Constraint Satisfaction Problems

Chapter 6.1-6.4

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury

Constraint Satisfaction Problems (CSPs)

» Standard search problem:

— state is a "black box“ — any data structure that
supports successor function, heuristic function, and
goal test

* CSP:

— state is defined by variables X; with values from
domain D;

— goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

— Use a variable-based model

* Solution is not a path but an assignment of values
for a set of variables that satisfy all constraints

Example: 8-Queens

Example: Cryptarithmetic

M+
ol4
cls =
DO O

e Variables: £ T, U, W, R, O, X1, X2, X3
* Domains: {0,1,2,3,4,5,6,7,8,9}
* Constraints: Alldiff (F T, U, W, R, O)

-~ 0+0=R+10"X;

- X1+ W+W=U+10"X>

— X2+T+T=0+10"X3

— X3=F, T#0,Fz0

AT THE MOVIES, | GET FRUSTRATED
WHEN WE FILE INTO OUR ROW
HAPHAZARDLY, IGNORING THE
COMPUTATIONALLY DIFFICOLT
PROBLEM OF SEATING PEOPLE
TOGETHER FOR MAXIMUM ENTOYMENT:

Example:
. ~——— FRIENDS
Movie LA RN
. ——3 ONE-WAY CRUSH
Seating | AcquwTAce3

GUys! THIS IS NOT
SOCIALLY OFTIMALL

Example: Graph Coloring
()) () (v1)
() ()

Vs G

* Each circle marked V; .. V; must be assigned R, G or B
* No two adjacent circles may be assigned the same color

* Note: 2 variables have already been assigned a color in
this example

Other Applications of CSPs

* Assignment problems
— e.g., who teaches what class
* Timetable problems
— e.g., which class is offered when and where?
* Scheduling problems
* VLSl or PCB layout problems
* Boolean satisfiability
* N-Queens
* Graph coloring
* Games: Minesweeper, Magic Squares, Sudoku, Crosswords
* Line-drawing labeling

Note: many problems require real-valued variables

Example: Map-Coloring

Northern
Territory
Western

Australia

Queensland

South
Australia

New South Wales

Note: In
general, 4 colors
are necessary

Tasmania

* Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D; = {red,green,blue}
* Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green), (red,blue),
(green,red), (green,blue), (blue,red), (blue,green)}

Example: Map-Coloring

Tasmania

Solutions are complete (i.e., all variables are assigned
values) and consistent (i.e., does not violate any
constraints) assignments, e.g., WA =red, NT = green, Q
=red, NSW = green, V =red, SA = blue, T = green

Constraint Graph
* Binary CSP: each constraint relates two variables

e Constraint graph: nodes are variables, arcs are

constraints
()
QP

©

Lo

O
@

10

Varieties of CSPs

* Discrete variables
— finite domains:
* nvariables, domain size d = O(d") complete assignments
* e.g., Boolean CSPs, Boolean satisfiability
— infinite domains:
* integers, strings, etc.
* e.g., job scheduling, variables are start/end times for each job

* Continuous variables

— e.g., start/end times for Hubble Space Telescope
observations

11

Kinds of Constraints

* Unary constraints involve a single variable
—e.g.,, SA#green

* Binary constraints involve pairs of variables
—e.g.,SAzWA

* Higher-order constraints involve 3 or more variables
— e.g., cryptarithmetic column constraints

12

13

Local Search for CSPs

Hill-climbing, simulated annealing, genetic algorithms
typically work with "complete" states, i.e., all
variables have values at every step

To apply to CSPs:

— allow states with some unsatisfied constraints

— operators assign a value to a variable

Variable selection: randomly select any conflicted

variable

Value selection by min-conflicts heuristic:

— choose value that violates the fewest constraints,

i.e., hill-climb by minimizing f(n) = total number of
violated constraints

Local Search

Min-Conflicts Algorithm:
0. Assign to each variable a random value,
defining the initial state

1. while state not consistent do
2.1 Pick a variable, var, that has constraint(s)
violated
2.2 Find value, v, for var that minimizes the
total number of violated constraints (over all

14

Example: 4-Queens

> States: 4 queensin 4 columns (4% = 256 states)

* Actions: move queen to new row in its column

* Goal test: no attacks

* Evaluation function: f(n) = total number of attacks

O
e

16

variables)

2.3 var=v
15

Min-Conflicts Algorithm
W
W
W W
W
W
W
W

17

Min-Conflicts Algorithm

* Advantages

— Simple and Fast: Given random initial state, can solve n-
Queens in almost constant time for arbitrary n with high
probability (e.g., n = 1,000,000 can be solved on average in
about 50 steps!)

» Disadvantages
— Only searches states that are reachable from the initial
state
* Might not search entire state space

— Does not allow worse moves (but can move to a neighbor
with the same cost)

* Might get stuck in a local optimum
— Not complete
* Might not find a solution even if one exists

18

DFS for CSPs

AN
(Vo) (R
@‘.@

* Variable assighments are commutative}, i.e.,

[WA=R then NT=G] same as [NT=G then WA=R]

* What happens if we do DFS with the order of
assignments as B tried first, then G, then R?

® Generate-and-test strategy: Generate candidate
solution, then test if it satisfies all the constraints
® This makes DFS look very stupid!

®* Example:
http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

Standard Tree Search Formulation

States are defined by all the values assigned so far

* Initial state: the empty assignment {}

* Successor function: assign a value to an unassigned
variable

* Goal test: the current assignment is complete and
consistent, i.e., all variables assigned a value and all
constraints satisfied

* Goal: Find any solution, so cost is not important

. Eve%solution appears at depth n with n variables
use depth-first search

19

20

[=]| Auton's Graphics [=]
The DEPTH FIRST SEARCH algorithm on a 3-color
graph-coloring problem with 9 nodes,

Tries BLUE then RED then BLACK.

Depth first search iterates over all possible colorings
until it finds one with no constraints, It's frustrating
to watch it fill in the values the first time and go

to full depth of 9 in the search tree without checking
for constraint violations along the way!

It takes 6109 steps until it succeeds, X
We don't show the whole thing,

See Constraint Satisfaction Lecture notes at
https/Aww, cs,cmu,edu/”aun/tutorials/constraint html

fAndrew), Moore
http:/ Awww, cs,cmu, edu/”aun

21

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

Improved DFS:
Backtracking w/ Consistency Checking

* Don’t generate a successor that creates an
inconsistency with any existing assignment, i.e.,
perform consistency checking when node is generated

* Successor function assigns a value to an unassigned
variable that does not conflict with all current
assighments

— Deadend if no legal assignments (i.e., no successors)

* Backtracking (DFS) search is the basic uninformed
algorithm for CSPs

* Can solve n-Queens for n = 25

Backtracking w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do
Pick a variable (randomly or with a heuristic)

if it has a value that does not violate any
constraints

then Assign that value
else

Go back to previous variable and assign it
another value

22

Backtracking Example

S

26

-
Australia Constraint Graph
D—@
oS
0!
27 ®

Backtracking Example

R

A

o 6o &

28

Backtracking Example

R

T
o &

/\

v &

Backtracking Example

R

— 1 —
oSl SSR oS
—
e f
— T~

<r o

29

30

Backtracking Search

* Depth-first search algorithm
— Goes down one variable at a time

— At a deadend, backs up to /ast variable whose value
can be changed without violating any constraints,

and changes it

— If you back up to the root and have tried all values,

then there is no solution

* Algorithm is complete
— Will find a solution if one exists

— Will expand the entire (finite) search space if

necessary

* Depth-limited search with depth limit=n

31

I:Il Auton’s Graphics

The BACKTRACKING algorithm on a 3-color
graph-coloring problem with 9 nodes,

Tries BLUE then RED then BLACK,

This prunes parts of the depth first search

as soon as it notices a violation, Beats the

heck out of DFS, though it still backtracks

a little bit,

It takes 15 steps until it succeeds, X

See Constraint Satisfaction Lecture notes at
http:/Zuww, cs,cmu, edu/~aun/tutorials/constraint htnl

Andrew U, Moore
http:/www, cs,cmu, edu/~aun

32

a Auton's Graphics

The BACKTRACKING algorithm on a 3-color
graph-coloring problem with 27 nodes,

Tries BLUE then RED then BLACK,

This prunes parts of the depth first search
as soon as it notices a violation, But notice
how early decisions mean that no matter what
it tries, for a long time nothing will work
up in the top left node.

It takes B5448 steps until it succeeds, X

See Constraint Satisfaction Lecture notes at
https/Aww, cs,cmu,edu/”aun/tutorials/constraint html

Andrew U, Moore
https/ Aw, cs,cmu, edu/”aum

Top-left
node is
hard to
label!

Improving Backtracking Efficiency

* Heuristics can give huge gains in speed

— Which variable should be assigned next?
— In what order should its values be tried?

— Can we detect inevitable failure early?

33

34

Which Variable Next?

Most-Constrained Variable

Most-constrained variable

— Choose the variable with the fewest number of

consistent values

ESEN ST She oS

Called the minimum remaining values (MRV)

heuristic
Minimize branching factor
Try to cut off search ASAP

35

Which Variable Next?

variables
Most-constraining variable

on the remaining variables
Called the degree heuristic
Try to cut off search ASAP

Most-Constraining Variable
Tie-breaker among most-constrained

— Choose the variable with the most constraints

Samt. ~and Shat -

36

Example: 8-Queens

W
W
W
W

W

W
W

After Q1=3 and
Q2=6, most-
constrained var is
Q3 because only 3
possible
remaining vals

Then find least-
constraining val
for Q3. Q3=2 will
rule out 8 more
vals for remaining
vars. Q3=4 will
rule out 9 more
vals for remaining
vars. Q3=8 will
rule out 6 more
vals for remaining
vars. So pick
Q3=8.

39

Which Value Next?
Least-Constraining Value

* Given a variable, choose the least-constraining
value

— Pick the value that rules out the fewest values in

the remaining variables
— Try to pick values best first

‘ l}g Allows 1 value for SA

:\ ‘ :\ ‘]:\ <‘ % Allows 0 values for SA

* Combining these heuristics makes 1000-Queens
feasible

37

Local Search

Min-Conflicts Algorithm:

Assign to each variable a random value, defining

the initial state

while state not consistent do
Pick a variable, var, that has constraint(s)
violated
Find value, v, for var that minimizes the total
number of violated constraints (over all
variables)
var=v

44

Improved DFS:
Backtracking w/ Consistency Checking

* Don’t generate a successor that creates an
inconsistency with any existing assignment, i.e.,
perform consistency checking when node is generated

* Successor function assigns a value to an unassigned
variable that does not conflict with all current
assighments

— “backward checking”
— Deadend if no legal assignments (i.e., no successors)

45

Forward Checking Algorithm

— Keep track of remaining legal values for all
variables

— Deadend when any variable has no legal values

S

WA NT Q NSW v sA T
(MrEErE(ErE (R EEPE(EOE[B]

48

Forward Checking Algorithm

TN
‘@“e
@“@
* Initially, for each variable, record the set of all possible
legal values for it
* When you assign a value to a variable in the search,
update the set of legal values for all unassigned

variables. Backtrack immediately if you empty a
variable’s set of possible values.

46

Example: Map-Coloring

Northern
Territory

Western
Australia

Queensland

South
Australia
New South Wales

Tasmania

* Variables: WA, NT, Q, NSW, V, SA, T
* Domains: D; = {red,green,blue}
* Constraints: adjacent regions must have different colors

e.g., WA # NT, or (WA,NT) in {(red,green), (red,blue),
(green,red), (green,blue), (blue,red), (blue,green)}

49

10

Constraint Graph

* Binary CSP: each constraint relates two variables

* Constraint graph: nodes are variables, arcs are
constraints

@1 S

©
o

O

@

50
Forward Checking
— Keep track of remaining legal values for all
unassigned variables
— Deadend when any variable has no legal values
Lb"_";:—_’“_% Note: Qis not
most constrained
variable
WA NT Q NSW v SA T
(ErEErEErEErEErE RO E |
(m| "EfprE/ErE/EoE] DE[EoE]|
1 B[e m[ErE] E[EE]

52

Forward Checking

— Keep track of remaining legal values for all
unassigned variables

— Deadend when any variable has no legal values

Note: WAis notthe
_" most constraining var

WA NT Q NSW v sA T
(HErEErEErEErE B E R E |
[(m] PEmrEErE[ErE] PE[ErE]

51

Forward Checking

— Keep track of remaining legal values for all
unassigned variables

— Deadend when any variable has no legal values

SR SSEA GBS~

WA NT Q NSW \' SA T
(MeEErEErE[E e E[E e[E[E N]
[— E[ae E[meE] I
]

Note: Vis
not most
constrained
variable

53

11

I:Il Auton’'s Graphics =

The FORWARD CHECKING algorithm on a 3-color
graph-coloring problem with 27 nodes,

Tries BLUE then RED then BLACK.

Little dots denote the availability lists
for the nodes.

Notice that unlike backtracking search, Forward
Checking realizes as soon as it tries setting

the node at (rowsbottom+l,col=rightmost-1) to
Black that it's not going to be able to x
satisfy the top-left node,

See Constraint Satisfaction Lecture notes at
http:/www, cs,cmu, edu/~aun/tutorials/constraint htnl

Andrew U, Moore
http:/wwn,cs,cmu, edu/~aum

Constraint Propagation

* Forward checking propagates information from
assigned to unassigned variables, but doesn't provide
early detection for all failures:

S SSE 5=

¢ NT and SA cannot both be blue!

* Constraint propagation repeatedly (recursively)
enforces constraints for all variables

54

Constraint Propagation

Main idea: When you delete a value from a variable’s
domain, check all variables connected to it. If any of
them change, delete all inconsistent values connected
to them, etc.

Note: In the above example, nothing changes

56

55
Arc Consistency
* Simplest form of propagation makes each arc (i.e.,
each binary constraint) consistent
* X >Yis consistent if
for every value x at var X there is some allowed y,
i.e., there is at least 1 value of Y that is consistent
with x at X
X=SA
WA NT Q NSW \' SA T Y= NSW
|| [| |l EjEETEm | 1L N |
57

12

Arc Consistency

» Simplest form of propagation makes each arc
consistent

* X 2Yis consistent if

for every value x at X there is some allowed y;
if not, delete x

SSE SSE &~ :

WA NT Q NSW v SA T Y=SA

Arc Consistency

* Simplest form of propagation makes each arc
consistent

* X 2>Yis consistent if
for every value x at X there is some allowed y; if not,

delete x
X=V
WA NT Q NSW v SA T Y= NSW

(]| wmfoewe xxiE] s[wmsw]

~—

* If X loses a value, all neighbors of X must be rechecked

58

Arc Consistency

* Simplest form of propagation makes each arc consistent
* X >Yis consistent if
for every value x at X there is some allowed y; if not, delete x

SSEA SIS

* If Xloses a value, all neighbors of X must be rechecked
* Arc consistency detects failure earlier than forward checking
* Use as a preprocessor and after each assignment during search

60

o Auton’s Graphics | =
The CONSTRAINT PROPAGATION algorithm on a 3-color
graph-coloring problem with 27 nodes.
Tries BLUE then RED then BLACK,
Little dots denote the availability lists
for the nodes,
Row 6, col 4
Notice that unlike forward checking search, Constraint
Propagation realizes very early on {on its third step) nOde must rot
that (row=bottom+1,col=rightmost-1) nust not bc%ack be red because
and so (row=bottom,col=4) must not be red, It do
better than forward checking and MUCH better tha n_Ode to Upper
backtracking! rlght (rOW 5,
See Constraint Satisfaction Lecture notes at COI 5) must not
http:/ www, cs,cmu,edu/~aun/tutorials/constraint html be bIaCk
fAndrew U, Moore
http:/Awww, cs,cnu, edus™ aum

13

Arc Consistency Algorithm “AC-3”

function AC-3(csp) // returns false if inconsistency is found and
true otherwise
// input: csp, a binary CSP with components (X, D, C)
// local variables: queue, a queue of arcs; initially all arcs in csp
while queue not empty do {
(Xi, X;) = Remove-First(queue); /] check if X; = X;consistent
if Revise(csp, X, X;) then { // make arc consistent
if size of D; = 0 then return false
foreach Xy in X;.Neighbors —{ X;}do // propagate changes
to neighbors
add (Xk, X;i) to queue
}
}

return true

64

Constraint Propagation

* In this example, constraint propagation solves the problem
without search ... But not always that lucky!

» Constraint propagation can be done as a preprocessing step

* And it can be performed during search

— Note: when you backtrack, you must undo some of your
additional constraints

Arc Consistency Algorithm “AC-3”

function Revise(csp, X;, X;) // returns true if we revise the
domain of X;
revised = false;
foreach xin D; do { // check if X; = X;consistent
if no value y in D; allows (x, y) to satisfy the constraints
between X;and X; then {
delete x from D; ;
revised = true;
}
}

return revised

65

Combining Search with CSP

* |dea: Interleave search and CSP inference

* Perform DFS

— At each node assign a selected value to a selected
variable

— Run CSP to reduce variables’ domains and check if

any inconsistencies arise as a result of this
assighment

66

67

14

Combining Backtracking Search with CSP:
MAC Algorithm

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution or failure
if assignment is complete then return assignment;
var = SELECT-UNASSIGNED-VARIABLE(csp);
foreach va/ue in ORDER-DOMAIN-VALUES(var, assignment, csp) do {
if valueis consistent with assignment then {
add {var = value} to assignment;
inferences = AC-3(csp, var, value);
if inferences |= failure then {
add /nferences to assignment;
result = BACKTRACK(assignment, csp);
if result = failure then return result; }
b

remove {var = value} and inferences from assignment;

return /Gilure

68

Summary

CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

Backtracking = depth-first search with one variable
assigned per node plus consistency checking

Variable ordering and value selection heuristics help
significantly

Forward checking prevents assignments that guarantee
later failure

Constraint propagation (e.g., arc consistency) does
additional work to constrain values and detect
inconsistencies earlier

88

15

