Efficient Information Extraction over
Evolving Text Data

Fei Chen!, AnHai Doan!, Jun Yang?, Raghu Ramakrishnan?

'University of Wisconsin-Madison
’Duke University

3Yahoo! Research

Information Extraction (1E)

Group Meeting Schedule Meetings

Jun 21: We’ll discuss CIM and IR extractor LAV time

in room CS 310 at 4pm. 1 CS310 4pm

Jun 14: Meet in CS 105 at 2pm. CS 105 2pm
Y [

e Many solutions in database/Web/Al communities with
significant progress

® But most solutions have considered only static text
corpora

1E over Evolving Text Data

Group Meeting Schedule
Jun 14: Meet in CS 105 at 2pm.

|

| Group Meeting Schedule _

time O |Jun 21: We’ll discuss CIM and IR
in room CS 310 at 4pm.

Jun 14: Meet in CS 105 at 2pm.

time 1

Group Meeting Schedule

Jun 28: No meeting this week.

Jun 21: We’ll discuss CIM and IR
in room CS 310 at 4pm.

Jun 14: Meet in CS 105 at 2pm.7

time 2

Current Approach and Its Limitations

e Apply IE to each corpus snapshot in isolation, from
scratch

® Limitations:
— Inefficient: e.g., IE in DBLife

— Unsuitable for time-sensitive applications: e.g., stock,
auction

— Unsuitable for interactive debugging over dynamic text
corpora

Cyclex: Recycling Extraction

Group Meeting Schedule

7

p

Meetings,

CS 105 2pm

bu,

Group Meeting Schedule
Jun 21: We’ll discuss CIM and IR

in room CS 310 at 4pm.

Jun 14: Meet in CS 105 at 2pm.
7

Meetinisi

CS 105

q

2pm

CS 310

4pm

Challenges and Contributions

e How to guarantee correctness?

— Model extractors using scope and context

e How to choose a good way to match pages?

— Cost-based decisions using text specific cost model

® How to efficiently execute the chosen plan given a large
amount of disk-resident data?

— A way to scan data once

Why Guaranteeing Correctness Is Hard?

E extracts meetings only if a page has fewer than 4 lines

Group Meeting Schedule Group Meeting Schedule }VI

_ fu, | Jun21: We’ll discuss CIM and IR }V
3

in room CS 310 at 4pm.

= =

p q

Meetings,

CS 105 2pm

Extractor Properties: Scope

e Attribute mentions of an entity often appear in close
proximity in data pages.
— An extractor E has scope a iff any mention produced by E
at most spans a characters.

Example: E with scope a = 50

Group Meeting Schedule Meetings

Jun 21: We’ll discuss CIM and IR E room time

in room CS 310 at 4pm. > CS310 4pm

Jun 14: Meet in CS 105 at 2pm. CS 105 2pm
- J

[~
q o
\< 50 characters |

room mentions time mentions

Extractor Properties: Context

e Many extractors only examine small “context windows” on both sides
of a mention to extract the mention.

Example: E with context p = 15

Topics
Project Meeting Schedule topic
Jun 21: We’ll discuss CIM and IR in room B > CIM

CS 310 at 4pm.

H_/
IR
Jun 14: Meet in CS 105 at 2pm.
q < 15 characters

® The text outside the context of a mention m is irrelevant for
E to extract m.

Problem Definition

Match Pages To Find Overlapping Regions

® Consider 3 matchers (more can be added)

— DN (Doing Nothing) : immediately declares no overlapping
regions are found

— 0 runtime and no overlapping regions

— UD (Unix Diff): a Unix-diff-command like algorithm

— relatively fast runtime and some overlapping regions

— ST (Suffix Tree): a novel suffix-tree based algorithm we
developed

— linear in the length of pages runtime and all overlapping regions

e Matchers trade off runtime with result completeness

(See paper for more details) 11

Choose the Optimal Matcher

® Consider a plan space where plans differ in the matchers
they use

® Use a cost model to estimate the completion time of each
plan

® Text-specific cost model

— e.g., change rate of the text corpus, cost of the extractor,
size of matching results and IE results, etc.

® C(Collect statistics over past k snapshots

12

Challenge in Efficiently Executing the

Chosen Plan
I Pl I P2 I P3 I P4
J E,a,p J E,a,p J E,a,p J l\élegcéler M

?

M, M, M, M,

13

Interleave Matching, Extraction and Copy

N
() Q
Il T overlapping Regions
P4
Extraction Copy
p Extractor E «— Regions Regions
M, N

14

Architecture

Last k snapshots and mentions

cost
extracted from these snapshots
mode

.

matcher selector

Y

Previous snapshot P, | reuser

, |
Current snapshot P, h :

—| matcher extraction

module

15

Experiment Setup

* Datasets
Data Sets DBLife Wikipedia
Data Sources 980 925
Snapshots 30 20
Time between snapshots 1 day 21 days
Avg # Page per Snapshot 10155 3038
Avg Size per Snapshot 180M 35M
* Extractors
DBLife Wikipedia
researcher | affiliation talk actor play award
Scope a 32 93 400 35 96 250
Context 3 3 7 10 3 4 10

16

Benefit of Recycling 1E Results

runtime (s) researcher runtime (s) affiliation runtime (s) talk
2500 3400 |~ 12000 s
1875 ~ —Re-exact 2550 9000 -
1250 - 1700 - 6000 -
625 . ovelex gso 3000
L RS T R 1 10 20 30 T S
snapshot snapshot snapshot
runtime (s) actor runtime (s) play runtime (s) award
200 - 1200 - 5200 -
150 - 900 - 3900 /‘/
100 W 600 | 2600 |
50 - 300 < — 1300
P S P R T AN S AP R TANNS PR
snapshot snapshot snapshot

e In all cases except “actor”, Cyclex drastically cut
runtime of re-extraction from scratch by 50-90%

17

runtime (s) actor (Wikipedia)

250
200
150
100
50
0

Importance of Optimization

280 %
240
200

grows to 4850 second

700 A A/
1\ T T T T T T L T T T \15\ T \\20\ 300 Tl‘ r ‘5‘ rrd ‘1(‘)‘ m ‘15“ ‘ “20‘
snapshot snapshot

runtime (s) award (Wikipedia) I'illgt(i)me (s) researcher (DBLife)

210

— DNplan == UDplan

— STplan

600

200 T g
snapshot

— Cyclex

® None of the matchers is uniformly optimal.

(See paper for more details)

18

Conclusion and Future Work

® Proposed the first approach to speed up IE over evolving
text data by recycling past IE results

® Defined challenges and provided initial solutions
— Model properties of extractors
— Cost-based decisions in choosing an optimal matcher
— Efficiently interleave matching, extraction, and copying

® Future work
— Handle multiple extractors
— Handle extractors that extract mentions across multiple

pages o

Related Work

® Much work on 1E
— Improve accuracy and efficiency
— Recent work on scalable IE [tutorial in KDD06, SIGMODO06]

e Evolving text data
— Repair wrappers as page templates change [McCann VLDBO0S5]
— Incrementally update an inverted index [Lim WWWO03]

e Exploiting overlapping text data in a document collection
to compress indices [Herscovici ECIR07, Zhang WWWO07]

e Optimizing IE programs and developing text-centric cost
models [Ipeirotis SIGMODO06, Jain ICDEO7, Shen VLDBO07]

20

