
Neural Network-Based Face Detection
�

Henry A. Rowley
har@cs.cmu.edu

http://www.cs.cmu.edu/˜har

Shumeet Baluja
baluja@cs.cmu.edu

http://www.cs.cmu.edu/˜baluja

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Takeo Kanade
tk@cs.cmu.edu

http://www.cs.cmu.edu/˜tk

Abstract

We present a neural network-based face detection
system. A retinally connected neural network ex-
amines small windows of an image, and decides
whether each window contains a face. The sys-
tem arbitrates between multiple networks to im-
prove performance over a single network. We use a
bootstrap algorithm for training the networks, which
adds false detections into the training set as train-
ing progresses. This eliminates the difficult task
of manually selecting non-face training examples,
which must be chosen to span the entire space of
non-face images. Comparisons with other state-
of-the-art face detection systems are presented; our
system has better performance in terms of detection
and false-positive rates.

1 Introduction

In this paper, we present a neural network-based al-
gorithm to detect frontal views of faces in gray-scale
images1. The algorithms and training methods are

�

This work was supported by a grant from Siemens Corpo-
rate Research, Inc., by the Army Research Office under grant
number DAAH04-94-G-0006, and by the Office of Naval Re-
search under grant number N00014-95-1-0591. This work was
started while Shumeet Baluja was supported by a National Sci-
ence Foundation Graduate Fellowship. He is currently sup-
ported by a graduate student fellowship from the National Aero-
nautics and Space Administration, administered by the Lyndon
B. Johnson Space Center. The views and conclusions con-
tained in this document are those of the authors, and should not
be interpreted as representing official policies or endorsements,
either expressed or implied, of the sponsoring agencies.

1An interactive demonstration is available on the World
Wide Web at http://www.cs.cmu.edu/˜har/faces.html, which al-
lows anyone to submit images for processing by the face detec-
tor, and displays the detection results for pictures submitted by
others.

general, and can be applied to other views of faces,
as well as to similar object and pattern recognition
problems.

Training a neural network for the face detection task
is challenging because of the difficulty in character-
izing prototypical “non-face” images. Unlike face
recognition, in which the classes to be discriminated
are different faces, the two classes to be discrimi-
nated in face detection are “images containing faces”
and “images not containing faces”. It is easy to get
a representative sample of images which contain
faces, but it is much harder to get a representative
sample of those which do not. The size of the train-
ing set for the second class can grow very quickly.

We avoid the problem of using a huge training set
for non-faces by selectively adding images to the
training set as training progresses [Sung and Pog-
gio, 1994]. This “bootstrap” method reduces the
size of the training set needed. Detailed descriptions
of this training method, along with the network ar-
chitecture are given in Section 2. In Section 3, the
performance of the system is examined. We find that
the system is able to detect 90.5% of the faces over
a test set of 130 images, with an acceptable number
of false positives. Section 4 compares this system
with similar systems. Conclusions and directions
for future research are presented in Section 5.

2 Description of the System

Our system operates in two stages: it first applies a
set of neural network-based filters to an image, and
then uses an arbitrator to combine the filter outputs.
The filter examines each location in the image at
several scales, looking for locations that might con-
tain a face. The arbitrator then merges detections



Input
Network Outputsu

bs
am

pl
in

g

Preprocessing Neural network

pixels
20 by 20

Extracted windowInput image pyramid
(20 by 20 pixels)

Correct lighting Histogram equalization Receptive fields
Hidden units

Figure 1: The basic algorithm used for face detection.

from individual filters and eliminates overlapping
detections.

2.1 Stage One: A Neural Network-Based
Filter

The first component of our system is a filter that
receives as input a 20x20 pixel region of the image,
and generates an output ranging from 1 to -1, signi-
fying the presence or absence of a face, respectively.
To detect faces anywhere in the input, the filter is
applied at every location in the image. To detect
faces larger than the window size, the input image is
repeatedly reduced in size (by subsampling), and the
filter is applied at each size. The filter itself must
have some invariance to position and scale. The
amount of invariance built into the filter determines
the number of scales and positions at which the filter
must be applied. For the work presented here, we
apply the filter at every pixel position in the image,
and scale the image down by a factor of 1.2 for each
step in the pyramid.

The filtering algorithm is shown in Figure 1. First, a
preprocessing step, adapted from [Sung and Poggio,
1994], is applied to a window of the image. The win-
dow is then passed through a neural network, which
decides whether the window contains a face. The
preprocessing first attempts to equalize the intensity
values across the window. We fit a function which
varies linearly across the window to the intensity
values in an oval region inside the window. Pixels
outside the oval may represent the background, so
those intensity values are ignored in computing the

lighting variation across the face. The linear func-
tion will approximate the overall brightness of each
part of the window, and can be subtracted from the
window to compensate for a variety of lighting con-
ditions. Then histogram equalization is performed,
which non-linearly maps the intensity values to ex-
pand the range of intensities in the window. The his-
togram is computed for pixels inside an oval region
in the window. This compensates for differences in
camera input gains, as well as improving contrast in
some cases.

The preprocessed window is then passed through a
neural network. The network has retinal connec-
tions to its input layer; the receptive fields of hidden
units are shown in Figure 1. There are three types
of hidden units: 4 which look at 10x10 pixel sub-
regions, 16 which look at 5x5 pixel subregions, and
6 which look at overlapping 20x5 pixel horizontal
stripes of pixels. Each of these types was chosen
to allow the hidden units to represent features that
might be important for face detection. In particular,
the horizontal stripes allow the hidden units to de-
tect such features as mouths or pairs of eyes, while
the hidden units with square receptive fields might
detect features such as individual eyes, the nose, or
corners of the mouth. Although the figure shows a
single hidden unit for each subregion of the input,
these units can be replicated. For the experiments
which are described later, we use networks with two
and three sets of these hidden units. Similar input
connection patterns are commonly used in speech
and character recognition tasks [Waibel et al., 1989,
Le Cun et al., 1989]. The network has a single,



real-valued output, which indicates whether or not
the window contains a face.

Examples of output from a single network are shown
in Figure 2. In the figure, each box represents the
position and size of a window to which the neural
network gave a positive response. The network has
some invariance to position and scale, which results
in multiple boxes around some faces. Note also
that there are some false detections; they will be
eliminated by methods presented in Section 2.2.

A B

Figure 2: Images with all the above threshold de-
tections indicated by boxes.

To train the neural network used in stage one to serve
as an accurate filter, a large number of face and non-
face images are needed. Nearly 1050 face exam-
ples were gathered from face databases at CMU and
Harvard2. The images contained faces of various
sizes, orientations, positions, and intensities. The
eyes and the center of the upper lip of each face
were located manually, and these points were used
to normalize each face to the same scale, orientation,
and position, as follows:

1. The image is rotated so that both eyes appear
on a horizontal line.

2. The image is scaled so that the distance from
the point between the eyes to the upper lip is
12 pixels.

3. A 20x20 pixel region, centered 1 pixel above
the point between the eyes and the upper lip, is
extracted.

2Dr. Woodward Yang at Harvard provided over 400 mug-
shot images which we used for training.

In the training set, 15 face examples are generated
from each original image, by randomly rotating the
images (about their center points) up to 10

�
, scaling

between 90% and 110%, translating up to half a
pixel, and mirroring. Each 20x20 window in the set
is then preprocessed (by applying lighting correction
and histogram equalization). A few example images
are shown in Figure 3. The randomization gives the
filter invariance to translations of less than a pixel
and scalings of

�
10%. Larger changes in translation

and scale are dealt with by applying the filter at
every pixel position in an image pyramid, in which
the images are scaled by factors of 1.2.

Figure 3: Example face images, randomly mir-
rored, rotated, translated, and scaled by small
amounts.

Practically any image can serve as a non-face exam-
ple because the space of non-face images is much
larger than the space of face images. However, col-
lecting a “representative” set of non-faces is diffi-
cult. Instead of collecting the images before training
is started, the images are collected during training,
in the following manner, adapted from [Sung and
Poggio, 1994]:

1. Create an initial set of non-face images by gen-
erating 1000 images with random pixel inten-
sities. Apply the preprocessing steps to each
of these images.

2. Train a neural network to produce an output of
1 for the face examples, and -1 for the non-face
examples. The training algorithm is standard
error backpropogation. On the first iteration
of this loop, the network’s weights are initially
random. After the first iteration, we use the



weights computed by training in the previous
iteration as the starting point for training.

3. Run the system on an image of scenery which
contains no faces. Collect subimages in which
the network incorrectly identifies a face (an
output activation � 0).

4. Select up to 250 of these subimages at random,
apply the preprocessing steps, and add them
into the training set as negative examples. Go
to step 2.

Some examples of non-faces that are collected dur-
ing training are shown in Figure 4. We used 120
images of scenery for collecting negative examples
in this bootstrap manner. A typical training run
selects approximately 8000 non-face images from
the 146,212,178 subimages that are available at all
locations and scales in the training scenery images.

2.2 Stage Two: Merging Overlapping De-
tections and Arbitration

The examples in Figure 2 showed that the raw output
from a single network will contain a number of false
detections. In this section, we present two strategies
to improve the reliability of the detector: merging
overlapping detections from a single network and
arbitrating among multiple networks.

2.2.1 Merging Overlapping Detections

Note that in Figure 2, most faces are detected at
multiple nearby positions or scales, while false de-
tections often occur with less consistency. This ob-
servation leads to a heuristic which can eliminate
many false detections. For each location and scale
at which a face is detected, the number of detections
within a specified neighborhood of that location can
be counted. If the number is above a threshold, then
that location is classified as a face. The centroid
of the nearby detections defines the location of the
detection result, thereby collapsing multiple detec-
tions. In the experiments section, this heuristic will
be referred to as “thresholding”.

If a particular location is correctly identified as a
face, then all other detection locations which over-
lap it are likely to be errors, and can therefore be
eliminated. Based on the above heuristic regarding

nearby detections, we preserve the location with the
higher number of detections within a small neigh-
borhood, and eliminate locations with fewer detec-
tions. Later, in the discussion of the experiments,
this heuristic is called “overlap elimination”. There
are relatively few cases in which this heuristic fails;
however, one such case is illustrated in the left two
faces in Figure 2B, in which one face partially oc-
cludes another.

The implementation of these two heuristics is as fol-
lows. Each detection by the network at a particular
location and scale is marked in an image pyramid,
labelled the “output” pyramid. Then, each location
in the pyramid is replaced by the number of detec-
tions in a specified neighborhood of that location.
This has the effect of “spreading out” the detec-
tions. The neighborhood extends an equal number
of pixels in the dimensions of scale and position. A
threshold is applied to these values, and the centroids
(in both position and scale) of all above threshold
regions are computed. All detections contributing
to the centroids are collapsed down to single points.
Each centroid is then examined in order, starting
from the ones which had the highest number of de-
tections within the specified neighborhood. If any
other centroid locations represent a face overlapping
with the current centroid, they are removed from the
output pyramid. All remaining centroid locations
constitute the final detection result.

2.2.2 Arbitration among Multiple Net-
works

To further reduce the number of false positives, we
can apply multiple networks, and arbitrate between
the outputs to produce the final decision. Each net-
work is trained in the manner described above, but
with different random initial weights, random ini-
tial non-face images, and random permutations of
the order of presentation of the scenery images. As
will be seen in the next section, the detection and
false positive rates of the individual networks will be
quite close. However, because of different training
conditions and because of self-selection of negative
training examples, the networks will have different
biases and will make different errors.

Each detection by a network at a particular position
and scale is recorded in an image pyramid. One



Figure 4: During training, the partially-trained system is applied to images of scenery which do not contain
faces (like the one on the left). Any regions in the image detected as faces (which are expanded and shown
on the right) are errors, which can be added into the set of negative training examples.

way to combine two such pyramids is by ANDing
them. This strategy signals a detection only if both
networks detect a face at precisely the same scale
and position. Due to the biases of the individual
networks, they will rarely agree on a false detection
of a face. This allows ANDing to eliminate most
false detections. Unfortunately, this heuristic can
decrease the detection rate because a face detected
by only one network will be thrown out. However,
we will show later that individual networks can all
detect roughly the same set of faces, so that the
number of faces lost due to ANDing is small.

Similar heuristics, such as ORing the outputs of two
networks, or voting among three networks, were
also tried. Each of these arbitration methods can be
applied before or after the “thresholding” and “over-
lap elimination” heuristics. If applied afterwards,
we combine the centroid locations rather than actual
detection locations, and require them to be within
some neighborhood of one another rather than pre-
cisely aligned.

Arbitration strategies such as ANDing, ORing, or
voting seem intuitively reasonable, but perhaps there
are some less obvious heuristics that could perform
better. In [Rowley et al., 1995], we tested this hy-
pothesis by using a separate neural network to ar-
bitrate among multiple detection networks. It was
found that the neural network-based arbitration pro-
duces results comparable to those produced by the
heuristics presented earlier.

3 Experimental Results

A large number of experiments were performed to
evaluate the system. We first show an analysis of
which features the neural network is using to detect
faces, then present the error rates of the system over
three large test sets.

3.1 Sensitivity Analysis

In order to determine which part of the input im-
age the network uses to decide whether the input
is a face, we performed a sensitivity analysis using
the method of [Baluja and Pomerleau, 1995]. We
collected a positive test set based on the training
database of face images, but with different random-
ized scales, translations, and rotations than were
used for training. The negative test set was built
from a set of negative examples collected during the
training of an earlier version of the system. Each of
the 20x20 pixel input images was divided into 100
2x2 pixel subimages. For each subimage in turn, we
went through the test set, replacing that subimage
with random noise, and tested the neural network.
The resulting sum of squared errors made by the
network is an indication of how important that por-
tion of the image is for the detection task. Plots of
the error rates for two networks we developed are
shown in Figure 5. Network 1 uses two sets of the
hidden units illustrated in Figure 1, while Network
2 uses three sets.

The networks rely most heavily on the eyes, then on
the nose, and then on the mouth (Figure 5). Anec-
dotally, we have seen this behavior on several real



0

5

10

15

20

0

10

20

0

2000

4000

6000

0

5

10

15

20

0

10

20

0

2000

4000

6000

Network 2Face at Same ScaleNetwork 1

Figure 5: Error rates (vertical axis) on a small test resulting from adding noise to various portions of the
input image (horizontal plane), for two networks. Network 1 has two copies of the hidden units shown in
Figure 1 (a total of 58 hidden units and 2905 connections), while Network 2 has three copies (a total of 78
hidden units and 4357 connections).

test images. Even in cases in which only one eye
is visible, detection of a face is possible, though
less reliable, than when the entire face is visible.
The system is less sensitive to the occlusion of other
features such as the nose or mouth.

3.2 Testing

The system was tested on three large sets of images,
which are completely distinct from the training sets.
Test Set A was collected at CMU, and consists of
42 scanned photographs, newspaper pictures, im-
ages collected from the World Wide Web, and digi-
tized television pictures. These images contain 169
frontal views of faces, and require the networks to
examine 22,053,124 20x20 pixel windows. Test
Set B consists of 23 images containing 155 faces
(9,678,084 windows); it was used in [Sung and Pog-
gio, 1994] to measure the accuracy of their system.
Test Set C is similar to Test Set A, but contains some
images with more complex backgrounds and with-
out any faces, to more accurately measure the false
detection rate. It contains 65 images, 183 faces, and
51,368,003 windows.3

A feature our face detection system has in common
with many systems is that the outputs are not binary.
The neural network filters produce real values be-
tween 1 and -1, indicating whether or not the input

3Test Sets A, B, and C are available over the World Wide
Web, at the URL http://www.cs.cmu.edu/˜har/faces.html.

contains a face, respectively. A threshold value of
zero is used during training to select the negative
examples (if the network outputs a value of greater
than zero for any input from a scenery image, it is
considered a mistake). Although this value is in-
tuitively reasonable, by changing this value during
testing, we can vary how conservative the system
is. To examine the effect of this threshold value
during testing, we measured the detection and false
positive rates as the threshold was varied from 1 to
-1. At a threshold of 1, the false detection rate is
zero, but no faces are detected. As the threshold
is decreased, the number of correct detections will
increase, but so will the number of false detections.
This tradeoff is illustrated in Figure 6, which shows
the detection rate plotted against the number of false
positives as the threshold is varied, for the two net-
works presented in the previous section. Since the
zero threshold locations are close to the “knees” of
the curves, as can be seen from the figure, we used
a zero threshold value throughout testing. Experi-
ments are currently underway to examine the effect
of the threshold value used during training.

Table 1 shows the performance for four networks
working alone, the effect of overlap elimination and
collapsing multiple detections, and the results of us-
ing ANDing, ORing, voting, and neural network
arbitration. Networks 3 and 4 are identical to Net-
works 1 and 2, respectively, except that the negative
example images were presented in a different order
during training. The results for ANDing and ORing



0.75

0.8

0.85

0.9

0.95

1

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n 
of

 F
ac

es
 D

et
ec

te
d

False Detections per Windows Examined

ROC Curve for Test Sets A, B, and C

 zero
 zero

Network 1
Network 2

Figure 6: The detection rate plotted against false
positives as the detection threshold is varied from
-1 to 1, for two networks. The performance was
measured over all images from Test Sets A, B, and
C. Network 1 uses two sets of the hidden units illus-
trated in Figure 1, while Network 2 uses three sets.
The points labelled “zero” are the zero threshold
points which are used for all other experiments.

networks were based on Networks 1 and 2, while
voting was based on Networks 1, 2, and 3. The
table shows the percentage of faces correctly de-
tected, and the number of false detections over the
combination of Test Sets A, B, and C. [Rowley et
al., 1995] gives a breakdown of the performance of
each of these system for each of the three test sets,
as well as the performance of systems using neural
networks to arbitration among multiple detection
networks.

As discussed earlier, the “thresholding” heuristic for
merging detections requires two parameters, which
specify the size of the neighborhood used in search-
ing for nearby detections, and the threshold on the
number of detections that must be found in that
neighborhood. In Table 1, these two parameters are
shown in parentheses after the word “threshold”.
Similarly, the ANDing, ORing, and voting arbitra-
tion methods have a parameter specifying how close
two detections (or detection centroids) must be in
order to be counted as identical.

Systems 1 through 4 show the raw performance of
the networks. Systems 5 through 8 use the same
networks, but include the thresholding and overlap
elimination steps which decrease the number of false
detections significantly, at the expense of a small de-
crease in the detection rate. The remaining systems

all use arbitration among multiple networks. Using
arbitration further reduces the false positive rate, and
in some cases increases the detection rate slightly.
Note that for systems using arbitration, the ratio of
false detections to windows examined is extremely
low, ranging from 1 false detection per 229,556 win-
dows to down to 1 in 10,387,401, depending on
the type of arbitration used. Systems 10, 11, and
12 show that the detector can be tuned to make it
more or less conservative. System 10, which uses
ANDing, gives an extremely small number of false
positives, and has a detection rate of about 78.9%.
On the other hand, System 12, which is based on
ORing, has a higher detection rate of 90.5% but also
has a larger number of false detections. System
11 provides a compromise between the two. The
differences in performance of these systems can be
understood by considering the arbitration strategy.
When using ANDing, a false detection made by only
one network is suppressed, leading to a lower false
positive rate. On the other hand, when ORing is
used, faces detected correctly by only one network
will be preserved, improving the detection rate. Sys-
tem 13, which uses voting among three networks,
yields about the same detection rate and lower false
positive rate than System 12, which uses ORing of
two networks.

Based on the results shown in Table 1, we con-
cluded that System 11 makes an acceptable tradeoff
between the number of false detections and the de-
tection rate. System 11 detects on average 85.4% of
the faces, with an average of one false detection per
1,319,035 20x20 pixel windows examined. Figure 7
shows examples output images from System 11.

4 Comparison to Other Systems

[Sung and Poggio, 1994] reports a face detection
system based on clustering techniques. Their sys-
tem, like ours, passes a small window over all por-
tions of the image, and determines whether a face
exists in each window. Their system uses a su-
pervised clustering method with six “face” and six
“non-face” clusters. Two distance metrics measure
the distance of an input image to the prototype clus-
ters. The first metric measures the “partial” distance
between the test pattern and the cluster’s 75 most
significant eigenvectors. The second distance met-
ric is the Euclidean distance between the test pattern



Table 1: Combined Detection and Error Rates for Test Sets A, B, and C

Missed Detect False False detect
Type System faces rate detects rate

0) Ideal System 0/507 100.0% 0 0 in 83099211
Single
network,
no
heuristics

1) Network 1 (2 copies of hidden units (52
total), 2905 connections)

37 92.7% 1768 1 in 47002

2) Network 2 (3 copies of hidden units (78
total), 4357 connections)

41 91.9% 1546 1 in 53751

3) Network 3 (2 copies of hidden units (52
total), 2905 connections)

44 91.3% 2176 1 in 38189

4) Network 4 (3 copies of hidden units (78
total), 4357 connections)

37 92.7% 2508 1 in 33134

Single
network,
with
heuristics

5) Network 1 � threshold(2,1) � overlap
elimination

46 90.9% 844 1 in 98459

6) Network 2 � threshold(2,1) � overlap
elimination

53 89.5% 719 1 in 115576

7) Network 3 � threshold(2,1) � overlap
elimination

53 89.5% 975 1 in 85230

8) Network 4 � threshold(2,1) � overlap
elimination

47 90.7% 1052 1 in 78992

Arbitrating
among
two
networks

9) Networks 1 and 2 � AND(0) 66 87.0% 209 1 in 397604
10) Networks 1 and 2 � AND(0) �

threshold(2,3) � overlap elimination
107 78.9% 8 1 in 10387401

11) Networks 1 and 2 � threshold(2,2) �

overlap elimination � AND(2)
74 85.4% 63 1 in 1319035

12) Networks 1 and 2 � thresh(2,2) �

overlap � OR(2) � thresh(2,1) � overlap
48 90.5% 362 1 in 229556

Three nets 13) Networks 1, 2, 3 � voting(0) � overlap
elimination

53 89.5% 195 1 in 426150

threshold(distance,threshold): Only accept a detection if there are at least threshold detections within a
cube (extending along x, y, and scale) in the detection pyramid surrounding the detection. The size of
the cube is determined by distance, which is the number of a pixels from the center of the cube to its
edge (in either position or scale).

overlap elimination: It is possible that a set of detections erroneously indicate that faces are overlapping
with one another. This heuristic examines detections in order (from those having the most votes within
a small neighborhood to those having the least), and removing conflicting overlaps as it goes.

voting(distance), AND(distance), OR(distance): These heuristics are used for arbitrating among multiple
networks. They take a distance parameter, similar to that used by the threshold heuristic, which indicates
how close detections from individual networks must be to one another to be counted as occuring at the
same location and scale. A distance of zero indicates that the detections must occur at precisely the
same location and scale. Voting requires two out of three networks to detect a face, AND requires two
out of two, and OR requires one out of two to signal a detection.

network arbitration(architecture): The results from three detection networks are fed into an arbitration
network. The parameter specifies the network architecture used: a simple perceptron, a network with a
hidden layer of 5 fully connected hidden units, or a network with two hidden layers of 5 fully connected
hidden units each, with additional connections from the first hidden layer to the output.



D: 9/9/0

B: 2/2/0

C: 1/1/0

J: 8/7/1

A: 57/57/3

I: 7/5/0

H: 3/3/0

K: 14/14/0
L: 1/1/0

G: 2/1/0

M: 1/1/0

F: 11/11/0E: 15/15/0

Figure 7: Output obtained from System 11 in Table 1. For each image, three numbers are shown: the
number of faces in the image, the number of faces detected correctly, and the number of false detections.
Some notes on specific images: False detections are present in A and J. Faces are missed in G (babies with
fingers in their mouths are not well represented in the training set), I (one because of the lighting, causing
one side of the face to contain no information, and one because of the bright band over the eyes), and J
(removed because a false detect overlapped it). Although the system was trained only on real faces, hand
drawn faces are detected in D. Images A, I, and K were obtained from the World Wide Web, B was scanned
from a photograph, C is a digitized television image, D, E, F, H, and J were provided by Sung and Poggio
at MIT, G and L were scanned from newspapers, and M was scanned from a printed photograph.



and its projection in the 75 dimensional subspace.
These distance measures have close ties with Prin-
cipal Components Analysis (PCA), as described in
[Sung and Poggio, 1994]. The last step in their sys-
tem is to use either a perceptron or a neural network
with a hidden layer, trained to classify points using
the two distances to each of the clusters (a total of
24 inputs). Their system is trained with 4000 posi-
tive examples and nearly 47500 negative examples
collected in the “bootstrap” manner. In compari-
son, our system uses approximately 16000 positive
examples and 9000 negative examples.

Table 2 shows the accuracy of their system on Test
Set B, along with the results of our system using
the heuristics employed by Systems 10, 11, and 12
in Table 1. In [Sung and Poggio, 1994], 149 faces
were labelled in the test set, while we labelled 155.
Some of these faces are difficult for either system
to detect. Based on the assumption that [Sung and
Poggio, 1994] were unable to detect any of the six
additional faces we labelled, the number of missed
faces is six more than the values listed in their paper.
It should be noted that because of implementation
details, [Sung and Poggio, 1994] process a slightly
smaller number of windows over the entire test set;
this is taken into account when computing the false
detection rates. Table 2 shows that for equal num-
bers of false detections, we can achieve higher de-
tection rates.

The main computational cost in [Sung and Poggio,
1994] is in computing the two distance measures
from each new window to 12 clusters. We estimate
that this computation requires fifty times as many
floating point operations as are needed to classify
a window in our system, in which the main costs
are in preprocessing and applying neural networks
to the window.

Although there is insufficient space to present them
here, [Rowley et al., 1995] describes techniques
for speeding up our system, based on the work of
[Umezaki, 1995] on license plate detection. These
techniques are related, at a high level, to those pre-
sented in [Vaillant et al., 1994]. In that work, two
networks were used. The first network has a single
output, and like our system it is trained to produce
a maximal positive value for centered faces, and a
maximal negative value for non-faces. Unlike our

system, for faces that are not perfectly centered, the
network is trained to produce an intermediate value
related to how far off-center the face is. This net-
work scans over the image to produce candidate face
locations. It runs quickly because of the network
architecture: using retinal connections and shared
weights, much of the computation required for one
application of the detector can be reused at the ad-
jacent pixel position. This optimization requires
any preprocessing to have a restricted form, such
that it takes as input the entire image, and produces
as output a new image. The window-by-window
preprocessing used in our system cannot be used.
A second network is used for precise localization:
it is trained to produce a positive response for an
exactly centered face, and a negative response for
faces which are not centered. It is not trained at all
on non-faces. All candidates which produce a posi-
tive response from the second network are output as
detections. A potential problem in [Vaillant et al.,
1994] is that the negative training examples are se-
lected manually from a small set of images (indoor
scenes, similar to those used for testing the system).
It may be possible to make the detectors more robust
using the bootstrap technique described here and in
[Sung and Poggio, 1994].

5 Conclusions and Future Research

Our algorithm can detect between 78.9% and 90.5%
of faces in a set of 130 total images, with an accept-
able number of false detections. Depending on the
application, the system can be made more or less
conservative by varying the arbitration heuristics or
thresholds used. The system has been tested on a
wide variety of images, with many faces and uncon-
strained backgrounds.

There are a number of directions for future work.
The main limitation of the current system is that
it only detects upright faces looking at the camera.
Separate versions of the system could be trained for
different head orientations, and the results could be
combined using arbitration methods similar to those
presented here.

Other methods of improving system performance in-
clude obtaining more positive examples for training,
or applying more sophisticated image preprocess-
ing and normalization techniques. For instance, the



Table 2: Comparison of [Sung and Poggio, 1994] and Our System on Test Set B

Missed Detect False False detect
System faces rate detects rate

10) Networks 1 and 2 � AND(0) � threshold(2,3) �

overlap elimination
34 78.1% 3 1 in 3226028

11) Networks 1 and 2 � threshold(2,2) � overlap
elimination � AND(2)

20 87.1% 15 1 in 645206

12) Networks 1 and 2 � threshold(2,2) � overlap elim
� OR(2) � threshold(2,1) � overlap elimination

11 92.9% 64 1 in 151220

[Sung and Poggio, 1994] (Multi-layer network) 36 76.8% 5 1 in 1929655
[Sung and Poggio, 1994] (Perceptron) 28 81.9% 13 1 in 742175

color segmentation method used in [Hunke, 1994]
for color-based face tracking could be used to filter
images. The face detector would then be applied
only to portions of the image which contain skin
color, which would speed up the algorithm as well
as eliminating false detections.

One application of this work is in the area of me-
dia technology. Every year, improved technology
provides cheaper and more efficient ways of storing
information. However, automatic high-level classi-
fication of the information content is very limited;
this is a bottleneck that prevents media technology
from reaching its full potential. The work described
above allows a user to make queries of the form
“Which scenes in this video contain human faces?”
and to have the query answered automatically.

Acknowledgements

The authors would like to thank to Kah-Kay Sung
and Dr. Tomaso Poggio (at MIT) and Dr. Woodward
Yang (at Harvard) for providing a series of test im-
ages and a mug-shot database, respectively. Michael
Smith (at CMU) provided some digitized television
images for testing purposes. We also thank Eugene
Fink, Xue-Mei Wang, Hao-Chi Wong, Tim Rowley,
and Kaari Flagstad for comments on drafts of this
paper.

References

[Baluja and Pomerleau, 1995] Shumeet Baluja and
Dean Pomerleau. Encouraging distributed input
reliance in spatially constrained artificial neural

networks: Applications to visual scene analysis
and control. Submitted, 1995.

[Hunke, 1994] H. Martin Hunke. Locating and
tracking of human faces with neural networks.
Master’s thesis, University of Karlsruhe, 1994.

[Le Cun et al., 1989] Y. Le Cun, B. Boser, J. S.
Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropogation ap-
plied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[Rowley et al., 1995] Henry A. Rowley, Shumeet
Baluja, and Takeo Kanade. Human face detection
in visual scenes. CMU-CS-95-158R, Carnegie
Mellon University, November 1995. Also avail-
able at http://www.cs.cmu.edu/˜har/faces.html.

[Sung and Poggio, 1994] Kah-Kay Sung and
Tomaso Poggio. Example-based learning for
view-based human face detection. A.I. Memo
1521, CBCL Paper 112, MIT, December 1994.

[Umezaki, 1995] Tazio Umezaki. Personal com-
munication, 1995.

[Vaillant et al., 1994] R. Vaillant, C. Monrocq, and
Y. Le Cun. Original approach for the localisation
of objects in images. IEE Proceedings on Vision,
Image, and Signal Processing, 141(4), August
1994.

[Waibel et al., 1989] Alex Waibel, Toshiyuki
Hanazawa, Geoffrey Hinton, Kiyohiro Shikano,
and Kevin J. Lang. Phoneme recognition using
time-delay neural networks. Readings in Speech
Recognition, pages 393–404, 1989.


