
1

Constraint Satisfaction Problems

Chapter 6.1 – 6.4

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury

1

Constraint Satisfaction Problems (CSPs)
• Standard search problem:
– state is a "black box“ – any data structure that

supports successor function, heuristic function, and
goal test

• CSP:
– state is defined by variables Xi with values from

domain Di

– goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

– Use a variable-based model
• Solution is not a path but an assignment of values

for a set of variables that satisfy all constraints

2

Example: 8-Queens

3

Example: Cryptarithmetic

• Variables: F, T, U, W, R, O, X1, X2 , X3

• Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints: Alldiff (F, T, U, W, R, O)

– O + O = R + 10 · X1

– X1 + W + W = U + 10 · X2

– X2 + T + T = O + 10 · X3

– X3 = F, T ≠ 0, F ≠ 0

5

2

Example:
Movie
Seating

6

Example: Graph Coloring

• Each circle marked V1 .. V6 must be assigned R, G or B

• No two adjacent circles may be assigned the same color

• Note: 2 variables have already been assigned a color in
this example

V3

V6

V2

R

G

V1
V5

V4

7

Other Applications of CSPs
• Assignment problems

– e.g., who teaches what class
• Timetable problems

– e.g., which class is offered when and where?
• Scheduling problems
• VLSI or PCB layout problems
• Boolean satisfiability
• N-Queens
• Graph coloring
• Games: Minesweeper, Magic Squares, Sudoku, Crosswords
• Line-drawing labeling

Note: many problems require real-valued variables

8

Example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di = {red,green,blue}
• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue),
(green,red), (green,blue), (blue,red), (blue,green)}

Note: In
general, 4 colors
are necessary

9

3

Example: Map-Coloring

Solutions are complete (i.e., all variables are assigned
values) and consistent (i.e., does not violate any
constraints) assignments, e.g., WA = red, NT = green, Q
= red, NSW = green, V = red, SA = blue, T = green

10

Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are
constraints

11

Varieties of CSPs
• Discrete variables

– finite domains:
• n variables, domain size d àO(dn) complete assignments
• e.g., Boolean CSPs, Boolean satisfiability

– infinite domains:
• integers, strings, etc.
• e.g., job scheduling, variables are start/end times for each job

• Continuous variables
– e.g., start/end times for Hubble Space Telescope

observations

12

Kinds of Constraints

• Unary constraints involve a single variable
– e.g., SA ≠ green

• Binary constraints involve pairs of variables
– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables
– e.g., cryptarithmetic column constraints

13

4

Local Search for CSPs

• Hill-climbing, simulated annealing, genetic algorithms
typically work with "complete" states, i.e., all
variables have values at every step

• To apply to CSPs:
– allow states with some unsatisfied constraints
– operators assign a value to a variable

• Variable selection: randomly select any conflicted
variable

• Value selection by min-conflicts heuristic:
– choose value that violates the fewest constraints,

i.e., hill-climb by minimizing f(n) = total number of
violated constraints

14

Local Search
Min-Conflicts Algorithm:

0. Assign to each variable a random value,
defining the initial state

1. while state not consistent do
2.1 Pick a variable, var, that has constraint(s)
violated
2.2 Find value, v, for var that minimizes the
total number of violated constraints (over all
variables)
2.3 var = v

15

Example: 4-Queens
• States: 4 queens in 4 columns (44 = 256 states)
• Actions: move queen to new row in its column
• Goal test: no attacks
• Evaluation function: f(n) = total number of attacks

f = 5 f = 2 f = 0

16

Min-Conflicts Algorithm

17

5

Min-Conflicts Algorithm
• Advantages

– Simple and Fast: Given random initial state, can solve n-
Queens in almost constant time for arbitrary n with high
probability (e.g., n = 1,000,000 can be solved on average in
about 50 steps!)

• Disadvantages
– Only searches states that are reachable from the initial

state
• Might not search entire state space

– Does not allow worse moves (but can move to a neighbor
with the same cost)
• Might get stuck in a local optimum

– Not complete
• Might not find a solution even if one exists

18

Standard Tree Search Formulation

States are defined by all the values assigned so far

• Initial state: the empty assignment { }
• Successor function: assign a value to an unassigned

variable
• Goal test: the current assignment is complete and

consistent, i.e., all variables assigned a value and all
constraints satisfied

• Goal: Find any solution, so cost is not important
• Every solution appears at depth n with n variables

à use depth-first search

19

DFS for CSPs

• Variable assignments are commutative}, i.e.,
[WA=R then NT=G] same as [NT=G then WA=R]

• What happens if we do DFS with the order of
assignments as B tried first, then G, then R?

• Generate-and-test strategy: Generate candidate
solution, then test if it satisfies all the constraints

• This makes DFS look very stupid!
• Example:

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

V3

V6

V2

R
G

V1
V5

V4

20 21

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html

6

Improved DFS:
Backtracking w/ Consistency Checking
• Don’t generate a successor that creates an

inconsistency with any existing assignment, i.e.,
perform consistency checking when node is generated

• Successor function assigns a value to an unassigned
variable that does not conflict with all current
assignments
– Deadend if no legal assignments (i.e., no successors)

• Backtracking (DFS) search is the basic uninformed
algorithm for CSPs

• Can solve n-Queens for n ≈ 25

22

Backtracking w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do

Pick a variable (randomly or with a heuristic)
if it has a value that does not violate any
constraints

then Assign that value
else

Go back to previous variable and assign it
another value

23

Backtracking Example

26

Australia Constraint Graph

27

7

Backtracking Example

28

Backtracking Example

29

Backtracking Example

30

Backtracking Search
• Depth-first search algorithm
– Goes down one variable at a time
– At a deadend, backs up to last variable whose value

can be changed without violating any constraints,
and changes it

– If you back up to the root and have tried all values,
then there is no solution

• Algorithm is complete
– Will find a solution if one exists
– Will expand the entire (finite) search space if

necessary
• Depth-limited search with depth limit = n

31

8

32

Top-left
node is
hard to
label!

33

Improving Backtracking Efficiency

• Heuristics can give huge gains in speed
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?

34

Which Variable Next?
Most-Constrained Variable

• Most-constrained variable
– Choose the variable with the fewest number of

consistent values

• Called the minimum remaining values (MRV)
heuristic

• Minimize branching factor
• Try to cut off search ASAP

35

9

Which Variable Next?
Most-Constraining Variable

• Tie-breaker among most-constrained
variables

• Most-constraining variable
– Choose the variable with the most constraints

on the remaining variables
• Called the degree heuristic
• Try to cut off search ASAP

36

• Given a variable, choose the least-constraining
value
– Pick the value that rules out the fewest values in

the remaining variables
– Try to pick values best first

• Combining these heuristics makes 1000-Queens
feasible

Which Value Next?
Least-Constraining Value

37

Example: 8-Queens
After Q1=3 and
Q2=6, most-
constrained var is
Q3 because only 3
possible
remaining vals

Then find least-
constraining val
for Q3. Q3=2 will
rule out 8 more
vals for remaining
vars. Q3=4 will
rule out 9 more
vals for remaining
vars. Q3=8 will
rule out 6 more
vals for remaining
vars. So pick
Q3=8.

39

Local Search
Min-Conflicts Algorithm:

Assign to each variable a random value, defining
the initial state
while state not consistent do

Pick a variable, var, that has constraint(s)
violated
Find value, v, for var that minimizes the total
number of violated constraints (over all
variables)
var = v

44

10

Improved DFS:
Backtracking w/ Consistency Checking
• Don’t generate a successor that creates an

inconsistency with any existing assignment, i.e.,
perform consistency checking when node is generated

• Successor function assigns a value to an unassigned
variable that does not conflict with all current
assignments
– “backward checking”
– Deadend if no legal assignments (i.e., no successors)

45

Forward Checking Algorithm

• Initially, for each variable, record the set of all possible
legal values for it

• When you assign a value to a variable in the search,
update the set of legal values for all unassigned
variables. Backtrack immediately if you empty a
variable’s set of possible values.

V3

V6

V2

R
G

V1
V5

V4

46

Forward Checking Algorithm

– Keep track of remaining legal values for all
variables

– Deadend when any variable has no legal values

48

Example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: Di = {red,green,blue}
• Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue),
(green,red), (green,blue), (blue,red), (blue,green)}

49

11

Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are
constraints

50

– Keep track of remaining legal values for all
unassigned variables

– Deadend when any variable has no legal values

Forward Checking

Note: WA is not the
most constraining var

51

Forward Checking

– Keep track of remaining legal values for all
unassigned variables

– Deadend when any variable has no legal values

Note: Q is not
most constrained
variable

52

Forward Checking

– Keep track of remaining legal values for all
unassigned variables

– Deadend when any variable has no legal values

Note: V is
not most
constrained
variable

53

12

54

Constraint Propagation
• Forward checking propagates information from

assigned to unassigned variables, but doesn't provide
early detection for all failures:

• NT and SA cannot both be blue!
• Constraint propagation repeatedly (recursively)

enforces constraints for all variables

55

Constraint Propagation

Main idea: When you delete a value from a variable’s
domain, check all variables connected to it. If any of
them change, delete all inconsistent values connected
to them, etc.
Note: In the above example, nothing changes

V3

V6

V2

R
G

V1
V5

V4

56

Arc Consistency

• Simplest form of propagation makes each arc (i.e.,
each binary constraint) consistent

• X àY is consistent if
for every value x at var X there is some allowed y,

i.e., there is at least 1 value of Y that is consistent
with x at X

X = SA
Y = NSW

57

13

Arc Consistency

• Simplest form of propagation makes each arc
consistent

• X àY is consistent if
for every value x at X there is some allowed y;

if not, delete x

X = NSW
Y = SA

58

Arc Consistency
• Simplest form of propagation makes each arc

consistent
• X àY is consistent if

for every value x at X there is some allowed y; if not,
delete x

• If X loses a value, all neighbors of X must be rechecked

X = V
Y = NSW

59

Arc Consistency
• Simplest form of propagation makes each arc consistent
• X àY is consistent if

for every value x at X there is some allowed y; if not, delete x

• If X loses a value, all neighbors of X must be rechecked
• Arc consistency detects failure earlier than forward checking
• Use as a preprocessor and after each assignment during search

X = SA
Y = NT

60

Row 6, col 4
node must not
be red because
node to upper-
right (row 5,
col 5) must not
be black

62

14

Arc Consistency Algorithm “AC-3”
function AC-3(csp) // returns false if inconsistency is found and

true otherwise
// input: csp, a binary CSP with components (X, D, C)
// local variables: queue, a queue of arcs; initially all arcs in csp
while queue not empty do {

(Xi , Xj) = Remove-First(queue);
if Revise(csp, Xi , Xj) then { // make arc consistent

if size of Di = 0 then return false
foreach Xk in Xi.Neighbors – { Xj } do // propagate changes

to neighbors
add (Xk , Xi) to queue

}
}
return true

// check if Xi è Xj consistent

64

Arc Consistency Algorithm “AC-3”

function Revise(csp, Xi , Xj) // returns true if we revise the
domain of Xi

revised = false;
foreach x in Di do {

if no value y in Dj allows (x, y) to satisfy the constraints
between Xi and Xj then {
delete x from Di ;
revised = true;

}
}
return revised

// check if Xi è Xj consistent

65

Constraint Propagation

• In this example, constraint propagation solves the problem
without search … But not always that lucky!

• Constraint propagation can be done as a preprocessing step

• And it can be performed during search

– Note: when you backtrack, you must undo some of your
additional constraints

V3

V6

V2

R
G

V1
V5

V4

66

Combining Search with CSP

• Idea: Interleave search and CSP inference

• Perform DFS
– At each node assign a selected value to a selected

variable
– Run CSP to reduce variables’ domains and check if

any inconsistencies arise as a result of this
assignment

67

15

Combining Backtracking Search with CSP:
MAC Algorithm

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution or failure
if assignment is complete then return assignment;
var = SELECT-UNASSIGNED-VARIABLE(csp);
foreach value in ORDER-DOMAIN-VALUES(var, assignment, csp) do {
if value is consistent with assignment then {

add {var = value} to assignment;
inferences = AC-3(csp, var, value);
if inferences != failure then {
add inferences to assignment;
result = BACKTRACK(assignment, csp);
if result != failure then return result; }

}
remove {var = value} and inferences from assignment;

}
return failure

68

Summary
• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable
assigned per node plus consistency checking

• Variable ordering and value selection heuristics help
significantly

• Forward checking prevents assignments that guarantee
later failure

• Constraint propagation (e.g., arc consistency) does
additional work to constrain values and detect
inconsistencies earlier

88

