# Efficient Information Extraction over Evolving Text Data

Fei Chen<sup>1</sup>, AnHai Doan<sup>1</sup>, Jun Yang<sup>2</sup>, Raghu Ramakrishnan<sup>3</sup>

<sup>1</sup>University of Wisconsin-Madison

<sup>2</sup>Duke University

<sup>3</sup>Yahoo! Research

# **Information Extraction (IE)**

# Group Meeting ScheduleJun 21: We'll discuss CIM and IRin room CS 310 at 4pm.Jun 14: Meet in CS 105 at 2pm. Meetings room time CS 310 4pm CS 105 2pm

- Many solutions in database/Web/AI communities with significant progress
- But most solutions have considered only static text corpora

# IE over Evolving Text Data



# **Current Approach and Its Limitations**

• Apply IE to each corpus snapshot in isolation, from scratch

#### • Limitations:

- Inefficient: e.g., IE in DBLife
- Unsuitable for time-sensitive applications: e.g., stock, auction
- Unsuitable for interactive debugging over dynamic text corpora

# **Cyclex: Recycling Extraction**



#### **Group Meeting Schedule**

Jun 21: We'll discuss CIM and IR in room CS 310 at 4pm.

Jun 14: Meet in CS 105 at 2pm.

q

#### Meetings<sub>1</sub>

| room   | time |  |
|--------|------|--|
| CS 105 | 2pm  |  |

#### Meetings<sub>2</sub>

| room   | time |
|--------|------|
| CS 105 | 2pm  |
| CS 310 | 4pm  |

 $\mathbf{v}_1$ 

 $V_3$ 

# **Challenges and Contributions**

- How to guarantee correctness?
  - Model extractors using scope and context
- How to choose a good way to match pages?
  - Cost-based decisions using text specific cost model
- How to efficiently execute the chosen plan given a large amount of disk-resident data?
  - -A way to scan data once

### Why Guaranteeing Correctness Is Hard?

E extracts meetings only if a page has fewer than 4 lines



Meetings<sub>1</sub>

| room   | time |  |
|--------|------|--|
| CS 105 | 2pm  |  |

#### Meetings<sub>2</sub>

| room   | time |
|--------|------|
| CS 105 | 2pm  |
| CS 310 | 4pm  |
|        |      |

# **Extractor Properties: Scope**

- Attribute mentions of an entity often appear in close proximity in data pages.
  - An extractor E has scope α iff any mention produced by E at most spans α characters.

Example: E with scope  $\alpha = 50$ 



# **Extractor Properties: Context**

• Many extractors only examine small "context windows" on both sides of a mention to extract the mention.



• The text outside the context of a mention m is irrelevant for E to extract m.

# **Problem Definition**



#### Match Pages To Find Overlapping Regions

- Consider 3 matchers (more can be added)
  - DN (Doing Nothing): immediately declares no overlapping regions are found
    - 0 runtime and no overlapping regions
  - UD (Unix Diff): a Unix-diff-command like algorithm
    - relatively fast runtime and some overlapping regions
  - ST (Suffix Tree): a novel suffix-tree based algorithm we developed
    - linear in the length of pages runtime and all overlapping regions
- Matchers trade off runtime with result completeness

(See paper for more details)

# **Choose the Optimal Matcher**

- Consider a plan space where plans differ in the matchers they use
- Use a cost model to estimate the completion time of each plan
- Text-specific cost model
  - e.g., change rate of the text corpus, cost of the extractor, size of matching results and IE results, etc.
- Collect statistics over past k snapshots

# Challenge in Efficiently Executing the Chosen Plan



## **Interleave Matching, Extraction and Copy**



#### **Architecture**



# **Experiment Setup**

#### Datasets

| Data Sets               | DBLife | Wikipedia |
|-------------------------|--------|-----------|
| # Data Sources          | 980    | 925       |
| # Snapshots             | 30     | 20        |
| Time between snapshots  | 1 day  | 21 days   |
| Avg # Page per Snapshot | 10155  | 3038      |
| Avg Size per Snapshot   | 180M   | 35M       |

#### • Extractors

|           | DBLife     |             | Wikipedia |       |      |       |
|-----------|------------|-------------|-----------|-------|------|-------|
|           | researcher | affiliation | talk      | actor | play | award |
| Scope α   | 32         | 93          | 400       | 35    | 96   | 250   |
| Context β | 3          | 7           | 10        | 3     | 4    | 10    |

# Benefit of Recycling IE Results



• In all cases except "actor", Cyclex drastically cut runtime of re-extraction from scratch by 50-90%

# Importance of Optimization



• None of the matchers is uniformly optimal.

(See paper for more details)

#### **Conclusion and Future Work**

 Proposed the first approach to speed up IE over evolving text data by recycling past IE results

#### • Defined challenges and provided initial solutions

- Model properties of extractors
- Cost-based decisions in choosing an optimal matcher
- Efficiently interleave matching, extraction, and copying

#### Future work

- Handle multiple extractors
- Handle extractors that extract mentions across multiple pages

#### **Related Work**

#### Much work on IE

- Improve accuracy and efficiency
- Recent work on scalable IE [tutorial in KDD06, SIGMOD06]

#### Evolving text data

- Repair wrappers as page templates change [McCann VLDB05]
- Incrementally update an inverted index [Lim WWW03]
- Exploiting overlapping text data in a document collection to compress indices [Herscovici ECIR07, Zhang WWW07]
- Optimizing IE programs and developing text-centric cost models [Ipeirotis SIGMOD06, Jain ICDE07, Shen VLDB07]