
Mathematical Programs with Equilibrium

Constraints: Automatic Reformulation and

Solution via Constrained Optimization ∗

Michael C. Ferris† Steven P. Dirkse‡

Alexander Meeraus‡

March 2002, revised July 2002

Abstract

Constrained optimization has been extensively used to solve many
large scale deterministic problems arising in economics, including, for
example, square systems of equations and nonlinear programs. A
separate set of models have been generated more recently, using com-
plementarity to model various phenomenon, particularly in general
equilibria. The unifying framework of mathematical programs with
equilibrium constraints (MPEC) has been postulated for problems
that combine facets of optimization and complementarity. This paper
briefly reviews some methods available to solve these problems and
describes a new suite of tools for working with MPEC models. Com-
putational results demonstrating the potential of this tool are given
that automatically construct and solve a variety of different nonlinear
programming reformulations of MPEC problems.

∗This material is based on research partially supported by the National Science Foun-
dation Grant CCR-9972372, the Air Force Office of Scientific Research Grant F49620-01-
1-0040, Microsoft Corporation and the Guggenheim Foundation

†Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
OX1 3QD Permanent address: Computer Sciences Department, University of Wisconsin,
1210 West Dayton Street, Madison, Wisconsin 53706, USA

‡GAMS Development Corporation, 1217 Potomac Street, N.W., Washington, D.C.
20007

1

1 Introduction

Nonlinear complementarity problems arise in many economic applications,
most notably in the applied general equilibrium area [1, 29]. The past decade
has seen an enormous increase in ability to solve large scale complementarity
problems, due not only to the phenomenal increase in computer speed, but
also to advances made in algorithms and software for complementarity prob-
lems. This paper attempts to review some of those advances, and revisits
some older techniques for the purpose of solving optimization problems with
complementarity constraints, typically termed Mathematical Programs with
Equilibrium Constraints (MPEC’s) in the literature [22, 26, 32].

Three advances in the past two decades have increased the capability of
a modeler to solve large scale complementarity problems. The first is the
implementation of large-scale complementarity solvers such as MILES [38],
PATH [8] and SMOOTH [30] that exploit significant advances in techniques
of linear algebra and nonlinear optimization. The second is the advent of
modeling systems that are able to directly express complementarity problems
as part of their syntax [3, 39, 13, 15] and to pass on the complementarity
model to the solver. Included in this, are so called mini-languages, such as
MPSGE[40], that allow particular important application domains to express
their problems in a manner convenient to them. Furthermore, the ability
of modeling systems to provide accurate first and second order derivatives
vastly improves the reliability of the solver. The third advance is due to the
interactions that the first two foster. The ability of a modeler to generate
realistic, large scale models enables the solvers to be tested on much larger
and more difficult classes of models. In many cases, new models point to
deficiencies in particular facets of a solver which frequently lead to further
enhancements and improved reliability [16, 21]. Furthermore, the ability
to solve larger and more complex complementarity problems furthers the
development of new applied economic models.

While it is clear that the state-of-the-art in solution mechanisms for
MPEC’s is currently far less satisfactory than that of complementarity prob-
lems, the intent of the present paper is to outline tools and approaches that
may facilitate solution of MPEC’s. The intent of providing these tools is
to highlight the potential for new questions that can be asked of this more
general model format and to foster the development of a much broader and
more realistic suite of examples for algorithmic design and improvement. The
aim of the paper is to initiate a dialogue between modelers and algorithm

2

developers.
The main approach for the solution of optimization problems with com-

plementarity constraints used in this paper is a reformulation of the problem
as a standard nonlinear program, thus enabling solution using existing non-
linear programming algorithms. Attempts to do this in the past have been
widespread and much of this paper builds on the lessons and examples that
previous researchers have exhibited. We start the paper in Section 2 by out-
lining several reformulations of the MPEC as a standard nonlinear program.
Inherent in such an approach are the techniques used to process the comple-
mentarity constraints, and it is natural to ask whether such approaches can
be used to solve complementarity problems, essentially the underlying feasi-
bility problem. Such techniques were somewhat discredited in the 1970’s and
1980’s, mainly due to the lack of robustness in finding feasible (hence com-
plementary) solutions. The past decade has given rise to new formulations of
the complementarity relationships that warrant further investigation, along
with significant advances in robustness and variety of nonlinear programming
solvers. Section 3 outlines the tools that we provide to perform the conver-
sion automatically. Assuming the modeler provides a GAMS description of
the MPEC, the tools generate a large variety of different but equivalent non-
linear programming formulations of the model in a variety of input formats.
Some preliminary computational results using these tools then follow. Sec-
tion 4.1 describes a set of experiments to outline how these approaches work
on a small subset of complementarity problems known to be difficult to solve.
We then proceed to describe some techniques for dealing with problems that
have multiple complementary solutions. In particular, an example of how
to determine all the Nash equilibria is given. The complete set of problems
from MPEClib are then processed with a number of nonlinear programming
solvers.

2 Formulations of the model

We consider the following optimization problem:

min
x∈Rn,y∈Rm

f(x, y) (1)

subject to the constraints

g(x, y) ∈ K (2)

3

and

y solves MCP(h(x, ·),B). (3)

The objective function (1) needs no further description, except to state that
the solution techniques we are intending to apply require that f (g and h)
are at least once differentiable, and for some solvers twice differentiable.

The constraints (2) are intended to represent standard nonlinear pro-
gramming constraints. In particular, we assume that K is the Cartesian
product of Ki so that equality constraints arise whenever Ki = {0} and
less-than (greater-than) inequality constraints arise when Ki = {ξ : ξ ≤ 0}
({ξ : ξ ≥ 0}). Since these constraints will be unaltered in all our reformula-
tions, we use this notation for brevity.

The constraints that are the concern of this paper are the equilibrium
constraints (3). Essentially, these are parametric constraints (parameterized
by x) on the variable y. (3) signifies that y is a solution to the mixed com-
plementarity problem (MCP) that is defined by the function h(x, ·) and the
bound set B. Due to this constraint (frequently called an equilibrium con-
straint), problems of this form are typically termed mathematical program
with equilibrium constraints [26, 32]. We now define the precise meaning of
this statement.

We partition the y variables into free F , lower bounded L, upper bounded
U and doubly bounded B variables respectively, that is:

B := {y = (yF , yL, yU , yB) : aL ≤ yL, yU ≤ bU , aB ≤ yB ≤ bB}

where it is assumed (without loss of generality) that aB < bB. Thus the box
B represents simple bounds on the variables y.

The constraints (3) can now be given a precise meaning. They are entirely
equivalent to the following system of equalities and inequalities:

aL ≤ yL, hL(x, y) ≥ 0 and (yL − aL)ThL(x, y) = 0

yU ≤ bU , hU(x, y) ≤ 0 and (yU − bU)ThU(x, y) = 0
(4)

and for each i ∈ B exactly one of the following must hold:

ai < yi < bi, hi(x, y) = 0

yi = ai, hi(x, y) ≥ 0

yi = bi, hi(x, y) ≤ 0.

(5)

4

Note in particular, that y ∈ Rm and h maps into a space of the same
dimension m. Furthermore, the bounds on the variable y determine the
constraints that are satisfied by h. Informally, the constraints represent or-
thogonality between the variables y and the function h. Some special cases
are of particular interest and help illuminate the formulation. Whenever the
variable is free (ai = −∞ and bi = +∞) it follows from (5) that hi(x, y) = 0.
Thus if all the y variables are free, then the complementarity problem is sim-
ply a system of nonlinear equations, and the MPEC is a nonlinear program.
While there may be cases in which ai = −∞ and bi = +∞ is desirable, they
are not of interest to the techniques developed here; we simply amalgamate
such functions hi into g.

For a second example, suppose a lower bound ai is zero, then by (4) it
follows that hi is constrained to be nonnegative, and furthermore that the
product yihi(x, y) must be zero. This latter conclusion follows from the sim-
ple fact that each term in the inner product given in (4) is nonnegative, and
a sum of nonnegative terms can be zero only if each of the terms themselves
are zero. We use this simple fact throughout this paper without further
reference; it always allows us to treat the complementarity “inner product”
term either in aggregate form or split up into separate components. The
variable yi is said to be complementary to the function hi. It is these cases
and further generalizations with finite lower and/or upper bounds that are
of interest here.

Of course, the relative number of complementarity constraints compared
to the number of general nonlinear constraints (i.e those involving g) can
have significant effects on the type of method that should be chosen to solve
the problem. Implicit methods [32] work well when the complementarity
constraints dominate and satisfy certain regularity conditions. They are
typically limited by the ability to solve the resulting nonsmooth problem
in the variable x. When the number of complementarity constraints are
small, then nonlinear programming techniques should be more applicable.
In this paper, we attempt to solve both types of problem using nonlinear
programming reformulations.

Unfortunately, the constraints imposed by (5) depend on the solution
value of y. For this reason, it is often convenient to introduce new variables

5

wB and vB and rewrite (5) in an equivalent manner as:

wB − vB = hB(x, y)

aB ≤ yB ≤ bB, wB ≥ 0, vB ≥ 0

(yB − aB)TwB = 0, (bB − yB)TvB = 0.

(6)

We often introduce auxiliary variables for the constraints (4) as well to
remove the need for a nonlinear solver to evaluate the derivatives of hL and
hU more than once. Thus, (4) can be equivalently written as:

wL = hL(x, y), aL ≤ yL, wL ≥ 0 and (yL − aL)TwL = 0

vU = −hU(x, y), yU ≤ bU , vU ≥ 0 and (bU − yU)TvU = 0.
(7)

Note that the size of the model will increase due to the additional artificial
variables.

We collect all the “auxiliary definitions” together to simplify the ensuing
discussion. Thus, we define a set H by

(x, y, w, v) ∈ H ⇐⇒
g(x, y) ∈ K, wL = hL(x, y), vU = −hU(x, y), wB − vB = hB(x, y)

and y ∈ B, wL ≥ 0, vU ≥ 0, wB ≥ 0, vB ≥ 0.

Collecting all these observations together gives the first nonlinear pro-
gramming formulation that we will consider:

min
(x,y,w,v)∈H

f(x, y)

subject to (yi − ai)wi = µ, i ∈ L ∪ B
(bi − yi)vi = µ, i ∈ U ∪ B.

(8)

All the reformulations we give in this paper are parametrized by a scalar value
µ. For µ = 0, the above formulation corresponds precisely to the MPEC
given as (1), (2) and (3) with the inner products treated componentwise.
For positive values of µ the complementarity product terms are forced to be
equal to µ; as µ is decreased to zero the corresponding solutions lie on what
is typically called the “central path” in the interior point literature [50].

It is clear that each of the terms involved in the inner products of (6)
and (7) are all themselves nonnegative, and hence the equality with 0 can be
replaced by a less-than inequality.

6

min
(x,y,w,v)∈H

f(x, y)

subject to (yi − ai)wi ≤ µ, i ∈ L ∪ B
(bi − yi)vi ≤ µ, i ∈ U ∪ B.

(9)

Again, for µ = 0, this corresponds to the MPEC given as (1), (2) and (3).
For positive values of µ this corresponds to a componentwise relaxation of
the original problem.

The following formulation aggregates all the complementarity constraints:

min
(x,y,w,v)∈H

f(x, y)

subject to (yL − aL)TwL + (bU − yU)TvU + (yB − aB)TwB

+ (bB − yB)TvB ≤ µ.

(10)

A partial aggregation can also be carried out:

min
(x,y,w,v)∈H

f(x, y)

subject to (yL − aL)TwL ≤ µ, (bU − yU)TvU ≤ µ

(yB − aB)TwB ≤ µ, (bB − yB)TvB ≤ µ.

(11)

There is of course a similar aggregation for (8) that immediately leads to
the problem

min
(x,y,w,v)∈H

f(x, y)

subject to (yL − aL)TwL + (bU − yU)TvU + (yB − aB)TwB

+ (bB − yB)TvB = µ.

(12)

It is well known that the above formulations (for µ = 0) have poor theoretical
properties in terms of the classical constraint qualifications.

Instead of using the auxiliary variables wL and vU we can substitute
the relevant functions into the formulations explicitly. To facilitate a more
succinct description, we introduce a new set H̃ that collects the definitions
together.

(x, y, w, v) ∈ H̃ ⇐⇒
g(x, y) ∈ K, y ∈ B, hL(x, y) ≥ 0, hU(x, y) ≤ 0

and wB − vB = hB(x, y), wB ≥ 0, vB ≥ 0.

7

We rewrite four of the above reformulations with such an elimination:

min
(x,y,w,v)∈H̃

f(x, y)

subject to (yi − ai)hi(x, y) = µ, i ∈ L
(bi − yi)hi(x, y) = −µ, i ∈ U
(yi − ai)wi + (bi − yi)vi = µ, i ∈ B

(13)

min
(x,y,w,v)∈H̃

f(x, y)

subject to (yi − ai)hi(x, y) ≤ µ, i ∈ L
(bi − yi)hi(x, y) ≥ −µ, i ∈ U
(yi − ai)wi ≤ µ, (bi − yi)vi ≤ µ, i ∈ B

(14)

min
(x,y,w,v)∈H̃

f(x, y)

subject to (yL − aL)ThL(x, y) ≤ µ, (bU − yU)ThU(x, y) ≥ −µ
(yB − aB)TwB ≤ µ, (bB − yB)TvB ≤ µ

(15)

min
(x,y,w,v)∈H̃

f(x, y)

subject to (yL − aL)ThL(x, y) − (bU − yU)ThU(x, y) + (yB − aB)TwB

+ (bB − yB)TvB = µ.

(16)

A different approach involves a penalization of the complementarity con-
ditions. We add a weighted sum of the complementarity conditions to the
objective function, removing the complementarity conditions from the con-
straints in (10). By decreasing µ, the weight on the complementarity condi-
tions becomes progressively larger.

min
(x,y,w,v)∈H

f(x, y) +
1

µ
{(yL − aL)TwL + (bU − yU)TvU +

(yB − aB)TwB + (bB − yB)TvB}.
(17)

A similar scheme works with (16):

min
(x,y,w,v)∈H̃

f(x, y) +
1

µ
{(yL − aL)ThL(x, y) − (bU − yU)ThU(x, y) +

(yB − aB)TwB + (bB − yB)TvB}.
(18)

8

A simple calculation (suggested in [19]) allows one to see that for two
scalars r and s, the following holds:

φ(r, s) = 0 ⇐⇒ r ≥ 0, s ≥ 0 and rs = 0,

where
φ(r, s) :=

√
r2 + s2 − (r + s).

Note that φ is not differentiable at the origin which may lead to solution diffi-
culties. To overcome the nondifferentiability problems a variety of smoothing
approaches have been suggested. Essentially, they replace the solution of the
MPEC by a parameterized NLP(µ), and solve a sequence of problems for
decreasing values of µ > 0. The perturbation µ guarantees differentiability
of all constraint functions by replacing φ by

φµ(r, s) :=
√

r2 + s2 + µ− (r + s).

Note that φµ(r, s) = 0 if and only if r > 0, s > 0 and rs = µ/2. Thus, the
complementarity condition is satisfied in the limit as µ goes to zero. The
formulation given below was proposed in [12]:

min
(x,y,w,v)∈H

f(x, y)

subject to φµ(yi − ai, wi) = 0, i ∈ L ∪ B
φµ(bi − yi, vi) = 0, i ∈ U ∪ B.

(19)

It is also possible to rewrite the complementarity constraints as a system
of nonlinear equations, namely

min(yL − aL, hL(x, y)) = 0

min(bU − yU ,−hU(x, y)) = 0

min(yB − aB, hB(x, y)) = 0

min(bB − yB,−hB(x, y)) = 0.

(20)

While we provide mechanisms to form the nonlinear program using this con-
struction, a modeler should note that the following formulation involves non-
smooth functions and thus appropriate solvers need to be invoked.

min
(x,y,w,v)∈H

f(x, y)

subject to min(yi − ai, wi) ≤ µ, i ∈ L ∪ B
min(bi − yi, vi) ≤ µ, i ∈ U ∪ B

(21)

9

A smoothed version of (20) was proposed in [5]. In this case, min(r, s) is
replaced by

ψµ(r, s) = r − µ log(1 + exp((r − s)/µ)).

Updating the four equations in (20) using this replacement is an alternative
way to enforce complementarity as µ is driven to 0:

min
(x,y,w,v)∈H

f(x, y)

subject to ψµ(yi − ai, wi) = 0, i ∈ L ∪ B
ψµ(bi − yi, vi) = 0, i ∈ U ∪ B.

(22)

It is easy to see that the functions φµ, min and ψµ enforce the nonnega-
tivity of their arguments in the limit without needed the additional bounding
constraints. In the following we simply remove the bound constraints in the
definition of H̃ leaving the following:

(x, y, w, v) ∈ H∗ ⇐⇒
g(x, y) ∈ K, wL = hL(x, y), vU = −hU (x, y), wB − vB = hB(x, y).

It is unknown at this time whether the bound statements help or hinder
the solution process, but the tool we describe in the next section allows the
modeler to make such choices, as shown by the examples below:

min
(x,y,w,v)∈H∗

f(x, y)

subject to φµ(yi − ai, wi) = 0, i ∈ L ∪ B
φµ(bi − yi, vi) = 0, i ∈ U ∪ B,

(23)

min
(x,y,w,v)∈H∗

f(x, y)

subject to min(yi − ai, wi) = µ, i ∈ L ∪ B
min(bi − yi, vi) = µ, i ∈ U ∪ B,

(24)

min
(x,y,w,v)∈H∗

f(x, y)

subject to ψµ(yi − ai, wi) = 0, i ∈ L ∪ B
ψµ(bi − yi, vi) = 0, i ∈ U ∪ B.

(25)

10

Elimination of the artificial variables wL and vU within φµ gives the fol-
lowing formulation:

min
x∈Rn,y∈Rm,wB,vB

f(x, y)

subject to g(x, y) ∈ K, wB − vB = hB(x, y)

φµ(yi − ai, hi(x, y)) = 0, i ∈ L
φµ(bi − yi,−hi(x, y)) = 0, i ∈ U
φµ(yi − ai, wi) = 0, φµ(bi − yi, vi) = 0, i ∈ B.

(26)

We can further eliminate wB and vB and treat finite upper and lower bounds
using an approach suggested in [2]:

min
x∈Rn,y∈Rm

f(x, y)

subject to g(x, y) ∈ K

φµ(yi − ai, hi(x, y)) = 0, i ∈ L
φµ(bi − yi,−hi(x, y)) = 0, i ∈ U
φµ(yi − ai, φµ(−hi(x, y), bi − yi)) = 0, i ∈ B.

(27)

Finally, the doubly bounded variables are sometimes treated using an
alternative approach due to Scholtes:

min
x∈Rn,y∈B,w,v

f(x, y)

subject to g(x, y) ∈ K, wB = hB(x, y)

wL = hL(x, y), vU = −hU(x, y), wL ≥ 0, vU ≥ 0

(yi − ai)wi = µ, i ∈ L
(bi − yi)vi = µ, i ∈ U
(yi − ai)wi ≤ µ, (bi − yi)wi ≥ −µ, i ∈ B.

(28)

Note this is only exact when µ = 0. Elimination of wL and vU then provides
the following formulation.:

min
x∈Rn,y∈B,wB

f(x, y)

subject to g(x, y) ∈ K, wB = hB(x, y), hL(x, y) ≥ 0, hU(x, y) ≤ 0

(yL − aL)ThL(x, y) − (bU − yU)ThU(x, y) = µ

(yi − ai)wi ≤ µ, (bi − yi)wi ≥ −µ, i ∈ B.

(29)

11

It is further possible to eliminate wB with or without aggregation on the
remaining complementarity constraints:

min
x∈Rn,y∈B

f(x, y)

subject to g(x, y) ∈ K, hL(x, y) ≥ 0, hU(x, y) ≤ 0

(yL − aL)ThL(x, y) − (bU − yU)ThU(x, y) ≤ µ

(yi − ai)hi(x, y) ≤ µ, (bi − yi)hi(x, y) ≥ −µ, i ∈ B,

(30)

min
x∈Rn,y∈B

f(x, y)

subject to g(x, y) ∈ K, hL(x, y) ≥ 0, hU(x, y) ≤ 0

(yi − ai)hi(x, y) = µ, i ∈ L
(bi − yi)hi(x, y) = −µ, i ∈ U
(yi − ai)hi(x, y) ≤ µ, (bi − yi)hi(x, y) ≥ −µ, i ∈ B.

(31)

3 Tools for MPEC Solution

3.1 Modeling Language Tools

MPEC’s can be modeled in GAMS or AMPL using quite natural syntax. For
example, in GAMS we would define the functions f , g and h with standard
“equation” syntax, along with the bounds on the variable y. A full example
is given in Appendix A. To define the actual MPEC model, the following
statement is used:

model mpecmod / deff, defg, defh.y /;

Here it is assumed that the objective (1) is defined in the equation deff, the
general constraints (2) are defined in defg and the function h is described
in defh. The complementarity relationship is defined by the bounds on y
and the orthogonality relationship shown in the model declaration using “.”.
More details for GAMS MPEC models can be found in [9], while similar
formulations exist in AMPL [13].

In order to solve these models we propose to automatically reformulate
the problems as nonlinear programs using a “convert” tool. We provide
a solver “nlpec” that automatically calls the convert tool and reports the
results in the original GAMS environment. The specific syntax used by a
modeler follows:

12

option mpec=nlpec;

solve mpecmod using mpec minimizing obj;

3.2 The Convert Tool

Many solvers are developed that require a particular form of input, or have
been implemented to interact with a particular modeling system. The convert
tool is an evolving program whose purpose is to overcome these restrictive
input formats.

Models that are formulated as a GAMS program are typically defined in
terms of equations and variables that run over sets that are specified by the
modeler. At compilation time, all of these equations are resolved into scalar
equations and variables in order to be passed onto a particular solver. Sparse
linear algebra and computational efficiency issues are considered, and a solver
sees a clean model along with routines that specify derivative information.

At this scalar level it is very easy to convert the model into another input
format. For example, the GAMS model can be written out as a scalar AMPL
model (using the option “ampl”). Thus, the original GAMS model can be
solved by any solver that accepts AMPL input. In a similar fashion, the
BARON link to GAMS uses the convert tool to convert a GAMS model into
BARON’s required scalar input. Details of the other conversions possible
can be found at http://www.gamsworld.org/translate/.

We modified the tool further to allow MPEC’s to be reformulated as
nonlinear programs at the scalar level. In fact, we currently have 23 different
reformulations whereby the original MCP or MPEC is rewritten as a scalar
GAMS nonlinear programming model (i.e. without any sets), but with the
complementarity constraints rewritten using one of the constructs of the
previous section.

The tool is somewhat more sophisticated than just a simple converter.
The mapping between the original variables and the new scalar variables is
maintained, so that a solution of the original problem can be recovered from
the solution of the converted problem. In this way, we can easily develop new
“black box” algorithms for MPEC’s built simply by changing formulation,
starting point and the sequence of parametric solves.

13

Table 1: Options for the solver NLPEC

Option Value Default Description

er integer 1 Reformulation to be generated.

initmu real 0 Initial value of the parameter µ. A single
solve of the nonlinear program is carried
out for this value.

numsolves integer 0 Number of extra solves carried out in a
loop. This should be set in conjunction
with the updatefac option.

updatefac real 0.1 The factor that multiplies µ before each of
the extra solves triggered by the numsolves
option.

finalmu real - Final value of the parameter µ. If specified,
an extra solve is carried out with µ set to
this value.

initslo real 0 The lower bound for any artificials that are
added.

initsup real inf The upper bound for any artificials that
are added.

3.3 Options and Parametric Solution

At the current time, there are 23 reformulations provided by the convert
tool. The following table indicates the internal code that we use for each
reformulation of the previous section. To specify using the reformulation (8)
for example, the modeler uses the option “er = 1” in the file “nlpec.opt”.

1 2 3 4 5 6 7 8 9 10 11 12

(8) (9) (28) (12) (16) (29) (30) (31) (17) (18) (13) (26)

13 14 15 16 17 18 19 20 21 22 23

(27) (24) (21) (25) (22) (15) (14) (11) (10) (19) (23)

Details of all the current options of “nlpec” are given in Table 1.
It is assumed throughout all the testing that the modeler will have pro-

14

vided starting point values for the variables x and y. In all the formulations
that add artificial variables (w and v) we initialize their values as follows.

wB = max{0, hB(x, y)}
vB = max{0,−hB(x, y)}
wL = max{0, hL(x, y)}
vU = max{0,−hU(x, y)}

The tool provides the ability to change the constant chosen here as 0, and also
allows an upper bound to be placed on the starting value for these artificial
variables. Appropriate choices for these values is a topic for future research.

Another approach of interest when the complementarity constraints dom-
inate the problem is is to solve the complementarity problem first to generate
initial values for the nonlinear programming solver. This approach has been
used successfully in [18] and is a technique that is easily available to a modeler
using the tools outlined here.

In many cases, it is useful to generate a sequence of problems, parameter-
ized by µ, that converge to the solution of the original problem as µ goes to
zero. The convert tool generates nonlinear programs that involve the scalar
µ. We have provided some extra options to the solver “nlpec” that allow
updates to µ and multiple solves in a loop.

We have used a variety of option files for our computational tests and
describe them now as examples of the flexibility of this scheme.

Option file 1 results in 7 nonlinear programs to be solved, the first with a
value of µ = 0.01, followed by 5 more solves with values of µ multiplied each
time by 0.1. The final solve has µ = 0. Option file 2 has six solves, the first
with µ = 1.0, the second with µ = 0.1, each subsequent solve multiplying µ
by 0.1. The resulting sequence of solves from option files 3, 4, 5 and 6 should
now be clear.

3.4 Nonlinear Optimization Codes

There are a large number of NLP solvers available for the solution of the
reformulated MPEC and MCP models. We have chosen a subset of these for
computational testing. While all of the solvers chosen enjoy a strong repu-
tation, they were also chosen to represent different algorithmic approaches.

For the MCP problems, we can choose to do no reformulation and solve
the original model using the MCP solver PATH [8, 15, 29, 35]. PATH im-

15

initmu = 0.01

numsolves = 5

finalmu = 0

(a) Option file 1

initmu = 1

numsolves = 5

(b) Option file 2

initmu = 1

numsolves = 3

(c) Option file 3

initmu = 1

numsolves = 4

(d) Option file 4

initmu = 1

numsolves = 5

finalmu = 0

(e) Option file 5

initmu = 0.2

finalmu = 0.1

(f) Option file 6

Figure 1: Option files used for computational results

plements a generalization of Newton’s method with linesearch applied to an
equivalent formulation of a complementarity problem as a nonsmooth system
of equations. The subproblems are solved using a variant of Lemke’s method,
a pivotal method for LCP. The pathsearch is controlled by the Fisher merit
function and resorts to a gradient step of that function if the subproblem so-
lution fails to give appropriate descent. There are some safeguards included
that help when singularities are encountered. Some computational enhance-
ments include preprocessing (logical inferences to reduce the size and com-
plexity of the problem), a crash procedure to find a good starting basis and
various strategies to overcome degeneracy.

The NLP solver CONOPT [11] is a feasible path solver based on the
proven GRG method, especially suitable for highly nonlinear models. It
also includes extensions for phase 0, linear mode iterations, a sequential
linear programming component, and more recently the use of Hessian in-
formation. MINOS [31] solves NLPs with linear constraints using a quasi-
Newton, reduced-gradient algorithm. A projected Lagrangian algorithm with
quadratic penalty function is used for the nonlinear constraints. SNOPT
[20] applies a sparse sequential quadratic programming (SQP) method , us-
ing limited memory quasi-Newton approximations to the Hessian of the La-
grangian. The merit function for steplength control is an augmented La-

16

grangian. BARON [42, 45] is a computational system for solving nonconvex
optimization problems to global optimality. This Branch And Reduce Opti-

mization Navigator combines constraint propagation, interval analysis, and
duality in its reduce arsenal with enhanced branch and bound concepts.

While the solvers mentioned above all run locally, it is also possible to
solve models on a remote machine. Remote solution is made possible via
the Kestrel interface [10] to NEOS [7], the Network Enabled Optimization
Server. Using Kestrel and NEOS, we have access to many more NLP solvers,
in particular the interior point (or barrier) methods KNITRO and LOQO.
KNITRO [4] is a trust region method which uses sequential quadratic pro-
gramming methodology to treat the barrier sub-problems. LOQO [49] is a
line search algorithm that has much in common with interior algorithms for
linear and convex quadratic programming. It is interesting to note that both
KNITRO and LOQO use AMPL interfaces; the Kestrel interface takes ad-
vantage of the convert tool described above to produce an AMPL form of
the model in question.

4 Computational Results

4.1 Feasibility Problems

We consider a set of 11 test problems that have historically caused difficulties
to MCP solvers. All of these are fairly small models; their sizes are given in
Table 2.

There are several models that have their origins in the economics litera-
ture. The general equilibrium model for Cameroon [6] has been formulated
in a number of ways, here in cammcp as an MCP. The model duopoly is
a dynamic oligopoly model described in [27, 28]. An electricity flow equilib-
rium model electric, a simple exchange model simple-ex, a consumption
model with spillover effects spillmcp were all provided in [41]. A standard
n-player Nash equilibrium problem [48] is called games. The von Thünen
land use model [44, 14] is implemented in pgvon105, while the Shubik-Quint
general equilibrium model with money [43] is used as the basis for shubik.
[36, 37] provides a series of complementarity models used for shadow pricing
in red-blue tactical decisions, one of which is called forcedsa.

Other examples of complementarity arise in engineering [17]. The re-
maining two models are examples of these, including a lubrication model

17

Table 2: MCP models

Name Variables Nonzeros Density (%)

cammcp 242 1287 2.20

duopoly 63 252 6.35

ehl kost 101 10200 99.99

electric 158 539 2.16

forcedsa 186 440 1.27

games 16 140 54.69

lincont 419 23207 13.22

pgvon105 105 588 5.33

shubik 33 136 12.49

simple-ex 17 158 54.67

spillmcp 110 455 3.76

18

ehl kost detailed in [25] and a friction-contact problem called lincont

described in [33].
Table 3 gives an indication of which solver/reformulation combinations

are most effective in solving the set of MCP models chosen. Effectiveness is
measured here only in terms of robustness. In all these feasibility cases, we set
up a dummy objective function of 0. Each solver/reformulation combination
was tried without options and with one of the option files in Figure 3.3. The
results reported are for the more successful of these runs.

Table 3: MCP: Successful solves; column headings refer to the reformulation
equation number

Solver MCP ER1 ER2 ER9 ER21 ER23

(8) (9) (17) (10) (23)

PATH 9

BARON 5 4 5 7 2

CONOPT 2 3 3 3 1

MINOS 5 6 6 5 3

SNOPT 8 5 9 6 3

FILTER 4 5 6 3 1

KNITRO 1 6 6 0 0

LOQO 5 3 4 5 1

Several points are clear from these results. Firstly, as should be expected,
a specialized complementarity solver is more robust for solving these feasibil-
ity problems, but even on these difficult problems, several nonlinear program-
ming algorithms perform well on certain reformulations. Secondly, somewhat
unexpectedly, the reformulations using the Fischer function (ER23) seem to
cause the nonlinear programming solvers distinct difficulty for these models.
Finally, while Table 3 does not exhibit this fact, for the cases where PATH
fails, we can solve the problem by one or more of these reformulations. From
a modeler’s perspective this is very useful, since during the development cy-

19

cle many of the deficiencies of the model are best identified from a solution.
Unfortunately, the models that are typically hardest to solve are those with
errors in their formulation.

Comparison of solution times is quite important, but can easily be mis-
leading. In the case of the solvers tested via the remote Kestrel interface,
it is difficult to say for certain what machines the solvers ran on. This
and other factors make it difficult to use solution times for any Kestrel
solvers in a meaningful way. For these reasons we have not included the
results in the above table. However, timing comparisons can be found at
http://www.gamsworld.org/mpec/nlpectests. These show that in gen-
eral the nonlinear programming reformulations are slower than the special-
ized complementarity solvers. In order not to repeat results that are given
elsewhere, we note that for large scale problems, PATH is typically very
effective and fast. Detailed results can be found in [30] for example.

It is also clear that by adjusting certain options (for example feasibility
or optimality tolerances) to each of the solvers, a different set of models
could have been solved. We limited our computational testing to the default
settings of each solver.

4.2 Small Optimization Problems

There is a considerable literature on multiplicity of solutions to complemen-
tarity problems, arising both from applications of Nash equilibria to crack
propagation in structural mechanics. Determining which of these multiple
solutions satisfies some “optimality criteria” is a problem of much practical
interest.

Since in many cases the complementary solutions are isolated, nonlinear
programming techniques that find local minimizers are extremely prone to
failure, in that while they may find feasible points, the value of the objective
could be arbitrarily poor. In order to solve these problems reliably, one of
two approaches is needed. As usual, the first (and most generally applicable)
approach requires the modeler to provide a starting point that is close to the
solution required. The second approach is to use a nonlinear programming
code that is designed to find global solutions. Due to the enormous difficulties
of these problem classes, the second approach is currently severely limited
in problem size, but we will outline its use on two small examples to exhibit
the potential of further research in this area.

The first problem comes from the mathematical programming literature

20

[24] and is a four variable nonlinear complementarity problem with exactly
two isolated solutions, namely (1.2247, 0, 0, 0.5) and (1, 0, 3, 0). We set up
two MPEC’s, the first kojshin3 minimizes x3 while the second kojshin4

minimizes x4. Both of these problems have a feasible set consisting of two
points, and each has an optimal value of 0. As is to be expected, the nonlinear
programming algorithms applied to the formulations outlined above either
fail to find a feasible point, or have the tendency to terminate at the non-
optimal solution.

However, applying the BARON solver (a global method) to reformulation
1 with µ = 0 solves both problems to optimality in under 0.2 secs. In fact,
all the feasible points that lie in some compact set can be enumerated for
this example if desired using the “numsol -1” option of BARON. There are
some potential difficulties in discriminating among solutions that are subject
to rounding error, but in general all solutions will be found.

The second example of this nature is a Nash equilibrium example given
in [23]. In this example, three distinct equilibria are known; the models
kehoe1, kehoe2 and kehoe3 have objectives set up that respectively min-
imize, maximize the price variables, or find a solution closest to the starting
point. In order to enumerate the distinct equilibria, we found it easiest to
use BARON on a modification of kehoe1; we first found the equilibrium
that minimized the sum of the prices, then added an extra constraint on the
price sum to exclude that solution. Thus, with three solves under BARON,
we were able to enumerate all the equilibria, without special knowledge of
starting points. A fourth solve confirmed that no more equilibria existed
within the (large) compact set used for the problem variables. The example
file given in Appendix A was used for this purpose. Note that the comple-
mentarity problem is defined using the “.” notation and that the income
definitions can be treated as general nonlinear constraints. The restriction
equation removes any solutions for which the sum of the prices is less than
3.64.

These techniques are unlikely to work for large scale problems. In these
cases, it is likely that multistart or sampling methods will be needed to
improve the likelihood of generating a global solution. Some promising ap-
proaches that can be used from within GAMS are given in [47, 34].

21

4.3 Feasibility tests

Computational tests of the sort discussed in this paper underscore the need
for a separate utility to verify the correctness of the solutions obtained and
create uniform reports of their accuracy. The GAMS “solver” Examiner is
such a utility. GAMS/Examiner is currently under development and was
extended to allow checks for feasibility of the MPEC solutions. It performs
three separate checks on MPEC models.

The first check is for feasibility in the primal variables x and y with
respect to the variable bounds. The error reported is the maximum violation
found. GAMS solvers typically maintain primal variable feasibility with zero
tolerance, so there is usually nothing to report here.

The second check is for feasibility with respect to the NLP constraints (2)
and the equilibrium constraints (3). For the NLP constraints (2), the residual
error in the ith row is computed in the obvious way. For the equilibrium
constraints (3), however, we only assign a nonzero residual to row i if:

1. the matching variable is in L and hi is negative, or

2. the matching variable is in U and hi is positive, or

3. the matching variable is in F and hi is nonzero.

Note that if the matching variable is in B the residual is set to zero. The
error reported is the maximum residual taken over both sets of constraints.

The third check is for complementarity; this check involves only the equi-
librium constraints (3) and the variables y. Again, the error reported is the
maximum violation found, taken now over all the equilibrium constraints.
For each such constraint, we compute errors with respect to the lower and
upper variable bounds; the maximum of these two is the residual error ri.
We describe this computation below.

1. c = max(0, ai − yi), d = min(1,max(0, yi − ai)).

2. ri = max(c, dmax(hi, 0))

3. c = max(0, yi − bi), d = min(1,max(0, bi − yi)).

4. ri = max(ri,max(c, dmax(−hi, 0)))

22

Unless the variable y is outside of its bounds (a very unusual case for any
of the NLP solvers tested), the deviation c will always be zero, and the effect
is to assign zero error for the lower bound if hi is negative, and otherwise to
scale the error hi by min(yi − ai, 1). Similarly, we assign zero error for the
upper bound if hi is positive, and otherwise scale the error by min(bi − yi, 1).
This definition of the residual error is taken from the GAMS MCP solvers,
where it has proven to be very useful in identifying the constraints of interest
in unsolvable, poorly formulated, and partially completed models. For the
purposes of this paper we declare a solution to be feasible if the maximum
residual is less than 10−5.

4.4 Larger Optimization Problems

Techniques for solving larger problems cannot rely on the sampling tech-
niques or enumerative/branch and reduce techniques that work well on small
problems. Instead, currently, much more emphasis is placed on the modeler
to provide problems for which the complementarity problems have nice prop-
erties (ie stability under perturbations, local uniqueness, etc), and for which
good starting points are known or can be effectively generated.

We have taken as our test bed for MPEC’s the MPEClib problems.
Details on problem size and characteristics can be found in Appendix B.
MPEClib currently contains 92 problems. For each of these problems we
attempted solution with each of 40 different reformulation / option file com-
binations and each of the 4 NLP solvers BARON, CONOPT, MINOS, and
SNOPT, for a total of 14,720 solves.

The solution results for the different formulations we outlined in Section 3
are given in Table 4. For brevity, we only report the percentage of times that
the solvers terminated in less than 10 seconds of CPU time with a feasible
solution of the MPEC. If a particular option file significantly outperforms an
alternate, we have not reported the poorer results. We have not reported
any results for er14 and er15 since the reformulations are nonsmooth. The
reformulations er16 and er17 perform poorly due to evaluation errors that
occur in the exponential. The row er*.any reports the percentage of successes
of each solver on any reformulation with any option file. The column anysolv
indicates the percentage of models solved with each reformulation/option
combination and at least one of the 4 solvers.

Table 5 show how well the objectives were minimized compared to the
best solution that any solver found over all reformulations. We believe this

23

Table 4: Percentage of successful solves resulting in feasible solutions of
MPEC using the NLP reformulations of Section 3 with GAMS solver links

CONOPT MINOS SNOPT BARON anysolv

er1 .0 73 39 76 46 85

er1 .1 82 58 78 50 90

er2 .0 72 40 80 46 88

er2 .1 75 73 71 70 90

er3 .1 82 58 79 51 90

er4 .0 71 64 71 66 87

er4 .1 72 84 65 75 89

er5 .0 61 60 70 64 86

er5 .1 68 52 55 71 87

er6 .0 58 59 68 63 85

er7 .0 53 64 75 67 86

er8 .0 62 37 60 53 84

er9 .3 63 54 63 47 79

er10 .4 51 48 54 34 72

er11 .1 79 49 65 59 88

er12 .0 41 60 73 63 85

er12 .5 72 58 64 66 89

er13 .0 37 60 68 64 85

er13 .5 71 61 68 66 89

er16 .0 4 8 8 13 15

er17 .0 9 9 8 16 17

er18 .0 59 67 77 72 89

er19 .0 70 32 76 57 85

er20 .0 73 66 76 72 89

er20 .1 78 86 71 79 91

er21 .0 71 64 74 70 87

er21 .1 76 83 67 77 89

er21 .5 76 84 64 77 89

er22 .5 71 47 63 43 90

er23 .5 75 67 63 64 90

er*.any 96 91 91 85 96

24

table shows that the approaches postulated here are extremely promising and
allow both small and medium scale MPEC’s to be solved with a variety of
algorithms. More details on our testing strategy, coupled with more detailed
results of all the tests we performed are available at
http://www.gamsworld.org/mpec/nlpectests.

It is clear that on this test set, a variety of the reformulations are very
effective ways to find both feasible solutions and good locally optimal so-
lutions of the MPEC. In particular, it seems that (ordered by increasing
solution times) er3 (28), er21 (10), er1 (8), er22 (19) and er13 (27) (coupled
with an appropriate option file) are very promising solution approaches.

In a recent paper [46], a suite of MPEC examples were described along
with a variety of techniques to solve them. The results reported there seem
to broadly agree with the results described herein. In particular, for large,
hard examples, the formulations involving the Fischer function (especially
formulation er22) were found to be most effective in terms of solution time,
and objective value.

5 Conclusions

This paper has described the notion of a mathematical program with equi-
librium constraints and given several reformulations of such problems as
standard nonlinear programming problems. It has outlined several tools
to facilitate the automatic generation of these formulations from a GAMS
specification of the original problem.

A number of algorithms have been applied to solve a suite of MPEC
models that have been collected from a variety of application domains. All
the examples cited in this paper are available from the gamsworld website at
http://www.gamsworld.org/mpec/.

Several conclusions can be drawn. Firstly, the ability to formulate prob-
lems with complementarity constraints as nonlinear programs enhances the
ability of a modeler to use complementarity as a technique for answering im-
portant economic questions. We have demonstrated both improvements in
overall robustness, and several new techniques for exploring more thoroughly
the solution space. Secondly, tools for reformulation provide a variety of so-
lution techniques for MPEC’s. While this paper does not show definitively
what solver or which formulation is to be preferred, it does give a modeler
a suite of tools that allow him/her to generate solutions of these problems.

25

Table 5: Percentage of solves resulting in solutions of MPEC (within 1% of
the best found) using GAMS solver links

CONOPT MINOS SNOPT BARON anysolv

er1 .0 43 20 49 41 63

er1 .1 64 43 61 41 80

er2 .0 43 18 45 41 63

er2 .1 47 55 51 55 76

er3 .1 64 43 60 42 82

er4 .0 39 35 39 52 66

er4 .1 41 53 40 58 72

er5 .0 26 23 36 47 62

er5 .1 43 38 40 59 76

er6 .0 24 22 35 46 61

er7 .0 26 21 35 49 62

er8 .0 35 22 32 37 61

er9 .3 45 42 41 41 62

er10 .4 37 37 42 32 57

er11 .1 59 36 40 40 71

er12 .0 26 35 46 32 57

er12 .5 61 33 49 46 78

er13 .0 22 35 41 33 57

er13 .5 61 36 53 45 77

er16 .0 4 7 7 8 10

er17 .0 8 7 7 10 10

er18 .0 30 25 38 53 65

er19 .0 36 21 40 34 60

er20 .0 43 38 45 55 71

er20 .1 49 57 45 64 76

er21 .0 41 35 42 54 68

er21 .5 54 60 49 63 80

er22 .5 64 28 41 37 78

er23 .5 64 48 52 51 75

er*.any 95 75 85 83 96

26

In particular, a modeler is able to write down an explicit formulation of the
problem as an MPEC, and use these tools to generate the required equations
to treat complementarity, as opposed to having to generate different model
descriptions for each specific way of processing complementarity. Thirdly,
the ability to reliably solve large and complex models with complementarity
constraints should enable applications (such as optimal tariff determination)
to be processed by modelers more readily in the very near future.

It is hoped that the techniques outlined here will provide a basis for future
application work in this area, and will generate more of the interactions
between modelers and algorithmic developers that have proven so successful
in the complementarity field. One area of particular interest in applying
MPEC models is the choice of optimal tariffs. There is a need for large scale
algorithms in this case due to the size and detail of the underlying datasets.
Such problems are regarded as extremely difficult.

Acknowledgments

The authors are grateful to Todd Munson, Nick Sahinidis and Sven Leyyfer
for their advice and help with regard to algorithmic aspects. Both Tom
Rutherford and Francis Tin-Loi have provided invaluable test problems and
insight into specific applications without which this paper would not have
been possible.

References

[1] K. Arrow and G. Debreu. Existence of equilibrium for a competitive
economy. Econometrica, 22:265–290, 1954.

[2] S. C. Billups. Algorithms for Complementarity Problems and General-

ized Equations. PhD thesis, University of Wisconsin, Madison, Wiscon-
sin, August 1995.

[3] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The
Scientific Press, South San Francisco, California, 1988.

[4] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm
for large scale nonlinear programming. SIAM Journal on Optimization,
9(4):877–900, 1999.

27

[5] Chunhui Chen and O. L. Mangasarian. A class of smoothing functions
for nonlinear and mixed complementarity problems. Computational Op-

timization and Applications, 5:97–138, 1996.

[6] T. Condon, H. Dahl, and S. Devarajan. Implementing a computable
general equilibrium model on GAMS – the Cameroon model. DRD
Discussion Paper 290, 1987. The World Bank, Washington, DC.

[7] J. Czyzyk, M. P. Mesnier, and J. J. Moré. The NEOS server. IEEE

Journal on Computational Science and Engineering, 5:68–75, 1998.

[8] S. P. Dirkse and M. C. Ferris. The PATH solver: A non-monotone
stabilization scheme for mixed complementarity problems. Optimization

Methods and Software, 5:123–156, 1995.

[9] S. P. Dirkse and M. C. Ferris. Modeling and solution environments for
MPEC: GAMS & MATLAB. In M. Fukushima and L. Qi, editors, Refor-

mulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing

Methods, pages 127–148. Kluwer Academic Publishers, 1999.

[10] Elizabeth D. Dolan and Todd S. Munson. The Kestrel interface to the
NEOS Server. Technical Memorandum ANL/MCS-TM-248, Argonne
National Laboratory, Argonne, Illinois, 2001.

[11] A. Drud. CONOPT: A GRG code for large sparse dynamic nonlinear
optimization problems. Mathematical Programming, 31:153–191, 1985.

[12] F. Facchinei, H. Jiang, and L. Qi. A smoothing method for mathemati-
cal programs with equilibrium constraints. Mathematical Programming,
85:107–134, 1999.

[13] M. C. Ferris, R. Fourer, and D. M. Gay. Expressing complementarity
problems and communicating them to solvers. SIAM Journal on Opti-

mization, 9:991–1009, 1999.

[14] M. C. Ferris and T. S. Munson. Case studies in complementarity: Im-
proving model formulation. In M. Théra and R. Tichatschke, editors,
Ill–Posed Variational Problems and Regularization Techniques, number
477 in Lecture Notes in Economics and Mathematical Systems, pages
79–98. Springer Verlag, Berlin, 1999.

28

[15] M. C. Ferris and T. S. Munson. Complementarity problems in GAMS
and the PATH solver. Journal of Economic Dynamics and Control,
24:165–188, 2000.

[16] M. C. Ferris and T. S. Munson. Preprocessing complementarity prob-
lems. In M. C. Ferris, O.L. Mangasarian, and J. S. Pang, editors,
Complementarity: Applications, Algorithms and Extensions, volume 50
of Applied Optimization, pages 143–164, Dordrecht, The Netherlands,
2001. Kluwer Academic Publishers.

[17] M. C. Ferris and J. S. Pang. Engineering and economic applications of
complementarity problems. SIAM Review, 39:669–713, 1997.

[18] M. C. Ferris and F. Tin-Loi. Limit analysis of frictional block assemblies
as a mathematical program with complementarity constraints. Interna-

tional Journal of Mechanical Sciences, 43:209–224, 2001.

[19] A. Fischer. A special Newton-type optimization method. Optimization,
24:269–284, 1992.

[20] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm
for large-scale constrained optimization. SIAM Journal on Optimization,
28, 2002.

[21] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A practical
anti-cycling procedure for linearly constrained optimization. Mathemat-

ical Programming, 45:437–474, 1989.

[22] P. T. Harker and J. S. Pang. Existence of optimal solutions to math-
ematical programs with equilibrium constraints. Operations Research

Letters, 7:61–64, 1988.

[23] T. Kehoe. A numerical investigation of the multiplicity of equilibria.
Mathematical Programming Study, 23:240–258, 1985.

[24] M. Kojima and S. Shindo. Extensions of Newton and quasi-Newton
methods to systems of PC1 equations. Journal of Operations Research

Society of Japan, 29:352–374, 1986.

[25] M. M. Kostreva. Elasto-hydrodynamic lubrication: A non-linear com-
plementarity problem. International Journal for Numerical Methods in

Fluids, 4:377–397, 1984.

29

[26] Z.-Q. Luo, J. S. Pang, and D. Ralph. Mathematical Programs with

Equilibrium Constraints. Cambridge University Press, 1996.

[27] E. Maskin and J. Tirole. A theory of dynamic oligopoly, I: Overview and
quantity competition with large fixed costs. Econometrica, 56:549–569,
1988.

[28] E. Maskin and J. Tirole. A theory of dynamic oligopoly, II: Price com-
petition, kinked demand curves, and edgeworth cycles. Econometrica,
56:571–579, 1988.

[29] L. Mathiesen. Computation of economic equilibria by a sequence of
linear complementarity problems. Mathematical Programming Study,
23:144–162, 1985.

[30] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow.
The semismooth algorithm for large scale complementarity problems.
INFORMS Journal on Computing, 13:294–311, 2001.

[31] B. A. Murtagh and M. A. Saunders. MINOS 5.0 user’s guide. Technical
Report SOL 83.20, Stanford University, Stanford, California, 1983.

[32] J. Outrata, M. Kočvara, and J. Zowe. Nonsmooth Approach to Op-

timization Problems with Equilibrium Constraints. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1998.

[33] J. S. Pang and J. C. Trinkle. Complementarity formulations and exis-
tence of solutions of multi-rigid-body contact problems with Coulomb
friction. Mathematical Programming, 73:199–226, 1996.

[34] J. P. Pinter. Global Optimization in Action. Kluwer Academic Publish-
ers, Dordrecht, 1996.

[35] D. Ralph. Global convergence of damped Newton’s method for nons-
mooth equations, via the path search. Mathematics of Operations Re-

search, 19:352–389, 1994.

[36] S. M. Robinson. Shadow prices for measures of effectiveness I: Linear
model. Operations Research, 41:518–535, 1993.

[37] S. M. Robinson. Shadow prices for measures of effectiveness II: General
model. Operations Research, 41:536–548, 1993.

30

[38] T. F. Rutherford. MILES: A mixed inequality and nonlinear equation
solver. Working Paper, Department of Economics, University of Col-
orado, Boulder, 1993.

[39] T. F. Rutherford. Extensions of GAMS for complementarity problems
arising in applied economic analysis. Journal of Economic Dynamics

and Control, 19:1299–1324, 1995.

[40] T. F. Rutherford. Applied general equilibrium modeling with MPSGE
as a GAMS subsystem: An overview of the modeling framework and
syntax. Computational Economics, 14:1–46, 1999.

[41] T. F. Rutherford. Private communication, January 2002.

[42] N. V. Sahinidis. BARON: A General Purpose Global Optimization Soft-
ware Package. Journal of Global Optimization, 8:201–205, 1996.

[43] M. Shubik. Game Theory, Money and the Price System: The Selected

Essays of Martin Shubik, volume 2. Edward Elgar, Cheltenham, Eng-
land, 1999.

[44] B. H. Stevens. Location theory and programming models: The von
thünen case. Papers of the Regional Science Association, 21:19–34, 1968.

[45] M. Tawarmalani and N. V. Sahinidis. Global Optimization of Mixed
Integer Nonlinear Programs: A Theoretical and Computational Study.
Mathematical Programming, (submitted 1999).

[46] F. Tin-Loi and N.S. Que. Nonlinear programming approaches for an
inverse problem in quasibrittle fracture. International Journal of Me-

chanical Sciences, 2002.

[47] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti. A
multistart scatter search heuristic for smooth NLP and MINLP prob-
lems. Technical report, University of Texas at Austin, 2002.

[48] G. van der Laan, A.J.J. Talman, and L. Van der Heyden. Simplicial
variable dimension algorithms for solving the nonlinear complementar-
ity problem on a product of unit simplicies using a general labelling.
Mathematics of Operations Research, 12:377–397, 1987.

31

[49] R. J. Vanderbei and D. F. Shanno. An interior–point algorithm for
nonconvex nonlinear programming. Computational Optimization and

Applications, 13:231–252, 1999.

[50] S. J. Wright. Primal–Dual Interior–Point Methods. SIAM, Philadelphia,
Pennsylvania, 1997.

32

A Example of GAMS MPEC syntax

$TITLE Multiple equilibria in a simple GE model

SET G GOODS /G1*G4/

S SECTORS /S1,S2/

C CONSUMERS /C1*C4/;

TABLE E(G,C) Factor endowments

C1 C2 C3 C4

G1 5

G2 5

G3 40

G4 40

TABLE ALPHA(G,C) Budget shares

C1 C2 C3 C4

G1 0.52 0.86 0.50 0.06

G2 0.40 0.10 0.20 0.25

G3 0.04 0.02 0.2975 0.0025

G4 0.04 0.02 0.0025 0.6875

TABLE A(G,S) Activity analysis matrix

S1 S2

G1 6 -1

G2 -1 3

G3 -4 -1

G4 -1 -1

POSITIVE

VARIABLES Y(s) Activity level

P(g) Relative price;

VARIABLES OBJ

H(c) Income level;

EQUATIONS PROFIT, MARKET, INCOME, OBJDEF;

OBJDEF.. OBJ =E= SUM(G,P(G));

33

* The following constraint removes one equilibrium

RESTRICT.. SUM(G,P(G)) =G= 3.64;

PROFIT(S).. SUM(G, -A(G,S)*P(G)) =G= 0;

MARKET(G).. SUM(C, E(G,C)) + SUM(S, A(G,S)*Y(S))

=G= SUM(C, ALPHA(G,C) * H(C)/P(G));

INCOME(C).. H(C) =E= SUM(G, P(G) * E(G,C));

P.L(G) = 1;

* Protect against domain violations

P.LO(G) = 1e-4;

* Fix a numeraire

P.FX("G1") = 1;

MODEL KEHOE /OBJDEF, PROFIT.Y, MARKET.P, INCOME/;

Solve KEHOE using MPEC min obj;

34

B Model Statistics for Test Problems

Name m n nz nlnz

AAMPEC_1 70 72 430 247

AAMPEC_2 70 72 430 247

AAMPEC_3 70 72 430 247

AAMPEC_4 70 72 430 247

AAMPEC_5 70 72 430 247

AAMPEC_6 70 72 430 247

BARD1 5 6 14 2

BARD2 10 13 33 4

BARD3 6 7 19 5

BARTRUSS3_0 29 36 96 38

BARTRUSS3_1 29 36 96 38

BARTRUSS3_2 29 36 96 38

BARTRUSS3_3 27 34 90 38

BARTRUSS3_4 27 34 90 38

BARTRUSS3_5 27 34 90 38

DEMPE 4 5 9 5

DEMPE2 3 4 7 5

DESILVA 5 7 13 10

EX9_1_1M 8 9 23 0

EX9_1_2M 6 7 14 0

EX9_1_3M 7 9 23 0

EX9_1_4M 5 6 12 0

FINDA10L 229 211 877 200

FINDA10S 229 211 877 200

FINDA10T 229 211 877 200

FINDA15L 229 211 877 200

FINDA15S 229 211 877 200

FINDA15T 229 211 877 200

FINDA30S 229 211 877 200

FINDA30T 229 211 877 200

FINDA35L 229 211 877 200

FINDA35S 229 211 877 200

FINDA35T 229 211 877 200

FINDB10L 203 198 812 200

35

FINDB10S 203 198 812 200

FINDB10T 203 198 812 200

FINDB15L 203 198 812 200

FINDB15S 203 198 812 200

FINDB15T 203 198 812 200

FINDB30L 203 198 812 200

FINDB30S 203 198 812 200

FINDB30T 203 198 812 200

FINDB35L 203 198 812 200

FINDB35S 203 198 812 200

FINDB35T 203 198 812 200

FINDC10L 187 190 772 200

FINDC10S 187 190 772 200

FINDC10T 187 190 772 200

FINDC15L 187 190 772 200

FINDC15S 187 190 772 200

FINDC15T 187 190 772 200

FINDC30L 187 190 772 200

FINDC30S 187 190 772 200

FINDC30T 187 190 772 200

FINDC35L 187 190 772 200

FINDC35S 187 190 772 200

FINDC35T 187 190 772 200

FJQ1 7 8 21 10

FRICTIONALBLOCK_1 682 682 2690 0

FRICTIONALBLOCK_2 1154 1154 4618 0

FRICTIONALBLOCK_3 854 854 3338 0

FRICTIONALBLOCK_4 979 979 3776 0

FRICTIONALBLOCK_5 1025 1025 3924 0

FRICTIONALBLOCK_6 2855 2855 11364 0

GAUVIN 3 4 8 2

HQ1 2 3 5 2

KEHOE1 11 11 49 20

KEHOE2 11 11 49 20

KEHOE3 11 11 49 24

KOJSHIN3 5 5 18 8

KOJSHIN4 5 5 18 8

MSS 5 6 26 25

36

NAPPI_A 98 116 330 88

NAPPI_B 98 116 330 88

NAPPI_C 98 116 330 88

NAPPI_D 98 116 330 88

OUTRATA31 5 6 17 10

OUTRATA32 5 6 18 11

OUTRATA33 5 6 18 11

OUTRATA34 5 6 20 13

OZ3 6 7 19 0

QVI 3 5 9 4

THREE 4 3 8 6

TINLOI 101 105 10201 100

TINQUE_DHS2 4834 4805 65315 13024

TINQUE_DNS2 4834 4805 65315 13024

TINQUE_MIS2 4066 4037 48803 10912

TINQUE_PSS2 4578 4549 59555 12320

TINQUE_SWS2 4578 4549 59555 12320

TINQUE_SWS3 5699 5671 67397 17920

TOLLMPEC 2377 2380 10488 1754

37

