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Information Extraction (1E)
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e Many solutions in database/Web/Al communities with
significant progress

® But most solutions have considered only static text
corpora



1E over Evolving Text Data
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Current Approach and Its Limitations

e Apply IE to each corpus snapshot in isolation, from
scratch

® Limitations:
— Inefficient: e.g., IE in DBLife

— Unsuitable for time-sensitive applications: e.g., stock,
auction

— Unsuitable for interactive debugging over dynamic text
corpora



Cyclex: Recycling Extraction
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Challenges and Contributions

e How to guarantee correctness?

— Model extractors using scope and context

e How to choose a good way to match pages?

— Cost-based decisions using text specific cost model

® How to efficiently execute the chosen plan given a large
amount of disk-resident data?

— A way to scan data once



Why Guaranteeing Correctness Is Hard?

E extracts meetings only if a page has fewer than 4 lines
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Extractor Properties: Scope

e Attribute mentions of an entity often appear in close
proximity in data pages.
— An extractor E has scope a iff any mention produced by E
at most spans a characters.

Example: E with scope a = 50
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Extractor Properties: Context

e Many extractors only examine small “context windows” on both sides
of a mention to extract the mention.

Example: E with context p = 15

Topics
Project Meeting Schedule topic
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CS 310 at 4pm.
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® The text outside the context of a mention m is irrelevant for
E to extract m.




Problem Definition




Match Pages To Find Overlapping Regions

® Consider 3 matchers (more can be added)

— DN (Doing Nothing) : immediately declares no overlapping
regions are found

— 0 runtime and no overlapping regions

— UD (Unix Diff): a Unix-diff-command like algorithm

— relatively fast runtime and some overlapping regions

— ST (Suffix Tree): a novel suffix-tree based algorithm we
developed

— linear in the length of pages runtime and all overlapping regions

e Matchers trade off runtime with result completeness

(See paper for more details) 11



Choose the Optimal Matcher

® Consider a plan space where plans differ in the matchers
they use

® Use a cost model to estimate the completion time of each
plan

® Text-specific cost model

— e.g., change rate of the text corpus, cost of the extractor,
size of matching results and IE results, etc.

® C(Collect statistics over past k snapshots
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Challenge in Efficiently Executing the

Chosen Plan
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Interleave Matching, Extraction and Copy
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Architecture
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Experiment Setup

* Datasets
Data Sets DBLife Wikipedia
# Data Sources 980 925
# Snapshots 30 20
Time between snapshots 1 day 21 days
Avg # Page per Snapshot 10155 3038
Avg Size per Snapshot 180M 35M
* Extractors
DBLife Wikipedia
researcher | affiliation talk actor play award
Scope a 32 93 400 35 96 250
Context 3 3 7 10 3 4 10
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Benefit of Recycling 1E Results
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e In all cases except “actor”, Cyclex drastically cut
runtime of re-extraction from scratch by 50-90%
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Importance of Optimization
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® None of the matchers is uniformly optimal.

(See paper for more details)
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Conclusion and Future Work

® Proposed the first approach to speed up IE over evolving
text data by recycling past IE results

® Defined challenges and provided initial solutions
— Model properties of extractors
— Cost-based decisions in choosing an optimal matcher
— Efficiently interleave matching, extraction, and copying

® Future work
— Handle multiple extractors
— Handle extractors that extract mentions across multiple

pages o



Related Work

® Much work on 1E
— Improve accuracy and efficiency
— Recent work on scalable IE [tutorial in KDD06, SIGMODO06]

e Evolving text data
— Repair wrappers as page templates change [McCann VLDBO0S5]
— Incrementally update an inverted index [Lim WWWO03]

e Exploiting overlapping text data in a document collection
to compress indices [Herscovici ECIR07, Zhang WWWO07]

e Optimizing IE programs and developing text-centric cost
models [Ipeirotis SIGMODO06, Jain ICDEO7, Shen VLDBO07]
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