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Constraint Satisfaction Problems

Chapter 6.1 – 6.4

Derived from slides by S. Russell and P. Norvig, A. Moore, and R. Khoury
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Constraint Satisfaction Problems (CSPs)
• Standard search problem:
– state is a "black box“ – any data structure that 

supports successor function, heuristic function, and 
goal test

• CSP:
– state is defined by variables Xi with values from 

domain Di

– goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

– Use a variable-based model
• Solution is not a path but an assignment of values 

for a set of variables that satisfy all constraints
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Example:  8-Queens

3

Example:  Cryptarithmetic

• Variables: F, T, U, W, R, O, X1, X2 , X3

• Domains:  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Constraints:  Alldiff (F, T, U, W, R, O)

– O + O = R + 10 · X1

– X1 + W + W = U + 10 · X2

– X2 + T + T = O + 10 · X3

– X3 = F, T ≠ 0, F ≠ 0
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Example:
Movie 
Seating
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Example:  Graph Coloring

• Each circle marked V1 .. V6 must be assigned R, G or B

• No two adjacent circles may be assigned the same color

• Note:  2 variables have already been assigned a color in 
this example
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Other Applications of CSPs
• Assignment problems

– e.g., who teaches what class
• Timetable problems

– e.g., which class is offered when and where?
• Scheduling problems
• VLSI or PCB layout problems
• Boolean satisfiability
• N-Queens
• Graph coloring
• Games:  Minesweeper, Magic Squares, Sudoku, Crosswords
• Line-drawing labeling

Note: many problems require real-valued variables
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Example:  Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains:  Di = {red,green,blue}
• Constraints:  adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), 
(green,red), (green,blue), (blue,red), (blue,green)}

Note:  In 
general, 4 colors 
are necessary
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Example:  Map-Coloring

Solutions are complete (i.e., all variables are assigned 
values) and consistent (i.e., does not violate any 
constraints) assignments, e.g., WA = red, NT = green, Q 
= red, NSW = green, V = red, SA = blue, T = green
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Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are 
constraints
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Varieties of CSPs
• Discrete variables

– finite domains:
• n variables, domain size d àO(dn) complete assignments
• e.g., Boolean CSPs, Boolean satisfiability

– infinite domains:
• integers, strings, etc.
• e.g., job scheduling, variables are start/end times for each job

• Continuous variables
– e.g., start/end times for Hubble Space Telescope 

observations
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Kinds of Constraints

• Unary constraints involve a single variable 
– e.g., SA ≠ green

• Binary constraints involve pairs of variables
– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more variables
– e.g., cryptarithmetic column  constraints
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Local Search for CSPs

• Hill-climbing, simulated annealing, genetic algorithms 
typically work with "complete" states, i.e., all
variables have values at every step

• To apply to CSPs:
– allow states with some unsatisfied constraints
– operators assign a value to a variable

• Variable selection:  randomly select any conflicted 
variable

• Value selection by min-conflicts heuristic:
– choose value that violates the fewest constraints, 

i.e., hill-climb by minimizing f(n) = total number of 
violated constraints
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Local Search
Min-Conflicts Algorithm:

0.  Assign to each variable a random value, 
defining the initial state

1. while state not consistent do
2.1  Pick a variable, var, that has constraint(s) 
violated
2.2  Find value, v, for var that minimizes the 
total number of violated constraints (over all 
variables)
2.3  var = v
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Example:  4-Queens
• States:  4 queens in 4 columns (44 = 256 states)
• Actions:  move queen to new row in its column
• Goal test:  no attacks
• Evaluation function:  f(n) = total number of attacks

f = 5 f = 2 f = 0
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Min-Conflicts Algorithm

17
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Min-Conflicts Algorithm
• Advantages

– Simple and Fast:  Given random initial state, can solve n-
Queens in almost constant time for arbitrary n with high 
probability (e.g., n = 1,000,000 can be solved on average in 
about 50 steps!)

• Disadvantages
– Only searches states that are reachable from the initial 

state
• Might not search entire state space

– Does not allow worse moves (but can move to a neighbor
with the same cost)
• Might get stuck in a local optimum

– Not complete 
• Might not find a solution even if one exists
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Standard Tree Search Formulation

States are defined by all the values assigned so far

• Initial state:  the empty assignment { }
• Successor function: assign a value to an unassigned 

variable
• Goal test:  the current assignment is complete and 

consistent, i.e.,  all variables assigned a value and all 
constraints satisfied

• Goal:  Find any solution, so cost is not important
• Every solution appears at depth n with n variables

à use depth-first search
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DFS for CSPs

• Variable assignments are commutative}, i.e.,
[ WA=R then NT=G ] same as [ NT=G then WA=R ]

• What happens if we do DFS with the order of 
assignments as B tried first, then G, then R?

• Generate-and-test strategy: Generate candidate 
solution, then test if it satisfies all the constraints

• This makes DFS look very stupid!
• Example: 

http://www.cs.cmu.edu/~awm/animations/constraint/9d.html
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http://www.cs.cmu.edu/~awm/animations/constraint/9d.html
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Improved DFS:
Backtracking w/ Consistency Checking
• Don’t generate a successor that creates an 

inconsistency with any existing assignment, i.e., 
perform consistency checking when node is generated

• Successor function assigns a value to an unassigned 
variable that does not conflict with all current 
assignments
– Deadend if no legal assignments (i.e., no successors)

• Backtracking (DFS) search is the basic uninformed 
algorithm for CSPs

• Can solve n-Queens for n ≈ 25
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Backtracking w/ Consistency Checking

Start with empty state
while not all vars in state assigned a value do

Pick a variable (randomly or with a heuristic)
if it has a value that does not violate any 
constraints

then Assign that value
else

Go back to previous variable and assign it 
another value
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Backtracking Example
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Australia Constraint Graph

27
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Backtracking Example
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Backtracking Example
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Backtracking Example
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Backtracking Search
• Depth-first search algorithm
– Goes down one variable at a time
– At a deadend, backs up to last variable whose value 

can be changed without violating any constraints, 
and changes it 

– If you back up to the root and have tried all values, 
then there is no solution 

• Algorithm is complete
– Will find a solution if one exists
– Will expand the entire (finite) search space if 

necessary
• Depth-limited search with depth limit = n

31
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Top-left 
node is 
hard to 
label!
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Improving Backtracking Efficiency

• Heuristics can give huge gains in speed
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?
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Which Variable Next?
Most-Constrained Variable

• Most-constrained variable
– Choose the variable with the fewest number of 

consistent values

• Called the minimum remaining values (MRV)
heuristic

• Minimize branching factor
• Try to cut off search ASAP
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Which Variable Next?
Most-Constraining Variable

• Tie-breaker among most-constrained 
variables

• Most-constraining variable
– Choose the variable with the most constraints 

on the remaining variables
• Called the degree heuristic
• Try to cut off search ASAP
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• Given a variable, choose the least-constraining
value
– Pick the value that rules out the fewest values in 

the remaining variables
– Try to pick values best first

• Combining these heuristics makes 1000-Queens 
feasible

Which Value Next?
Least-Constraining Value
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Example:  8-Queens
After Q1=3 and 
Q2=6, most-
constrained var is 
Q3 because only 3 
possible 
remaining vals

Then find least-
constraining val
for Q3.  Q3=2 will 
rule out 8 more 
vals for remaining 
vars.  Q3=4 will 
rule out 9 more 
vals for remaining 
vars.  Q3=8 will 
rule out 6 more 
vals for remaining 
vars.  So pick 
Q3=8.  
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Local Search
Min-Conflicts Algorithm:

Assign to each variable a random value, defining 
the initial state
while state not consistent do

Pick a variable, var, that has constraint(s) 
violated
Find value, v, for var that minimizes the total
number of violated constraints (over all 
variables)
var = v

44
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Improved DFS:
Backtracking w/ Consistency Checking
• Don’t generate a successor that creates an 

inconsistency with any existing assignment, i.e., 
perform consistency checking when node is generated

• Successor function assigns a value to an unassigned 
variable that does not conflict with all current 
assignments
– “backward checking”
– Deadend if no legal assignments (i.e., no successors)
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Forward Checking Algorithm

• Initially, for each variable, record the set of all possible 
legal values for it

• When you assign a value to a variable in the search, 
update the set of legal values for all unassigned 
variables.  Backtrack immediately if you empty a 
variable’s set of possible values.
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Forward Checking Algorithm

– Keep track of remaining legal values for all 
variables

– Deadend when any variable has no legal values
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Example:  Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains:  Di = {red,green,blue}
• Constraints:  adjacent regions must have different colors

e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), 
(green,red), (green,blue), (blue,red), (blue,green)}

49
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Constraint Graph

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, arcs are 
constraints
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– Keep track of remaining legal values for all 
unassigned variables

– Deadend when any variable has no legal values

Forward Checking

Note:  WA is not the 
most constraining var
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Forward Checking

– Keep track of remaining legal values for all 
unassigned variables

– Deadend when any variable has no legal values

Note: Q is not
most constrained 
variable
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Forward Checking

– Keep track of remaining legal values for all 
unassigned variables

– Deadend when any variable has no legal values

Note: V is 
not most 
constrained 
variable

53
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Constraint Propagation
• Forward checking propagates information from 

assigned to unassigned variables, but doesn't provide 
early detection for all failures:

• NT and SA cannot both be blue!
• Constraint propagation repeatedly (recursively) 

enforces constraints for all variables
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Constraint Propagation

Main idea:  When you delete a value from a variable’s 
domain, check all variables connected to it.  If any of 
them change, delete all inconsistent values connected 
to them, etc.
Note:  In the above example, nothing changes
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Arc Consistency

• Simplest form of propagation makes each arc (i.e., 
each binary constraint) consistent

• X àY is consistent if
for every value x at var X there is some allowed y, 

i.e., there is at least 1 value of Y that is consistent 
with x at X

X = SA
Y = NSW

57
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Arc Consistency

• Simplest form of propagation makes each arc 
consistent

• X àY is consistent if
for every value x at X there is some allowed y;  

if not, delete x

X = NSW
Y = SA

58

Arc Consistency
• Simplest form of propagation makes each arc 

consistent
• X àY is consistent if

for every value x at X there is some allowed y;  if not, 
delete x

• If X loses a value, all neighbors of X must be rechecked

X = V
Y = NSW
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Arc Consistency
• Simplest form of propagation makes each arc consistent
• X àY is consistent if

for every value x at X there is some allowed y;  if not, delete x 

• If X loses a value, all neighbors of X must be rechecked
• Arc consistency detects failure earlier than forward checking
• Use as a preprocessor and after each assignment during search

X = SA
Y = NT

60

Row 6, col 4 
node must not
be red because 
node to upper-
right (row 5, 
col 5) must not
be black

62
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Arc Consistency Algorithm  “AC-3”
function AC-3(csp)    // returns false if inconsistency is found and 

true otherwise
//  input:  csp, a binary CSP with components (X, D, C)
//  local variables:  queue, a queue of arcs; initially all arcs in csp
while queue not empty do {

(Xi , Xj ) = Remove-First(queue);
if Revise(csp, Xi , Xj ) then { // make arc consistent

if size of Di = 0 then return false
foreach Xk in Xi.Neighbors – { Xj } do // propagate changes 

to neighbors
add (Xk , Xi ) to queue

}
}
return true

// check if Xi è Xj consistent
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Arc Consistency Algorithm  “AC-3”

function Revise(csp, Xi , Xj )       // returns true if we revise the 
domain of Xi

revised = false;
foreach x in Di do {

if no value y in Dj allows (x, y) to satisfy the constraints 
between Xi and Xj then {
delete x from Di ; 
revised = true;

}
}
return revised

// check if Xi è Xj consistent
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Constraint Propagation

• In this example, constraint propagation solves the problem 
without search … But not always that lucky!

• Constraint propagation can be done as a preprocessing step

• And it can be performed during search

– Note: when you backtrack, you must undo some of your 
additional constraints  
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Combining Search with CSP

• Idea:  Interleave search and CSP inference

• Perform DFS
– At each node assign a selected value to a selected 

variable
– Run CSP to reduce variables’ domains and check if 

any inconsistencies arise as a result of this 
assignment

67
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Combining Backtracking Search with CSP:
MAC Algorithm

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution or failure
if assignment is complete then return assignment;
var = SELECT-UNASSIGNED-VARIABLE(csp);
foreach value in ORDER-DOMAIN-VALUES(var, assignment, csp) do {
if value is consistent with assignment  then {

add {var = value} to assignment;
inferences = AC-3(csp, var, value);
if inferences != failure then {
add inferences to assignment;
result = BACKTRACK(assignment, csp);
if result != failure then return result;  }

}
remove {var = value} and inferences from assignment;

}
return failure
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Summary
• CSPs are a special kind of problem:
– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable 
assigned per node plus consistency checking

• Variable ordering and value selection heuristics help 
significantly

• Forward checking prevents assignments that guarantee 
later failure

• Constraint propagation (e.g., arc consistency) does 
additional work to constrain values and detect 
inconsistencies earlier
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