Image Alignment and Stitching:
A Tutorialt

Richard Szeliski
Last updated, December 10, 2006

Technical Report
MSR-TR-2004-92

This tutorial reviews image alignment and image stitchifggpathms. Image align-
ment algorithms can discover the correspondence reldtippamong images with
varying degrees of overlap. They are ideally suited for @pgibns such as video
stabilization, summarization, and the creation of panacanmosaics. Image stitch-
ing algorithms take the alignment estimates produced bly segistration algorithms
and blend the images in a seamless manner, taking care tovidkglotential prob-

lems such as blurring or ghosting caused by parallax ancesoewement as well as
varying image exposures. This tutorial reviews the basitonanodels underlying
alignment and stitching algorithms, describes effectivea (pixel-based) and fea-
ture-based alignment algorithms, and describes blendgagithms used to produce
seamless mosaics. It closes with a discussion of open ofspanblems in the area.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww. research. m crosoft.com

1A shorter version of this report appeared in Paragioset\al, editors, Handbook of Mathematical
Models in Computer Visigrpages 273-292, Springer, 2005.



Contents

1 Introduction
2 Motion models
21 2D (planar)motions . . . . . . ... e e e
2.2 3Dtransformations . . . . . . ... e e e
2.3 Cylindrical and spherical coordinates . . . . . ... ... . ............
2.4 Lensdistortions . . . . . . ... e e
3 Direct (pixel-based) alignment
3.1 ErormetriCs . . . . . . e e e e e e
3.2 Hierarchical motion estimation . . . . .. ... ... ... ...........
3.3 Fourier-based alignment . . . . . . . .. ... e .
3.4 Incrementalrefinement . . . . . . .. .. ... ... e
3.5 Parametricmotion. . . . . . . ... e
4 Feature-based registration
4.1 Keypointdetectors . . . . . . . . .. e
4.2 Featurematching . . . . . . . . . . . . . e
4.3 Geometricregistration . . . . . . ... e
4.4 Directvs. feature-based alignment . . . . . . ... ..o
5 Global registration
5.1 Bundleadjustment . . . . . . . ... e
5.2 Parallaxremoval . .. ... ... ... . e
5.3 Recognizing panoramas . . . . . . . . . i i e e e e e e e
6 Compositing
6.1 Choosingacompositingsurface . . . .. ... .. ... .. .. ...
6.2 Pixelselectionandweighting . . . . . .. ... . . .. .. ... ae.. ...
6.3 Blending. . . . . . . . e

7 Extensions and open issues

15
16
19
20
23
28

33
33
36
40
46

47
48
51
53

56
56
58
64

68



1 Introduction

Algorithms for aligning images and stitching them into séssa photo-mosaics are among the
oldest and most widely used in computer vision. Frame-rai@ge alignment is used in every
camcorder that has an “image stabilization” feature. Imstgehing algorithms create the high-
resolution photo-mosaics used to produce today’s digit@bsnand satellite photos. They also
come bundled with most digital cameras currently being,sad can be used to create beautiful
ultra wide-angle panoramas.

An early example of a widely-used image registration alhaonmiis the patch-based translational
alignment (optical flow) technique developed by Lucas anda€ie (1981). Variants of this algo-
rithm are used in almost all motion-compensated video cesgion schemes such as MPEG and
H.263 (Le Gall 1991). Similar parametric motion estimatgorithms have found a wide variety
of applications, including video summarization (Bergeral. 1992a, Teodosio and Bender 1993,
Kumaret al. 1995, Irani and Anandan 1998), video stabilization (Haretesl. 1994), and video
compression (Iraret al. 1995, Leeet al. 1997). More sophisticated image registration algorithms
have also been developed for medical imaging and remoténgensee (Brown 1992, Zitov'aa
and Flusser 2003, Goshtasby 2005) for some previous suof@ysge registration techniques.

In the photogrammetry community, more manually intensie¢hads based on surveygeund
control pointsor manually registeretlie pointshave long been used to register aerial photos into
large-scale photo-mosaics (Slama 1980). One of the keynadsgan this community was the de-
velopment ofbundle adjustmeralgorithms that could simultaneously solve for the logasiof
all of the camera positions, thus yielding globally coremstsolutions (Trigget al. 1999). One
of the recurring problems in creating photo-mosaics is timeiation of visible seams, for which
a variety of techniques have been developed over the yealgréish 1975, Milgram 1977, Peleg
1981, Davis 1998, Agarwalet al.2004)

In film photography, special cameras were developed at timediuthe century to take ultra
wide angle panoramas, often by exposing the film through aceéslit as the camera rotated
on its axis (Meehan 1990). In the mid-1990s, image alignnezfiniques started being applied
to the construction of wide-angle seamless panoramas fegular hand-held cameras (Mann
and Picard 1994, Szeliski 1994, Chen 1995, Szeliski 1996)preMecent work in this area has
addressed the need to compute globally consistent aligisni®peliski and Shum 1997, Sawhney
and Kumar 1999, Shum and Szeliski 2000), the removal of “gfiakie to parallax and object
movement (Davis 1998, Shum and Szeliski 2000, Uyttendatedd 2001, Agarwalaet al. 2004),
and dealing with varying exposures (Mann and Picard 1994teldglaeleet al. 2001, Levinet al.
2004b, Agarwalat al.2004). (A collection of some of these papers can be found @am@man
and Kang 2001).) These techniques have spawned a large nahtoenmercial stitching products
(Chen 1995, Sawhnest al. 1998), for which reviews and comparison can be found on thie We



While most of the above techniques work by directly minimgpixel-to-pixel dissimilarities,

a different class of algorithms works by extracting a spaeteffeaturesand then matching these
to each other (Zoghlanat al. 1997, Capel and Zisserman 1998, Cham and Cipolla 1998, Badra
al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe 2003}uFe-based approaches have
the advantage of being more robust against scene movematrarpotentially faster, if imple-
mented the right way. Their biggest advantage, howevengisbility to “recognize panoramas”,
i.e., to automatically discover the adjacency (overlaf@ti@nships among an unordered set of im-
ages, which makes them ideally suited for fully automaté&dhshg of panoramas taken by casual
users (Brown and Lowe 2003).

What, then, are the essential problems in image alignmeshtsatching? For image align-
ment, we must first determine the appropriate mathematicalehrelating pixel coordinates in
one image to pixel coordinates in another. Section 2 revibese basienotion modelsNext, we
must somehow estimate the correct alignments relatingwampairs (or collections) of images.
Section 3 discusses haslrect pixel-to-pixel comparisons combined with gradient des¢and
other optimization techniques) can be used to estimate thesmmeters. Section 4 discusses how
distinctivefeaturescan be found in each image and then efficiently matched tallsapstablish
correspondences between pairs of images. When multiplgasexist in a panorama, techniques
must be developed to compute a globally consistent set ghrakents and to efficiently discover
which images overlap one another. These issues are disidasSection 5.

For image stitching, we must first choose a final compositurgase onto which to warp and
place all of the aligned images (Section 6). We also needveldp algorithms to seamlessly blend
overlapping images, even in the presence of parallax, lstsrton, scene motion, and exposure
differences (Section 6). In the last section of this suridiscuss additional applications of image
stitching and open research problems.

2 Motion models

Before we can register and align images, we need to estdhksmathematical relationships that
map pixel coordinates from one image to another. A varietgumhparametric motion models
are possible, from simple 2D transforms, to planar persgentodels, 3D camera rotations, lens
distortions, and the mapping to non-planar (e.g., cylraljisurfaces (Szeliski 1996).

To facilitate working with images at different resolutiomge adopt a variant of theormalized
device coordinatesised in computer graphics (Watt 1995, OpenGL-ARB 1997). &typical
(rectangular) image or video frame, we let the pixel cocaths range froni—1, 1] along the
longer axis, and—a, a] along the shorter, where is the inverse of thaspect ratio as shown
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Figure 1: Mapping from pixel coordinates to normalized device cauatks

in Figure 1! For an image with widti? and heightH, the equations mapping integer pixel
coordinates = (7,7) to normalized device coordinates= (z,y) are

o 2zr-W 2y — H
- S S
Note that if we work with images injpyramid we need to halve th& value after each decimation
step rather than recomputing it fromax(W, H), since the(W, H) values may get rounded or
truncated in an unpredictable mannbiote that for the rest of this paper, we use normalized
device coordinates when referring to pixel coordinates.

T

and y = where S = max(W, H). (2)

2.1 2D (planar) motions
Having defined our coordinate system, we can now describecbovdinates are transformed. The

simplest transformations occur in the 2D plane and aretilitesd in Figure 2.

Translation. 2D translations can be written &= x + t or
=1 t|a ()

whereI is the @ x 2) identity matrix andx = (x,y, 1) is the homogeneousr projective2D
coordinate.

Rotation + translation. This transformation is also known @® rigid body motioror the2D
Euclidean transformatiorfsince Euclidean distances are preserved). It can be wtser’ =
Rx +tor

=R t]z (3)

YIn computer graphics, it is usual to have both axes range frem1], but this requires the use of two different
focal lengths for the vertical and horizontal dimensions] anakes it more awkward to handle mixed portrait and
landscape mode images.
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Figure 2: Basic set of 2D planar transformations

where
R_ |:COSQ —sm@} (@)

sinf cosd

is an orthonormal rotation matrix witRR” = I and|R| = 1.

Scaled rotation. Also known as thesimilarity transform this transform can be expressed as
x' = sRx + t wheres is an arbitrary scale factor. It can also be written as

m’:{sR t}i:[z _ab z:}:ﬁ, (5)

where we no longer require that + b = 1. The similarity transform preserves angles between
lines.

Affine. The affine transform is written as = Ax, whereA is an arbitrary2 x 3 matrix, i.e.,

z — [ Qoo Go1 Qo2 } 7. (6)

aipp dail Aaig

Parallel lines remain parallel under affine transformation

Projective. This transform, also known aspeerspective transforrar homographyoperates on
homogeneous coordinatésandz’,

¥ ~ Hz, 7)
where~ denotes equality up to scale aifi is an arbitrary3 x 3 matrix. Note thatH is itself
homogeneous, i.e., it is only defined up to a scale. The irglibmogeneous coordinaié must
be normalized in order to obtain an inhomogeneous rasyite.,

o hoor + ho1y + hoo and o = hiox + hi1y + hio
haoz + ho1y + hao hoor + hory + hao
Perspective transformations preserve straight lines.

(8)
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| Name | Matrix | #D.O.F.| Preserves: | Icon |

translation I)t],, 2 | orientation+--- | [
rigid (Euclidean)| [ R [t ] . 3 |lengthst--- Q
similarity [sR|t] .| 4 |angles+. - S
affine (Al 6 | paralielismy--- | [/
projective | H }“ 8 straight lines G

Table 1: Hierarchy of 2D coordinate transformations. TRe< 3 matrices are extended with a thif@” 1]
row to form a full3 x 3 matrix for homogeneous coordinate transformations.

Hierarchy of 2D transformations The preceding set of transformations are illustrated in Fig
ure 2 and summarized in Table 1. The easiest way to think cfetie as a set of (potentially
restricted)3 x 3 matrices operating on 2D homogeneous coordinate vect@aglel and Zisser-
man (2004) contains a more detailed description of the fakyaof 2D planar transformations.

The above transformations form a nested sejrotips i.e., they are closed under composition
and have an inverse that is a member of the same group. Eaugbl€s) group is a subset of the
more complex group below it.

2.2 3D transformations

A similar nested hierarchy exists for 3D coordinate transftions that can be denoted using
4 x 4 transformation matrices, with 3D equivalents to translatirigid body (Euclidean) and
affine transformations, and homographies (sometimeshatiineations) (Hartley and Zisserman
2004).

The process ofentral projectionrmaps 3D coordinatgs = (X, Y, Z) to 2D coordinates: =
(z,y, 1) through gpinholeat the camera origin onto a 2D projection plane a distghaeng thez

axis, ¥ v
as shown in Figure 3. The relationship between the (ung}lexal lengthf and the field of view
0 is given by

0 1
f~! =tan 5 or #=2tan"’ I (20)

To convert the focal lengtlf to its more commonly used 35mm equivalent, multiply the &bov
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Figure 3: Central projection, showing the relationship between tbea®d 2D coordinatep andx, as well
as the relationship between the focal lengthnd the field of view.

number by 17.5 (the half-width of a 35mm photo negative franf® convert it to pixel coordi-
nates, multiply it byS/2 (half-width for a landscape photo).

In the computer graphics literature, perspective prapecis often written as a permutation
matrix that permutes the last two elements of homogenemestip = (X,Y, 7, 1),

D, (11)

oS O O
S O = O
_ o O O
S = O O

followed by a scaling and translation into screen arlauiffercoordinates.
In computer vision, it is traditional to drop the z-buffelwes, since these cannot be sensed in
an image and to write
f 000
z~|0 f00|p=][K|0]|p (12)
0 010

whereK = diag(f, f, 1) is called thentrinsic calibrationmatrix? This matrix can be replaced by
a more general upper-triangular matfikthat accounts for non-square pixels, skew, and a variable
optic center location (Hartley and Zisserman 2004). Howewepractice, the simple focal length
scaling used above provides high-quality results wheahstiy images from regular cameras.

In this paper, | prefer to usedax 4 projection matrix P,

. K|o
x€Xr
0" |1

2The last column of< usually contains the optical center,, ¢, ), but this can be set to zero if we use normalized
device coordinates.

p = Pp, (13)
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Figure 4. A point is projected into two images: (a) relationship betwethe 3D point coordinate
(X,Y,Z,1) and the 2D projected pointz, y, 1,d); (b) planar homography induced by points all lying
on a common placég - p + ¢ = 0.

which maps the homogeneous 4-vegior (X, Y, Z, 1) to a special kind of homogeneosesreen
vectorz = (z,y,1,d). This allows me to denote the upper-18ft 3 portion of the projection
matrix P as K (making it compatible with the computer vision literatyrehile not dropping
altogether the inverse screen depth informatiqavhich is also sometimes called thesparity d
(Okutomi and Kanade 1993)). This latter quantity is neagstsareason about mappings between
images of a 3D scene, as described below.

What happens when we take two images of a 3D scene from diffeaenera positions and/or
orientations (Figure 4a)? A 3D poiptgets mapped to an image coordinatan camera 0 through
the combination of a 3D rigid-body (Euclidean) motifl,

RO to
= - E 14
Lo |: OT 1 Yy op, ( )
and a perspective projectidf,
Zi}o ~ POEOP- (15)

Assuming that we know the z-buffer valdg for a pixel in one image, we can map it back to the
3D coordinatep using
p~ E; Py (16)

and then project it into another image yielding
2~ P,E\,p=P,E\E;'P; &, = M. (17)

Unfortunately, we do not usually have access to the depthdamates of pixels in a regular
photographic image. However, forpdanar scengwe can replace the last row &%, in (13) with
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Figure 5: Pure 3D camera rotation. The form of the homography (mappisgarticularly simple and
depends only on the 3D rotation matrix and focal lengths.

a generaplane equationn, - p + ¢, that maps points on the planedg = 0 values (Figure 4b).
Then, if we setl, = 0, we can ignore the last column 8, in (17) and also its last row, since
we do not care about the final z-buffer depth. The mappingtemuél7) thus reduces to

&, ~ Hyoy, (18)

where H , is a generaB x 3 homography matrix and; and#, are now 2D homogeneous co-
ordinates (i.e., 3-vectors) (Szeliski 1994, Szeliski )99®his justifies the use of the 8-parameter
homography as a general alignment model for mosaics of pkosmnes (Mann and Picard 1994,
Szeliski 1996

Rotational panoramas The more interesting case is when the camera undergoesqiat®n
(Figure 5), which is equivalent to assuming all points argy\far from the camera, i.e., on the
plane at infinity Settingt, = t; = 0, we get the simplified x 3 homography

H,=K RR;'K;' = K,RK, "', (19)

whereK ;, = diad f, fx, 1) is the simplified camera intrinsic matrix (Szeliski 1996higcan also
be re-written as

T fi fo! T
Y1 | ~ fi R, fo! Yo (20)
1 1 1 1

3For points off the reference plane, we get out-of-plpagallax motion, which is why this representation is often
called theplane plus parallaxepresentation (Sawhney 1994, Szeliski and Coughlan 198%aret al. 1994).

“Note that for a single pair of images, the fact that a 3D plargeing viewed by a set of rigid cameras does not
reduce the total number of degrees of freedom. However, farge collection of images taken of a planar surface
(e.g., a whiteboard) from a calibrated camera, we couldaethe number of degrees of freedom per image from 8 to
6 by assuming that the plane is at a canonical location (&4.1).

8



or

T Zo
yi | ~Rio| yo |, (21)
fi fo

which reveals the simplicity of the mapping equations andkesaall of the motion parameters
explicit. Thus, instead of the general 8-parameter honmggraelating a pair of images, we get the
3-, 4-, or 5-paramete&D rotationmotion models corresponding to the cases where the foagthHen
f is known, fixed, or variable (Szeliski and Shum 1997). Estinggthe 3D rotation matrix (and
optionally, focal length) associated with each image ignstcally more stable than estimating a
full 8-d.o.f. homography, which makes this the method oficbdor large-scale image stitching
algorithms (Szeliski and Shum 1997, Shum and Szeliski 2B8#yn and Lowe 2003).

Parameterizing 3D rotations. If we are going to represent panoramas using a combination of
rotations and focal lengths, what is the best way to reptekenmotations themselves? The choices
include:

e the full 3 x 3 matrix R, which has to be re-orthonormalized after each update;

e Euler anglesa, 3, ), which are a bad idea as you cannot always move smoothly fream o
rotation to another;

¢ the axis/angle (or exponential twist) representationciwhepresents the rotation by an axis
n and a rotation anglé, or the product of the two,

G =0n = (Wy, wy, w,), (22)
which has the minimal number of 3 parameters, but is stillumague;

¢ and unit quaternions, which represent rotations with wviedtors,
.0, 0
q=(z,y,z,w) = (v,w) = (sin 5T cos 5), (23)

wheren andé are the rotation axis and angle.

The rotation matrix corresponding to a rotationtbground an axis is

R(n,0) = I +sinf[n], + (1 — cosd)[n]? (24)

X9

which is known afRodriguez’s formulgAyache 1989), andl|. is the matrix form of the cross-
product operator,

0 —h. 7y
—h, fp O



For small (infinitesimal) rotations, the rotation reduaes t
R(&) =~ I+ 0[n]y = I + [J]«. (26)
Using the trigonometric identities
sin f = 2sin 50085 = 2||v||w

and p
(1 — cosf) = 2sin? 5= 2||vl|?,

Rodriguez’s formula for a quaternion can be converted to

R(q) = I+sind[n]. + (1 —cosh)[n)%
= I+ 2w, +2[v]2. (27)

This suggests a quick way to rotate a vector by a quaterniomg us series of cross products,
scalings, and additions. From this, we can derive the conynaged formula forR(q) as a
function ofq = (z, vy, z, w),

1—2(y*+2%)  2(xy — 2w) 2(xz + yw)
R(q)=| 2xy+2w) 1-22*+2%) 2yz—aw) |. (28)
2(zz — yw) 2(yz + zw) 1 —2(2? 4+ y?)

The diagonal terms can be made more symmetrical by repldcing(y? + z?) with (22 + w? —
y? — 2?), etc.

Between the axis/angle representation and quaternionsnérglly prefer unit quaternions,
because they possess a nice algebra that makes it easy tprtakects (compositions), ratios
(change in rotation), and linear interpolations (Shoend5). For example, the product of two
quaterniongy, = (vg, wy) andg, = (v, w;) is given by

q> = qpq, = (’Uo X V1 + WoV1 + W1V, WoW1 — Vg * Ul), (29)

with the property thaRR(q,) = R(q,)R(q,). (Note that quaternion multiplication r&t commu-
tative, just as 3D rotations and matrix multiplications ac¢.) Taking the inverse of a quaternion
is also easy: just flip the sign af or w (but not both!). However, when it comes time to update
rotation estimates, | use amcrementalform of the axis/angle representation (26), as described in
64.3.

10
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Figure 6: Projection from 3D to cylindrical and spherical coordinate

2.3 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to aligages is to first warp the images
into cylindrical coordinates and to then use a pure translational modelgo tlem (Szeliski 1994,
Chen 1995). Unfortunately, this only works if the imagesalt¢aken with a level camera or with
a known tilt angle.

Assume for now that the camera is in its canonical positian, its rotation matrix is the
identity, R = I, so that the optic axis is aligned with thexis and the, axis is aligned vertically.
The 3D ray corresponding to dm, y) pixel is therefordx, y, f).

We wish to project this image ontocglindrical surfaceof unit radius (Szeliski 1994). Points
on this surface are parameterized by an afiglad a height:, with the 3D cylindrical coordinates
corresponding t¢¢, 1) given by

(sin@, h,cosf) x (z,y, f), (30)

as shown in Figure 6a. From this correspondence, we can dertipiformula for thevarpedor
mappedcoordinates (Szeliski and Shum 1997),

¥ = s =stan"? ;, (31)
Y
y, = Sh = SW, (32)

wheres is an arbitrary scaling factor (sometimes called heius of the cylinder) that can be set
to s = f to minimize the distortion (scaling) near the center of timage> The inverse of this
mapping equation is given by

/

r = ftan@zftani, (33)
s

/ / /
y = h\/x2+f2:%f\/l—l-tanzx’/s:f%sec%. (34)

5The scale can also be set to a larger or smaller value for thedinmpositing surface, depending on the desired
output panorama resolution—sg@

11
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Figure 7: An example of a cylindrical panorama: (a) two cylindricallsarped images related by a hori-
zontal translation; (b) part of a cylindrical panorama coogited from a sequence of images.

Images can also be projected ontspdnerical surfac€Szeliski and Shum 1997), which is use-
ful if the final panorama includes a full sphere or hemisploérgews, instead of just a cylindrical
strip. In this case, the sphere is parameterized by two aggle), with 3D spherical coordinates
given by

(sin @ cos ¢, sin ¢, cos 6 cos @) x (x,y, f), (35)

as shown in Figure 6b. The correspondence between coadirhow given by (Szeliski and
Shum 1997)

¥ = s =stan! ;, (36)
y/ = Sgb = stan_l \/%f?, (37)
while the inverse is given by
/
r = ftan@zftan%, (38)

/ / /
y = \/xQ+f2tan¢:tan%f\/letaan’/s:ftan%sec%. (39)

Note that it may be simpler to generate a scdled, ~) direction from (35) followed by a per-
spective division by and a scaling by

Cylindrical image stitching algorithms are most commordgd when the camera is known to
be level and only rotating around its vertical axis (Chen3)9®nder these conditions, images at
different rotations are related by a pure horizontal trathsh® This makes it attractive as an initial
class project in an introductory computer vision course;ethe full complexity of the perspective
alignment algorithm{3.5 & §4.3) can be avoided. Figure 7 shows how two cylindricallypear
images from a leveled rotational panorama are related byre tpanslation (Szeliski and Shum
1997).

6Small vertical tilts can sometimes be compensated for vettical translations.

12



Figure 8: An example of a spherical panorama constructed from 54 gnaghs.

Professional panoramic photographers sometimes alsopee it head that makes it easy to
control the tilt and to stop at specifitetentsn the rotation angle. This not only ensures a uniform
coverage of the visual field with a desired amount of imagelape but also makes it possible
to stitch the images using cylindrical or spherical cooati#s and pure translations. In this case,
pixel coordinategz, y, f) must first be rotated using the known tilt and panning angeferk
being projected into cylindrical or spherical coordinag€sen 1995). Having a roughly known
panning angle also makes it easier to compute the alignmeiece the rough relative positioning
of all the input images is known ahead of time, enabling a cedwsearch range for alignment.
Figure 8 shows a full 3D rotational panorama unwrapped dreéstrface of a sphere (Szeliski and
Shum 1997).

One final coordinate mapping worth mentioning is plodéar mapping where the north pole lies
along the optic axis rather than the vertical axis,

(cos @ sin ¢, sinfsin ¢, cos @) = s (x,y, 2). (40)

In this case, the mapping equations become

/ 1

X —
xr = s¢cosf =s—tan
r

; (41)

! 1

Yy = s¢sinf = s¥ tan-
r

, (42)

N ==

wherer = /22 + 32 is theradial distancein the (z,y) plane ands¢ plays a similar role in the
(«’,y") plane. This mapping provides an attractive visualizatimfiege for certain kinds of wide-
angle panoramas and is also a good model for the distortthuted byfisheye lensess discussed
in §2.4. Note how for small values @f, y), the mapping equations reducesitox~ sz/z, which
suggests that plays a role similar to the focal length

13



Figure 9: Examples of radial lens distortion: (a) barrel, (b) pincush, and (c) fisheye. The fisheye image
spans almost a complet&0° from side-to-side.

2.4 Lens distortions

When images are taken with wide-angle lenses, it is ofteessry to modelens distortions
such agadial distortion The radial distortion model says that coordinates in treeoled images
are displaced awaybérrel distortion) or towardsgincushiondistortion) the image center by an
amount proportional to their radial distance (Figure 9a-l§)e simplest radial distortion models
use low-order polynomials, e.g.,

v = (1 + R+ kor?)

Y = y(1+ mr? + ker?), (43)

wherer? = 2% +y? andk, andk, are called theadial distortion parameter§Brown 1971, Slama
1980)/ More complex distortion models also inclutingential (decentering) distortior{fSlama
1980), but these are usually not necessary for consumelrdgtching.

A variety of techniques can be used to estimate the radibrtiisn parameters for a given
lens. One of the simplest and most useful is to take an imagesoéne with a lot of straight lines,
especially lines aligned with and near the edges of the imB&lge radial distortion parameters can
then be adjusted until all of the lines in the image are siitaighich is commonly called thelumb
line methodBrown 1971, Kang 2001, EI-Melegy and Farag 2003).

Another approach is to use several overlapping images atwhtbine the estimation of the ra-
dial distortion parameters together with the image aligninpeocess. Sawhney and Kumar (1999)
use a hierarchy of motion models (translation, affine, mtoje) in a coarse-to-fine strategy cou-
pled with a quadratic radial distortion correction term. eytuse direct (intensity-based) mini-

’Sometimes the relationship betweeandz’ is expressed the other way around, i.e., using primed (fooal)di-
nates on the right-hand side.

14



mization to compute the alignment. Stein (1997) uses alfedtased approach combined with
a general 3D motion model (and quadratic radial distortiamyich requires more matches than a
parallax-free rotational panorama but is potentially mgeaeral. More recent approaches some-
times simultaneously compute both the unknown intrinsiapeeters and the radial distortion
coefficients, which may include higher order terms or momagiex rational or non-parametric
forms (Claus and Fitzgibbon 2005, Sturm 2005, Thirthala Raliefeys 2005, Barreto and Dani-
ilidis 2005, Hartley and Kang 2005, Steele and Jaynes 20401@jflet al. 2006b).

Fisheye lenses require a different model than traditioobimomial models of radial distortion
(Figure 9c¢). Instead, fisheye lenses behave, to a first appation, asequi-distanceprojectors
of angles away from the optic axis (Xiong and Turkowski 199vhich is the same as thpolar
projectiondescribed by equations (40-42). Xiong and Turkowski (19#8cribe how this model
can be extended with the addition of an extra quadratic cbor in ¢, and how the unknown
parameters (center of projection, scaling fagtogtc.) can be estimated from a set of overlapping
fisheye images using a direct (intensity-based) non-lineaimization algorithm.

Even more general models of lens distortion exist. For exangme can represent any lens as
a mapping of pixel to rays in space (Grembaral. 1988, Champlebougt al. 1992, Grossberg
and Nayar 2001, Tardiét al. 2006a), either represented as a dense mapping or usingsespar
interpolated smooth function such as a spline (Goshtas89,X®hamplebourt al. 1992).

3 Direct (pixel-based) alignment

Once we have chosen a suitable motion model to describeigmradnt between a pair of images,
we need to devise some method to estimate its parametersafgpneach is to shift or warp the
images relative to each other and to look at how much the piagitee. Approaches that use
pixel-to-pixel matching are often calletirect methodsas opposed to thieature-based methods
described in the next section.

To use a direct method, a suitaldeor metric must first be chosen to compare the images.
Once this has been established, a suitabkrchtechnique must be devised. The simplest tech-
nigue is to exhaustively try all possible alignments, ite.do afull search In practice, this may
be too slow, sdierarchical coarse-to-fine techniques based on image pyramids havedeeeh
oped. Alternatively, Fourier transforms can be used todjpgethe computation. To get sub-pixel
precision in the alignmenincrementaimethods based on a Taylor series expansion of the image
function are often used. These can also be appliggatametric motion modelsEach of these
techniques is described in more detail below.
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3.1 Error metrics

The simplest way to establish an alignment between two isiegg shift one image relative to
the other. Given @aemplateimagel,(x) sampled at discrete pixel locatiofs; = (z;,v;)}, we
wish to find where it is located in image(x). A least-squares solution to this problem is to find
the minimum of thesum of squared differenc€SSD) function

ESSD('U') = Z[]l (CBZ + 'I.L) — ]0 ZBZ Z € (44)

7

whereu = (u,v) is thedisplacemenande; = I (x; + u) — Iy(x;) is called theresidual error
(or thedisplaced frame differenda the video coding literature®) (We ignore for the moment the
possibility that parts of, may lie outside the boundaries ffor be otherwise not visible.)

In general, the displacemeantcan be fractional, so a suitable interpolation function nings
applied to imagd; (x). In practice, a bilinear interpolant is often used, but lbic interpolation
should yield slightly better results. Color images can lmepssed by summing differences across
all three color channels, although it is also possible td fremsform the images into a different
color space or to only use the luminance (which is often donedeo encoders).

Robust error metrics We can make the above error metric more robust to outliergphacing
the squared error terms with a robust functign;) (Huber 1981, Hampedt al. 1986, Black and
Anandan 1996, Stewart 1999) to obtain

ESRD ZP [1 fBZ +u - [O wz Zp ez (45)

The robust nornp(e) is a function that grows less quickly than the quadratic figreessociated
with least squares. One such function, sometimes used ilomestimation for video coding
because of its speed, is ttkem of absolute differencéSAD) metric, i.e.,

ESAD Z|Il :Bz+u I()(Q’JZ)| :Z|€Z‘ (46)

However, since this function is not differentiable at thegior, it is not well suited to gradient-
descent approaches such as the ones preseriddiin

Instead, a smoothly varying function that is quadratic foa$f values but grows more slowly
away from the origin is often used. Black and Rangarajan§l8&cuss a variety of such func-
tions, including theGeman-McClurdunction,

2
T
PGM(«%’) = ma (47)

8The usual justification for using least squares is that hésdptimal estimate with respect to Gaussian noise. See
the discussion below on robust alternatives.
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whereaq is a constant that can be thought of asoarlier threshold An appropriate value for the
threshold can itself the derived using robust statistiagogt 1981, Hampaedt al. 1986, Rousseeuw
and Leroy 1987), e.g., by computing theedian of absolute differencef/ AD = med|e;|, and
multiplying by 1.4 to obtain a robust estimate of the stadddeviation of the non-outlier noise
process (Stewart 1999).

Spatially varying weights. The error metrics above ignore that fact that for a givennalignt,
some of the pixels being compared may lie outside the origmnage boundaries. Furthermore,
we may want to partially or completely downweight the cdmitions of certain pixels. For ex-
ample, we may want to selectively “erase” some parts of ag@ieom consideration, e.g., when
stitching a mosaic where unwanted foreground objects hega but out. For applications such as
background stabilization, we may want to downweight thediggbart of the image, which often
contains independently moving objects being tracked by #meera.

All of these tasks can be accomplished by associating aadlyatiarying per-pixel weight
value with each of the two images being matched. The errorerteen become the weighted (or
windowed SSD function,

FEwssp(u) = Zwo(w)wl(a:i +u)[l(x; +u) — Io(x;))?, (48)

where the weighting functions, andw, are zero outside the valid ranges of the images.

If a large range of potential motions is allowed, the abovérimean have a bias towards
smaller overlap solutions. To counteract this bias, thedaived SSD score can be divided by the
overlap area

A= Z wo(x)w (x; + u) (49)

to compute ger-pixel(or mean) squared pixel error. The square root of this gtyaisttheroot

mean squarechtensity error
RMS = \/Ewssp/A (50)

often seen reported in comparative studies.

Bias and gain (exposure differences). Often, the two images being aligned were not taken with
the same exposure. A simple model of linear (affine) intgnaitiation between the two images is
thebias and gaimmodel,

Li(x+u) = (1 4+ a)lo(z) + 0, (51)
whereg is thebiasanda is thegain (Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos
1991, Bakeet al. 2003b). The least squares formulation then becomes

Epc(u) = [Li(x; +uw) — (14 a)lo(x;) — B =D [ado(z:) + 6 — €], (52)

K3 3
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Rather than taking a simple squared difference betweeesonding patches, it becomes neces-
sary to perform dinear regressionwhich is somewhat more costly. Note that for color images,
it may be necessary to estimate a different bias and gairafdr eolor channel to compensate for
the automaticolor correctionperformed by some digital cameras.

A more general (spatially-varying non-parametric) modehtensity variation, which is com-
puted as part of the registration process, is presentedarafd Tang 2003). This can be useful
for dealing with local variations such as thgnettingcaused by wide-angle lenses. It is also
possible to pre-process the images before comparing thkies, e.g., by using band-pass filtered
images (Burt and Adelson 1983, Bergetral. 1992a) or using other local transformations such as
histograms or rank transforms (Cekal. 1995, Zabih and Woodfill 1994), or to maximirautual
information(Viola and Wells 11l 1995, Kimet al. 2003).

Correlation. An alternative to taking intensity differences is to penfiarorrelation i.e., to max-
imize theproduct(or cross-correlation of the two aligned images,

ECC Z [O .’EZ [1 (fEZ + u) (53)

At first glance, this may appear to make bias and gain modalmngcessary, since the images will
prefer to line up regardless of their relative scales ansktét However, this is actually not true. If
a very bright patch exists ifi (), the maximum product may actually lie in that area.

For this reasomormalized cross-correlatiois more commonly used,

2 [Io(f'?z‘) I] [ (2 +u) — 1]

Breo(u) = LS (54)
where
T — %Z[O(a:i) and (55)
T = %ifl(wz+U) (56)

are themean imagesf the corresponding patches aids the number of pixels in the patch. The
normalized cross-correlation score is always guarantebd tn the rangé-1, 1], which makes it
easier to handle in some higher-level applications (sualeagling which patches truly match).
Note, however, that the NCC score is undefined if either ofwltepatches has zero variance (and
in fact, its performance degrades for noisy low-contragiomes).
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3.2 Hierarchical motion estimation

Now that we have defined an alignment cost function to opemww do we find its minimum?
The simplest solution is to dofall searchover some range of shifts, using either integer or sub-
pixel steps. This is often the approach usedlftock matchingin motion compensated video
compressiopwhere a range of possible motions (say6 pixels) is explored.

To accelerate this search procdssyarchical motion estimatiois often used, where an image
pyramid is first constructed, and a search over a smaller ruoflliscrete pixels (corresponding to
the same range of motion) is first performed at coarser |¢@liam 1984, Anandan 1989, Bergen
et al. 1992a). The motion estimate from one level of the pyramidtban be used to initialize a
smallerlocal search at the next finer level. While this is not guarantegutdduce the same result
as full search, it usually works almost as well and is muctefas

More formally, let

(@) — 17V (2a)) (57)

be thedecimatedimage at level obtained by subsamplinglwnsamplinya smoothed (pre-
filtered) version of the image at level 1. Atthe coarsest level, we search for the best displacement
uY that minimizes the difference between imag’éé and I{”. This is usually done using a full
search over some range of displacementsc 2-/[—S, S]? (whereS is the desiredearch range
at the finest (original) resolution level), optionally fmied by the incremental refinement step
described ir§3.4.

Once a suitable motion vector has been estimated, it is og@eédicta likely displacement

a2 0 (58)

for the next finer level® The search over displacements is then repeated at the firedroleer

a much narrower range of displacements, ady" + 1, again optionally combined with an in-
cremental refinement step (Anandan 1989). A nice descnitidhe whole process, extended to
parametric motion estimatio§3.5), can be found in (Bergest al. 1992a).

°In stereo matching, an explicit search over all possiblpatisies (i.e., @lane sweepis almost always performed,
since the number of search hypotheses is much smaller doe idxnature of the potential displacements (Scharstein
and Szeliski 2002).

10This doubling of displacements is only necessary if disgiaents are defined in integgixel coordinates, which
is the usual case in the literature, e.g., (Bergieal. 1992a). Ifnormalized device coordinaté$?) are used instead, the
displacements (and search ranges) need not change frolntoléaeel, although the step sizes will need to be adjusted
(to keep search steps of roughly one pixel).
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3.3 Fourier-based alignment

When the search range corresponds to a significant fracfitiredarger image (as is the case in
image stitching), the hierarchical approach may not wodk tell, since it is often not possible
to coarsen the representation too much before significatirfes get blurred away. In this case, a
Fourier-based approach may be preferable.

Fourier-based alignment relies on the fact that the Fotna@sform of a shifted signal has the
same magnitude as the original signal but linearly varyingse, i.e.,

FiL(m+w)} = F{Li(x)} e = 1,(f)e 2w ] (59)

where f is the vector-valued frequency of the Fourier transformaeduse calligraphic notation
Z,(f) = F{I,(x)} to denote the Fourier transform of a signal (Oppenhetial. 1999, p. 57).

Another useful property of Fourier transforms is that cdation in the spatial domain corre-
sponds to multiplication in the Fourier domain (Oppenheinal. 1999, p. 58). Thus, the Fourier
transform of the cross-correlation functidizc can be written as

F (Feclw)) = 7 { X hi@)i(e: + ) | = F (bfwh(w} = LAT(H). (60

where

fu)Fg(u) =3 f(@:i)g(xi +u) (61)

is the correlation function, i.e., the convolution of one signal with the reseeiof the other, and
Z;(f) is thecomplex conjugatef Z, (f). (This is because convolution is defined as the summation
of one signal with the reverse of the other (Oppenheiral. 1999).)

Thus, to efficiently evaluat&-- over the range of all possible valueswfwe take the Fourier
transforms of both imagek (x) andI; (x), multiply both transforms together (after conjugating
the second one), and take the inverse transform of the r@hétFast Fourier Transform algorithm
can compute the transform of & x M image in GN M log N M) operations (Oppenheiet al.
1999). This can be significantly faster than the\GM?) operations required to do a full search
when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accedeta# computation of image correla-
tions, it can also be used to accelerate the sum of squaffedetites function (and its variants) as
well. Consider the SSD formula given in (44). Its Fourienstorm can be written as

F{Essp(u)} =F {Z[h(wi +u) — Io(wi)]z} =4(f) Z[Ié(azi) + I ()] — 2Zo( )T (f ).
Z (62)
Thus, the SSD function can be computed by taking twice theetadron function and subtracting
it from the sum of the energies in the two images.

(2
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Windowed correlation. Unfortunately, the Fourier convolution theorem only applivhen the
summation overe; is performed oveall the pixels in both images, using a circular shift of the
image when accessing pixels outside the original bounslaki¢hile this is acceptable for small
shifts and comparably sized images, it makes no sense waémé#ges overlap by a small amount
or one image is a small subset of the other.

In that case, the cross-correlation function should beasgal with awindowed(weighted)
cross-correlation function,

Ewco(w) = 3 wo(@:)lo(@:) wi(a; +u)li(a; + ), (63)

2

= [wo(@)lo(a)[¥[w: ()1 ()] (64)

where the weighting functions, andw; are zero outside the valid ranges of the images, and both
images are padded so that circular shifts return 0 valuessdsuthe original image boundaries.

An even more interesting case is the computation oftteghtedSSD function introduced in
(48),

Ewssp(u) = > wo(x)wi (@ + w)[li(a; +u) — Lo(x:))” (65)
= wo(z)®[w (@) 17 ()] + [wo(2) I§ (@)]%w: (x) — 2[wo(x) Io(2)[¥[w; () 1 (z))].

The Fourier transform of the resulting expression is thoreef

F{Bwssp(w)} = Wo(£)S1(£) + So( £ )WL (F) — 2Lo( £ (F), (66)
where

Wo = Fluo()}, Wi = Flui(@),

Zy = Flwo(®)lo(x)}, Iy = Flwi(z)h(x)}, (67)

S() = ]—"{wo(m)lg(m)}, and S = }"{wl(w)lf(w)}

are the Fourier transforms of the weighting functions amditbightedoriginal and squared image
signals. Thus, for the cost of a few additional image mukgpbnd Fourier transforms, the correct
windowed SSD function can be computed. (To my knowledgeyveh®t seen this formulation
written down before, but | have been teaching it to studestsdveral years now.)

The same kind of derivation can be applied to the bias-garected sum of squared difference
function Egg. Again, Fourier transforms can be used to efficiently coraglk the correlations
needed to perform the linear regression in the bias and gasmpeters in order to estimate the
exposure-compensated difference for each potential shift

Phase correlation. A variant of regular correlation (60) that is sometimes ulsgdnotion esti-
mation isphase correlatior{fKuglin and Hines 1975, Brown 1992). Here, the spectrum efttfo
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signals being matched whitenedby dividing each per-frequency product in (60) by the magni-
tudes of the Fourier transforms,

Lo(f)Z3(f)
F{Epc(u)} =
’ [EAGIIEAS
before taking the final inverse Fourier transform. In theecat noiseless signals with perfect
(cyclic) shift, we havd; (x + u) = Iy(x), and hence from (59) we obtain

(68)

Fih(x+u)} = T(fe S = 1,(f) and
F{Epc(u)} = e2%f, (69)

The output of phase correlation (under ideal conditionshésefore a single spike (impulse) lo-
cated at the correct value af which (in principle) makes it easier to find the correctrestie.

Phase correlation has a reputation in some quarters of botpeng regular correlation, but
this behavior depends on the characteristics of the sigmalsnoise. If the original images are
contaminated by noise in a narrow frequency band (e.g.fteguency noise or peaked frequency
“hum?”), the whitening process effectively de-emphasizes oise in these regions. However,
if the original signals have very low signal-to-noise rasibsome frequencies (say, two blurry
or low-textured images with lots of high-frequency noistle whitening process can actually
decrease performance. Recently, gradient cross-coorelas emerged as a promising alternative
to phase correlation (Argyriou and Vlachos 2003), althougther systematic studies are probably
warranted. Phase correlation has also been studied bydtdelepson (1990) as a method for
estimating general optical flow and stereo disparity.

Rotations and scale. While Fourier-based alignment is mostly used to estimatesiational
shifts between images, it can, under certain limited comalt also be used to estimate in-plane
rotations and scales. Consider two images that are rgbatedy by rotation, i.e.,

L(Rx) = Iy(x). (70)
If we re-sample the images infmlar coordinates
fo(r, 0) = Iy(rcos@,rsinf) and I (r,0) = I(rcos 0, rsind), (71)

we obtain
L(r,0 +0) = Iy(r,0). (72)

The desired rotation can then be estimated using an FFFlssid technique.
If the two images are also related by a scale,

I(¢ Ra) = Iy(=), (73)
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we can re-sample intl@g-polar coordinates
Io(s,0) = Iy(e® cos B, e*sinf) and I,(s,0) = I,(e* cos 0, e* sin h), (74)

to obtain
Li(s+5,0+0)=Is,0). (75)
In this case, care must be taken to choose a suitable rangeatifes that reasonably samples the
original image.
For images that are also translated by a small amount,

(e Rx +t) = Iy(x), (76)

De Castro and Morandi (1987) proposed an ingenious soltiianuses several steps to estimate
the unknown parameters. First, both images are convertdtetéourier domain, and only the
magnitudes of the transformed images are retained. Inipt@dhe Fourier magnitude images
are insensitive to translations in the image plane (althdhg usual caveats about border effects
apply). Next, the two magnitude images are aligned in rotaéind scale using the polar or log-
polar representations. Once rotation and scale are estimane of the images can be de-rotated
and scaled, and a regular translational algorithm can bkealtp estimate the translational shift.

Unfortunately, this trick only applies when the images hirge overlap (small translational
motion). For more general motion of patches or images, thenpetric motion estimator described
in §3.5 or the feature-based approaches describéd need to be used.

3.4 Incremental refinement

The techniques described up till now can estimate traoslatialignment to the nearest pixel (or
potentially fractional pixel if smaller search steps ared)s In general, image stabilization and
stitching applications require much higher accuraciedtaia acceptable results.

To obtain bettesub-pixelestimates, we can use one of several techniques (Tian andsHuh
1986). One possibility is to evaluate several discreteget or fractional) values df:, v) around
the best value found so far anditderpolatethe matching score to find an analytic minimum.

A more commonly used approach, first proposed by Lucas andd&af1981), is to dgradient
descenbn the SSD energy function (44), using a Taylor Series exparef the image function
(Figure 10),

Bk ssp(u+Au) = Y [L(xi +u+ Au) — [y(z;)]?

2

2

Q

= D [Ji(xi+ u)Au + e, (78)

2
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Figure 10: Taylor series approximation of a function and the increraEnbmputation of the optic flow
correction amountJ (x; + u) is the image gradient gtr; + u) ande; is the current intensity difference.

where 5. Bl
is theimage gradientit (x; + u) and
e; = Ii(x; + u) — Io(x;), (80)

first introduced in (44), is the current intensity ertbr.
The above least squares problem can be minimizing by sothimgssociatedormal equations
(Golub and Van Loan 1996),

AAu=b> (81)
where
A=>"J(z; +u)J:(x; +u) (82)
and
b=—> eJi(z; +u) (83)

are called the (Gauss-Newton approximation of tie}sianandgradient-weighted residual vec-
tor, respectively? These matrices are also often written as

(84)

2
R R
YLI, LI > 1,1,

where the subscripts ify and/, denote spatial derivatives, afids called theemporal derivative
which makes sense if we are computing instantaneous welodit video sequence.

The gradients required faf,(x; + uw) can be evaluated at the same time as the image warps
required to estimaté (x; + ), and in fact are often computed as a side-product of imagegat
lation. If efficiency is a concern, these gradients can b&aoepgl by the gradients in themplate

\We follow the convention, commonly used in robotics and iaK& and Matthews 2004), that derivatives with
respect to (column) vectors result in row vectors, so thaeféaransposes are needed in the formulas.
12The true Hessian is the full second derivative of the erracfion £, which may not be positive definite.
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(@) (b) ()

Figure 11: Aperture problems for different image patches: (a) stabtorher-like”) flow; (b) classic
aperture problem (barber-pole illusion); (c) texturelasgion.

image,
Ji(x; +u) = Jo(x), (85)

since near the correct alignment, the template and displerget images should look similar.
This has the advantage of allowing the pre-computationeHéssian and Jacobian images, which
can result in significant computational savings (Hager aelthiBneur 1998, Baker and Matthews
2004). A further reduction in computation can be obtained/hing the warped imagé, (x; +u)
used to compute; in (80) as a convolution of a sub-pixel interpolation filteittwthe discrete
samples in/; (Peleg and Rav-Acha 2006). Precomputing the inner prodetetden the gradient
field and shifted version af; allows the iterative re-computation efto be performed in constant
time (independent of the number of pixels).

The effectiveness of the above incremental update rulesrel the quality of the Taylor series
approximation. When far away from the true displacemeny (s pixels), several iterations
may be needed. (It is possible, however, to estimate a valud f using a least-squares fit to
a series of larger displacements in order to increase trgerahconvergence (Jurie and Dhome
2002).) When started in the vicinity of the correct solutionly a few iterations usually suffice.
A commonly used stopping criterion is to monitor the magihétwf the displacement correction
||| and to stop when it drops below a certain threshold (¢ay of a pixel). For larger motions,
itis usual to combine the incremental update rule with adngdrical coarse-to-fine search strategy,
as described i§3.2.

Conditioning and aperture problems. Sometimes, the inversion of the linear system (81) can
be poorly conditioned because of lack of two-dimensiongiuie in the patch being aligned. A

commonly occurring example of this is tlaperture problemfirst identified in some of the early
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papers on optic flow (Horn and Schunck 1981) and then stude@ mxtensively by Anandan
(1989). Consider an image patch that consists of a slantgel mving to the right (Figure 11).
Only thenormal component of the velocity (displacement) can be reliabtpvered in this case.
This manifests itself in (81) as @nk-deficientmatrix A, i.e., one whose smaller eigenvalue is
very close to zerd?

When equation (81) is solved, the component of the displac¢along the edge is very poorly
conditioned and can result in wild guesses under small m@sirbations. One way to mitigate
this problem is to add prior (soft constraint) on the expected range of motions (Simitineeal.
1991, Baketet al.2004, Govindu 2006). This can be accomplished by adding & satae to the
diagonal ofA, which essentially biases the solution towards smallarvalues that still (mostly)
minimize the squared error.

However, the pure Gaussian model assumed when using a qiimpt quadratic prior, as in
(Simoncelliet al. 1991), does not always hold in practice, e.g., because adiaj along strong
edges (Triggs 2004). For this reason, it may be prudent tsade small fraction (say 5%) of the
larger eigenvalue to the smaller one before doing the metversion.

Uncertainty modeling The reliability of a particular patch-based motion estinean be cap-
tured more formally with amncertainty modelThe simplest such model iscavariance matrix
which captures the expected variance in the motion estimaiépossible directions. Under small
amounts of additive Gaussian noise, it can be shown thaoWegiance matrix.q, is proportional
to the inverse of the Hessia4,

Yu=0A"", (86)

wherec? is the variance of the additive Gaussian noise (Anandan,189Bthieset al. 1989,
Szeliski 1989). For larger amounts of noise, the lineaiwraperformed by the Lucas-Kanade
algorithmin (78) is only approximate, so the above quatt#gomes th€ramer-Rao lower bound
on the true covariance. Thus, the minimum and maximum eajaas of the Hessiad can now
be interpreted as the (scaled) inverse variances in thededasin and most-certain directions of
motion. (A more detailed analysis using a more realistic ei@d image noise can be found in
(Steele and Jaynes 2005).)

Bias and gain, weighting, and robust error metrics. The Lucas-Kanade update rule can also
be applied to the bias-gain equation (52) to obtain

ELK—BG(U + A'U,) = Z[Jl (:131 + ’U,)A’U, +e; — alo(a:i) — ﬁ]2 (87)

7

13The matrix A is by construction always guaranteed to be symmetric pess@mi-definite, i.e., it has real non-
negative eigenvalues.
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(Lucas and Kanade 1981, Gennert 1988, Fuh and Maragos 18Réré® al.2003b). The resulting
4 x4 system of equations in can be solved to simultaneously astithe translational displacement
updateAw and the bias and gain parametgranda.
A similar formulation can be derived for images (templatd&t have dinear appearance
variation,
L(z+u) ~ Iz +Z/\B (88)

where theB;(x) are thebasis imagesind the)\; are the unknown coefficients (Hager and Bel-
humeur 1998, Bakeet al. 2003a, Bakeket al. 2003b). Potential linear appearance variations in-
clude illumination changes (Hager and Belhumeur 1998) amallsion-rigid deformations (Black
and Jepson 1998).

A weighted (windowed) version of the Lucas-Kanade algamith also possible,

Erx-wssp(u + Au) Z wo(z)wy (x; + w)[J1 (2 + w)Au + e;]%. (89)

Note that here, in deriving the Lucas-Kanade update fromotiginal weighted SSD function
(48), we have neglected taking the derivativewefx,; + ) weighting function with respect ta,
which is usually acceptable in practice, especially if treeghiting function is a binary mask with
relatively few transitions.

Baker et al. (2003a) only use they(x) term, which is reasonable if the two images have
the same extent and no (independent) cutouts in the ovextapr. They also discuss the idea
of making the weighting proportional t&'/(x), which helps for very noisy images, where the
gradient itself is noisy. Similar observation, formulatederms oftotal least squaregHuffel and
Vandewalle 1991), have been made by other researchersrgguaiytic flow (motion) estimation
(Weber and Malik 1995, Bab-Hadiashar and Suter 1998, Mhldnd Mester 1998). Lastly, Baker
et al. (2003a) show how evaluating (89) at just im®st reliable(highest gradient) pixels does
not significantly reduce performance for large enough imageen if only 5%-10% of the pixels
are used. (This idea was originally proposed by Dellaert @allins (1999), who used a more
sophisticated selection criterion.)

The Lucas-Kanade incremental refinement step can also biedpp the robust error metric
introduced ing3.1,

ELK—SRD(U + A’U,) = Z p(J1 (CBZ + u)Au + 61‘). (90)
We can take the derivative of this function w.tand set it to O,

Z¢ 86’ = v(e)Ji(z +u) =0, (91)

Yn practice, it may be possible to decouple the bias-gaimaoiibn update parameters, i.e., to solve two indepen-
dent2 x 2 systems, which is a little faster.
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whereV (e) = p/(e) is the derivative op. If we introduce a weight functiom(e) = W(e)/e, we
can write this as

> w(e) T (x + u)[J1(z; + u)Au +¢;] = 0. (92)
This results in thdteratively Re-weighted Least Squaadgorithm, which alternates between com-
puting the weight functionsu(e;) and solving the above weighted least squares problem (Hu-
ber 1981, Stewart 1999). Alternative incremental robuastiesquares algorithms can be found
in (Sawhney and Ayer 1996, Black and Anandan 1996, Black aadgRrajan 1996, Bakeat
al. 2003a) and textbooks and tutorials on robust statisticdhh@ld981, Hampeét al. 1986,
Rousseeuw and Leroy 1987, Stewart 1999).

3.5 Parametric motion

Many image alignment tasks, for example image stitchingp Wandheld cameras, require the use
of more sophisticated motion models, as describginSince these models typically have more
parameters than pure translation, a full search over thsildesrange of values is impractical.
Instead, the incremental Lucas-Kanade algorithm can bergkred to parametric motion models
and used in conjunction with a hierarchical search algori(bucas and Kanade 1981, Rehg and
Witkin 1991, Fuh and Maragos 1991, Bergetral. 1992a, Baker and Matthews 2004).

For parametric motion, instead of using a single constanstation vectot,, we use a spatially
varyingmotion fieldor correspondence mag’(x; p), parameterized by a low-dimensional vector
p, wherex’ can be any of the motion models presentegin The parametric incremental motion
update rule now becomes

Erx-pu(p+Ap) = > [L(@'(zi;p + Ap)) — Io(:)]? (93)
~ Z[]l(m;) +J1(x) Ap — Io(z:))? (94)
= Ylh(@)ap +ef? (95)
where the Jacobian is now )
Tila) = G = V) 5 @), (96)
i.e., the product of the image gradiewt/; with the Jacobian of correspondence fieltl, =

ox' | Op.
Table 2 shows the motion Jacobiakhg: for the 2D planar transformations introducedin'®
Note how | have re-parameterized the motion matrices salilegtare always the identity at the

15The derivatives of the 3D rotational motion model introddize$2.2 are given irg4.3.
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Transform| Matrix | Parameters | JacobianJ 5 |

[ 10 ¢, ] [ 10 ]
translation U (tast,) 0 1
[ Co =50 la ] [ 1 0 —spz—cpy ]
Euclidean So Co Uy (s, t,.0) 0 1 coz— sgy
l+a —b tm] llox—y]
similarity b l1+4a t, (ta,ty, a,b) 01y =
14 ag  aol tx] {10:::3/00]
affine apg  l+an (t2, ty, o0, Ao1, 10, A1) 0100 2y
L+ho  hot  ho
o L+ hiy hio
projective hao haoy 1 (hoo, - - -, hat) (see text)

Table 2; Jacobians of the 2D coordinate transformations.

origin p = 0. This will become useful below, when we talk about the conitpm®al and inverse
compositional algorithms. (It also makes it easier to ingymsors on the motions.)

The derivatives in Table 2 are all fairly straightforwardgcept for the projective 2-D motion
(homography), which requires a per-pixel division to eeadu) c.f. (8), re-written here in its new
parametric form as

o (1 + hoo)x + hory + hoo and o — hior + (14 hy1)y + h12. 97)
hoox + hory + 1 hoox + hory + 1
The Jacobian is therefore

ox' 1 1000 —2'z —2
Jp=r=r | Y P (98)
op D|0 00z y 1 —yz —yy

whereD is the denominator in (97), which depends on the currentpeter settings (as dd and
y).
For parametric motion, the (Gauss-Newtdtgssianand gradient-weighted residual vector
become
A =3 Tp(@) VI () V()] T (2:) (99)

and
b=—> Jp(x)eVI (). (100)
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Note how the expressions inside the square brackets aranhe egnes evaluated for the simpler
translational motion case (82—-83).

Patch-based approximation. The computation of the Hessian and residual vectors fompeira
ric motion can be significantly more expensive than for tladtational case. For parametric
motion withn parameters and’ pixels, the accumulation ol andb takes Qn?N) operations
(Baker and Matthews 2004). One way to reduce this by a sigmifiamount is to divide the image
up into smaller sub-blocks (patche3)and to only accumulate the simplei 2 quantities inside
the square brackets at the pixel level (Shum and Szeliski?200

A; = Y VI (z)VIi(x)) (101)
1€EP;

by = > VI (x)). (102)
i€P;

The full Hessian and residual can then be approximated as

A T2 VI (&) VI(x)] Tz (2 ZJT, £)A; T (2;)  (103)
7 1€ P;
and
ZJT, (@)D eV (z)] = = Jg/(2)b;, (104)
1€ P; J

wherez; is thecenterof each patchP; (Shum and Szeliski 2000). This is equivalent to replacing
the true motion Jacobian with a piecewise-constant appratxon. In practice, this works quite
well. The relationship of this approximation to featureséd registration is discussedsg#h.4.

Compositional approach For a complex parametric motion such as a homography, th@aom
tation of the motion Jacobian becomes complicated, and nvajve a per-pixel division. Szeliski
and Shum (1997) observed that this can be simplified by firgbiwg the target imagé according
to the current motion estimaté(x; p),

Ii(x) = L(z'(z; p)), (105)

and then comparing thisarpedimage against the templatg(x),

Erx_ss(Ap) = Z[E(@(mz‘;ﬁp))—%(wiw

i

~ Y [Ji(z)Ap + e)? (1086)

i

= Y [VIi(:) T g(x:)Ap + €], (107)

i
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Note that since the two images are assumed to be fairly sinoitdy anincrementalparametric
motion is required, i.e., the incremental motion can bewatald aroungh = 0, which can lead
to considerable simplifications. For example, the Jacobidhe planar projective transform (97)
now becomes

ox
p
Once the incremental motianhas been computed, it can jpependedo the previously estimated
motion, which is easy to do for motions represented withdf@mation matrices, such as those
givenin Tables 1 and 2. Baker and Matthews (2004) call tle$dtward compositionahlgorithm,
since the target image is being re-warped, and the final mestimates are being composed.

If the appearance of the warped and template images is siemtaugh, we can replace the
gradient ofl, () with the gradient ofly(x), as suggested previously in (85). This has potentially
a big advantage in that it allows the pre-computation (anérsgion) of the Hessian matrid
given in (99). The residual vectdr (100) can also be partially precomputed, i.e., sheepest
descenimagesV Iy(x)J 4 (x) can precomputed and stored for later multiplication withdfx) =
I(z) — I,(x) error images (Baker and Matthews 2004). This idea was figgested by Hager
and Belhumeur (1998) in what Baker and Matthews (2004) dalhaard additivescheme.

Baker and Matthews (2004) introduce one more variant théytloainverse compositional
algorithm. Rather than (conceptually) re-warping the edrparget imagd, (z), they instead
warp the template imagk () and minimize

Eix-pm(Ap) = Y [Li(m) — Io(Z(zs; Ap)))?

(2

Jg =

(108)

ez y 1000 —2* —ay
pZO_OOOxyl—xy—yQ'

Q

This is identical to the forward warped algorithm (107) witte gradientsV 7, (x) replaced by
the gradientsvi,(x), except for the sign of;. The resulting updaté\p is the negativeof the
one computed by the modified (107), and henceitiverseof the incremental transformation
must be prepended to the current transform. Because theséwempositional algorithm has the
potential of pre-computing the inverse Hessian and thepsestalescent images, this makes it the
preferred approach of those surveyed in (Baker and Matt@é@4). Figure 12, taken from (Baker
et al. 2003a), beautifully shows all of the steps required to imqaat the inverse compositional
algorithm.

Baker and Matthews (2004) also discusses the advantagegf@auss-Newton iteration (i.e.,
the first order expansion of the least squares, as abovejhes. approaches such as steepest de-
scent and Levenberg-Marquardt. Subsequent parts of thes gBakeret al. 2003a, Bakekt al.
2003b, Bakeet al. 2004) discuss more advanced topics such as per-pixel viregglpixel selec-
tion for efficiency, a more in-depth discussion of robustnmmustand algorithms, linear appearance
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Figure 12: A schematic overview of the inverse compositional algorilcopied, with permission, from
(Bakeret al.2003a)). Steps 3-6 (light-color arrows) are performed oasea pre-computation. The main
algorithm simply consists of iterating: image warping (®tb), image differencing (Step 2), image dot
products (Step 7), multiplication with the inverse of thessian (Step 8), and the update to the warp (Step
9). All of these steps can be performed efficiently.
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variations, and priors on parameters. They make for in\éueeading for anyone interested in
implementing a highly tuned implementation of incrementage registration.

4 Feature-based registration

As | mentioned earlier, directly matching pixel intensstis just one possible approach to image
registration. The other major approach is to first extrastinictive featuresfrom each image,
to match these features to establish a global correspoadand to then estimate the geometric
transformation between the images. This kind of approachben used since the early days
of stereo matching (Hannah 1974, Moravec 1983, Hannah 1&88has more recently gained
popularity for image stitching applications (Zoghlasti al. 1997, Capel and Zisserman 1998,
Cham and Cipolla 1998, Badet al. 1998, McLauchlan and Jaenicke 2002, Brown and Lowe
2003, Brownret al. 2005).

In this section, | review methods for detecting distinctpants, for matching them, and for
computing the image registration, including the 3D rotatodel introduced i§2.2. | also dis-
cuss the relative advantages and disadvantages of ditétaiure-based approaches.

4.1 Keypoint detectors

As we saw ing3.4, the reliability of a motion estimate depends mostaalty on the size of the
smallest eigenvalue of the image Hessian matkix(Anandan 1989). This makes it a reason-
able candidate for finding points in the image that can be heakevith high accuracy. (Older
terminology in this field talked about “corner-like” feats (Moravec 1983), but the modern usage
is keypointsinterest pointsor salient points) Indeed, Shi and Tomasi (1994) propose using this
guantity to findgood features to tragkand then use a combination of translational and affineebase
patch alignment to track such points through an image seguen

Using a square patch with equal weighting may not be the beste. Instead, a Gaussian
weighting function can be used. Forstner (1986) and Hams Stephens (1988) both proposed
finding keypoints using such an approach. The Hessian amt&gie images can be efficiently
evaluated using a sequence of filters and algebraic opesatio

G.(x) = %G% (x) x I(x), (110)
(%ng (x) x I(x), (1112)

[ @@ G
B@) = e @@ | (112
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A(x) = G,,(x)* B(x) (113)

ago + a1 F +/(agp — a11)? + aprao
)\071(36) = \/ 5 s (114)

whereG,, is a noise-reducing pre-smoothing “derivative” filter ofdth o4, andG,, is the in-
tegration filter whose scale; controls the effective patch size. (Theg are the entries in the
A(x) matrix, where | have dropped thie) for succinctness.) For example, Forstner (1994) uses
o4 = 0.7 ando; = 2. Once the minimum eigenvalue image has been computed,if@ama can
be found as potential keypoints.

The minimum eigenvalue is not the only quantity that can lelus find keypoints. A simpler
quantity, proposed by Harris and Stephens (1988) is

det(A) —Q traCQA)Q = XA — O[()\Q + )\1)2 (115)
with o = 0.06. Triggs (2004) suggest using the quantity
Ao — Ay (116)

(say witha = 0.05), which reduces the response at 1D edges, where aliasiog eswmetimes
affect the smaller eigenvalue. He also shows how the bBasic2 Hessian can be extended to
parametric motions to detect points that are also accyraiedlizable in scale and rotation. Brown
et al. (2005), on the other hand, use the harmonic mean,

det A . )\QAl
trA )\O—i_)\l’

(117)

which is a smoother function in the region whexg ~ A\;. Figure 13 shows isocontours of the
various interest point operators (note that all the detsatequire both eigenvalues to be large).
Figure 14 shows the output of the multi-scale oriented peatlctor of Browret al. (2005) at 5
different scales.

Schmidet al. (2000) survey the vast literature on keypoint detection@erfiorm some exper-
imental comparisons to determine tfepeatabilityof feature detectors, which is defined as the
frequency with which keypoints detected in one image aredowithine = 1.5 pixels of the cor-
responding location in a warped image. They also measuretbenation contentavailable at
each detected feature point, which they define as the entriogpget of rotationally invariant local
grayscale descriptors. Among the techniques they survey find that anmprovedversion of the
Harris operator witlv; = 1 ando; = 2 works best.

More recently, feature detectors that are more invariastéde (Lowe 2004, Mikolajczyk and
Schmid 2004) and affine transformations (Baumberg 2000jrkeandl Brady 2001, Schaffalitzky
and Zisserman 2002, Mikolajczygt al.2005) have been proposed. These can be very useful when

34



12

—-— Harris
| — — - Harmonic mean
| Shi-Tomasi
10 I
1
!
i
8r I\
[
"
|
< 6r et
VN
Y
] A\
4+ v N
\ AN
\ N
\ > ~o
2 S Tl
0 i i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10

Figure 13: Isocontours of popular keypoint detection functions (takem (Brownet al. 2004)). Each
detector looks for points where the eigenvalugs\; of H = [, VIVI Tdx are both large.

Figure 14: Multi-scale Oriented Patches (MOPS) extracted at five pydaevels (taken from (Browet

al. 2004)). The boxes show the feature orientation and the mefyjion which the descriptor vectors are
sampled.
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matching images that have different scales or aspects {et®D object recognition). A simple
way to achieve scale invariance is to look for scale-spacemeof Difference of Gaussian (DoG)
(Lindeberg 1990, Lowe 2004) or Harris corner (Mikolajczyid&schmid 2004, Triggs 2004) detec-
tors computed over a sub-octave pyramid, i.e., an imagempgrarhere the subsampling between
adjacent levels is less than a factor of two. Lowe’s orig{28l04) paper uses a half-octavwg2)
pyramid, whereas Triggs (2004) recommends using a quactaxe ¢/2). The area of feature
point detectors and descriptors continues to be very qetitle papers appearing every year at ma-
jor computer vision conferences (Carneiro and Jepson 208fneyet al. 2005, Bayet al. 2006,
Platelet al. 2006, Rosten and Drummond 2006)—see the recent survey amplcison of affine
region detectors by Mikolajczyét al. (2005).

Of course, keypoints are not the only kind of features thatlmused for registering images.
Zoghlamiet al. (1997) use line segments as well as point-like featuresttmate homographies
between pairs of images, whereas (Bartidlial. 2004) use line segments with local correspon-
dences along the edges to extract 3D structure and motioytel@dars and Van Gool (2004) use
affine invariant regions to detect correspondences for Wwadeline stereo matching. Mateisal.
(2004) detectmaximally stable regionsising an algorithm related to watershed detection, wiserea
Kadir et al. (2004) detect salient regions where patch entropy andtgsofechange with scale are
locally maximal. (Corso and Hager (2005) use a related igdito fit 2-D oriented Gaussian ker-
nels to homogeneous regions.) While these techniques Ich@ ased to solve image registration
problems, they will not be covered in more detail in this gyrv

4.2 Feature matching

After detecting the features (keypoints), we mungitchthem, i.e., determine which features come
from corresponding locations in different images. In sorm&sions, e.g., for video sequences (Shi
and Tomasi 1994) or for stereo pairs that have heetified (Loop and Zhang 1999, Scharstein
and Szeliski 2002), the local motion around each featunetpoay be mostly translational. In this
case, the error metrics introducedsi®.1 such asissp or Excc can be used to directly compare
the intensities in small patches around each feature pd@ihe comparative study by Mikolajczyk
and Schmid (2005) discussed below uses cross-correjpBewsause feature points may not be ex-
actly located, a more accurate matching score can be cothputeerforming incremental motion
refinement as described §8.4, but this can be time consuming, and can sometimes eveaaie
performance (Browet al. 2005).

If features are being tracked over longer image sequertugis apppearance can undergo larger
changes. In this case, it makes sense to compare appeauwsigsnaffinemotion model. Shi
and Tomasi (1994) compare patches using a translationatlhhetiveen neighboring frames, and
then use the location estimate produced by this step taliziti an affine registration between
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the patch in the current frame and the base frame where ardeats first detected. In fact,
features are only detected infrequently, i.e., only in@agihere tracking has failed. In the usual
case, an area around the currpredictedlocation of the feature is searched with an incremental
registration algorithm. This kind of algorithm isdetect then traclapproach, since detection
occurs infrequently. It is appropriate for video sequernebsre the expected locations of feature
points can be reasonably well predicted.

For larger motions, or for matching collections of imagesewhthe geometric relationship
between them is unknown (Schaffalitzky and Zisserman 280@wn and Lowe 2003), detect
then matchapproach in which feature points are first detected in allg@sas more appropriate.
Because the features can appear at different orientatiopsates, a morgiew invariantkind of
representation must be used. Mikolajczyk and Schmid (208&gw some recently developed
view-invariant local image descriptors and experimeptatimpare their performance.

The simplest method to compensate for in-plane rotations fsnd adominant orientation
at each feature point location before sampling the patchleeravise computing the descriptor.
Brown et al. (2005) use the direction of the average gradient oriematomputed within a small
neighborhood of each feature point, whereas Lowe (2004)vé&isas Mikolajczyk and Schmid
(2005)) look for a peak in the local gradient orientationtdggam. The descriptor can be made
invariant to scale by only selecting feature points that@ral maxima in scale space, as discussed
in §4.1. Making the descriptors invariant to affine deformati@stretch, squash, skew) is even
harder (Baumberg 2000, Schaffalitzky and Zisserman 20@&Kolajczyk and Schmid (2004) use
the local second moment matrix around a feature point to @@fitanonical frame, whereas Corso
and Hager (2005) fit 2-D oriented Gaussian kernels to honmgesregions and store the weighted
region statistics.

Among the local descriptors that Mikolajczyk and SchmidQ20compared, they found that
David Lowe’s (2004) Scale Invariant Feature Transform {Slgenerally performed the best, fol-
lowed by Freeman and Adelson’s (1991) steerable filters lagwl tross-correlation (which could
potentially be improved with an incremental refinement efliton and pose—but see (Browh
al. 2005)). Differential invariants, whose descriptors argeimsitive to changes in orientation by
design, did not do as well.

SIFT features are computed by first estimating a local catéar using a histogram of the local
gradient orientations, which is potentially more accuthgmn just the average orientation. Once
the local frame has been established, gradients are capiedlifferent orientation planes, and
blurred resampled versions of these images as used as thesfeaThis provides the descriptor
with some insensitivity to small feature localization esrand geometric distortions (Lowe 2004).

Steerable filters are combinations of derivative of GausBlters that permit the rapid com-
putation of even and odd (symmetric and anti-symmetriceddge and corner-like features at all
possible orientations (Freeman and Adelson 1991). Bedaegeaise reasonably broad Gaussians,
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Figure 15: MOP descriptors are formed using &nx 8 sampling of bias/gain normalized intensity values,
with a sample spacing of 5 pixels relative to the detecticaies¢taken from (Browret al. 2004)). This
low frequency sampling gives the features some robustodssypoint location error, and is achieved by
sampling at a higher pyramid level than the detection scale.

they too are somewhat insensitive to localization and ¢eitém errors.

For tasks that do not exhibit large amounts of foreshorggrsach as image stitching, simple
normalized intensity patches perform reasonably well arcsanple to implement (Browat al.
2005) (Figure 15). The field of feature descriptors contaaeevolve rapidly, with newer results
including a principal component analysis (PCA) of SIFT teatdescriptors (Ke and Sukthankar
2004) and descriptors that include local color informafieen de Weijer and Schmid 2006).

Rapid indexing and matching. The simplest way to find all corresponding feature pointsin a
image pair is to compare all the features in one image agalirtbe features in the other, using one
of the local descriptors described above. Unfortunatélg, is quadratic in the expected number
of features, which makes it impractical for some applicadio

More efficient matching algorithms can be devised usingedtifit kinds oindexing schemes
many of which are based on the idea of finding nearest neighbdrigh-dimensional spaces. For
example, Nene and Nayar (1997) developed a technique thleslicang that uses a series of 1D
binary searches to efficiently cull down a list of candidatenfs that lie within a hypercube of the
guery point. They also provide a nice review of previous wiarkhis area, including spatial data
structures such asd trees (Samet 1989). Beis and Lowe (1997) propose a BesFiBst (BBF)
algorithm, which uses a modified search ordering férétree algorithm so that bins in feature
space are searched in the order of their closest distancedu®ry location. Shakhnaroviat
al. (2003) extend a previously developed technique cdbiedlity-sensitive hashingvhich uses
unions of independently computed hashing functions, to beersensitive to the distribution of
points in parameter space, which they gallameter-sensitive hashingrown et al. (2005) hash
the first three (non-constant) Haar wavelets frong anS image patch. Even more recently, Nister
and Stewenius (2006) usereetric tree which consists of comparing feature descriptors to a small
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number of prototypes at each level in a hierarchy. Despitefahis promising work, the rapid
computation of image feature correspondences is far frangkeesolved problem.

RANSAC and LMS. Once an initial set of feature correspondences has beenutet)pwve
need to find a set that is will produce a high-accuracy alignm®ne possible approach is to
simply compute a least squares estimate or to use a robdgtteeatively re-weighted) version of
least squares, as discussed bel®du3). However, in many cases, it is better to first find a good
starting set oinlier correspondences, i.e., points that are all consistentsmitie particular motion
estimate'®

Two widely used solution to this problem are called RANdommg»?e Consensus, or RANSAC
for short (Fischler and Bolles 1981) atehst median of squardsMS) (Rousseeuw 1984). Both
techniques start by selecting (at random) a subsét adrrespondences, which is then used to
compute a motion estimage as described if4.3. Theresidualsof the full set of correspondences
are then computed as

ri = @(z; p) — &, (118)
where z, are theestimated(mapped) locations, andt, are the sensed (detected) feature point
locations.

The RANSAC technique then counts the numbeingérs that are withire of their predicted
location, i.e., whosé|r;|| < e. (Thee value is application dependent, but often is around 1-3
pixels.) Least median of squares finds the median value dfitHevalues.

The random selection process is repedidimes, and the sample set with largest number of
inliers (or with the smallest median residual) is kept asfitm@ solution. Either the initial param-
eter guesp or the full set of computed inliers is then passed on to thé daba fitting stage. In a
more recently developed version of RANSAC called PROSACJBRssive SAmple Consensus),
random samples are initially added from the most “confidemdéitches, thereby speeding up the
process of finding a (statistically) likely good set of ini€Chum and Matas 2005).

To ensure that the random sampling has a good chance of fiadling set of inliers, a sufficient
number of trialsS must be tried. Lep be the probability that any given correspondence is valid,
and P be the total probability of success aftetrials. The likelihood in one trial that all random
samples are inliers ig*. Therefore, the likelihood that such trials will all fail is

1-P=(1-p"° (119)
and the required minimum number of trials is
log(1 — P)
= —= 120
log(1 — p*) (120

18For direct estimation methods, hierarchical (coarsefte)fiechniques are often used to lock ontodbeninant
motionin a scene (Bergeet al. 1992a, Bergeet al. 1992h).
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Stewart (1999) gives the following examples of the requimecthber of trialsS to attain a 99%
probability of success:

k|l p| S
310.5] 35
60.6| 97|
610.5]293

As you can see, the number of trials grows quickly with the hanof sample points used. This
provides a strong incentive to use tmeimumnumber of sample points possible for any given
trial, which in practice is how RANSAC is normally used.

4.3 Geometric registration

Once we have computed a set of matched feature point corrdepoes, the next step is to estimate
the motion parameteps that best register the two images. The usual way to do thsuse least
squares, i.e., to minimize the sum of squared residualsdiy€118),

Eys =} |Irill* = & (i p) — & (121)

Many of the motion models presented§®, i.e., translation, similarity, and affine, havéireear
relationship between the motion and the unknown parametéfsin this case, a simple linear
regression (least squares) using normal equatims= b works well.

Uncertainty weighting and robust regression. The above least squares formulation assumes
that all feature points are matched with the same accurduy.i3 often not the case, since certain
points may fall in more textured regions than others. If weoafate a variance estimat@ with
each correspondence, we can minimiegghted least squaresstead,

EWLS = 20;2”7"@'”2. (122)

As discussed i133.4, a covariance estimate for patch-based matching camtaeed by multi-
plying the inverse of the Hessian with the per-pixel noigmeste (86). Weighting each squared
residual by the inverse covariangs' = o, 2A; (which is called thenformation matriy, we
obtain

ECWLS = Z H'l"zHé;l = Z’l"?z;l’l"i = ZO‘;QT‘ZTAZ'T‘Z', (123)

whereA; is thepatch Hessiarf101).

172-D Euclidean motion can be estimated with a linear algorithy first estimating the cosine and sine entries
independently, and then normalizing them so that their ritade is 1.
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If there are outliers among the feature-based correspaeddand there almost always are), it
is better to use a robust version of least squares, evenriiitzal RANSAC or MLS stage has been
used to select plausible inliers. The robust least squarsswetric (analogous to (45)) is then

Eris(u) =3 plllrills ). (124)

As before, a commonly used approach to minimize this quaigtito use iteratively re-weighted
least squares, as describeddw.

Homography update. Fornon-linearmeasurement equations such as the homography given in
(97), rewritten here as

3 = (14 hoo)x + hory + hoe and g — hiox + (1 4 hi1)y + hao

hoox + ho1y + 1 hoox 4 ho1y + 1

: (125)

an iterative solution is required to obtain accurate resuin initial guess for the 8 unknowns
{hoo, - - ., ho1} can be obtained by multiplying both sides of the equatiorsuth by the denomi-
nator, which yields the linear set of equations,

o . . hoo
[x—x]_[xleOO—xx—xy] .

126
v -y 0002y 1 =g —gy (126)

h21
However, this is not optimal from a statistical point of viesince the denominator can vary quite
a bit from point to point.

One way to compensate for this isresweighteach equation by the inverse of current estimate
of the denominatorp,

1|2 —=x
D|iy—y
While this may at first seem to be the exact same set of eqsadi®il26), because least squares
is being used to solve the over-determined set of equatibesyeightingslo matter and produce
a different set of normal equations that performs betteraciice (with noisy data).
The most principled way to do the estimation, however, isiteally minimize the squared

residual equations (118) using the Gauss-Newton appraxima.e., performing a first-order Tay-
lor series expansion ip, which yields,

1
=5 (127)

h
xy 1 00 0 —2'z -1y ?0
000y 1 —gz —7y

h21

&, — ) (xi;p) = T Ap (128)
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or

D

A7 1 [z vy 1000 &z —7y Boo
: (129)

., -, :
0002y 1l —yz —yy Aht

While this looks similar to (127), it differs in two importanespects. First, the left hand side
consists of unweightedrediction errorsrather than pixel displacements, and the solution vector
is aperturbationto the parameter vectgr. Second the quantities insidgy involve predicted
feature location$z’, §’) instead ofsensedeature locationgz’, §'). Both of these are subtle and
yet they lead to an algorithm that, when combined with prapercking for downhill steps (as in
the Levenberg-Marquardt algorithm), will converge to a imam. (lterating the (127) equations
is not guaranteed to do so, since it is not minimizing a wefirted energy function.)

The above formulais analogous to tditivealgorithm for direct registration since the change
to thefull transformation is being computéd.5. If we prepend an incremental homography to the
current homography instead, i.e., we ussbapositionablgorithm, we getD = 1 (sincep = 0)
and the above formula simplifies to

Ahoo

: 130
-y 000y 1 —azy —y? ' ’ (130)

[i’—x]_[:p y 1.0 00 —2*2 —ay
Ahoq

where | have replacetf’, §') with (z,y) for conciseness. (Notice how this results in the same
Jacobian as (108).)

Rotational panorama update. As described ir§2.2, representing the alignment of images in a
panorama using a collection of rotation matrices and faamadjths results in a much more stable
estimation problem than directly using homographies (Skel996, Szeliski and Shum 1997).
Given this representation, how do we update the rotatiomicestto best align two overlapping
images?

Recall from (18-19) that the equations relating two views loa written as

Zﬁl ~ 1:_?[10:%0 W|th ﬁlO - KlRloKo_l, (131)

where K, = diad f, fx, 1) is the calibration matrix and,, = Rle1 is rotationbetweerthe
two views. The best way to updal,, is to prepend aimcrementalotation matrixR(J) to the
current estimatd?;, (Szeliski and Shum 1997, Shum and Szeliski 2000),

H(3) = K\R(@)RwK;' = [K,R(G)K;'|[K,RiK;'] = DH . (132)
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Note that here | have written the update rule in tdoenpositionalform, where the incremental
updateD is prependedo the current homographbf;,. Using the small-angle approximation to
R(J) given in (26), we can write the incremental update matrix as

1 —Wy flwy
D=KROK!'~K (I+[J, )K"= W, 1 —fiw, |- (133)
—Wy/f1 Wz/fl 1

Notice how there is now a nice one-to-one correspondenaecket the entries in th&® matrix
and thehyy, . . ., ho; parameters used in Table 2 and (125), i.e.,

<h007 ho1, hoz, hoo, hat, Rz, hao, hzl) = (0, —Wy, flwya Wz, 0, — fiwg, _wy/fla wx/fl)- (134)
We can therefore apply the chain rule to (130) and (134) tainbt

Wy

[i’—x] :{ —wy/fi  hi+2h -y (135)
y —(

h+vif) aylfh e [T

which give us the linearized update equations needed tmastis = (w,,w,,w,).!® Notice that
this update rule depends on the focal lengtlof the targetview, and is independent of the focal
length f, of the templateview. This is because the compositional algorithm essigntaakes
small perturbations to the target. Once the incrementatioot vectord has been computed, the
R, rotation matrix can be updated usif) — R(J)R;.

The formulas for updating the focal length estimates aréla nore involved, and are given
in (Shum and Szeliski 2000). | will not repeat them here, siag alternative update rule, based on
minimizing the difference between back-projected 3D rayh be given in§5.1. Figure 16 shows
the alignment of four images under the 3D rotation motion ehod

Focal length initialization. In order to initialize the 3D rotation model, we need to sitané-
ously estimate the focal length(s) of the camera(s) andiéialiguess for a rotation matrix. This
can be obtained directly from a homography-based (plarmappetive) alignmenH ;,, using the
formulas first presented in (Szeliski and Shum 1997).

Using the simplified form of the calibration matricé&s, = diag(fx, fx, 1) first used in (19),
we can rewrite (131) as

) hoo ho fo thoa
Ry, ~ K1_1H10K0 ~ hio hi1 fothi |, (136)
fihoo  fihor  fo tfihas

8This is the same as the rotational component of instantaégid flow (Bergeret al. 1992a) and the same as the
update equations given in (Szeliski and Shum 1997, Shum aeliss 2000).
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Figure 16: Four images taken with a hand-held model registered usin® aaation motion model (from
(Szeliski and Shum 1997)). Notice how the homographidseralhan being arbitrary, have a well defined
keystone shape whose width increases away from the origin.

where theh;; are the elements dfl ;.
Using the orthonormality properties of the rotation maiy, and the fact that the right hand
side of (136) is known only up to a scale, we obtain

hgo + h(2)1 + f62h32 = h%o + h%l + f62h§2 (137)

and
hoohio + hothi + f5 *hoahia = 0. (138)

From this, we can compute estimates fgiof

h?, — h?
2 — 12 02 f h2 + h2 h2 + h2 139
/o h2o + h2, — h2o — I 1 00 o1 7 hip 11 (139)
or
2 hoahio .
fo= if hgohio # —hoihy;. (240)

hoohio + hoihay
(Note that the equations given in (Szeliski and Shum 199% earoneous; the correct equations
can be found in (Shum and Szeliski 2000).) If neither of thas®ditions holds, we can also take
the dot products between the first (or second) row and the dme. Similar result can be obtained
for f, as well by analyzing the columns &1 ,,. If the focal length is the same for both images, we
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(a) (b)
Figure 17: Gap closing: (a) a gap is visible when the focal length is vg@fi = 510); (b) no gap is visible
for the correct focal lengthf{ = 468).

can take the geometric mean f3fand f; as the estimated focal length= / f1 fo. When multiple
estimates off are available, e.g., from different homographies, the aredalue can be used as
the final estimate.

Gap closing. The techniques presented in this section can be used toagstanseries of rotation
matrices and focal lengths, which can be chained togetherette large panoramas. Unfortu-
nately, because of accumulated errors, this approachavély produce a closetb0° panorama.
Instead, there will invariably be either a gap or an overlagyre 17).

We can solve this problem by matching the first image in thaisege with the last one.
The difference between the two rotation matrix estimatss@ated with this frame indicates the
amount of misregistration. This error can be distributegidy across the whole sequence by tak-
ing the quotient of the two quaternions associated witheéhesations and dividing this “error
quaternion” by the number of images in the sequence (asguralatively constant inter-frame
rotations). We can also update the estimated focal lengtecban the amount of misregistration.
To do this, we first convert the error quaternion intgap angle ¢,. We then update the focal
length using the equatioff = f(1 — 6,/360°).

Figure 17a shows the end of registered image sequence aficsthimage. There is a big gap
between the last image and the first which are in fact the sarage. The gap i32° because the
wrong estimate of focal lengtlf (= 510) was used. Figure 17b shows the registration after closing
the gap with the correct focal lengtli & 468). Notice that both mosaics show very little visual
misregistration (except at the gap), yet Figure 17a has besputed using a focal length which
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has 9% error. Related approaches have been developed le{HEI94, McMillan and Bishop
1995, Stein 1995, Kang and Weiss 1997) to solve the focatteestimation problem using pure
panning motion and cylindrical images.

Unfortunately, this particular gap-closing heuristicyowbrks for the kind of “one-dimensional”
panorama where the camera is continuously turning in the shraction. In next sectiogb, | de-
scribe a different approach to removing gaps and overlastbrks for arbitrary camera motions.

4.4 Direct vs. feature-based alignment

Given that there exist these two alternative approachegtuirag images, which is preferable?

| used to be firmly in the direct matching camp (Irani and Arean@999). Early feature-based
methods seemed to get confused in regions that were eitheextured or not textured enough.
The features would often be distributed unevenly over thegies, thereby failing to match image
pairs that should have been aligned. Furthermore, edtaidi€orrespondences relied on simple
cross-correlation between patches surrounding the feg@kints, which did not work well when
the images were rotated or had foreshortening due to horpbigs

Today, feature detection and matching schemes are renharkbloist, and can even be used for
known object recognition from widely separated views (Ld2@®4). Features not only respond
to regions of high “cornerness” (Forstner 1986, Harris Stephens 1988), but also to “blob-like”
regions (Lowe 2004), as well as uniform areas (Tuytelaads\&an Gool 2004). Furthermore,
because they operate in scale-space and use a dominartaboierfor orientation invariant de-
scriptors), they can match images that differ in scale,ntaigion, and even foreshortening. My
own recent experience in working with feature-based ampresiis that if the features are well
distributed over the image and the descriptors reasonasigded for repeatability, enough corre-
spondences to permit image stitching can usually be founaNBet al. 2005).

The other major reason | used to prefer direct methods washew make optimal use of the
information available in image alignment, since they measioe contribution oéverypixel in the
image. Furthermore, assuming a Gaussian noise model (buatifeed version of it), they properly
weight the contribution of different pixels, e.g., by empizang the contribution of high-gradient
pixels. (See Bakeet al. (2003a), who suggest that adding even more weight at stn@tiemts is
preferable because of noise in the gradient estimates.tQild argue that for a blurry image with
only slowly varying gradients, a direct approach will findaignment, whereas a feature detector
will fail to find anything. However, such images rarely ocaupractice in consumer imaging, and
the use of scale-space features means that some features framd at lower resolutions.

The biggest disadvantage of direct techniques is that theg & limited range of convergence.
Even though they can be used in a hierarchical (coarse-¢pdstimation framework, in practice it
is hard to use more than two or three levels of a pyramid befmpertant details start to be blurred
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away. For matching sequential frames in a video, the diygataach can usually be made to work.
However, for matching partially overlapping images in gitbaised panoramas, they fail too often
to be useful. Our older systems for image stitching (SzeliSR6, Szeliski and Shum 1997) relied
on Fourier-based correlation of cylindrical images andiamoprediction to automatically align
images, but had to be corrected by hand for more complex segaeOur newer system (Brown
et al. 2004, Brownet al. 2005) uses features and has a good success rate at autdgnstitcdning
panoramas without any user intervention.

Is there no rdle then for direct registration? | believer¢his. Once a pair of images has been
aligned with a feature-based approach, we can warp the tagesito a common reference frame
and re-compute a more accurate estimate using patch-blagetent. Notice how there is a close
correspondence between the patch-based approximatiaretr dlignment given in (103-104)
and the inverse covariance weighted feature-based leastejerror metric (123).

In fact, if we divide the template images up into patches alagdgan imaginary “feature
point” at the center of each patch, the two approaches retxantly the same answer (assuming
that the correct correspondences are found in each casejevdq for this approach to succeed,
we still have to deal with “outliers”, i.e., regions that dofit the selected motion model due
to either parallax5.2) or moving objects§6.2). While a feature-based approach may make it
somewhat easier to reason about outliers (features caassfed as inliers or outliers), the patch-
based approach, since it establishes correspondencesiargely, is potentially more useful for
removing local mis-registration (parallax), as we disansb.2.

5 Global registration

So far, I have discussed how to register pairs of images tsitigdirect and feature-based methods
using a variety of motion models. In most applications, we giwen more than a single pair of
images to register. The goal is then to findlabally consistenset of alignment parameters that
minimize the mis-registration between all pairs of imagesefiski and Shum 1997, Shum and
Szeliski 2000, Sawhney and Kumar 1999, Coorg and Teller gQ@Mrder to do this, we need to
extend the pairwise matching criteria (44), (94), and (188 global energy function that involves
all of the per-image pose paramete§5.(). Once we have computed the global alignment, we
often need to perfornocal adjustmentsuch agparallax removalto reduce double images and
blurring due to local mis-registrations5.2). Finally, if we are given an unordered set of images
to register, we need to discover which images go togethesrta bne or more panoramas. This
process opanorama recognitioms described irg5.3.
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5.1 Bundle adjustment

One way to register a large number of images is to add new isnag@e panorama one at a time,
aligning the most recent image with the previous ones ajraathe collection (Szeliski and Shum
1997), and discovering, if necessary, which images it apasrl(Sawhney and Kumar 1999). In
the case oB60° panoramas, accumulated error may lead to the presencgay @r excessive
overlap) between the two ends of the panorama, which can e fix stretching the alignment
of all the images using a process caltgp closing(Szeliski and Shum 1997). However, a better
alternative is to simultaneously align all the images tbgeusing a least squares framework to
correctly distribute any mis-registration errors.

The process of simultaneously adjusting pose parametessléoge collection of overlapping
images is calledundle adjustmenin the photogrammetry community (Triggs al. 1999). In
computer vision, it was first applied to the general struetfoom motion problem (Szeliski and
Kang 1994) and then later specialized for panoramic imagehstg (Shum and Szeliski 2000,
Sawhney and Kumar 1999, Coorg and Teller 2000).

In this section, | formulate the problem of global alignmesing a feature-based approach,
since this results in a simpler system. An equivalent diagpgiroach can be obtained either by di-
viding images into patches and creating a virtual featureespondence for each one (as discussed
in §4.4 and (Shum and Szeliski 2000)), or by replacing the patufe error metrics with per-pixel
metrics.

Consider the feature-based alignment problem given in)(121,

EpairwisefLS = Z ”TzHQ = H{U;(wzvp) - ‘r'Angz (141)

For multi-image alignment, instead of having a single altn of pairwise feature correspon-
dences{(x;, z;)}, we have a collection aof features, with the location of thih feature point in
the jth image denoted by;; and its scalar confidence (inverse variance) denoted,8§ Each
image also has some associgbedeparameters.

In this section, | assume that this pose consists of a rotatiatrix R; and a focal length
f;, although formulations in terms of homographies are alssibte (Shum and Szeliski 1997,
Sawhney and Kumar 1999). The equation mapping a 3D pgintto a pointz;; in framej can
be re-written from (15-19) as

5317‘ ~ KjRjJ,'Z' and xT; ~ R;lKgliZij, (142)

where K ; = diag(f;, f;, 1) is the simplified form of the calibration matrix. The motiorapping

BFeatures that not seen in imaghavec;; = 0. We can also usg x 2 inverse covariance matricés‘j1 in place
of ¢;;, as shown in (123).
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a pointz;; from frame; into a pointzx;;, in framek is similarly given by
&y ~ Hyay = KRR 'K ' 2. (143)

Given an initial set of (R;, f;)} estimates obtained from chaining pairwise alignments, dow
we refine these estimates?

One approach is to directly extend the pairwise enérgy,yis.—rs (141) to a multiview for-
mulation,

Ean—pairs—20 = Y 3 CijCin ||k (Zij; Ry, f7, R, fie) — &ar||”, (144)
i jk

where thex;; function is thepredictedlocation of feature: in frame £ given by (143),z;; is
the observedocation, and the “2D” in the subscript indicates than angexalane error is being
minimized (Shum and Szeliski 1997). Note that siagg depends on the;; observed value,
we actually have amrrors-in-variableproblem, which in principle requires more sophisticated
techniques than least squares to solve. However, in peadtive have enough features, we can
directly minimize the above quantity using regular noreéinleast squares and obtain an accurate
multi-frame alignment?

While this approach works well in practice, it suffers frowotpotential disadvantages. First,
since a summation is taken over all pairs with correspontiagures, features that are observed
many times get overweighted in the final solution. (In effecfeature observeth times gets
counted(ij) times instead ofn times.) Second, the derivatives ®f, w.r.t. the{(R;, f;)} are a
little cumbersome, although using the incremental coiwadb R; introduced in§2.2 makes this
more tractable.

An alternative way to formulate the optimization is to useetbundle adjustment, i.e., to solve
not only for the pose parametef§R;, f;)} but also for the 3D point positionse; },

Ega_op = Z Zczjﬂi‘ij(ivi; Rj7 fj) - ﬁf»’inza (145)
i

wherez;;(x;; R;, f;) is given by (142). The disadvantage of full bundle adjustniethat there
are more variables to solve for, so both each iteration amdverall convergence may be slower.
(Imagine how the 3D points need to “shift” each time sometrotamatrices are updated.) How-
ever, the computational complexity of each linearized Gadswton step can be reduced using
sparse matrix techniques (Szeliski and Kang 1994, Harttely Zisserman 2000, Triggst al.
1999).

20While there exists an overall pose ambiguity in the solytien, all theR; can be post-multiplied by an arbitrary
rotation R, a well-conditioned non-linear least squares algorithichsas Levenberg Marquardt will handle this
degeneracy without trouble.
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An alternative formulation is to minimize the error in 3D poted ray directions (Shum and

Szeliski 2000), i.e.,
Epa—sp = Y cijll@i(@iy; Ry, f;) — |, (146)
(]

wherez;(x;;; R;, f;) is given by the second half of (142). This in itself has noipatar advantage
over (145). In fact, since errors are being minimized in 3R space, there is a bias towards
estimating longer focal lengths, since the angles betwagnlvecome smaller gsincreases.

However, if we eliminate the 3D rays;, we can derive a pairwise energy formulated in 3D ray
space (Shum and Szeliski 2000),

Eall_pairs—30 = Y Y Cijci||®:(Zij; Ry, f7) — &i(Ta; Rie, fo)]>. (147)
i gk

This results in the simplest set of update equations (Shuh®aeliski 2000), since thg, can be
folded into the creation of the homogeneous coordinateovexs in (21). Thus, even though this
formula over-weights features that occur more frequeittiy,the method used both by Shum and
Szeliski (2000) and in our current work (Broven al. 2005). In order to reduce the bias towards
longer focal lengths, | multiply each residual (3D error)m, which is similar to projecting
the 3D rays into a “virtual camera” of intermediate focaldgédm and which seems to work well in
practice.

Up vector selection. As mentioned above, there exists a global ambiguity in trse@d the 3D
cameras computed by the above methods. While this may netappmatter, people have a pref-
erence for the final stitched image being “upright” rathertlwisted or tilted. More concretely,
people are used to seeing photographs displayed so thagéthieal (gravity) axis points straight
up in the image. Consider how you usually shoot photograpligle you may pan and tilt the
camera any which way, you usually keep vertical scene limeallel to the vertical edge of the
image. In other words, the horizontal edge of your camesa:{#xis) usually stays parallel to the
ground plane (perpendicular to the world gravity direc}ion

Mathematically, this constraint on the rotation matricas be expressed as follows. Recall
from (142) that the 3B-2D projection is given by

We wish to post-multiply each rotation matr;, by a global rotationR, such that the projection
of the globaly-axis,j = (0,1, 0) is perpendicular to the imageaxis,i = (1,0,0).%

2INote that here we use the convention common in computer gstat the vertical world axis corresponds;to
This is a natural choice if we wish the rotation matrix asated with a “regular” image taken horizontally to be the
identity, rather than 80° rotation around the-axis.
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This constraint can be written as
V"RyR,7 =0 (149)

(note that the scaling by the calibration matrix is irrel@vaere). This is equivalent to requiring
that the first row ofRy, r.o = i R; be perpendicular to the second columnif, r,1 = R,]).
This set of constraints (one per input image) can be writtem l@ast squares problem,

Tg1 = arg H%in zk:(rTrko)z = arg H%in r’ [Zk: TkOTZo] r. (150)
Thus,r,; is the smallest eigenvector of tiseatteror momentmatrix spanned by the individual
camera rotationx-vectors, which should generally be of the fofmO0, s) when the cameras are
upright.

To fully specify the R, global rotation, we need to specify one additional constrailhis
is related to thesiew selectiorproblem discussed if6.1. One simple heuristic is to prefer the
averagez-axis of the individual rotation matricek, = ", I%TRk to be close to the world-axis,
re = Ryk. We can therefore compute the full rotation matRy in three steps:

1. ry1 = min eigenvectoy";, rroriy);

2. 1y = N((XChTr2) X 7g1);
3. Tgo = Tgo X Tgl1,

whereN (v) = v/||v|| normalizes a vectow.

5.2 Parallax removal

Once we have optimized the global orientations and focgtlesof our cameras, we may find that
the images are still not perfectly aligned, i.e., the rasglstitched image looks blurry or ghosted
in some places. This can be caused by a variety of factorsidimg unmodeled radial distortion,
3D parallax (failure to rotate the camera around its optoegiter), small scene motions such as
waving tree branches, and large-scale scene motions spegopke moving in and out of pictures.

Each of these problems can be treated with a different apprddadial distortion can be es-
timated (potentially before the camera’s first use) using ohthe techniques discussedsi2.4.
For example, th@lumb line methodBrown 1971, Kang 2001, El-Melegy and Farag 2003) ad-
justs radial distortion parameters until slightly curvetes become straight, while mosaic-based
approaches adjust them until mis-registration is reduc@nage overlap areas (Stein 1997, Sawh-
ney and Kumar 1999).

3D parallax can be attacked by doing a full 3D bundle adjustme., replacing the projection
equation (142) used in (145) with (15), which models camenasiations. The 3D positions of the
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matched features points and cameras can then be simul&ynpeecovered, although this can be
significantly more expensive that parallax-free imagestegiion. Once the 3D structure has been
recovered, the scene could (in theory) be projected to desfogntral) viewpoint that contains
no parallax. However, in order to do this, derstereocorrespondence needs to be performed
(Kumaret al. 1995, Szeliski and Kang 1995, Scharstein and Szeliski 200Rch may not be
possible if the images only contain partial overlap. In ttas$e, it may be necessary to correct
for parallax only in the overlap areas, which can be accashpli using #Multi-Perspective Plane
SweeMPPS) algorithm (Kangt al. 2004, Uyttendaelet al. 2004).

When the motion in the scene is very large, i.e., when obgmear and disappear completely,
a sensible solution is to simpbelectpixels from only one image at a time as the source for the
final composite (Milgram 1977, Davis 1998, Agarwalaal.2004), as discussed $6.2. However,
when the motion is reasonably small (on the order of a fewlpjxgeneral 2-D motion estimation
(optic flow) can be used to perform an appropriate corrediefore blending using a process called
local alignment(Shum and Szeliski 2000, Kareg al. 2003). This same process can also be used
to compensate for radial distortion and 3D parallax, algioi uses a weaker motion model than
explicitly modeling the source of error, and may therefa hore often or introduce unwanted
distortions.

The local alignment technique introduced by Shum and Sa€R600) starts with the global
bundle adjustment (147) used to optimize the camera posese (ese have been estimated,
the desiredlocation of a 3D pointe; can be estimated as tlawerageof the back-projected 3D
locations,

T~ D cyi(@i; By, ), (151)
J

which can be projected into each imag® obtain atarget locationz;;. The difference between
the target locations;; and the original features,; provide a set of local motion estimates

uij = Eij — wl‘j, (152)

which can be interpolated to form a dense correction fieltc;). In their system, Shum and
Szeliski (2000) use amverse warpingalgorithm where the sparseu,; values are placed at the
new target locations;;, interpolated using bilinear kernel functions (Nielso®3Pand then added
to the original pixel coordinates when computing the warfmeatrected) image. In order to get a
reasonably dense set of features to interpolate, Shum al$Z2000) place a feature point at
the center of each patch (the patch size controls the smesghnthe local alignment stage), rather
than relying of features extracted using an interest operat
An alternative approach to motion-based de-ghosting waisgsed by Kanegt al. (2003), who

estimate dense optical flow between each input image andi@abefierencamage. The accuracy
of the flow vector is checked using a photo-consistency nredsefore a given warped pixel is
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considered valid and therefore used to compute a high dymeange radiance estimate, which
is the goal of their overall algorithm. The requirement favimg a reference image makes their
approach less applicable to general image mosaicing, wthan extension to this case could
certainly be envisaged.

5.3 Recognizing panoramas

The final piece needed to perform fully automated imagelstitcis a technique to recognize
which images actually go together, which Brown and Lowe @@l recognizing panoramadf

the user takes images in sequence so that each image ovieslgpsdecessor and also specifies
the first and last images to be stitched, bundle adjustmenbied with the process abpology
inferencecan be used to automatically assemble a panorama (Sawhdd§uamar 1999). How-
ever, users often jump around when taking panoramas, bay.,may start a new row on top of
a previous one, or jump back to take a repeated shot, or cieétgpanoramas where end-to-end
overlaps need to be discovered. Furthermore, the abilitystcover multiple panoramas taken by
a user over an extended period of time can be a big convenience

To recognize panoramas, Brown and Lowe (2003) first find alixpse image overlaps using
a feature-based method and then find connected componehts averlap graph to “recognize”
individual panoramas (Figure 18). The feature-based nrajctage first extracts SIFT feature
locations and feature descriptors (Lowe 2004) from all tigut images and then places these in
an indexing structure, as describedgth?2. For each image pair under consideration, the nearest
matching neighbor is found for each feature in the first imageng the indexing structure to
rapidly find candidates, and then comparing feature descsipo find the best match. RANSAC
is then used to find a set ailier matches, using a pairs of matches to hypothesize a simgilarit
motion model that is then used to count the number of inliers.

In practice, the most difficult part of getting a fully autoraa stitching algorithm to work is
deciding which pairs of images actually correspond to timeesparts of the scene. Repeated struc-
tures such as windows (Figure 19) can lead to false matches wsing a feature-based approach.
One way to mitigate this problem is to perform a direct pikaked comparison between the regis-
tered images to determine if they actually are differenivgief the same scene. Unfortunately, this
heuristic may fail if there are moving objects in the scengyfe 20). While there is no magic bul-
let for this problem short of full scene understanding,lartimprovements can likely be made by
applying domain-specific heuristics such as priors on glpteamera motions as well as machine
learning techniques applied to the problem of match vabdat
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Figure 18: Recognizing panoramas using our new algorithm (Braatml. 2004): (a) input images with
pairwise matches; (b) images grouped into connected coergsr(panoramas); (c) individual panoramas
registered and blended into stitched composites.
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Figure 19: Matching errors (Browret al.2004): accidental matching of several features can leaddtches
between pairs of images that do not actually overlap.

Figure 20: Validation of image matches by direct pixel error companisan fail when the scene contains
moving objects.
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6 Compositing

Once we have registered all of the input images with respeeath other, we need to decide how
to produce the final stitched (mosaic) image. This involadeding a final compositing surface

(flat, cylindrical, spherical, etc.) and view (referenceagm). It also involves selecting which pixels
contribute to the final composite and how to optimally blemese pixels to minimize visible seams,
blur, and ghosting.

In this section, | review techniques that address theselgmd) namely compositing surface
parameterization, pixel/seam selection, blending, anqmbgxre compensation. My emphasis is
on fully automatedapproaches to the problem. Since the creation of high{guadinoramas and
composites is as much amtistic endeavor as a computational one, various interactive taole
been developed to assist this process, e.g., (Agaretadh 2004, Liet al. 2004a, Rotheet al.
2004). 1 will not cover these in this article, except whereytiprovide automated solutions to our
problems.

6.1 Choosing a compositing surface

The first choice to be made is how to represent the final imdgmly a few images are stitched
together, a natural approach is to select one of the imag#seasferenceand to then warp all
of the other images into the reference coordinate systema. r@sulting composite is sometimes
called aflat panorama, since the projection onto the final surface isasfierspective projection,
and hence straight lines remain straight (which is oftensirdele attribute).

For larger fields of view, however, we cannot maintain a flpt@sentation without excessively
stretching pixels near the border of the image. (In practiaepanoramas start to look severely dis-
torted once the field of view excee@® or so.) The usual choice for compositing larger panoramas
is to use a cylindrical (Szeliski 1994, Chen 1995) or splag(iszeliski and Shum 1997) projection,
as described i§2.3. In fact, any surface used fenvironment mappinm computer graphics can
be used, including aube maghat represents the full viewing sphere with the six squaces of
a cube (Greene 1986, Szeliski and Shum 1997). Cartographeesalso developed a number of
alternative methods for representing the globe (Bugaygwsid Snyder 1995).

The choice of parameterization is somewhat applicatioredéent, and involves a tradeoff
between keeping the local appearance undistorted (eapirgpstraight lines straight) and provid-
ing a reasonably uniform sampling of the environment. Awtoally making this selection and
smoothly transitioning between representations baselleaxtent of the panorama is an interest-
ing topic for future research.
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View selection. Once we have chosen the output parameterization, we séitl te determine
which part of the scene will beenteredn the final view. As mentioned above, for a flat composite,
we can choose one of the images as a reference. Often, a abésahoice is the one that is
geometrically most central. For example, for rotationahggamas represented as a collection
of 3D rotation matrices, we can choose the image whearis is closest to the averageaxis
(assuming a reasonable field of view). Alternatively, we aa@ the averageaxis (or quaternion,
but this is trickier) to define the reference rotation matrix

For larger (e.g., cylindrical or spherical) panoramas, ae still use the same heuristic if a
subset of the viewing sphere has been imaged. If the casdl @bfit panoramas, a better choice
might be to choose the middle image from the sequence ofshputsometimes the first image,
assuming this contains the object of greatest interestl bf these cases, having the user control
the final view is often highly desirable. If the “up vector’raputation described i§b.1 is working
correctly, this can be as simple as panning over the imagetng a vertical “center line” for the
final panorama.

Coordinate transformations. Once we have selected the parameterization and refereese vi
we still need to compute the mappings between the input atpdibpixels coordinates.

If the final compositing surface is flat (e.g., a single plan¢he face of a cube map) and the
input images have no radial distortion, the coordinatesfi@mation is the simple homography
described by (19). This kind of warping can be performed apbics hardware by appropriately
setting texture mapping coordinates and rendering a smgldrilateral.

If the final composite surface has some other analytic forign,(eylindrical or spherical), we
need to convert every pixel in the final panorama into a vigway (3D point) and then map it
back into each image according to the projection (and optipnadial distortion) equations. This
process can be made more efficient by precomputing somepdakiles, e.g., the partial trigono-
metric functions needed to map cylindrical or sphericalrdowtes to 3D coordinates and/or the
radial distortion field at each pixel. It is also possible toalerate this process by computing exact
pixel mappings on a coarser grid and then interpolatingethatues.

When the final compositing surface is a texture-mapped algdn, a slightly more sophisti-
cated algorithm must be used. Not only do the 3D and textupegoardinates have to be properly
handled, but a small amount ofrferdrawoutside of the triangle footprints in the texture map is
necessary, to ensure that the texture pixels being intagbturing 3D rendering have valid values
(Szeliski and Shum 1997).

Sampling issues. While the above computations can yield the correct (fractippixel addresses
in each input image, we still need to pay attention to samgpksues. For example, if the final
panorama has a lower resolution than the input images, lpggrfg the input images is neces-
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sary to avoid aliasing. These issues have been extensivglied in both the image processing
and computer graphics communities. The basic problem isttgpate the appropriate pre-filter,
which depends on the distance (and arrangement) betwegmboging samples in a source image.
Various approximate solutions, such as MIP mapping (Wiibal983) or elliptically weighted
Gaussian averaging (Greene and Heckbert 1986) have beeloped in the graphics commu-
nity. For highest visual quality, a higher order (e.g., c)lmterpolator combined with a spatially
adaptive pre-filter may be necessary (Wah@l. 2001). Under certain conditions, it may also be
possible to produce images with a higher resolution thannpet images using a process called
super-resolutior{§7).

6.2 Pixel selection and weighting

Once the source pixels have been mapped onto the final compsosface, we must still decide
how to blend them in order to create an attractive lookingopama. If all of the images are in
perfect registration and identically exposed, this is asygaoblem (any pixel or combination
will do). However, for real images, visible seams (due toaxpe differences), blurring (due to
mis-registration), or ghosting (due to moving objects) caaur.

Creating clean, pleasing looking panoramas involves bethdihg which pixels to use and
how to weight or blend them. The distinction between thesediages is a little fluid, since per-
pixel weighting can be thought of as a combination of sedecind blending. In this section, |
discuss spatially varying weighting, pixel selection (egdacement), and then more sophisticated
blending.

Feathering and center-weighting. The simplest way to create a final composite is to simply
take anaveragevalue at each pixel,

C(x) = Zwk(m)fk(m) /Z wi(x) , (153)
k k

wherel,(x) are thewarped(re-sampled) images and,(x) is 1 at valid pixels and 0 elsewhere.

On computer graphics hardware, this kind of summation capdsrmed in araccumulation

buffer (using theA channel as the weight).

Simple averaging usually does not work very well, since expe differences, mis-registrations,
and scene movement are all very visible (Figure 21a). lidigpnhoving objects are the only prob-
lem, taking amedianfilter (which is a kind of pixel selection operator) can ofteused to remove
them (Irani and Anandan 1998) (Figure 21b). Converselyteremeighting (discussed below) and
minimum likelihoodselection (Agarwalat al. 2004) can sometimes be used to retain multiple
copies of a moving object (Figure 24).
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Figure 21: Final composites computed by a variety of algorithms: (sgrage, (b) median, (c) feathered
average, (dp-normp = 10, (e) Vornoi, (f) weighted ROD vertex cover with featherifgg,graph cut seams

with Poisson blending, (h) and with pyramid blending.
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A better approach to averaging is to weight pixels near théec®f the image more heavily and
to down-weight pixels near the edges. When an image has sotoetcegions, down-weighting
pixels near the edges of both cutouts and edges is prefer@hle can be done by computing a
distance majpr grassfire transform

wi(T) = : (154)

arg H:ll}n{HyH | Ix(z + y) is invalid }

where each valid pixel is tagged with its Euclidean distaticéhe nearest invalid pixel. The
Euclidean distance map can be efficiently computed usingoaptgs raster algorithm (Daniels-
son 1980, Borgefors 1986). Weighted averaging with a disgtanap is often callefeathering
(Szeliski and Shum 1997, Chen and Klette 1999, Uyttendatedd. 2001) and does a reasonable
job of blending over exposure differences. However, bhgrand ghosting can still be problems
(Figure 21c). Note that weighted averaginghi the same as compositing the individual images
with the classiover operation (Porter and Duff 1984, Blinn 1994), even when gisie weight
values (normalized to sum up to one)apha (translucency) channels. This is because the over
operation attenuates the values from more distant surfaoeshence is not equivalent to a direct
sum.

One way to improve feathering is to raise the distance mayegaio some large power, i.e.,
to usew?! (x) in (153). The weighted averages then become dominated biprter values, i.e.,
they act somewhat like g-norm The resulting composite can often provide a reasonaldedf&
between visible exposure differences and blur (Figure.21d)

In the limit asp — oo, only the pixel with the maximum weight gets selected,

where
[ =arg max w(x) (156)

is thelabel assignmenor pixel selectiorfunction that selects which image to use at each pixel.
This hard pixel selection process produces a visibilitykesensitive variant of the familiarornoi
diagram which assigns each pixel to the nearest image center ireti®%®odet al. 1997, Peleg
et al. 2000). The resulting composite, while useful for artistidance and in high-overlap
panoramasnianifold mosaidstends to have very hard edges with noticeable seams when the
exposures vary (Figure 21e).

Xiong and Turkowski (1998) use this Vornoi idea (local maximof the grassfire transform)
to select seams for Laplacian pyramid blending (which isulised below). However, since the
seam selection is performed sequentially as new imagesldeslan, some artifacts can occur.
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Figure 22: Computation of regions of differences (RODs): (a) threglap@ing images with a moving face;
(b) corresponding RODs; (c) graph of coincident RODs. (Takem (Uyttendaelet al.2001)).

Optimal seam selection. Computing the Vornoi diagram is one way to selectsbamsetween
regions where different images contribute to the final cositpo However, Vornoi images totally
ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where thgesnagree, so that transitions
from one source to another are not visible. In this way, tigerthm avoids “cutting through”
moving objects where a seam would look unnatural (Davis L99& a pair of images, this process
can be formulated as a simple dynamic program starting froer(short) edge of the overlap region
and ending at the other (Milgram 1975, Milgram 1977, Davi88,%Efros and Freeman 2001).

When multiple images are being composited, the dynamicrargdea does not readily gen-
eralize. (For square texture tiles being composited sd@linEfros and Freeman (2001) run a
dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaeeal. (2001) observed that for well-registered images,
moving objects produce the most visible artifacts, nanralydlucent lookinghosts Their system
therefore decides which objects to keep and which ones teeffarst, the algorithm compares
all overlapping input image pairs to determiregjions of differenc€dRODs) where the images
disagree. Next, a graph is constructed with the RODs ascesréind edges representing ROD pairs
that overlap in the final composite (Figure 22). Since theg@mnee of an edge indicates an area of
disagreement, vertices (regions) must be removed from lhédomposite until no edge spans a
pair of remaining vertices. The smallest such set can be atwdpsing avertex covemlgorithm.
Since several such covers may existyaighted vertex covas used instead, where the vertex
weights are computed by summing the feather weights in the R@yttendaeleet al. 2001). The
algorithm therefore prefers removing regions that are tieaedge of the image, which reduces
the likelihood that partially visible objects will appear the final composite. (It is also possible
to infer which object in a region of difference is the foregnd object by the “edginess” (pixel
differences) across the ROD boundary, which should be highen an object is present (Herley
2005).) Once the desired excess regions of difference heem flemoved, the final composite can
be created using a feathered blend (Figure 21f).

A different approach to pixel selection and seam placemastreacently proposed by Agarwala
et al. (2004). Their system computes the label assignment thathizets the sum of two objective
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Figure 23: From a set of five source images (of which four are shown onette Photomontage quickly
creates a composite family portrait in which everyone idliagniand looking at the camera (right). Users
simply flip through the stack and coarsely draw strokes uiieglesignated source image objective over the
people they wish to add to the composite. The user-applieklest and computed regions are color-coded
by the borders of the source images on the left (middle). ig&ippvith permission, from (Agarwalet al.
2004)).

functions. The first is a per-pix@hage objectivéhat determines which pixels are likely to produce
good composites,

Cp = Dya)(z), (157)
x

where D,z () is thedata penaltyassociated with choosing imagat pixelz. In their system,
users can select which pixels to use by “painting” over argenaith the desired object or appear-
ance, which set®(x,!) to a large value for all labelsother than the one selected by the user
(Figure 23). Alternatively, automated selection critexéan be used, such asaximum likelihood
that prefers pixels that occur repeatedly (for object reahowr minimum likelihoodfor objects
that occur infrequently (for greatest object retentionksirldg a more traditional center-weighted
data term tends to favor objects that are centered in the im@ages (Figure 24).

The second term is seam objectivéhat penalizes differences in labelings between adjacent
images,

Cs= Y. Suzuy(zy) (158)
(X, Y)eN

whereSyx) . y)(x, y) is the image-dependeimtteraction penaltyor seam cosbf placing a seam
between pixelse andy, and \V is the set ofN, neighboring pixels. For example, the simple
color-based seam penalty used in (Kwadtal. 2003, Agarwalaet al. 2004) can be written as

Sy (@, y) = i) (@) — L) (@) + D) (y) — L) (y)]- (159)

More sophisticated seam penalties can also look at imagkegts or the presence of image edges
(Agarwalaet al.2004). Seam penalties are widely used in other computenvagplications such
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Figure 24: Set of five photos tracking a snowboarder’s jump stitcheéttar into a seamless compos-
ite. Because the algorithm prefers pixels near the centeh@fimage, multiple copies of the boarder are
retained.

as stereo matching (Boyket al. 2001) to give the labeling function itbherencer smoothness
An alternative approach, which places seams along stromgjstent edges in overlapping images
using a watershed computation has recently been develgpgdilke (2006).

The sum of the two objective functions is often calledMerkov Random FielMRF) energy,
since it arises as the negative log-likelihood of an MRF tistion (Geman and Geman 1984). For
general energy functions, finding the minimum can be NP-Baoykov et al. 2001). However,

a variety of approximate optimization techniques have lmreloped over the years, including
simulated annealingGeman and Geman 1984), graph cuts (Boy&bal. 2001), and loopy belief
propagation (Suet al. 2003, Tappen and Freeman 2003). Both Kwatral.(2003) and Agarwala
et al. (2004) use graph cuts, which involves cycling through a $edimpler a-expansionre-
labelings, each of which can be solved with a graph cut (max)folynomial-time algorithm
(Boykov et al.2001).

For the result shown in Figure 21g, Agarwafgal. (2004) use a large data penalty for invalid
pixels and O for valid pixels. Notice how the seam placemégarghm avoids regions of differ-
ences, including those that border the image and which méghiit in cut off objects. Graph cuts
(Agarwalaet al. 2004) and vertex cover (Uyttendaedeal. 2001) often produce similar looking
results, although the former is significantly slower sirtatimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regibdifference.
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6.3 Blending

Once the seams have been placed and unwanted object remevstil| need to blend the images
to compensate for exposure differences and other misrabgis. The spatially-varying weighting
(feathering) previously discussed can often be used tonaglsh this. However, it is difficult in
practice to achieve a pleasing balance between smoothirigwtirequency exposure variations
and retaining sharp enough transitions to prevent blurg@igpough using a high exponent does
help).

Laplacian pyramid blending. An attractive solution to this problem was developed by Bund
Adelson (1983). Instead of using a single transition widtHrequency-adaptive width is used
by creating a band-pass (Laplacian) pyramid and makingrmesition widths a function of the
pyramid level. The process operates as follows.

First, each warped image is converted into a band-passdtiapl) pyramid, which involves
smoothing each level with &:4(1, 4, 6, 4, 1) binomial kernel, subsampling the smoothed image by
a factor of 2, and subtracting the reconstructed (low-pasage from the original. This creates a
reversible, overcomplete representation of the imageasidgmvalid and edge pixels are filled with
neighboring values to make this process well defined.

Next, themask(valid pixel) image associated with each source image isaed into a low-
pass (Gaussian) pyramid. These blurred and subsampled mastme the weights used to per-
form a per-level feathered blend of the band-pass sourcgama

Finally, the composite image is reconstructed by intefjpodeand summing all of the pyramid
levels (band-pass images). The result of applying thismiddlending is shown in Figure 21.i.

Gradient domain blending. An alternative approach to multi-band image blending issidgrm

the operations in thgradient domainReconstructing images from their gradient fields has a long
history in computer vision (Horn 1986), starting origityallith work in brightness constancy
(Horn 1974), shape from shading (Horn and Brooks 1989), dradgpnetric stereo (Woodham
1981). More recently, related ideas have been used for séwmting images from their edges
(Elder and Golderg 2001), removing shadows from images {$\V2001), separating reflections
from a single image (Leviat al.2004a), andone mappindnigh dynamic range images by reducing
the magnitude of image edges (gradients) (Fattal. 2002).

Pérezet al. (2003) showed how gradient domain reconstruction can be tssdo seamless
object insertion in image editing applications. Rathemtlapying pixels, thegradientsof the
new image fragment are copied instead. The actual pixelesafar the copied area are then
computed by solving #oisson equationthat locally matches the gradients while obeying the
fixed Dirichlet (exact matching) conditions at the seam boundary. Pé&ret (2003) show that
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this is equivalent to computing an additimeembrandanterpolant of the mismatch between the
source and destination images along the boundary. (The naalnterpolant is known to have

nicer interpolation properties for arbitrary-shaped ¢ists than frequency-domain interpolants
(Nielson 1993).) In earlier work, Peleg (1981) also propooseding a smooth function to force a
consistency along the seam curve.

Agarwalaet al. (2004) extended this idea to a multi-source formulationgrghit no longer
makes sense to talk of a destination image whose exact @akety must be matched at the seam.
Instead,eachsource image contributes its own gradient field, and thesBaigquation is solved
usingNeumanrboundary conditions, i.e., dropping any equations thablirespixels outside the
boundary of the image.

Rather than solving the Poisson partial differential eiguat Agarwalaet al. (2004) directly
minimizevariational problem

: . T 2
min [VC(@) ~ Via)(@)]* (160)

The discretized form of this equation is a set of gradienst@mt equations

Cl@+i)—C(x) = Iay(x+1)— La(x) and (161)
Clx+3) —Cx) = Iay(x+3) — L (@), (162)

wherez = (1,0) andj = (0, 1) are unit vectors in the andy directions?? They then solve the

associated sparse least squares problem. Since this sys&uations is only defined up to an
additive constraint, Agarwalet al. (2004) ask the user to select the value of one pixel. In practi
a better choice might be to weakly bias the solution towaegsaducing the original color values.

In order to accelerate the solution of this sparse lineaegys(Fattakt al. 2002) use multigrid,
whereas (Agarwalat al. 2004) use hierarchical basis preconditioned conjugatdigmadescent
(Szeliski 1990, Szeliski 2006). The resulting seam blegduork very well in practice (Fig-
ure 21h), although care must be taken when copying largeegradalues near seams so that a
“double edge” is not introduced.

Copying gradients directly from the source images aftemspacement is just one approach
to gradient domain blending. The paper by Legtral. (2004b) examines several different variants
on this approach, which they c&lradient-domain Image STitchif&IST). The techniques they
examine include feathering (blending) the gradients frammgource images, as well as using an
L1 norm in performing the reconstruction of the image frora gradient field, rather than using
an L2 norm as in (160). Their preferred technique is the Linoigation of a feathered (blended)
cost function on the original image gradients (which thely G&ST1-/;). Since L1 optimization
using linear programming can be slow, they develop a fasteative median-based algorithm in

22At seam locations, the right hand side is replaced by theageeof the gradients in the two source images.
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a multigrid framework. Visual comparisons between theaf@ired approach and what they call
optimal seam on the gradienfa/hich is equivalent to Agarwaleat al. (2004)'s approach) show
similar results, while significantly improving on pyramitebding and feathering algorithms.

Exposure compensation. Pyramid and gradient domain blending can do a good job of eomp
sating for moderate amounts of exposure differences betiwesyes. However, when the exposure
differences become large, alternative approaches maydessay.

Uyttendaeleet al. (2001) iteratively estimate a local correction betweerhesirce image and
a blended composite. First, a block-based quadratic gahsgiction is fit between each source im-
age and an initial feathered composite. Next, transfertfons are averaged with their neighbors to
get a smoother mapping, and per-pixel transfer functioeaxamputed bgplining(interpolating)
between neighboring block values. Once each source imagbden smoothly adjusted, a new
feathered composite is computed, and the process is betedp@gpically 3 times). The results
in (Uyttendaeleet al. 2001) demonstrate that this does a better job of exposurpe&osation than
simple feathering, and can handle local variations in enpodue to effects like lens vignetting.

High dynamic range imaging. A more principled approach to exposure compensation is to
estimate a singleigh dynamic rangéHDR) radiance map from of the differently exposed images
(Mann and Picard 1995, Debevec and Malik 1997, MitsunagaNayr 1999, Reinhardt al.
2005). Most techniques assume that the input images weea taith a fixed camera whose pixel
values

Iy(x) = f(cxR(z); p) (163)

are the result of applying a parameterizediometric transfer functiory (R, p) to scaled radi-
ance valueg, R(x). The exposure values are either known (by experimental setup, or from a
camera’s EXIF tags), or are computed as part of the fittinggss.

The form of the parametric function differs from paper to @agMann and Picard (1995) use
a three-parametef(R) = « + SR function, Debevec and Malik (1997) use a thin-plate cubic
spline, while Mitsunaga and Nayar (1999) use a low-ordér{ 10) polynomial for theinverseof
the transfer function.

To blend the estimated (noisy) radiance values into a finalpmsite, Mann and Picard (1995)
use a hat function (accentuating mid-tone pixels), DebawnecMalik (1997) use the derivative of
the response function, while Mitsunaga and Nayar (1999ope the signal-to-noise ratio (SNR),
which emphasizes both higher pixel values and larger gnéslia the transfer function.

Once aradiance map has been computed, it is usually negésshsplay it on a lower gamut
(i.e., 8-bit) screen or printer. A variety tdne mappingechniques have been developed for this
purpose, which involve either computing spatially varyingnsfer functions or reducing image
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Figure 25: Merging multiple exposures to create a high dynamic rangepmusite: (a—c) three different
exposures; (d) merging the exposures using classic algust(note the ghosting due to the horse’s head
movement); (e) merging the exposures with motion compgeng#tanget al.2003).

gradients to fit the the available dynamic range (Fagtahl. 2002, Durand and Dorsey 2002,
Reinhardet al. 2002, Lischinsket al. 2006).

Unfortunately, casually acquired images may not be pdyfeegjistered and may contain mov-
ing objects. Kanget al. (2003) present an algorithm that combines global registravith local
motion estimation (optic flow) to accurately align the imadpefore blending their radiance es-
timates (Figure 25). Since the images may have widely @iffeexposures, care must be taken
when producing the motion estimates, which must themséeefiecked for consistency to avoid
the creation of ghosts and object fragments.

Even this approach, however, may not work when the camernmigtaneously undergoing
large panning motions and exposure changes, which is a caronwurrence in casually acquired
panoramas. Under such conditions, different parts of tregygammay be seen at one or more expo-
sures. Devising a method to blend all of these differentsievhile avoiding sharp transitions
and dealing with scene motion is a challenging task that éeently been tackled by first finding
a consensus mosaic and then selectively computing radiamecender- and over-exposed regions
(Edenet al.2006).

In the long term, the need to compute high dynamic range isyigen multiple exposures may
be eliminated by advances in camera sensor technology @&aalg1999, Nayar and Mitsunaga
2000, Kanget al. 2003, Tumbliret al. 2005). However, the need to blend such images and to tone
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map them to a pleasing final result will likely remain.

7 Extensions and open issues

In this paper, | have surveyed the basics of image alignmahsttching, concentrating on tech-
niques for registering partially overlapping images arehbding them to create seamless panora-
mas. A large number of additional techniques have been olesdlfor solving related prob-
lems such as increasing the resolution of images by takingpteudisplaced picturess(per-
resolution), stitching videos together to create dynamic panoranras sttching videos and im-
ages in the presence of large amounts of parallax.

Perhaps the most common question that comes up in relatiorage stitching is the following.
“Why can't you just take multiple images of the same scené wiib-pixel displacements and
produce an image with a higher effective resolution?” Irfjekis problem has been studied for
a long time and is generally known asultiple image super-resolutioci Examples of papers
that have addressed this issue include (Kexteal. 1988, Irani and Peleg 1991, Cheesereaal.
1993, Capel and Zisserman 1998, Capel and Zisserman 2080d@ri 2001). (See (Baker and
Kanade 2002) for a recent paper with lots of additional exfees and experimental comparisons.)
The general idea is that different images of the same sc&ea feom slightly different positions
(i.e., where the pixels don't sample exactly the same ragpate) contain more information than
a single image. However, this is only true if the imager atyualiasesthe original signal, e.g., if
the silicon sensor integrates over a finite area and thesogdicot cut off all the frequencies above
the Nyquist frequency. Motion estimation also needs to bg &ecurate for this to work, so that in
practice, an increase in resolution greater thans difficult to achieve (Baker and Kanade 2002).

Another popular topic is video stitching (Teodosio and Bartb93, Massey and Bender 1996,
Sawhney and Ayer 1996, Irani and Anandan 1998, Baudgchl. 2005, Steedlyet al. 2005).
While this problem is in many ways a straightforward geneagion of multiple-image stitching,
the potential presence of large amounts of independenomatamera zoom, and the desire to
visualize dynamic events impose additional challenges.ekkample, moving foreground objects
can often be removed usingedian filtering Alternatively, foreground objects can be extracted
into a separate layer (Sawhney and Ayer 1996) and later csitepidoack into the stitched panora-
mas, sometimes as multiple instances to give the impressiba “Chronophotograph” (Massey
and Bender 1996) and sometimes as video overlays (Irani aathdan 1998). Videos can also
be used to create animatpednoramic video textures which different portions of a panoramic
scene are animated with independently moving video looga#alaet al. 2005, Rav-Achat al.

230ne can also increase the resolution of a single image usirigus kinds of non-linear or example-based inter-
polation techniques (Freemahal. 2002, Baker and Kanade 2002).
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2005).

Video can also provide an interesting source of contentriEaiting panoramas taken from mov-
ing cameras. While this invalidates the usual assumpti@sifigle point of view (optical center),
interesting results can still be obtained. For example tdedBrush system (Sawhneyal. 1998)
uses thin strips taken from the center of the image to crepsmarama taken from a horizontally
moving camera. This idea can be generalized to other cametiama and compositing surfaces
using the concept of mosaics on adaptive manifold (Petead. 2000). Related ideas have been
used to create panoramic matte paintings for multi-plafleacémation (Woodet al. 1997), for
creating stitched images of scenes with parallax (Kuetat. 1995), and as 3D representations of
more complex scenes usingultiple-center-of-projection imagéRademacher and Bishop 1998).

Another interesting variant on video-based panoramasameentric mosaicé§Shum and He
1999). Here, rather than trying to produce a single panaramage, the complete original video
is kept and used to re-synthesize novel views (from diffecamera origins) using ray remapping
(light field rendering), thus endowing the panorama withrassseof 3D depth. The same data set
can also be used to explicitly reconstruct the depth usingjinaseline stereo (Shum and Szeliski
1999, Shunet al. 1999, Peleget al. 2001, Liet al. 2004b).

Open issues. While image stitching is by now a fairly mature field with a ey of commercial
products, there remain a large number of challenges and extemsions. One of these is to
increase the reliability of fully automated stitching algoms. As discussed i§b.3 and illustrated

in Figures 19 and 20, it is difficult to simultaneously avoidtehing spurious features or repeated
patterns while also being tolerant to large outliers suchmaging people. Advances in semantic
scene understanding could help resolve some of these prejpées well as better machine learning
techniques for feature matching and validation.

The problem of parallax has also not been adequately sobM@dsmall amounts of parallax,
the deghosting techniques described?2 ands6.2 can often adequately disguise these effects
through local warping and careful seam selection. For loggrdap panoramas, concentric mo-
saicsconcentric mosaic$Shum and He 1999), panoramas with parallax €tial. 2004b) and
careful seam selection (with potential user guidance) (fgha et al. 2004) can be used. The
most challenging case is limited overlap panoramas withel@arallax, since the depth estimates
needed to compensate for the parallax are only availableeioterlap regions (Kanet al. 2004,
Uyttendaeleet al. 2004).

69



References

Agarwala, A.et al.. (2004). Interactive digital photomontagACM Transactions on Graphics
23(3), 292-300.

Agarwala, A.et al. (2005). Panoramic video textureBCM Transactions on Graphic24(3),
821-827.

Anandan, P. (1989). A computational framework and an allgorior the measurement of visual
motion. International Journal of Computer Visig8(3), 283—-310.

Argyriou, V. and Vlachos, T. (2003). Estimation of sub-pixeotion using gradient cross-
correlation.Electronic Letters39(13) 980-982.

Ayache, N. (1989)Vision Séréoscopique et Perception MultisensorielleterEditions., Paris.

Bab-Hadiashar, A. and Suter, D. (1998). Robust total lepstiees based optic flow computation.
In Asian Conference on Computer Vision (ACCV,;98)ges 566-573, ACM, Hong Kong.

Badra, F., Qumsieh, A., and Dudek, G. (1998). Rotation amrmog in image mosaicing. In
IEEE Workshop on Applications of Computer Vision (WACV, @8ges 50-55, IEEE Computer
Society, Princeton.

Baker, S. and Kanade, T. (2002). Limits on super-resolugiod how to break themIEEE
Transactions on Pattern Analysis and Machine Intelligei2¢€9), 1167-1183.

Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 yearsfouanifying framework: Part
1: The quantity approximated, the warp update rule, and thdignt descent approximation.
International Journal of Computer VisioB6(3), 221—-255.

Baker, Set al. (2003a).Lucas-Kanade 20 Years On: A Unifying Framework: Parff2chnical
Report CMU-RI-TR-03-01, The Robotics Institute, Carnddiellon University.

Baker, Set al.. (2003b).Lucas-Kanade 20 Years On: A Unifying Framework: Parff@chnical
Report CMU-RI-TR-03-35, The Robotics Institute, Carnddiellon University.

Baker, Set al. (2004). Lucas-Kanade 20 Years On: A Unifying Framework: Partl&chnical
Report CMU-RI-TR-04-14, The Robotics Institute, Carnddiellon University.

Barreto, J. and Daniilidis, K. (2005). Fundamental matoxk éameras with radial distortion.
In Tenth International Conference on Computer Vision (ICC03)0pages 625-632, Beijing,
China.

70



Bartoli, A., Coquerelle, M., and Sturm, P. (2004). A framekéor pencil-of-points structure-
from-motion. InEighth European Conference on Computer Vision (ECCV 2Qteges 28-40,
Springer-Verlag, Prague.

Baudisch, Pet al. (2005). Panoramic viewfinder: providing a real-time pegvito help users
avoid flaws in panoramic pictures. @ZCHI 2005 Canberra, Australia.

Baumberg, A. (2000). Reliable feature matching across lyisieparated views. IFEEE Com-
puter Society Conference on Computer Vision and Patterodteton (CVPR’200Q)pages 774—
781, Hilton Head Island.

Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf. Spekdp robust features. In Leonardis,
A., Bischof, H., and Pinz, A., editor§omputer Vision — ECCV 2006ages 404—-417, Springer.

Beis, J. S. and Lowe, D. G. (1997). Shape indexing using aqpaie nearest-neighbour search
in high-dimensional spaces. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’9/pages 1000-1006, San Juan, Puerto Rico.

Benosman, R. and Kang, S. B., editors. (200@3noramic Vision: Sensors, Theory, and Appli-
cations Springer, New York.

Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, B924). Hierarchical model-based
motion estimation. I'fecond European Conference on Computer Vision (ECC\f@@jes 237—
252, Springer-Verlag, Santa Margherita Liguere, Italy.

Bergen, J. R., Burt, P. J., Hingorani, R., and Peleg, S. (BP92 three-frame algorithm for
estimating two-component image motiolizEE Transactions on Pattern Analysis and Machine
Intelligence 14(9), 886—-896.

Black, M. J. and Anandan, P. (1996). The robust estimatianufiple motions: Parametric and
piecewise-smooth flow field€Computer Vision and Image Understandieg(1), 75-104.

Black, M. J. and Jepson, A. D. (1998). EigenTracking: rouestiching and tracking of articulated
objects using a view-based representatioternational Journal of Computer Visiop86(1), 63—
84.

Black, M. J. and Rangarajan, A. (1996). On the unificationired processes, outlier rejection,
and robust statistics with applications in early visidmternational Journal of Computer Vision
19(1), 57-91.

Blinn, J. F. (1994). Jim Blinn’s corner: Compositing, partTheory. IEEE Computer Graphics
and Applications14(5), 83-87.

71



Borgefors, G. (1986). Distance transformations in digit@hges. Computer Vision, Graphics
and Image Processing4(3), 227—-248.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast appraterenergy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Inteftige 23(11) 1222-1239.

Brown, D. C. (1971). Close-range camera calibratiéthotogrammetric Engineerin@7(8),
855-866.

Brown, L. G. (1992). A survey of image registration tech@guComputing Survey4(4)
325-376.

Brown, M. and Lowe, D. (2003). Recognizing panoramashimh International Conference on
Computer Vision (ICCV’'03)pages 1218-1225, Nice, France.

Brown, M., Szeliski, R., and Winder, S. (2004)ulti-image Matching Using Multi-Scale Ori-
ented PatchesTechnical Report MSR-TR-2004-133, Microsoft Research.

Brown, M., Szeliski, R., and Winder, S. (2005). Multi-imageatching using multi-scale oriented
patches. INEEE Computer Society Conference on Computer Vision antéfPaRecognition
(CVPR’2005) pages 510-517, San Diego, CA.

Bugayevskiy, L. M. and Snyder, J. P. (1998)ap Projections: A Reference Manu&RC Press.

Burt, P. J. and Adelson, E. H. (1983). A multiresolutionsphwith applications to image mosaics.
ACM Transactions on Graphig2(4), 217-236.

Capel, D. and Zisserman, A. (1998). Automated mosaicingy witper-resolution zoom. In
IEEE Computer Society Conference on Computer Vision antéffaRecognition (CVPR’99)
pages 885—-891, Santa Barbara.

Capel, D. and Zisserman, A. (2000). Super-resolution erdraent of text image sequences. In
Fifteenth International Conference on Pattern RecognititCPR’2000) pages 600—-605, IEEE
Computer Society Press, Barcelona, Spain.

Carneiro, G. and Jepson, A. (2005). The distinctivenegsctibility, and robustness of local im-
age features. ITEEE Computer Society Conference on Computer Vision arntéfPelRecognition
(CVPR’2005) pages 296-301, San Diego, CA.

Cham, T. J. and Cipolla, R. (1998). A statistical framewarklbng-range feature matching in
uncalibrated image mosaicing. IBEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’98pages 442-447, Santa Barbara.

72



Champleboux, Get al. (1992). Accurate calibration of cameras and range imagergsors,
the NPBS method. IT{EEE International Conference on Robotics and Automatages 1552—
1558, IEEE Computer Society Press, Nice, France.

Chaudhuri, S. (2001)Super-Resolution Imagingpringer.

Cheeseman, P., Kanefsky, B., Hanson, R., and Stutz, J. 192®er-Resolved Surface Recon-
struction From Multiple Images Technical Report FIA-93-02, NASA Ames Research Center,
Artificial Intelligence Branch.

Chen, C.-Y. and Klette, R. (1999). Image stitching - comgrams and new techniques. Gom-
puter Analysis of Images and Patterns (CAIP’983ges 615-622, Springer-Verlag, Ljubljana.

Chen, S. E. (1995). QuickTime VR —an image-based approadghtal environment navigation.
Computer Graphics (SIGGRAPH’95)29-38.

Chum, O. and Matas, J. (2005). Matching with prosac — praivessample consensus. In
IEEE Computer Society Conference on Computer Vision angfPaRecognition (CVPR’2005)
pages 220-226, San Diego, CA.

Claus, D. and Fitzgibbon, A. (2005). A rational function dedistortion model for general
cameras. IMEEE Computer Society Conference on Computer Vision angffaRecognition
(CVPR’2005) pages 213-219, San Diego, CA.

Coorg, S. and Teller, S. (2000). Spherical mosaics witheqaains and dense correlatidnter-
national Journal of Computer Visio87(3), 259-273.

Corso, J. and Hager, G. (2005). Coherent regions for comaridestable image description. In
IEEE Computer Society Conference on Computer Vision angfPalRecognition (CVPR’2005)
pages 184-190, San Diego, CA.

Cox, I. J., Roy, S., and Hingorani, S. L. (1995). Dynamicdgsam warping of image pairs for
constant image brightness. IBEE International Conference on Image Processing (ICH,9
pages 366—369, IEEE Computer Society.

Danielsson, P. E. (1980). Euclidean distance mapp@@nputer Graphics and Image Process-
ing, 14(3), 227-248.

Davis, J. (1998). Mosaics of scenes with moving objectdEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR,@8)ges 354-360, Santa Barbara.

73



De Castro, E. and Morandi, C. (1987). Registration of tratesl and rotated iimages using finite
fourier transformslEEE Transactions on Pattern Analysis and Machine Intelige PAMI-9(5),
700-703.

Debevec, P. E. and Malik, J. (1997). Recovering high dynaamge radiance maps from pho-
tographs.Proceedings of SIGGRAPH 9,7369-378. ISBN 0-89791-896-7. Held in Los Angeles,
California.

Dellaert, F. and Collins, R. (1999). Fast image-based ingchky selective pixel integration. In
ICCV Workshop on Frame-Rate Visigrages 1-22.

Durand, F. and Dorsey, J. (2002). Fast bilateral filteringtii@ display of high-dynamic-range
images.ACM Transactions on Graphics (TO@1(3), 257-266.

Eden, A., Uyttendaele, M., and Szeliski, R. (2006). Seasilesge stitching of scenes with large
motions and exposure differences. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’20Q@ages 2498-2505, New York, NY.

Efros, A. A. and Freeman, W. T. (2001). Image quilting fortter synthesis and transfer. In
Fiume, E., editorSIGGRAPH 2001, Computer Graphics Proceedjmumsges 341-346, ACM
Press / ACM SIGGRAPH.

El-Melegy, M. and Farag, A. (2003). Nonmetric lens distamtcalibration: Closed-form solu-
tions, robust estimation and model selection. Nimth International Conference on Computer
Vision (ICCV 2003)pages 554-559, Nice, France.

Elder, J. H. and Golderg, R. M. (2001). Image editing in thetoar domain.|EEE Transactions
on Pattern Analysis and Machine Intelligen@8(3), 291-296.

Fattal, R., Lischinski, D., and Werman, M. (2002). Gradidamain high dynamic range com-
pression ACM Transactions on Graphics (TO&@1(3), 249-256.

Fischler, M. A. and Bolles, R. C. (1981). Random sample cosise A paradigm for model
fitting with applications to image analysis and automatatoggaphy. Communications of the
ACM, 24(6), 381-395.

Fleet, D. and Jepson, A. (1990). Computation of componeagarvelocity from local phase
information. International Journal of Computer Visiob(1), 77-104.

Forstner, W. (1986). A feature-based correspondenceitiigofor image matchingintl. Arch.
Photogrammetry & Remote Sensj2¢(3), 150-166.

74



Forstner, W. (1994). A framework for low level feature edtion. InThird European Conference
on Computer Vision (ECCV’'94ppages 383-394, Springer-Verlag, Stockholm, Sweden.

Freeman, W. T. and Adelson, E. H. (1991). The design and usteefable filters. |[EEE
Transactions on Pattern Analysis and Machine Intelligeld&£9), 891-906.

Freeman, W. T., Jones, T. R., and Pasztor, E. C. (2002). Headbased super-resolutiolEEE
Computer Graphics and Applicatiojz2(2), 56—65.

Fuh, C.-S. and Maragos, P. (1991). Motion displacementesion using an affine model for
image matchingOptical Engineering30(7), 881-887.

Geman, S. and Geman, D. (1984). Stochastic relaxation,sGiidribution, and the Bayesian
restoration of imagesEEE Transactions on Pattern Analysis and Machine Inteltige PAMI-
6(6), 721-741.

Gennert, M. A. (1988). Brightness-based stereo matchingekond International Conference
on Computer Vision (ICCV’88pages 139-143, IEEE Computer Society Press, Tampa.

Golub, G. and Van Loan, C. F. (1996Matrix Computation, third edition The John Hopkins
University Press, Baltimore and London.

Goshtasby, A. (1989). Correction of image deformation flens distortion using bezier patches.
Computer Vision, Graphics, and Image Process#i{4) 385-394.

Goshtasby, A. (2005R-D and 3-D Image RegistratioiWiley, New York.

Govindu, V. M. (2006). Reuvisiting the brightness constrairobabilistic formulation and al-
gorithms. In Leonardis, A., Bischof, H., and Pinz, A., edstdComputer Vision — ECCV 2006
pages 177-188, Springer.

Greene, N. (1986). Environment mapping and other apptinatof world projections.IEEE
Computer Graphics and Applicatioyg(11), 21-29.

Greene, N. and Heckbert, P. (1986). Creating raster Omnimages from multiple perspective
views using the elliptical weighted average filtdEEE Computer Graphics and Applicatigns
6(6), 21-27.

Gremban, K. D., Thorpe, C. E., and Kanade, T. (1988). Geoateaimera calibration using
systems of linear equations. IREE International Conference on Robotics and Automation
pages 562-567, IEEE Computer Society Press, Philadelphia.

75



Grossberg, M. D. and Nayar, S. K. (2001). A general imagingehand a method for finding its
parameters. Iicighth International Conference on Computer Vision (ICQ02), pages 108—
115, Vancouver, Canada.

Hager, G. D. and Belhumeur, P. N. (1998). Efficient regiooknag with parametric models of
geometry and illuminationlEEE Transactions on Pattern Analysis and Machine Intellige
20(10) 1025-1039.

Hampel, F. Ret al. (1986). Robust Statistics : The Approach Based on Influence Furstion
Wiley, New York.

Hannah, M. J. (1974)Computer Matching of Areas in Stereo Imagé#.D. thesis, Stanford
University.

Hannah, M. J. (1988). Test results from SRI’'s stereo systernmage Understanding Workshop
pages 740-744, Morgan Kaufmann Publishers, Cambridgesadhssetts.

Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt(1P94). Real-time scene
stabilization and mosaic construction. IBEE Workshop on Applications of Computer Vision
(WACV’94) pages 54—-62, IEEE Computer Society, Sarasota.

Harris, C. and Stephens, M. J. (1988). A combined corner dge eetector. IAlvey Vision
Conferencepages 147-152.

Hartley, R. and Kang, S. B. (2005). Parameter-free radistodion correction with centre
of distortion estimation. Infenth International Conference on Computer Vision (ICCW30
pages 1834-1841, Beijing, China.

Hartley, R. I. (1994). Self-calibration from multiple vievof a rotating camera. [hhird Euro-
pean Conference on Computer Vision (ECCV,9#g9ges 471-478, Springer-Verlag, Stockholm,
Sweden.

Hartley, R. I. and Zisserman, A. (2000)ultiple View Geometry Cambridge University Press,
Cambridge, UK.

Hartley, R. I. and Zisserman, A. (2004)ultiple View Geometry Cambridge University Press,
Cambridge, UK.

Herley, C. (2005). Automatic occlusion removal from minimumumber of images. linterna-
tional Conference on Image Processing (ICIP 2Q@&)ges 1046—-1049-16, Genova.

76



Horn, B. K. P. (1974). Determining lightness from an imagg&omputer Graphics and Image
Processing3(1), 277-299.

Horn, B. K. P. (1986)Robot Vision MIT Press, Cambridge, Massachusetts.

Horn, B. K. P. and Brooks, M. J. (19895hape from ShadingMIT Press, Cambridge, Mas-
sachusetts.

Horn, B. K. P. and Schunck, B. G. (1981). Determining optit@ak. Artificial Intelligence 17,
185-203.

Huber, P. J. (1981)Robust StatisticsJohn Wiley & Sons, New York.

Huffel, S. v. and Vandewalle, J. (199I)he Total Least Squares Problem: Computational Aspects
and Analysis Society for Industrial and Applied Mathematics, Philakiep

Irani, M. and Anandan, P. (1998). Video indexing based onawagpresentationsroceedings
of the IEEE 86(5), 905-921.

Irani, M. and Anandan, P. (1999). About direct methodsInernational Workshop on Vision
Algorithms pages 267-277, Springer, Kerkyra, Greece.

Irani, M. and Peleg, S. (1991). Improving resolution by imaggistration.Graphical Models
and Image Processing3(3), 231-239.

Irani, M., Hsu, S., and Anandan, P. (1995). Video compressging mosaic representations.
Signal Processing: Image Communicati@n529-552.

Jia, J. and Tang, C.-K. (2003). Image registration with gl@nd local luminance alignment. In
Ninth International Conference on Computer Vision (ICC\02)pages 156-163, Nice, France.

Jurie, F. and Dhome, M. (2002). Hyperplane approximatioridmplate matchinglEEE Trans-
actions on Pattern Analysis and Machine Intelligeriz4(7), 996—-1000.

Kadir, T. and Brady, M. (2001). Saliency, scale and imageeison. International Journal of
Computer Visiop45(2), 83—105.

Kadir, T., Zisserman, A., and Brady, M. (2004). An affine inaat salient region detector.
In Eighth European Conference on Computer Vision (ECCV 208dges 228-241, Springer-
Verlag, Prague.

Kang, S. B. (2001). Radial distortion snak#&SICE Trans. Inf. & Syst.E84-D(12) 1603-1611.

77



Kang, S. B.et al. (2003). High dynamic range videdACM Transactions on Graphicg2(3),
319-325.

Kang, S. B. and Weiss, R. (1997). Characterization of efrocompositing panoramic images.
In IEEE Computer Society Conference on Computer Vision arteéiPalRecognition (CVPR’97)
pages 103-109, San Juan, Puerto Rico.

Kang, S. B., Szeliski, R., and Uyttendaele, M. (2008g¢amless Stitching using Multi-Perspective
Plane SweepTechnical Report MSR-TR-2004-48, Microsoft Research.

Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: a more distugctepresentation for local image
descriptors. INEEE Computer Society Conference on Computer Vision anefPaRecognition
(CVPR’2004) pages 506-513, Washington, DC.

Kenney, C., Zuliani, M., and Manjunath, B. (2005). An axidioapproach to corner de-
tection. InIEEE Computer Society Conference on Computer Vision antéffaRecognition
(CVPR’2005) pages 191-197, San Diego, CA.

Keren, D., Peleg, S., and Brada, R. (1988). Image sequerm@ameement using sub-pixel dis-
placements. IREEE Computer Society Conference on Computer Vision anéPaiRecognition
(CVPR’88) pages 742—746, IEEE Computer Society Press, Ann Arbohikfa.

Kim, J., Kolmogorov, V., and Zabih, R. (2003). Visual copeadence using energy minimization
and mutual information. IMNinth International Conference on Computer Vision (ICC\02)0
pages 1033-1040, Nice, France.

Kuglin, C. D. and Hines, D. C. (1975). The phase correlatroage alignment method. IEEE
1975 Conference on Cybernetics and Sogieges 163—-165, New York.

Kumar, R., Anandan, P., and Hanna, K. (1994). Direct regogéshape from multiple views: A
parallax based approach. Tivelfth International Conference on Pattern Recogniti@RR’'94),
pages 685—-688, IEEE Computer Society Press, Jerusaleml, Isr

Kumar, R., Anandan, P., Irani, M., Bergen, J., and Hanna,109%). Representation of scenes
from collections of images. IEEE Workshop on Representations of Visual Scereages 10-17,
Cambridge, Massachusetts.

Kwatra, V.et al. (2003). Graphcut textures: Image and video synthesigugiaph cuts ACM
Transactions on Graphi¢22(3), 277-286.

Le Gall, D. (1991). MPEG: A video compression standard foftrmedia applicationsCommu-
nications of the ACM34(4), 44-58.

78



Lee, M.-C.et al. (1997). A layered video object coding system using spriie @fine motion
model. IEEE Transactions on Circuits and Systems for Video TedwyoV (1), 130-145.

Levin, A., Zomet, A., and Weiss, Y. (2004a). Separating otibes from a single image using lo-
cal features. INEEE Computer Society Conference on Computer Vision artiéffelRecognition
(CVPR’2004) pages 306-313, Washington, DC.

Levin, A., Zomet, A., Peleg, S., and Weiss, Y. (2004b). Semsiimage stitching in the gradient
domain. InEighth European Conference on Computer Vision (ECCV 200dges 377-389,
Springer-Verlag, Prague.

Li, Y. et al. (2004a). Lazy snappindACM Transactions on Graphic83(3), 303-308.

Li, Y. etal. (2004b). Stereo reconstruction from multiperspectivegpamasIEEE Transactions
on Pattern Analysis and Machine Intelligen@&(1), 44—62.

Lindeberg, T. (1990). Scale-space for discrete signlt&E Transactions on Pattern Analysis
and Machine Intelligencel 2(3), 234-254.

Lischinski, D., Farbman, Z., Uytendaelle, M., and Szeligki (2006). Interactive local adjust-
ment of tonal valuesACM Transactions on Graphic85(3), 646—653.

Loop, C. and Zhang, Z. (1999). Computing rectifying homgdpias for stereo vision. In
IEEE Computer Society Conference on Computer Vision antkfPaRecognition (CVPR’99)
pages 125-131, Fort Collins.

Lowe, D. G. (2004). Distinctive image features from scaleariant keypoints.International
Journal of Computer Visigr60(2), 91-110.

Lucas, B. D. and Kanade, T. (1981). An iterative image regiitn technique with an application
in stereo vision. IrBeventh International Joint Conference on Atrtificial Ihggnce (IJCAI-81)
pages 674—-679, Vancouver.

Mann, S. and Picard, R. W. (1994). Virtual bellows: Conding high-quality images from
video. InFirst IEEE International Conference on Image Processir@if-94), pages 363-367,
Austin.

Mann, S. and Picard, R. W. (1995). On being ‘undigital’ witithl cameras: Extending dynamic
range by combining differently exposed picturesIS&T'’s 48th Annual Conferen¢cpages 422—
428, Society for Imaging Science and Technology, Washmdio C.

79



Massey, M. and Bender, W. (1996). Salient stills: Processpractice.IBM Systems Journal
35(3&4), 557-573.

Matas, Jet al. (2004). Robust wide baseline stereo from maximally stalzteemal regions.
Image and Vision Computing2(10) 761-767.

Matthies, L. H., Szeliski, R., and Kanade, T. (1989). Kalridar-based algorithms for estimat-
ing depth from image sequencésternational Journal of Computer VisioB3, 209-236.

McLauchlan, P. F. and Jaenicke, A. (2002). Image mosaicnggusequential bundle adjustment.
Image and Vision Computing0(9-10) 751-759.

McMillan, L. and Bishop, G. (1995). Plenoptic modeling: Amage-based rendering system.
Computer Graphics (SIGGRAPH95)39-46.

Meehan, J. (1990)anoramic Photographywatson-Gupitill.

Mikolajczyk, K. et al. (2005). A comparison of affine region detectdrgernational Journal of
Computer Vision65(1-2) 43-72.

Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invanignterest point detectorsnter-
national Journal of Computer VisioB0(1), 63—86.

Mikolajczyk, K. and Schmid, C. (2005). A performance evéiloa of local descriptorslEEE
Transactions on Pattern Analysis and Machine Intelligei2d¢10) 1615-1630.

Milgram, D. L. (1975). Computer methods for creating photasaics. IEEE Transactions on
ComputersC-24(11) 1113-11109.

Milgram, D. L. (1977). Adaptive techniques for photomog&aig. |IEEE Transactions on Com-
puters C-26(11) 1175-1180.

Mitsunaga, T. and Nayar, S. K. (1999). Radiometric selftzalion. InIEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni®riPR’'99) pages 374-380, Fort
Collins.

Moravec, H. (1983). The stanford cart and the cmu roveroceedings of the IEEE/1(7),
872-884.

Muhlich, M. and Mester, R. (1998). The role of total leasta@gs in motion analysis. In
Fifth European Conference on Computer Vision (ECCV,98)ges 305-321, Springer-Verlag,
Freiburg, Germany.

80



Nayar, S. K. and Mitsunaga, T. (2000). High dynamic rangegimgt Spatially varying pixel
exposures. INEEE Computer Society Conference on Computer Vision angfaRecognition
(CVPR’2000) pages 472-479, Hilton Head Island.

Nene, S. and Nayar, S. K. (1997). A simple algorithm for nsareeighbor search in high
dimensionslEEE Transactions on Pattern Analysis and Machine Intelige 19(9), 989-1003.

Nielson, G. M. (1993). Scattered data modelinBEE Computer Graphics and Applicatigns
13(1), 60-70.

Nister, D. and Stewenius, H. (2006). Scalable recognitiath v vocabulary tree. In
IEEE Computer Society Conference on Computer Vision angfPaRecognition (CVPR’2006)
pages 2161-2168, New York City, NY.

Okutomi, M. and Kanade, T. (1993). A multiple baseline stedl&EE Transactions on Pattern
Analysis and Machine Intelligenc#5(4), 353—-363.

OpenGL-ARB. (1997). OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.1Addison-Wesley, Reading, MA, 2nd edition.

Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (199Bj)screte-Time Signal Processing
Pearson Education, 2nd edition.

Peleg, R., Ben-Ezra, M., and Pritch, Y. (2001). Omnisteifeanoramic stereo imagindEEE
Transactions on Pattern Analysis and Machine Intellige283), 279-290.

Peleg, S. (1981). Elimination of seams from photomosa€smputer Vision, Graphics, and
Image Processindl6, 1206-1210.

Peleg, Set al.. (2000). Mosaicing on adaptive manifoldEEE Transactions on Pattern Analysis
and Machine Intelligence22(10) 1144-1154.

Peleg, S. and Rav-Acha, A. (2006). Lucas-Kanade withoudtitee warping. Ininternational
Conference on Image Processing (ICIP-200&ges 1097-1100, Atlanta.

Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson inegaiifgng. ACM Transactions on
Graphics 22(3), 313-318.

Platel, B., Balmachnova, E., Florack, L., and ter Haar RomBn (2006). Top-points as interest
points for image matching. In Leonardis, A., Bischof, H.d&inz, A., editorsComputer Vision
— ECCV 2006pages 418-429, Springer.

81



Porter, T. and Duff, T. (1984). Compositing digital imag€amputer Graphics (SIGGRAPH’84)
18(3), 253-259.

Quam, L. H. (1984). Hierarchical warp stereo. linage Understanding Workshopages 149—
155, Science Applications International Corporation, N2fkeans.

Rademacher, P. and Bishop, G. (1998). Multiple-centgrrojection images. IrComputer
Graphics Proceedings, Annual Conference Sepages 199-206, ACM SIGGRAPH, Proc. SIG-
GRAPH’98 (Orlando).

Rav-Acha, A., Pritch, Y., Lischinski, D., and Peleg, S. (Bp0Dynamosaics: Video mosaics with
non-chronological time. IEEE Computer Society Conference on Computer Vision arnefPat
Recognition (CVPR’2005pages 58-65, San Diego, CA.

Rehg, J. and Witkin, A. (1991). Visual tracking with defortioa models. InIEEE Interna-
tional Conference on Robotics and Automatipages 844—-850, IEEE Computer Society Press,
Sacramento.

Reinhard, Eet al.. (2002). Photographic tone reproduction for digital imeig&CM Transactions
on Graphics (TOG)21(3), 267-276.

Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. j20@§5h Dynamic Range Imaging:
Acquisition, Display, and Image-Based Lightingorgan Kaufmann.

Rosten, E. and Drummond, T. (2006). Machine learning fohtsgeed corner detection. In
Leonardis, A., Bischof, H., and Pinz, A., editoGpmputer Vision — ECCV 200@ages 430—-
443, Springer.

Rother, C., Kolmogorov, V., and Blake, A. (2004). “GrabCuthteractive foreground extraction
using iterated graph cut&CM Transactions on Graphic23(3), 309-314.

Rousseeuw, P. J. (1984). Least median of squares regmesdsional of the American Statistical
Association79, 871-880.

Rousseeuw, P. J. and Leroy, A. M. (198Rpbust Regression and Outlier Detectidiiley, New
York.

Samet, H. (1989)The Design and Analysis of Spatial Data Structurdgdison-Wesley, Read-
ing, Massachusetts.

Sawhney, H. S. (1994). 3D geometry from planar parallaxlEEBE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR'Bdges 929-934, IEEE Computer
Society, Seattle.

82



Sawhney, H. S. and Ayer, S. (1996). Compact representatadeos through dominant multiple
motion estimationlEEE Transactions on Pattern Analysis and Machine Inteltige 18(8), 814—

830.

Sawhney, H. S. and Kumar, R. (1999). True multi-image alignhand its application to mosaic-
ing and lens distortion correctiodEEE Transactions on Pattern Analysis and Machine Intelli-
gence21(3), 235-243.

Sawhney, H. Set al. (1998). Videobrush: Experiences with consumer video meosa In
IEEE Workshop on Applications of Computer Vision (WACV, @8ges 56—-62, IEEE Computer
Society, Princeton.

Schaffalitzky, F. and Zisserman, A. (2002). Multi-view rolaing for unordered image sets, or
“How do | organize my holiday snaps?”. Beventh European Conference on Computer Vision
(ECCV 2002)pages 414-431, Springer-Verlag, Copenhagen.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and etadn of dense two-frame stereo
correspondence algorithmisiternational Journal of Computer Visioa7(1), 7-42.

Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluatfonterest point detectordnterna-
tional Journal of Computer Visiqi37(2), 151-172.

Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fasigpestimation with parameter sensitive
hashing. InNinth International Conference on Computer Vision (ICC\02)) pages 750-757,
Nice, France.

Shi, J. and Tomasi, C. (1994). Good features to trackEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR;988ges 593-600, IEEE Computer Society,
Seattle.

Shoemake, K. (1985). Animating rotation with quaterniomves. Computer Graphics (SIG-
GRAPH’85) 19(3), 245-254.

Shum, H.-Y. and He, L.-W. (1999). Rendering with conceninicsaics. InNSIGGRAPH'99
pages 299-306, ACM SIGGRAPH, Los Angeles.

Shum, H.-Y.et al. (1999). Omnivergenet stereo. 8eventh International Conference on Com-
puter Vision (ICCV'99) pages 22-29, Greece.

Shum, H.-Y. and Szeliski, R. (1997Panoramic Image Mosaicingrechnical Report MSR-TR-
97-23, Microsoft Research.

83



Shum, H.-Y. and Szeliski, R. (1999). Stereo reconstrudtiom multiperspective panoramas. In
Seventh International Conference on Computer Vision (0@ pages 14-21, Kerkyra, Greece.

Shum, H.-Y. and Szeliski, R. (2000). Construction of panacamosaics with global and local
alignment. International Journal of Computer VisioB86(2), 101-130. Erratum published July
2002, 48(2):151-152.

Simoncelli, E. P., Adelson, E. H., and Heeger, D. J. (19919b&bility distributions of optic flow.
In IEEE Computer Society Conference on Computer Vision anteiPalRecognition (CVPR’'91)
pages 310-315, IEEE Computer Society Press, Maui, Hawaii.

Slama, C. C., editor. (1980Manual of PhotogrammetryAmerican Society of Photogrammetry,
Falls Church, Virginia, fourth edition.

Soille, P. (2006). Morphological image compositingEE Transactions on Pattern Analysis and
Machine Intelligencg28(5), 673—683.

Steedly, Det al. (2005). Efficiently registering video into panoramic migsa In Tenth Interna-
tional Conference on Computer Vision (ICCV 200%gges 1300-1307, Beijing, China.

Steele, R. and Jaynes, C. (2005). Feature uncertainty@fisom covariant image noise. In
IEEE Computer Society Conference on Computer Vision angfPalRecognition (CVPR’2005)
pages 1063—-1070, San Diego, CA.

Steele, R. M. and Jaynes, C. (2006). Overconstrained lestanation of radial distortion and
multi-view geometry. In Leonardis, A., Bischof, H., and RirA., editors,Computer Vision —
ECCV 2006 pages 253—-264, Springer.

Stein, G. (1995). Accurate internal camera calibratiomgsotation, with analysis of sources of
error. InFifth International Conference on Computer Vision (ICC%j9pages 230-236, Cam-
bridge, Massachusetts.

Stein, G. (1997). Lens distortion calibration using poiatrespondences. IiEEE Computer
Society Conference on Computer Vision and Pattern RecogniCVPR’97) pages 602-608,
San Juan, Puerto Rico.

Stewart, C. V. (1999). Robust parameter estimation in cderpusion. SIAM Reviews41(3),
513-537.

Sturm, P. (2005). Multi-view geometry for general cameradeis. InIEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recogni@dPR’2005) pages 206-212, San
Diego, CA.

84



Sun, J., Zheng, N., and Shum, H. (2003). Stereo matchingyusethef propagation.IEEE
Transactions on Pattern Analysis and Machine Intellige2&€7), 787-800.

Szeliski, R. (1989).Bayesian Modeling of Uncertainty in Low-Level Visidkluwer Academic
Publishers, Boston.

Szeliski, R. (1990). Fast surface interpolation usingdranical basis functiondEEE Transac-
tions on Pattern Analysis and Machine Intelligent2(6), 513-528.

Szeliski, R. (1994). Image mosaicing for tele-reality apgtions. INIEEE Workshop on Appli-
cations of Computer Vision (WACV’'94)ages 44-53, IEEE Computer Society, Sarasota.

Szeliski, R. (1996). Video mosaics for virtual environmentEEE Computer Graphics and
Applications 16(2), 22—-30.

Szeliski, R. (2006). Locally adapted hierarchical basecpnditioning. ACM Transactions on
Graphics 25(3), 1135-1143.

Szeliski, R. and Coughlan, J. (1994). Hierarchical spbased image registration. IBEE Com-
puter Society Conference on Computer Vision and Patterodgteton (CVPR’'94) pages 194—
201, IEEE Computer Society, Seattle.

Szeliski, R. and Kang, S. B. (1994). Recovering 3D shape aotiomfrom image streams
using nonlinear least squarekurnal of Visual Communication and Image Representa&@h),
10-28.

Szeliski, R. and Kang, S. B. (1995). Direct methods for visegne reconstruction. [feEE
Workshop on Representations of Visual Scepages 26—33, Cambridge, Massachusetts.

Szeliski, R. and Shum, H.-Y. (1997). Creating full view pearaic image mosaics and texture-
mapped modelsComputer Graphics (SIGGRAPH'97 Proceeding51-258.

Tappen, M. F. and Freeman, W. T. (2003). Comparison of graphwith belief propagation for
stereo, using identical MRF parameters.Nimth International Conference on Computer Vision
(ICCV 2003) pages 900-907, Nice, France.

Tardif, J.-P.et al. (2006a). Self-calibration of a general radially symneetfistortion model.
In Seventh European Conference on Computer Vision (ECCV 2p88¢s 186—199, Springer-
Verlag, Graz.

Tardif, J.-P., Sturm, P., and Roy, S. (2006b). Self-catibraof a general radially symmetric
distortion model. In Leonardis, A., Bischof, H., and Pinz, &ditors,Computer Vision - ECCV
2006 pages 186-199, Springer.

85



Teodosio, L. and Bender, W. (1993). Salient video stillsntéat and context preserved. ACM
Multimedia 93 pages 39-46, Anaheim, California.

Thirthala, S. and Pollefeys, M. (2005). The radial trifoaisor: A tool for calibrating the radial
distortion of wide-angle cameras. IREE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’200%ages 321-328, San Diego, CA.

Tian, Q. and Huhns, M. N. (1986). Algorithms for subpixel igtgation. Computer Vision,
Graphics, and Image Processigh, 220-233.

Triggs, B. (2004). Detecting keypoints with stable positiorientation, and scale under illumina-
tion changes. litighth European Conference on Computer Vision (ECCV 2@abes 100-113,
Springer-Verlag, Prague.

Triggs, B.et al. (1999). Bundle adjustment — a modern synthesisintarnational Workshop
on Vision Algorithmspages 298-372, Springer, Kerkyra, Greece.

Tumblin, J., Agrawal, A., and Raskar, R. (2005). Why i wantradient camera. I[lEEE Com-
puter Society Conference on Computer Vision and Patterondteton (CVPR’2005)pages 103—
110, San Diego, CA.

Tuytelaars, T. and Van Gool, L. (2004). Matching widely seped views based on affine invariant
regions.International Journal of Computer Visigph9(1), 61-85.

Uyttendaele, Met al.. (2004). Image-based interactive exploration of reallvenvironments.
IEEE Computer Graphics and Applicatiqrt(3).

Uyttendaele, M., Eden, A., and Szeliski, R. (2001). Eliniimg ghosting and exposure arti-
facts in image mosaics. MEEE Computer Society Conference on Computer Vision anefPat
Recognition (CVPR’2001pages 509-516, Kauai, Hawaii.

van de Weijer, J. and Schmid, C. (2006). Coloring local femxtraction. In Leonardis, A.,
Bischof, H., and Pinz, A., editor§omputer Vision — ECCV 200fages 334-348, Springer.

Viola, P. and Wells IlI, W. (1995). Alignment by maximizati@f mutual information. IrFifth In-
ternational Conference on Computer Vision (ICCV’'9aages 16—-23, Cambridge, Massachusetts.

Wang, L., Kang, S. B., Szeliski, R., and Shum, H.-Y. (2001pti@al texture map reconstruction
from multiple views. InIEEE Computer Society Conference on Computer Vision angkfPat
Recognition (CVPR’2001pages 347-354, Kauai, Hawaii.

Watt, A. (1995).3D Computer GraphicsAddison-Wesley, third edition.

86



Weber, J. and Malik, J. (1995). Robust computation of opfloa in a multi-scale differential
framework.International Journal of Computer Visioh4(1), 67-81.

Weiss, Y. (2001). Deriving intrinsic images from image senges. InEighth International
Conference on Computer Vision (ICCV 200dages 7-14, Vancouver, Canada.

Williams, L. (1983). Pyramidal parametric€omputer Graphicsl7(3), 1-11.

Wood, D. N.et al. (1997). Multiperspective panoramas for cel animation. Clomputer
Graphics Proceedings, Annual Conference Sepages 243-250, ACM SIGGRAPH, Proc. SIG-
GRAPH’97 (Los Angeles).

Woodham, R. J. (1981). Analysing images of curved surfaéesficial Intelligence 17, 117—
140.

Xiong, Y. and Turkowski, K. (1997). Creating image-based M&ng a self-calibrating fish-
eye lens. INEEE Computer Society Conference on Computer Vision antkiffaRecognition
(CVPR’97) pages 237-243, San Juan, Puerto Rico.

Xiong, Y. and Turkowski, K. (1998). Registration, caliboat and blending in creating high qual-
ity panoramas. IfEEE Workshop on Applications of Computer Vision (WACV, §8pes 69-74,
IEEE Computer Society, Princeton.

Yang, D.et al. (1999). A 640x512 CMOS image sensor with ultra-wide dyrarange floating-
point pixel level ADC.IEEE Journal of Solid State Circuit84(12) 1821-1834.

Zabih, R. and Woodfill, J. (1994). Non-parametric local sfanms for computing visual cor-
respondence. Iithird European Conference on Computer Vision (ECCV,$8ges 151-158,
Springer-Verlag, Stockholm, Sweden.

Zitov'aa, B. and Flusser, J. (2003). Image registrationhoé@s: A survey.Image and Vision
Computing 21, 997-1000.

Zoghlami, I., Faugeras, O., and Deriche, R. (1997). Usingnggric corners to build a 2D
mosaic from a set of images. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’9/pages 420—-425, San Juan, Puerto Rico.

87



