approaches to image segmentation that are highly efficient, these

methods generally fail to capture perceptually important non-local properties of an

image as discussed below. The segmentation technique developed here both captures

certain perceptually important non-local image characteristics and is computationally

2

efficient – running in O(n log n) time for n image pixels and with low constant factors,

and can run in practice at video rates.

As with certain classical clustering methods [15, 19], our method is based on

selecting edges from a graph, where each pixel corresponds to a node in the graph,

and certain neighboring pixels are connected by undirected edges. Weights on each

edge measure the dissimilarity between pixels. However, unlike the classical methods,

our technique adaptively adjusts the segmentation criterion based on the degree of

variability in neighboring regions of the image. This results in a method that, while

making greedy decisions, can be shown to obey certain non-obvious global properties.

We also show that other adaptive criteria, closely related to the one developed here,

result in problems that are computationally difficult (NP hard).

We now turn to a simple synthetic example illustrating some of the non-local image

characteristics captured by our segmentation method. Consider the image shown in

the top left of Figure 1. Most people will say that this image has three distinct

regions: a rectangular-shaped intensity ramp in the left half, a constant intensity

region with a hole on the right half, and a high-variability rectangular region inside

the constant region. This example illustrates some perceptually important properties

that we believe should be captured by a segmentation algorithm. First, widely varying

intensities should not alone be judged as evidence for multiple regions. Such wide

variation in intensities occurs both in the ramp on the left and in the high variability

region on the right. Thus it is not adequate to assume that regions have nearly

constant or slowly varying intensities.

A second perceptually important aspect of the example in Figure 1 is that the

three meaningful regions cannot be obtained using purely local decision criteria. This

is because the intensity difference across the boundary between the ramp and the

constant region is actually smaller than many of the intensity differences within the

high variability region. Thus, in order to segment such an image, some kind of

adaptive or non-local criterion must be used.

The method that we introduce in Section 3.1 measures the evidence for a boundary

between two regions by comparing two quantities: one based on intensity differences

across the boundary, and the other based on intensity differences between neighboring

pixels within each region. Intuitively, the intensity differences across the boundary

of two regions are perceptually important if they are large relative to the intensity

differences inside at least one of the regions. We develop a simple algorithm which

3

Figure 1: A synthetic image with three perceptually distinct regions, and the three

largest regions found by our segmentation method (image 320×240 pixels; algorithm

parameters σ = 0.8, k = 300, see Section 5 for an explanation of the parameters).

computes segmentations using this idea. The remaining parts of Figure 1 show the

three largest regions found by our algorithm. Although this method makes greedy

decisions, it produces results that capture certain global properties which are derived

below and whose consequences are illustrated by the example in Figure 1. The method

also runs in a small fraction of a second for the 320 × 240 image in the example.

The organization of this paper is as follows. In the next Section we discuss some

related work, including both classical formulations of segmentation and recent graph-

based methods. In Section 3 we consider a particular graph-based formulation of

the segmentation problem and define a pairwise region comparison predicate. Then

in Section 4 we present an algorithm for efficiently segmenting an image using this

predicate, and derive some global properties that it obeys even though it is a greedy

algorithm. In Section 5 we show results for a number of images using the image grid

to construct a graph-based representation of the image data. Then in Section 6 we

illustrate the method using more general graphs, but where the number of edges is still

linear in the number of pixels. Using this latter approach yields results that capture

high-level scene properties such as extracting a flower bed as a single region, while

still preserving fine detail in other portions of the image. In the Appendix we show

that a straightforward generalization of the region comparison predicate presented in

4

Section 3 makes the problem of finding a good segmentation NP-hard.

2 Related Work

There is a large literature on segmentation and clustering, dating back over 30 years,

with applications in many areas other than computer vision (cf. [9]). In this section

we briefly consider some of the related work that is most relevant to our approach:

early graph-based methods (e.g., [15, 19]), region merging techniques (e.g., [5, 11]),

techniques based on mapping image pixels to some feature space (e.g., [3, 4]) and

more recent formulations in terms of graph cuts (e.g., [14, 18]) and spectral methods

(e.g., [16]).

Graph-based image segmentation techniques generally represent the problem in

terms of a graph G = (V,E) where each node vi ∈ V corresponds to a pixel in the

image, and the edges in E connect certain pairs of neighboring pixels. A weight

is associated with each edge based on some property of the pixels that it connects,

such as their image intensities. Depending on the method, there may or may not

be an edge connecting each pair of vertices. The earliest graph-based methods use

fixed thresholds and local measures in computing a segmentation. The work of Zahn

[19] presents a segmentation method based on the minimum spanning tree (MST)

of the graph. This method has been applied both to point clustering and to image

segmentation. For image segmentation the edge weights in the graph are based on

the differences between pixel intensities, whereas for point clustering the weights are

based on distances between points.

The segmentation criterion in Zahn’s method is to break MST edges with large

weights. The inadequacy of simply breaking large edges, however, is illustrated by

the example in Figure 1. As mentioned in the introduction, differences between

pixels within the high variability region can be larger than those between the ramp

and the constant region. Thus, depending on the threshold, simply breaking large

weight edges would either result in the high variability region being split into multiple

regions, or would merge the ramp and the constant region together. The algorithm

proposed by Urquhart [15] attempts to address this shortcoming by normalizing the

weight of an edge using the smallest weight incident on the vertices touching that

edge. When applied to image segmentation problems, however, this is not enough to

provide a reasonable adaptive segmentation criterion. For example, many pixels in

5

the high variability region of Figure 1 have some neighbor that is highly similar.

Another early approach to image segmentation is that of splitting and merging

regions according to how well each region fits some uniformity criterion (e.g., [5,

11]). Generally these uniformity criteria obey a subset property, such that when

a uniformity predicate U(A) is true for some region A then U(B) is also true for

any B ⊂ A. Usually such criteria are aimed at finding either uniform intensity or

uniform gradient regions. No region uniformity criterion that has been proposed to

date could be used to correctly segment the example in Figure 1, due to the high

variation region. Either this region would be split into pieces, or it would be merged

with the surrounding area.

A number of approaches to segmentation are based on finding compact clusters

in some feature space (cf. [3, 9]). These approaches generally assume that the image

is piecewise constant, because searching for pixels that are all close together in some

feature space implicitly requires that the pixels be alike (e.g., similar color). A recent

technique using feature space clustering [4] first transforms the data by smoothing

it in a way that preserves boundaries between regions. This smoothing operation

has the overall effect of bringing points in a cluster closer together. The method

then finds clusters by dilating each point with a hypersphere of some fixed radius,

and finding connected components of the dilated points. This technique for finding

clusters does not require all the points in a cluster to lie within any fixed distance.

The technique is actually closely related to the region comparison predicate that we

introduce in Section 3.1, which can be viewed as an adaptive way of selecting an

appropriate dilation radius. We return to this issue in Section 6.

Finally we briefly consider a class of segmentation methods based on finding min-

imum cuts in a graph, where the cut criterion is designed in order to minimize the

similarity between pixels that are being split. Work by Wu and Leahy [18] introduced

such a cut criterion, but it was biased toward finding small components. This bias was

addressed with the normalized cut criterion developed by Shi and Malik [14], which

takes into account self-similarity of regions. These cut-based approaches to segmenta-

tion capture non-local properties of the image, in contrast with the early graph-based

methods. However, they provide only a characterization of each cut rather than of

the final segmentation.

The normalized cut criterion provides a significant advance over the previous work

in [18], both from a theoretical and practical point of view (the resulting segmenta-

6

tions capture intuitively salient parts of an image). However, the normalized cut

criterion also yields an NP-hard computational problem. While Shi and Malik de-

velop approximation methods for computing the minimum normalized cut, the error

in these approximations is not well understood. In practice these approximations are

still fairly hard to compute, limiting the method to relatively small images or requir-

ing computation times of several minutes. Recently Weiss [16] has shown how the

eigenvector-based approximations developed by Shi and Malik relate to more stan-

dard spectral partitioning methods on graphs. However, all such methods are too

slow for many practical applications.

An alternative to the graph cut approach is to look for cycles in a graph embedded

in the image plane. For example in [10] the quality of each cycle is normalized in a

way that is closely related to the normalized cuts approach.

3 Graph-Based Segmentation

We take a graph-based approach to segmentation. Let G = (V,E) be an undi-

rected graph with vertices vi ∈ V , the set of elements to be segmented, and edges

(vi, vj) ∈ E corresponding to pairs of neighboring vertices. Each edge (vi, vj) ∈ E has

a corresponding weight w((vi, vj)), which is a non-negative measure of the dissimilar-

ity between neighboring elements vi and vj. In the case of image segmentation, the

elements in V are pixels and the weight of an edge is some measure of the dissimi-

larity between the two pixels connected by that edge (e.g., the difference in intensity,

color, motion, location or some other local attribute). In Sections 5 and 6 we con-

sider particular edge sets and weight functions for image segmentation. However, the

formulation here is independent of these definitions.

In the graph-based approach, a segmentation S is a partition of V into components

such that each component (or region) C ∈ S corresponds to a connected component

in a graph G′ = (V,E ′), where E ′ ⊆ E. In other words, any segmentation is induced

by a subset of the edges in E. There are different ways to measure the quality of a

segmentation but in general we want the elements in a component to be similar, and

elements in different components to be dissimilar. This means that edges between

two vertices in the same component should have relatively low weights, and edges

between vertices in different components should have higher weights.

7

3.1 Pairwise Region Comparison Predicate

In this section we define a predicate, D, for evaluating whether or not there is evidence

for a boundary between two components in a segmentation (two regions of an image).

This predicate is based on measuring the dissimilarity between elements along the

boundary of the two components relative to a measure of the dissimilarity among

neighboring elements within each of the two components. The resulting predicate

compares the inter-component differences to the within component differences and is

thereby adaptive with respect to the local characteristics of the data.

We define the internal difference of a component C ⊆ V to be the largest weight

in the minimum spanning tree of the component, MST (C,E). That is,

Int(C) = max
e∈MST (C,E)

w(e) . (1)

One intuition underlying this measure is that a given component C only remains

connected when edges of weight at least Int(C) are considered.

We define the difference between two components C1, C2 ⊆ V to be the minimum

weight edge connecting the two components. That is,

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj)) . (2)

If there is no edge connecting C1 and C2 we let Dif(C1, C2) = ∞. This measure of

difference could in principle be problematic, because it reflects only the smallest edge

weight between two components. In practice we have found that the measure works

quite well in spite of this apparent limitation. Moreover, changing the definition to

use the median weight, or some other quantile, in order to make it more robust to

outliers, makes the problem of finding a good segmentation NP-hard, as discussed in

the Appendix. Thus a small change to the segmentation criterion vastly changes the

difficulty of the problem.

The region comparison predicate evaluates if there is evidence for a boundary

between a pair or components by checking if the difference between the components,

Dif(C1, C2), is large relative to the internal difference within at least one of the

components, Int(C1) and Int(C2). A threshold function is used to control the degree

to which the difference between components must be larger than minimum internal

difference. We define the pairwise comparison predicate as,

D(C1, C2) =

true if Dif(C1, C2) > MInt(C1, C2)

false otherwise
(3)

8

where the minimum internal difference, MInt, is defined as,

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)). (4)

The threshold function τ controls the degree to which the difference between two

components must be greater than their internal differences in order for there to be

evidence of a boundary between them (D to be true). For small components, Int(C)

is not a good estimate of the local characteristics of the data. In the extreme case,

when |C| = 1, Int(C) = 0. Therefore, we use a threshold function based on the size

of the component,

τ(C) = k/|C| (5)

where |C| denotes the size of C, and k is some constant parameter. That is, for small

components we require stronger evidence for a boundary. In practice k sets a scale

of observation, in that a larger k causes a preference for larger components. Note,

however, that k is not a minimum component size. Smaller components are allowed

when there is a sufficiently large difference between neighboring components.

Any non-negative function of a single component can be used for τ without chang-

ing the algorithmic results in Section 4. For instance, it is possible to have the seg-

mentation method prefer components of certain shapes, by defining a τ which is large

for components that do not fit some desired shape and small for ones that do. This

would cause the segmentation algorithm to aggressively merge components that are

not of the desired shape. Such a shape preference could be as weak as preferring

components that are not long and thin (e.g., using a ratio of perimeter to area) or as

strong as preferring components that match a particular shape model. Note that the

result of this would not solely be components of the desired shape, however for any

two neighboring components one of them would be of the desired shape.

4 The Algorithm and Its Properties

In this section we describe and analyze an algorithm for producing a segmentation

using the decision criterion D introduced above. We will show that a segmentation

produced by this algorithm obeys the properties of being neither too coarse nor too

fine, according to the following definitions.

Definition 1 A segmentation S is too fine if there is some pair of regions C1, C2 ∈ S

for which there is no evidence for a boundary between them.

9

In order to define the complementary notion of what it means for a segmentation

to be too coarse (to have too few components), we first introduce the notion of a

refinement of a segmentation. Given two segmentations S and T of the same base

set, we say that T is a refinement of S when each component of T is contained in (or

equal to) some component of S. In addition, we say that T is a proper refinement of

S when T 6= S. Note that if T is a proper refinement of S, then T can be obtained

by splitting one or more regions of S. When T is a proper refinement of S we say

that T is finer than S and that S is coarser than T .

Definition 2 A segmentation S is too coarse when there exists a proper refinement

of S that is not too fine.

This captures the intuitive notion that if regions of a segmentation can be split and

yield a segmentation where there is evidence for a boundary between all pairs of

neighboring regions, then the initial segmentation has too few regions.

Two natural questions arise about segmentations that are neither too coarse nor

too fine, namely whether or not one always exists, and if so whether or not it is unique.

First we note that in general there can be more than one segmentation that is neither

too coarse nor too fine, so such a segmentation is not unique. On the question of

existence, there is always some segmentation that is both not too coarse and not too

fine, as we now establish.

Property 1 For any (finite) graph G = (V,E) there exists some segmentation S that

is neither too coarse nor too fine.

It is easy to see why this property holds. Consider the segmentation where all

the elements are in a single component. Clearly this segmentation is not too fine,

because there is only one component. If the segmentation is also not too coarse we

are done. Otherwise, by the definition of what it means to be too coarse there is

a proper refinement that is not too fine. Pick one of those refinements and keep

repeating this procedure until we obtain a segmentation that is not too coarse. The

procedure can only go on for n−1 steps because whenever we pick a proper refinement

we increase the number of components in the segmentation by at least one, and the

finest segmentation we can get is the one where every element is in its own component.

We now turn to the segmentation algorithm, which is closely related to Kruskal’s

algorithm for constructing a minimum spanning tree of a graph (cf. [6]). It can be

implemented to run in O(m log m) time, where m is the number of edges in the graph.

10

Algorithm 1 Segmentation algorithm.

The input is a graph G = (V,E), with n vertices and m edges. The output is a

segmentation of V into components S = (C1, . . . , Cr).

0. Sort E into π = (o1, . . . , om), by non-decreasing edge weight.

1. Start with a segmentation S0, where each vertex vi is in its own component.

2. Repeat step 3 for q = 1, . . . ,m.

3. Construct Sq given Sq−1 as follows. Let vi and vj denote the vertices connected

by the q-th edge in the ordering, i.e., oq = (vi, vj). If vi and vj are in disjoint

components of Sq−1 and w(oq) is small compared to the internal difference of

both those components, then merge the two components otherwise do nothing.

More formally, let Cq−1
i be the component of Sq−1 containing vi and Cq−1

j the

component containing vj. If Cq−1
i 6= Cq−1

j and w(oq) ≤ MInt(Cq−1
i , Cq−1

j) then

Sq is obtained from Sq−1 by merging Cq−1
i and Cq−1

j . Otherwise Sq = Sq−1.

4. Return S = Sm.

We now establish that a segmentation S produced by Algorithm 1 obeys the global

properties of being neither too fine nor too coarse when using the region comparison

predicate D defined in (3). That is, although the algorithm makes only greedy de-

cisions it produces a segmentation that satisfies these global properties. Moreover,

we show that any of the possible non-decreasing weight edge orderings that could be

picked in Step 0 of the algorithm produce the same segmentation.

Lemma 1 In Step 3 of the algorithm, when considering edge oq, if two distinct com-

ponents are considered and not merged then one of these two components will be in the

final segmentation. Let Cq−1
i and Cq−1

j denote the two components connected by edge

oq = (vi, vj) when this edge is considered by the algorithm. Then either Ci = Cq−1
i

or Cj = Cq−1
j , where Ci is the component containing vi and Cj is the component

containing vj in the final segmentation S.

Proof. There are two cases that would result in a merge not happening. Say that it

is due to w(oq) > Int(Cq−1
i) + τ(Cq−1

i). Since edges are considered in non-decreasing

weight order, w(ok) ≥ w(oq), for all k ≥ q+1. Thus no additional merges will happen

to this component, i.e., Ci = Cq−1
i . The case for w(oq) > Int(Cq−1

j) + τ(Cq−1
j) is

analogous.

11

Note that Lemma 1 implies that the edge causing the merge of two components

is exactly the minimum weight edge between the components. Thus the edges caus-

ing merges are exactly the edges that would be selected by Kruskal’s algorithm for

constructing the minimum spanning tree (MST) of each component.

Theorem 1 The segmentation S produced by Algorithm 1 is not too fine according

to Definition 1, using the region comparison predicate D defined in (3).

Proof. By definition, in order for S to be too fine there is some pair of components

for which D does not hold. There must be at least one edge between such a pair of

components that was considered in Step 3 and did not cause a merge. Let oq = (vi, vj)

be the first such edge in the ordering. In this case the algorithm decided not to merge

Cq−1
i with Cq−1

j which implies w(oq) > MInt(Cq−1
i , Cq−1

j). By Lemma 1 we know

that either Ci = Cq−1
i or Cj = Cq−1

j . Either way we see that w(oq) > MInt(Ci, Cj)

implying D holds for Ci and Cj, which is a contradiction.

Theorem 2 The segmentation S produced by Algorithm 1 is not too coarse according

to Definition 2, using the region comparison predicate D defined in (3).

Proof. In order for S to be too coarse there must be some proper refinement, T , that

is not too fine. Consider the minimum weight edge e that is internal to a component

C ∈ S but connects distinct components A,B ∈ T . Note that by the definition of

refinement A ⊂ C and B ⊂ C.

Since T is not too fine, either w(e) > Int(A) + τ(A) or w(e) > Int(B) + τ(B).

Without loss of generality, say the former is true. By construction any edge connecting

A to another sub-component of C has weight at least as large as w(e), which is in turn

larger than the maximum weight edge in MST (A,E) because w(e) > Int(A). Thus

the algorithm, which considers edges in non-decreasing weight order, must consider

all the edges in MST (A,E) before considering any edge from A to other parts of C.

So the algorithm must have formed A before forming C, and in forming C it must

have merged A with some other sub-component of C. The weight of the edge that

caused this merge must be least as large as w(e). However, the algorithm would not

have merged A in this case because w(e) > Int(A) + τ(A), which is a contradiction.

Theorem 3 The segmentation produced by Algorithm 1 does not depend on which

non-decreasing weight order of the edges is used.

12

Proof. Any ordering can be changed into another one by only swapping adjacent

elements. Thus it is sufficient to show that swapping the order of two adjacent edges

of the same weight in the non-decreasing weight ordering does not change the result

produced by Algorithm 1.

Let e1 and e2 be two edges of the same weight that are adjacent in some non-

decreasing weight ordering. Clearly if when the algorithm considers the first of these

two edges they connect disjoint pairs of components or exactly the same pair of

components, then the order in which the two are considered does not matter. The

only case we need to check is when e1 is between two components A and B and e2 is

between one of these components, say B, and some other component C.

Now we show that e1 causes a merge when considered after e2 exactly when it

would cause a merge if considered before e2. First, suppose that e1 causes a merge

when considered before e2. This implies w(e1) ≤ MInt(A,B). If e2 were instead

considered before e1, either e2 would not cause a merge and trivially e1 would still

cause a merge, or e2 would cause a merge in which case the new component B ∪ C

would have Int(B∪C) = w(e2) = w(e1). So we know w(e1) ≤ MInt(A,B∪C) which

implies e1 will still cause a merge. On the other hand, suppose that e1 does not cause

a merge when considered before e2. This implies w(e1) > MInt(A,B). Then either

w(e1) > Int(A) + τ(A), in which case this would still be true if e2 were considered

first (because e2 does not touch A), or w(e1) > Int(B)+ τ(B). In this second case, if

e2 were considered first it could not cause a merge since w(e2) = w(e1) and so w(e2) >

MInt(B,C). Thus when considering e1 after e2 we still have w(e1) > MInt(A,B)

and e1 does not cause a merge.

4.1 Implementation Issues and Running Time

Our implementation maintains the segmentation S using a disjoint-set forest with

union by rank and path compression (cf. [6]). The running time of the algorithm

can be factored into two parts. First in Step 0, it is necessary to sort the weights

into non-decreasing order. For integer weights this can be done in linear time using

counting sort, and in general it can be done in O(m log m) time using any one of

several sorting methods.

Steps 1-3 of the algorithm take O(mα(m)) time, where α is the very slow-growing

inverse Ackerman’s function. In order to check whether two vertices are in the same

component we use set-find on each vertex, and in order to merge two components we

13

use use set-union. Thus there are at most three disjoint-set operations per edge. The

computation of MInt can be done in constant time per edge if we know Int and the

size of each component. Maintaining Int for a component can be done in constant

time for each merge, as the maximum weight edge in the MST of a component is

simply the edge causing the merge. This is because Lemma 1 implies that the edge

causing the merge is the minimum weight edge between the two components being

merged. The size of a component after a merge is simply the sum of the sizes of the

two components being merged.

5 Results for Grid Graphs

First we consider the case of monochrome (intensity) images. Color images are han-

dled as three separate monochrome images, as discussed below. As in other graph-

based approaches to image segmentation (e.g., [14, 18, 19]) we define an undirected

graph G = (V,E), where each image pixel pi has a corresponding vertex vi ∈ V .

The edge set E is constructed by connecting pairs of pixels that are neighbors in an

8-connected sense (any other local neighborhood could be used). This yields a graph

where m = O(n), so the running time of the segmentation algorithm is O(n log n)

for n image pixels. We use an edge weight function based on the absolute intensity

difference between the pixels connected by an edge,

w((vi, vj)) = |I(pi) − I(pj)|

where I(pi) is the intensity of the pixel pi. In general we use a Gaussian filter to

smooth the image slightly before computing the edge weights, in order to compensate

for digitization artifacts. We always use a Gaussian with σ = 0.8, which does not

produce any visible change to the image but helps remove artifacts.

For color images we run the algorithm three times, once for each of the red, green

and blue color planes, and then intersect these three sets of components. Specifically,

we put two neighboring pixels in the same component when they appear in the same

component in all three of the color plane segmentations. Alternatively one could

run the algorithm just once on a graph where the edge weights measure the distance

between pixels in some color space, however experimentally we obtained better results

by intersecting the segmentations for each color plane in the manner just described.

There is one runtime parameter for the algorithm, which is the value of k that

is used to compute the threshold function τ . Recall we use the function τ(C) =

14

k/|C| where |C| is the number of elements in C. Thus k effectively sets a scale of

observation, in that a larger k causes a preference for larger components. We use

two different parameter settings for the examples in this section (and throughout the

paper), depending on the resolution of the image and the degree to which fine detail

is important in the scene. For instance, in the 128×128 images of the COIL database

of objects we use k = 150. In the 320× 240 or larger images, such as the street scene

and the baseball player, we use k = 300.

The first image in Figure 2 shows a street scene. Note that there is considerable

variation in the grassy slope leading up to the fence. It is this kind of variability

that our algorithm is designed to handle (recall the high variability region in the

synthetic example in Figure 1). The second image shows the segmentation, where

each region is assigned a random color. The six largest components found by the

algorithm are: three of the grassy areas behind the fence, the grassy slope, the van,

and the roadway. The missing part of the roadway at the lower left is a visibly distinct

region in the color image from which this segmentation was computed (a spot due to

an imaging artifact). Note that the van is also not uniform in color, due to specular

reflections, but these are diffuse enough that they are treated as internal variation

and incorporated into a single region.

The first image in Figure 3 shows two baseball players (from [14]). As in the

previous example, there is a grassy region with considerable variation. The uniforms

of the players also have substantial variation due to folds in the cloth. The second

image shows the segmentation. The six largest components found by the algorithm

are: the back wall, the Mets emblem, a large grassy region (including part of the wall

under the top player), each of the two players’ uniforms, and a small grassy patch

under the second player. The large grassy region includes part of the wall due to the

relatively high variation in the region, and the fact that there is a long slow change in

intensity (not strong evidence for a boundary) between the grass and the wall. This

“boundary” is similar in magnitude to those within the player uniforms due to folds

in the cloth.

Figure 4 shows the results of the algorithm for an image of an indoor scene, where

both fine detail and larger structures are perceptually important. Note that the

segmentation preserves small regions such as the name tags the people are wearing

and things behind the windows, while creating single larger regions for high variability

areas such as the air conditioning duct near the top of the image, the clothing and the

15

furniture. This image also shows that sometimes small “boundary regions” are found,

for example at the edge of the jacket or shirt. Such narrow regions occur because

there is a one or two pixel wide area that is halfway between the two neighboring

regions in color and intensity. This is common in any segmentation method based on

grid graphs. Such regions can be eliminated if desired, by removing long thin regions

whose color or intensity is close to the average of neighboring regions.

Figure 5 shows three simple objects from the Columbia COIL image database.

Shown for each is the largest region found by our algorithm that is not part of the

black background. Note that each of these objects has a substantial intensity gradient

across the face of the object, yet the regions are correctly segmented. This illustrates

another situation that the algorithm was designed to handle, slow changes in intensity

due to lighting.

6 Results for Nearest Neighbor Graphs

One common approach to image segmentation is based on mapping each pixel to a

point in some feature space, and then finding clusters of similar points (e.g., [3, 4, 9]).

In this section we investigate using the graph-based segmentation algorithm from

Section 4 in order to find such clusters of similar points. In this case, the graph

G = (V,E) has a vertex corresponding to each feature point (each pixel) and there

is an edge (vi, vj) connecting pairs of feature points vi and vj that are nearby in

the feature space, rather than using neighboring pixels in the image grid. There are

several possible ways of determining which feature points to connect by edges. We

connect each point to a fixed number of nearest neighbors. Another possibility is to

use all the neighbors within some fixed distance d. In any event, it is desirable to

avoid considering all O(n2) pairs of feature points.

The weight w((vi, vj)) of an edge is the distance between the two corresponding

points in feature space. For the experiments shown here we map each pixel to the

feature point (x, y, r, g, b), where (x, y) is the location of the pixel in the image and

(r, g, b) is the color value of the pixel. We use the L2 (Euclidean) distance between

points as the edge weights, although other distance functions are possible.

The internal difference measure, Int(C), has a relatively simple underlying intu-

ition for points in feature space. It specifies the minimum radius of dilation necessary

to connect the set of feature points contained in C together into a single volume in

16

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

Figure 5: Three images from the COIL database, , and the largest non-background

component found in each image (128×128 color images; algorithm parameters σ = 0.8,

k = 150).

feature space. Consider replacing each feature point by a ball with radius r. From

the definition of the MST it can be seen that the union of these balls will form one

single connected volume only when r ≥ Int(C)/2. The difference between compo-

nents, Dif(C1, C2), also has a simple underlying intuition. It specifies the minimum

radius of dilation necessary to connect at least one point of C1 to a point of C2. Our

segmentation technique is thus closely related to the work of [4], which similarly takes

an approach to clustering based on dilating points in a parameter space (however they

first use a novel transformation of the data that we do not perform, and then use a

fixed dilation radius rather than the variable one that we use).

Rather than constructing the complete graph, where all points are neighbors of

one another, we find a small fixed number of neighbors for each point. This results

in a graph with O(n) edges for n image pixels, and an overall running time of the

segmentation method of O(n log n) time. There are many possible ways of picking a

small fixed number of neighbors for each point. We use the ANN algorithm [1] to find

the nearest neighbors for each point. This algorithm is quite fast in practice, given a

5-dimensional feature space with several hundred thousand points. The ANN method

can also find approximate nearest neighbors, which runs more quickly than finding

the actual nearest neighbors. For the examples reported here we use ten nearest

neighbors of each pixel to generate the edges of the graph.

One of the key differences from the previous section, where the image grid was

used to define the graph, is that the nearest neighbors in feature space capture more

18

Figure 6: A synthetic image (40 × 32 grey image) and the segmentation using the

nearest neighbor graph (σ = 0, k = 150).

spatially non-local properties of the image. In the grid-graph case, all of the neighbors

in the graph are neighbors in the image. Here, points can be far apart in the image

and still be among a handful of nearest neighbors (if their color is highly similar

and intervening image pixels are of dissimilar color). For instance, this can result

segmentations with regions that are disconnected in the image, which did not happen

in the grid-graph case.

Figure 6 shows a synthetic image from [12] and [8] and its segmentation, using

k = 150 and with no smoothing (σ = 0). In this example the spatially disconnected

regions do not reflect interesting scene structures, but we will see examples below

which do.

For the remaining examples in this section, we use k = 300 and σ = 0.8, as

in the previous section. First, we note that the nearest neighbor graph produces

similar results to the grid graph for images in which the perceptually salient regions

are spatially connected. For instance, the street scene and baseball player scene

considered in the previous section yield very similar segmentations using either the

nearest neighbor graph or the grid graph, as can be seen by comparing the results in

Figure 7 with those in Figure 2 and Figure 3.

Figure 8 shows two additional examples using the nearest neighbor graph. These

results are not possible to achieve with the grid graph approach because certain

interesting regions are not spatially connected. The first example shows a flower

garden, where the red flowers are spatially disjoint in the foreground of the image, and

then merge together in the background. Most of these flowers are merged into a single

region, which would not be possible with the grid-graph method. The second example

in Figure 8 shows the Eiffel tower at night. The bright yellow light forms a spatially

19

disconnected region. These examples show that the segmentation method, coupled

with the use of a nearest neighbor graph, can capture very high level properties of

images, while preserving perceptually important region boundaries.

7 Summary and Conclusions

In this paper we have introduced a new method for image segmentation based on

pairwise region comparison. We have shown that the notions of a segmentation being

too coarse or too fine can be defined in terms of a function which measures the evidence

for a boundary between a pair of regions. Our segmentation algorithm makes simple

greedy decisions, and yet produces segmentations that obey the global properties of

being not too coarse and not too fine according to a particular region comparison

function. The method runs in O(m log m) time for m graph edges and is also fast in

practice, generally running in a fraction of a second.

The pairwise region comparison predicate we use considers the minimum weight

edge between two regions in measuring the difference between them. Thus our algo-

rithm will merge two regions even if there is a single low weight edge between them.

This is not as much of a problem as it might first appear, in part because this edge

weight is compared only to the minimum spanning tree edges of each component.

For instance, the examples considered in Sections 5 and 6 illustrate that the method

finds segmentations that capture many perceptually important aspects of complex

imagery. Nonetheless, one can envision measures that require more than a single

cheap connection before deciding that there is no evidence for a boundary between

two regions. One natural way of addressing this issue is to use a quantile rather

than the minimum edge weight. However, in this case finding a segmentation that is

neither too coarse nor too fine is an NP-hard problem (as shown in the Appendix).

Our algorithm is unique, in that it is both highly efficient and yet captures non-local

properties of images.

We have illustrated our image segmentation algorithm with two different kinds of

graphs. The first of these uses the image grid to define a local neighborhood between

image pixels, and measures the difference in intensity (or color) between each pair of

neighbors. The second of these maps the image pixels to points in a feature space

that combines the (x, y) location and (r, g, b) color value. Edges in the graph connect

points that are close together in this feature space. The algorithm yields good results

20

using both kinds of graphs, but the latter type of graph captures more perceptually

global aspects of the image.

Image segmentation remains a challenging problem, however we are beginning to

make substantial progress through the introduction of graph-based algorithms that

both help refine our understanding of the problem and provide useful computational

tools. The work reported here and the normalized cuts approach [14] are just a few

illustrations of these recent advances.

Appendix: NP-Hardness of D with Quantiles

Intuitively the region comparison predicate D defined in Section 3.1 could be made

more robust by changing the definition of the difference between two regions to reflect

a quantile rather than the minimum weight edge between them. We show that with

this modification the problem of finding a segmentation that is neither too coarse nor

too fine becomes NP-hard.

The only difference between the new problem and the old one is the definition of

the difference between two regions C1, C2 ∈ S in equation (2), which becomes

Dif(C1, C2) = Kth w((vi, vj)) (6)

where Kth selects the Kth quantile of its arguments (K should be between zero and

one). For example with K = 0.5 the difference becomes the median edge weight

between the two components. This quantile is computed over all edges (vi, vj) such

that vi ∈ C1 and vj ∈ C2.

We reduce the min ratio cut problem with uniform capacities and demands to the

problem of finding a good segmentation. The min ratio cut problem with uniform

capacities and demands is the following: we are given a graph G = (V,E) and another

set of edges F . Each edge in E indicates a unit capacity between a pair of nodes and

each edge in F indicates a unit demand between a pair of nodes. The value of a cut

(A,B) is the ratio of the total capacity and the total demand between the sets A

and B. So it is the ratio of the number edges in E crossing the cut and the number

of edges in F crossing the cut. Finding the value of the minimum ratio cut is an

NP-hard problem (cf. [2]).

First we show how to transform an instance of this problem to one where the sets

E and F are disjoint, without modifying the value of the minimum cut. For every

21

edge (a, b) ∈ E ∩ F we create a new node ab, and exchange the edge in E with the

edges (a, ab) and (b, ab). For a cut with a and b in the same side, its always better to

keep ab in that side too and the value of the cut is the same as in the original graph.

For a cut with a and b in different sides the node ab can be in either side and there

will be one capacity and one demand edge crossing the cut and the value of cut is

again the same as in the original graph.

Now we show how to decide if the modified instance of the min ratio cut problem

has a cut with value at most v by solving a segmentation problem. Let c be the

number of edges from E crossing a cut (A,B) and similarly d is the number of edges

from F crossing (A,B). It’s easy to show that the cut value is small exactly when

the fraction of edges crossing the cut that come from F is large,

c

d
≤ v ⇔

d

c + d
≥

1

v + 1
(7)

Define G′ = (V,E ′) where E ′ = E ∪F . We let the edges from E have weight zero

and the edges from F have weight one.

Lemma 2 The graph G has a cut with value at most v if and only if a segmentation of

G′ is not one single component, where Dif is defined in Equation 6, K = 1−1/(v+1)

and τ(C) = 0 for all C.

Proof. First we show that if G has a cut (A,B) with value at most v there exists

C ⊆ A such that the segmentation {C, C̄} is not too fine. We just need to find C such

that Int(C) = 0 and Dif(C, C̄) = 1. If G has a cut (A,B) with value at most v, than

Equation 7 tells us that d/(c + d) ≥ 1/(v + 1). Remember that there are d edges of

weight one and c edges of weight zero crossing the cut. So the fraction of weight one

edges crossing the cut is at least 1/(v + 1). Look at the connected components of A

using only edges of weight zero. Clearly Int(C) = 0 for all such components. Let C

be the component with largest fraction of weight one edges going to B. This fraction

must be at least 1/(v + 1). Moreover, the fraction of weight one edges between C

and C̄ = V − C is at least as large since C̄ = B ∪ (C̄ ∩ A) and the there are only

weight one edges between C and C̄∩A. This implies the fraction of weight zero edges

between C and C̄ is less than 1−1/(v +1) = K. So the Kth quantile weight between

C and C̄ is one. Thus Dif(C, C̄) = 1 and the segmentation S = {C, C̄} of G′ is not

too fine. Hence the segmentation of G′ as a single component is too coarse.

If G′ has a segmentation that is not a single component S = {C1, . . . , Cl} then the

Kth quantile edge weight between every pair of components Ci and Cj is one (or else

22

the segmentation would be too fine). Thus the Kth quantile edge weight between C1

and C̄1 = C2 ∪ · · · ∪Cl is one. So the fraction of weight one edges between C1 and C̄1

is at least 1/(v + 1). Equation 7 implies that value of the cut (C1, C̄1) is at most v.

It is straightforward to see that the transformation of the min ratio cut problem

to the problem of finding a segmentation presented above can be done in polynomial

time. This is sufficient to show the hardness of the segmentation problem.

Theorem 4 The problem of finding a segmentation that is neither too coarse nor too

fine using Dif as defined in Equation 6 is NP-hard.

Acknowledgments

This work was supported in part by gifts from Intel, Microsoft and Xerox corporations,

in part by DARPA under contract DAAL01-97-K-0104, and in part by NSF Research

Infrastructure award CDA-9703470. We would like to thank Shree Nayar, Jianbo

Shi and Daphna Weinshall for use of their images. We would also like to thank Jon

Kleinberg, Eva Tardos and Dan Ramras for discussions about the algorithm and the

NP hardness result.

References

[1] S. Arya and D. M. Mount. Approximate nearest neighbor searching. Proc. 4th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 271-280, 1993.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti Spaccamela and

M. Protasi. Complexity and Approximation. Combinatorial Optimization Prob-

lems and their Approximability Properties, to appear, Springer-Verlag, Berlin.

[3] D. Comaniciu and P. Meer. Robust analysis of feature spaces: color image seg-

mentation. Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 750-755, 1997.

[4] D. Comaniciu and P. Meer. Mean shift analysis and applications. Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, pages 1197-

1203, 1999.

23

[5] M.C. Cooper. The tractability of segmentation and scene analysis. International

Journal of Computer Vision, vol 30, no 1, pages 27-42, October 1998.

[6] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. The

MIT Press, McGraw-Hill Book Company, 1990.

[7] P. Felzenszwalb and D. Huttenlocher. Image segmentation using local variation.

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

pages 98-104, 1998.

[8] Y. Gdalyahu, D. Weinshall and M. Werman. Stochastic clustering by typical cuts.

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,

pages 2596-2601, 1999.

[9] A.K. Jain and R.C. Dubes. Algorithms for clustering data. Prentice Hall, 1988.

[10] I. Jermyn and H. Ishikawa. Globally Optimal Regions and Boundaries as Mini-

mum Ratio Weight Cycles. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol 23, pages 1075-1088, October 2001.

[11] T. Pavlidas. Structural Pattern Recognition. Springer-Verlag, 1977.

[12] P. Perona and W. Freeman. A factorization approach to grouping. Proceedings

of the European Conference on Computer Vision, pages 655-670, 1998.

[13] A.L. Ratan, O. Maron, W.E.L. Grimson and T. Lozano-Perez. A framework for

learning query concepts in image classification. Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 423-431, 1999.

[14] J. Shi and J. Malik. Normalized cuts and image segmentation. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 731-737,

1997.

[15] R. Urquhart. Graph theoretical clustering based on limited neighborhood sets.

Pattern Recognition, vol 15:3, pages 173-187, 1982.

[16] Y. Weiss. Segmentation using Eigenvectors: A Unifying View. Proceedings of the

International Conference on Computer Vision (2), pages 975-982, 1999.

24

[17] M. Wertheimer. Laws of organization in perceptual forms (partial translation).

W. B. Ellis, editor, A Sourcebook of Gestalt Psychology, pages 71-88. Harcourt,

Brace and Company, 1938.

[18] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:

Theory and its application to image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol 11, pages 1101-1113, November 1993.

[19] C.T. Zahn. Graph-theoretic methods for detecting and describing gestalt clusters.

IEEE Transactions on Computing, vol 20, pages 68-86, 1971.

25

Figure 7: Segmentation of the street and baseball player scenes from the previous

section, using the nearest neighbor graph rather than the grid graph (σ = 0.8, k =

300).

Figure 8: Segmentation using the nearest neighbor graph can capture spatially non-

local regions (σ = 0.8, k = 300).

26

