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Abstract. Support vector machines can be posed as quadratic programming problems in a variety of ways.
This paper investigates a formulation using the two-norm for the misclassification error that leads to a positive
definite quadratic program with a single equality constraint under a duality construction. The quadratic term
is a small rank update to a diagonal matrix with positive entries. The optimality conditions of the quadratic
program are reformulated as a semismooth system of equations using the Fischer-Burmeister function and a
damped Newton method is applied to solve the resulting problem. The algorithm is shown to converge from
any starting point with a Q-quadratic rate of convergence. At each iteration, the Sherman-Morrison-Woodbury
update formula is used to solve the key linear system. Results for a large problem with 60 million observa-
tions are presented demonstrating the scalability of the proposed method on a personal computer. Significant
computational savings are realized as the inactive variables are identified and exploited during the solution
process. Further results on a small problem separated by a nonlinear surface are given showing the gains in
performance that can be made from restarting the algorithm as the data evolves.

1. Introduction

The support vector machine is used to construct a (linear or nonlinear) surface that parti-
tions measurements taken from representative subsets of known populations. The surface
is then used to assign unknown observations to the populations, where the accuracy of
the assignment is determined by cross-validation statistics [33]. Since the classifications
for the input data are given, this technique is an example of a supervised learning process
from the machine learning community. In this paper, only the two-population case is
considered. An example application is when the two populations represent malignant
and benign tumors [7, 22, 23], where historical data is used to define a surface that can
later be used to classify a tumor found in a new patient. Several models for the calcula-
tion of an “optimal” partitioning surface exist. In this paper, a soft-margin support vector
machine is used that leads to a strongly convex quadratic program with simple bounds
on the variables and a single equality constraint.

The main goal of this paper is to present an algorithm for solving the resulting
optimization problem that converges from any starting point and, near a solution, has a
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quadratic rate of convergence. For this purpose, a semismooth method [5] for processing
the first-order optimality conditions for the problem is prescribed. The complementarity
reformulation of the problem is equivalent to the original quadratic program and involves
just one more variable (the multiplier on the equality constraint). All elements of the
generalized Jacobian are shown to be nonsingular, and the sequence produced by the
algorithm contains an accumulation point. Standard theory can then be applied to show
that the algorithm actually converges to a solution at a Q-quadratic rate.

Other algorithms have been proposed for solving this class of problem, including an
interior-point method in [8, 10] and an active-set method in [21]. For related formulations
[8] there are many different techniques, see for example [2, 4, 14, 20, 28, 32, 35] and the
references contained therein. The proposed semismooth algorithm implicitly combines
ideas from both of these methods. It solves linear systems of equations of similar form
to the interior-point method and therefore reuses the extensive computational technol-
ogy that has been developed in that field. Also, an “active” set implicitly defined by the
algorithm can be exploited in the linear algebra calculations, leading to substantial com-
putational savings. Further, the amount of storage required for the semismooth method
is smaller than that of the interior-point method.

Another key property of the semismooth method not shared by the interior-point
implementations is the ability to restart from any point. Thus, as new data becomes
available, the proposed method can update the current solution, as opposed to solving
the problem from scratch. This algorithm feature is important when dealing with datasets
that evolve.

Apart from these properties, the implementation of the method scales well to large
sample populations. The target sample population size is between 1 million and 60 mil-
lion observations. Note that 60 million observations corresponds to the current population
of Britain, a random sampling of 20% of the current population of the United States, or
1% of the current population of the world. Therefore, the 60 million observation problem
is a reasonable test problem. To achieve scalability, the Sherman-Morrison-Woodbury
update formula is used to calculate the direction, and asynchronous I/O is used to retrieve
the observation data from disk. The resulting code uses a small number of vectors with
memory and disk requirements suitable for a personal computer.

The paper is organized as follows. Section 2 derives the support vector machine
formulation used for the subsequent analysis and testing. The problem is posed as a
mixed complementarity problem. Specifically, let L and E be a partition of the indi-
ces {1, 2, . . . , n}, implicitly corresponding to lower bounded and free variables, and let
F : �n → �n be a given function. Let m = card (L) and c = card (E). The mixed
complementarity problem is to find an z∗

L ∈ �m and z∗
E ∈ �c such that

0 ≤ FL(zL, zE ) ⊥ zL ≥ 0
FE (zL, zE ) = 0,

(1)

where ⊥ is defined componentwise as 0 ≤ a ⊥ b ≥ 0 if and only if a ≥ 0, b ≥ 0,
and ab = 0. This problem is the standard nonlinear complementarity problem when
c = 0 and a square system of nonlinear equations when m = 0. See [9] for definitions
of general mixed complementarity problems and applications. An existing procedure
for constructing nonlinear separating surfaces is also outlined. This procedure results
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in quadratic optimization problems of the form that the proposed method can solve
efficiently.

Section 3 details a damped Newton method for semismooth equations [5, 25] for
solving such complementarity problems. The method uses the Fischer-Burmeister func-
tion [11] to reformulate the complementarity conditions as a system of semismooth
equations. The basic theory for these methods is given, with appropriate citations to the
literature. A proof that the method converges from any starting point when applied to the
support vector machine formulation is provided. In particular, the Newton direction at
any arbitrary point is calculated by using applications of the Sherman-Morrison-Wood-
bury update formula [27].

Section 4 discusses an implementation of the method using out-of-core computa-
tions. Results for a large test problem containing 60 million points are presented and
compared with the interior-point method results given in [8]. Representative results for
constructing a nonlinear separating surface are given, along with details on restarting
the method from a given solution when the number of observations in the data changes.

2. Support vector machines

The linear support vector machine attempts to separate two finite point sets with a
hyperplane such that the separation margin is maximized. Consider two populations
P+ and P− that have been sampled, and let P+ ⊆ P+ and P− ⊆ P− denote finite
sample sets with P ≡ P+ ∪ P− representing the entire set of sampled elements. Let
m = card (P ) denote the size of the total population. Associated with each p ∈ P is a
vector a(p) ∈ �f that measures f features for the particular element. Furthermore, let
A(P ) ∈ �m×f denote the matrix formed by the measured observations for each p ∈ P ,
and define A+ := A(P+) and A− := A(P−).

First, assume that the two point sets are disjoint, that is, the intersection of their
convex hulls (denoted here by co ) is empty:

(co ∪p∈P+ a(p)) ∩ (co ∪p∈P− a(p)) = ∅.

In this case, one can select w ∈ �f and γ ∈ � such that A+w > γ and A−w < γ . The
hyperplane {a ∈ �f | aT w = γ } strictly separates the two point sets; and the separation
margin [2, 32, 35], the minimum distance from the hyperplane to the convex hulls of
the point sets, is 2

‖w‖2
2
. Therefore, an optimization problem to maximize the separation

margin would be

maxw,γ
2

‖w‖2
2

subject to A+w > γ

A−w < γ.

However, maximizing 2
‖w‖2

2
is the same as minimizing 1

2 ‖w‖2
2, and the strict inequal-

ities can be removed by normalizing the system [18]. Therefore, the following convex
quadratic optimization problem is obtained:

minw,γ
1
2 ‖w‖2

2
subject to A+w − γ e ≥ e

A−w − γ e ≤ −e,

(2)
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where e is a vector of all ones of appropriate dimension. The constraints can be more
succinctly written by defining an “indicator” function, d(p), as follows:

d(p) :=
{

1 if p ∈ P+
−1 if p ∈ P−

with D denoting the diagonal matrix formed from d(p) for all p ∈ P . Then, the con-
straints of (2) can be rewritten simply as

D(Aw − γ e) ≥ e.

Unfortunately, the underlying assumption above that the two point sets are disjoint
is typically not satisfied, and (2) is infeasible. In this case, a surface is constructed that
minimizes the error in satisfying the inequalities, termed the misclassification error in
the machine learning community [16]. The resulting optimization problem in this case
becomes

minw,γ,y
1
2 ‖y‖2

2
D(Aw − γ e) + y ≥ e, y ≥ 0,

(3)

where the two norm of the misclassification error is minimized. Other norms can be
used for the misclassification error, which lead to other problem formulations. When the
two norm is used the constraint y ≥ 0 is unnecessary and is therefore dropped from the
subsequent discussion.

The two problems, (2) and (3), are combined by introducing a parameter ν > 0 that
weights the two competing goals, maximizing the separation margin and minimizing
the misclassification error. The resulting optimization problem, termed a soft-margin
support vector machine, is

minw,γ,y
1
2 ‖w‖2

2 + ν
2 ‖y‖2

2
D(Aw − γ e) + y ≥ e,

(4)

which is a convex quadratic program that is feasible with the objective bounded below
by zero. Hence, (4) has a solution, (w∗, γ ∗, y∗). The support vectors are the points where
D(Aw∗ − γ ∗e) ≤ e, that is, the misclassified points and the points on the bounding
hyperplanes.

The Wolfe dual [15] of (4) is the strongly convex quadratic program

minx
1

2ν
xT x + 1

2xT DAAT Dx − eT x

eT Dx = 0, x ≥ 0,
(5)

which has a unique solution, x∗. The quadratic term consists of a rank-f update to a
positive definite matrix, an observation that will be exploited in the algorithm develop-
ment and resultant linear algebra calculations. The solution (w, γ, y) of (4) is recovered
from a solution x of (5) by setting w = AT Dx, γ to the optimal multiplier of eT Dx = 0,
and y = max(e − D(Aw − γ e), 0).

The final step in the problem derivation is to write first-order necessary and sufficient
optimality conditions for (5), which form the mixed linear complementarity problem:

0 ≤ ( 1
ν
I + DAAT D

)
x − Deγ − e ⊥ x ≥ 0

eT Dx = 0.
(6)
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Following the notation of the introduction, we have that n = m + 1 and

z =
[

x

γ

]
, F (z) =

[ 1
ν
I + DAAT D −De

eT D 0

]
z +

[−e

0

]
.

The solution to this linear complementarity problem is unique, as proven in the following
theorem.

Theorem 1. Let card (P+) > 0 and card (P−) > 0. The mixed complementarity prob-
lem (6) has a unique solution.

Proof. Since (5) is a strongly convex quadratic program that is feasible and bounded
below, it has a unique solution. Let x∗ denote this solution. Furthermore, there must
exist a γ ∗ such that (x∗, γ ∗) is a solution to (6). The remainder of this proof shows that
γ ∗ is unique.

Assume that x∗ = 0. Therefore, any γ ∗ solving (6) must satisfy −Deγ ∗ − e ≥ 0.
Recalling the definition of D and using the fact that card (P+) > 0 and card (P−) > 0
by assumption, the contradiction that γ ∗ ≤ −1 and γ ∗ ≥ 1 is obtained. Therefore,
x∗ �= 0.

Since x∗ solves (5) and x∗ �= 0, there must be an i such that x∗
i > 0 because x∗ is

feasible for (5). Therefore, any γ ∗ solving (6) must satisfy
[(

1

ν
I + DAAT D

)
x∗ − Deγ ∗ − e

]
i

= 0.

Hence, γ ∗ is uniquely determined by this equation, and the proof is complete. ��
The solution of the complementarity problem leads directly to a discriminant func-

tion f (a) = aT w − γ = aT AT Dx − γ . Given a new data point a, the sign of f (a)

determines whether the new point is assigned to P+ or P−, respectively. Generalization
ability measures how well such a discriminant function correctly classifies the new data.
The reason for maximizing the separation margin is to improve the generalization ability
[17] of the computed separating surface.

A linear surface is not always sufficient to separate the two populations. Instead,
following Mangasarian [19], one can use a nonlinear discriminant induced by a kernel
function K:

f (a) = K(aT , AT )Dx − γ.

The function K maps �k×f × �f ×m into �k×m. The optimal values of x and γ can be
found from a generalization of (6), namely,

0 ≤ ( 1
ν
I + DK(A, AT )D

)
x − Deγ − e ⊥ x ≥ 0

eT Dx = 0.

The resulting problem is structurally the same as the linear support vector problem and
hence can be solved by using the proposed semismooth method. However, the matrix
K(A, AT ) is a dense m × m matrix for all popular choices of kernel function [19], and
thus the computational efficiencies outlined in Section 4 are no longer applicable.
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To overcome this, Fine and Scheinberg [10] suggest approximating K(A, AT )

using an incomplete Cholesky factorization. Essentially, they compute a lower
triangular matrix G ∈ �m×k with k � m such that

GGT ≈ K(A, AT ).

The columns of G are chosen by considering only diagonal elements of K(A, AT ). In
particular, the largest remaining diagonal element is selected as the pivot. This approxi-
mation is shown to produce similar generalization results to the full kernel implementa-
tion. The resulting complementarity problem is identical to (6) except that A is replaced
by G. Fine and Scheinberg use an interior-point method to solve the complementarity
problem that exploits this structure by using a product form Cholesky factorization. The
proposed algorithm described in the next section uses a semismooth method combined
with the Sherman-Morrison-Woodbury update formula to exploit the structure.

3. Algorithm

A semismooth method [5, 30] based on the Fischer-Burmeister merit function [11] is
prescribed to solve the linear mixed complementarity problems defined by the necessary
and sufficient first-order optimality conditions found in (6). Essentially, the semismooth
method reformulates this complementarity problem as a system of nonlinear, nonsmooth
equations and applies a generalized Newton method to find a solution. The basic semi-
smooth method and convergence theory are first presented, followed by a discussion of
the Fischer-Burmeister function and its properties. The method is then specialized for
the support vector machine problem, and convergence is proven. The proofs show how
to perform the linear algebra in the implementation.

3.1. Basic semismooth method

The class of semismooth functions [24, 29, 31] are a generalized notion of continuously
differentiable functions that are both Lipschitzian and directionally differentiable. To
define the class of semismooth functions precisely, we need the notion of the B-sub-
differential and a generalized Jacobian. Let G : �n → �n be a Lipschitzian function
and DG denote the set of points where G is differentiable. This definition for DG is
appropriate because, by Rademacher’s theorem, G is differentiable almost everywhere.

Before proceeding, some notation used in the sequel is described. If F : �n → �n,
its Jacobian at a point is denoted by F ′(z) and ∇F(z) denotes the transposed Jacobian.
In particular,

[
F ′(z)

]
i,j

:= ∂Fi(z)
∂zj

[∇F(z)]i,j := ∂Fj (z)

∂zi
.

Furthermore, F ′(z; d) is the directional derivative of F at z in the direction d. The
following definitions can then be made.
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Definition 1 (B-subdifferential [31]). The B-subdifferential of G at z is

∂BG(z) :=
{
H | ∃ {zk} → z, zk ∈ DG, and lim

{zk}→z
G′(zk) = H

}
.

Definition 2 (Generalized Jacobian [3]). The Clarke generalized Jacobian of G at z is

∂G(z) := co ∂BG(z),

where co denotes the convex hull.

Definition 3 (Semismooth). Let G : �n → �n be locally Lipschitzian at z ∈ �n. Then
G is semismooth at z if

lim
H∈∂G(z+td′)
d ′→d,t↓0

Hd ′ (7)

exists for all d ∈ �n. In particular, G is directionally differentiable at z with G′(z; d)

given by the limit in (7). If, in addition, for any d → 0 and any H ∈ ∂G(z + d),

Hd − G′(z; d) = O
(
‖d‖2

)
,

then G is said to be strongly semismooth at z. Furthermore, G is a (strongly) semismooth
function if G is (strongly) semismooth for all z ∈ �n.

To solve the system of equations G(z) = 0, where G : �n → �n is a semi-
smooth function, we use a damped Newton method [30]. To this end, the merit function
g : �n → � is defined as g(z) := 1

2 ‖G(z)‖2
2 and an assumption is made that g is

continuously differentiable. The algorithm follows.

Algorithm 2 (Damped Newton Method for Semismooth Equations)
0. (Initialization) Let z0 ∈ �n, ρ > 0, p > 2, and σ ∈ (

0, 1
2

)
be given. Set k = 0.

1. (Termination) If g(zk) = 0, stop.
2. (Direction Generation) Otherwise, let Hk ∈ ∂BG(zk), and calculate dk ∈ �n solv-

ing the Newton system:

Hkdk = −G(zk). (8)

If either (8) is unsolvable or the descent condition

∇g(zk)T dk < −ρ ‖dk‖p
2 (9)

is not satisfied, then set dk = −∇g(zk).
3. (Linesearch) Choose tk = 2−ik , where ik is the smallest integer such that

g
(
zk + 2−ik dk

)
≤ g(zk) + σ2−ik∇g(zk)T dk. (10)

4. (Update) Let zk+1 := zk + tkdk and k := k + 1. Go to 2.

The following convergence theorem, whose proof can be found in [30, 5], then holds:
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Theorem 3. Let G : �n → �n be semismooth for all z ∈ �n and g(z) be continuously
differentiable. Let {zk} be a sequence generated by Algorithm 2. Then any accumulation
point of {zk} is a stationary point for g(z). Furthermore, if one of these accumulation
points, say z∗, solves the system G(z) = 0 and all H ∈ ∂BG(z∗) are invertible, then the
following hold:

a. For all k sufficiently large, the Newton direction calculated in (8) exists and satisfies
both the descent condition (9) and linesearch rule (10) with tk = 1.

b. {zk} converges to z∗, and the rate of convergence is
Q-superlinear.

c. If, in addition, G is strongly semismooth at z∗, then the rate of convergence is Q-
quadratic.

3.2. Fischer-Burmeister function

Complementarity problems such as the one in (6) can be solved by reformulating them
as (square) systems of semismooth equations and applying Algorithm 2 [5]. A reformu-
lation using the Fischer-Burmeister function [11] is used. Let φ : �2 → � be defined
as follows:

φ(a, b) := a + b −
√

a2 + b2.

This function has the NCP-property that φ(a, b) = 0 ⇔ 0 ≤ a ⊥ b ≥ 0. Therefore,
letting n = m + c, � : �n → �n can be defined as

�(z) :=




φ(z1, F1(z))
...

φ(zm, Fm(z))

Fm+1(z)
...

Fn(z)




, (11)

where there are m nonlinear complementarity constraints and c equation constraints.
The properties of this function are summarized in the following theorem.

Theorem 4 ([1]). Let F : �n → �n be continuously differentiable. Then the following
hold:

a. � is a semismooth function. If, in addition, every Fi is twice continuously differen-
tiable with Lipschitz continuous second derivatives, then � is strongly semismooth
everywhere.

b. 	(z) := 1
2 ‖�(z)‖2

2 is continuously differentiable with ∇	(z) = HT �(z) for any
H ∈ ∂B�(z).

c. �(z∗) = 0 if and only if z∗ solves the complementarity problem defined by F .
d. If z∗ is a stationary point of 	 and there exists an H ∈ ∂B�(z∗) that is invertible,

then �(z∗) = 0, and hence z∗ solves the complementarity problem defined by F .
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Methods for calculating an element of the B-subdifferential are found, for example,
in [1, 5]. While the B-subdifferential is used in the algorithm, an overestimate of the
B-subdifferential detailed in the following theorem is used for the proofs in the sequel.

Theorem 5 ([1, 5]). Let F : �n → �n be continuously differentiable. Then

∂B�(z) ⊆ {
Da + DbF

′(z)
}
,

where Da ∈ �n×n and Db ∈ �n×n are diagonal matrices with entries defined as follows:

a. For all i ∈ {1, . . . , m}: If ‖(zi, Fi(z))‖ �= 0, then

(Da)ii = 1 − zi

‖(zi, Fi(z))‖
(Db)ii = 1 − Fi(z)

‖(zi, Fi(z))‖;

otherwise

((Da)ii , (Db)ii) ∈
{
(1 − η, 1 − ρ) ∈ �2 | ‖(η, ρ)‖ ≤ 1

}
.

b. For all i ∈ {m + 1, . . . , n}:
(Da)ii = 0

(Db)ii = 1.

Furthermore, for all i ∈ {1, . . . , n}, (Da)ii ≥ 0, (Db)ii ≥ 0, and (Da)ii + (Db)ii > 0.
In particular, Da + Db is positive definite.

3.3. Support vector machine specialization

At this stage, it would be nice to present standard convergence material showing that
Algorithm 2 converges to a solution of (6), perhaps with a given rate, when the comple-
mentarity problem is reformulated by using the Fischer-Burmeister function. Unfortu-
nately, such results are not available. The typical results presented in the literature either
assume that the equation in (6) can be explicitly substituted out of the model (which
cannot be done in this case) or assume that F is a uniform P-function (which is also not
the case here). Instead of using these results, we directly prove the necessary conditions
for the support vector machine problem.

The first step to show that Algorithm 2 converges when applied to (6) is to establish
that for all z ∈ �n, all H ∈ ∂B�(z) are invertible. To do this, we give a method for
computing the Newton direction from step 2 of Algorithm 2.

Recall that the complementarity problem (6) is solved by using the Fischer-
Burmeister reformulation. Therefore, the following system of equations is solved at
every iteration of Algorithm 2:[

Da + Db(
1
ν
I + DAAT D) −DbDe

eT D 0

] [
x

γ

]
=

[
r1
r2

]

for some r1 and r2 and diagonal matrices Da and Db chosen according to Theorem 5.



194 M.C. Ferris, T.S. Munson

Proposition 1. Suppose the mixed complementarity problem and F are defined as in
(1). For all i ∈ {1, . . . , m}, if (Db)ii = 0, then zi = 0 and Fi(z) ≥ 0.

Proof. Let i be given with (Db)ii = 0. There are two cases to consider. If ‖(zi, Fi(z))‖ >

0, then

0 = (Db)ii = 1 − Fi(z)

‖(zi, Fi(z))‖ �⇒ Fi(z)

‖(zi, Fi(z))‖ = 1

�⇒ Fi(z) = ‖(zi, Fi(z))‖ > 0.

Furthermore, since Fi(z) > 0 and Fi(z) = ‖(zi, Fi(z))‖, zi = 0. In the other case,
‖(zi, Fi(z))‖ = 0, which implies zi = 0 and Fi(z) = 0. Therefore, the conclusion of
the proposition holds in both cases, and the proof is complete. ��
Proposition 2. Let card (P+) > 0 and card (P−) > 0. Then for the model considered
in (6), Db �= 0.

Proof. Assume Db = 0. Then by Proposition 1, for all i ∈ {1, . . . , m}, zi = 0 and
Fi(z) ≥ 0. The definition of F implies that −Deγ − e ≥ 0 with D defined in Section
2. Since card (P+) > 0 and card (P−) > 0 by assumption, the system reduces to
two inequalities, γ − 1 ≥ 0 and −γ − 1 ≥ 0, which implies γ ≥ 1 and γ ≤ −1, a
contradiction. Therefore, the assumption was false, and the proposition is proved. ��
Theorem 6. Let card (P+) > 0, card (P−) > 0, and ν > 0. Then for the model
considered in (6) the following matrix system has a unique solution

[
Da + Db(

1
ν
I + DAAT D) −DbDe

eT D 0

] [
x

γ

]
=

[
r1
r2

]

for all Da and Db defined in Theorem 5 and arbitrary r1 and r2.

Proof. Since Da ≥ 0 and Db ≥ 0 with Da + Db positive definite by Theorem 5, it
follows from ν > 0 that Da + 1

ν
Db is also positive definite.

Let D̄ := Da + 1
ν
Db. From the Sherman-Morrison-Woodbury identity, we have that

(D̄ + DbDAAT D)−1 = D̄−1 − D̄−1DbDA(I + AT DD̄−1DbDA)−1AT DD̄−1.

Note that I + AT DD̄−1DbDA is a symmetric positive definite matrix and therefore
invertible. Hence, D̄ + DbDAAT D is invertible with the inverse defined by the
Sherman-Morrison-Woodbury identity and

x = (D̄ + DbDAAT D)−1(DbDeγ + r1).

Substituting x out of the system leaves the following equation,

eT D(D̄ + DbDAAT D)−1(DbDeγ + r1) = r2,

which simplifies to

eT D(D̄ + DbDAAT D)−1DbDeγ = r2 − eT D(D̄ + DbDAAT D)−1r1.
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A proof that M := eT D(D̄ + DbDAAT D)−1DbDe is not zero is now given.
Using the Sherman-Morrison-Woodbury identity, we have the following:

M = eT D(D̄−1 − D̄−1DbDA(I + AT DD̄−1DbDA)−1AT DD̄−1)DbDe

= eT D(D̂ − D̂DA(I + AT DD̂DA)−1AT DD̂)De,

where D̂ := D̄−1Db. Since D̂ is a diagonal matrix with nonnegative diagonals, D̂ is

replaced with D̂
1
2 D̂

1
2 to obtain the system

M = eT D(D̂
1
2 D̂

1
2 − D̂

1
2 D̂

1
2 DA(I + AT DD̂

1
2 D̂

1
2 DA)−1AT DD̂

1
2 D̂

1
2 )De

= eT DD̂
1
2 (I − D̂

1
2 DA(I + AT DD̂

1
2 D̂

1
2 DA)−1AT DD̂

1
2 )D̂

1
2 De

= eT DD̂
1
2 (I + D̂

1
2 DAAT DD̂

1
2 )−1D̂

1
2 De,

where the last equality comes from the Sherman-Morrison-Woodbury identity.

The inner term, (I + D̂
1
2 DAAT DD̂

1
2 )−1, is a symmetric positive definite matrix.

Furthermore, since card (P+) > 0, card (P−) > 0 by assumption, it follows from Prop-

osition 2 that Db �= 0. Hence, D̂
1
2 �= 0 and eT DD̂

1
2 �= 0. Therefore, M �= 0, and γ and

x are uniquely determined for any r1 and r2. ��
Hence, by Theorem 3.10, the Newton direction exists for all z and all choices of Da

and Db. The next step is to show that the sequence generated by Algorithm 2 has an
accumulation point.

Theorem 7. Suppose that card (P+) > 0 and card (P−) > 0. Then Algorithm 2,
applied to the problem (6), has an accumulation point.

Proof. The proof is adapted from [34]. The level sets of 	(z) are shown to be bounded,
and hence by the descent properties of the algorithm, there must be an accumulation
point of the iterates. To prove that the level sets of 	(z) (where z = (x, γ )) are bounded,
we need only show that ‖�‖ defined by (11) is coercive. The fact that if (u → −∞) or
(v → −∞) or (u → ∞ and v → ∞), then ‖φ(u, v)‖ → ∞ is used extensively in the
remainder of this proof.

Suppose not; that is, suppose ‖�‖ is not coercive. Let {∥∥xk, γ k
∥∥} → ∞ be such that

∥∥∥�(xk, γ k)

∥∥∥ < ∞. (12)

Without loss, a subsequence can be taken for which

(xk, γ k)∥∥xk, γ k
∥∥ → (x̄, γ̄ ) �= 0.

Furthermore, on this subsequence

F(xk, γ k)∥∥xk, γ k
∥∥ →

[
Qx̄ − Deγ̄

eT Dx̄

]
,

where Q is the positive definite matrix multiplying x in (6).
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Define w̄i = Fi(x̄, γ̄ ) for i = 1, 2, . . . , m. If w̄i < 0 for some i, then Fi(x
k, γ k) →

−∞, resulting in |φ(xk
i , Fi(x

k, γ k))| → ∞. Hence
∥∥�(xk, γ k)

∥∥ → ∞, a contradiction
to (12). Similarly, whenever x̄i < 0. Thus, w̄ ≥ 0, x̄ ≥ 0.

Now, if w̄i x̄i > 0 for some i, then {xk
i } → ∞ and {Qi·xk − Diiγ

k − 1} → ∞. In
this case, |φ(xk

i , Fi(x
k, γ k))| → ∞, and hence

∥∥�(xk, γ k)
∥∥ → ∞, a contradiction to

(12). Thus, w̄T x̄ = 0.
Furthermore, if eT Dx̄ �= 0, it follows that |�m+1(x

k, γ k)| → ∞, also a contradic-
tion to (12). Thus, eT Dx̄ = 0.

Note that w̄T x̄ = 0 and eT Dx̄ = 0 imply that x̄T Qx̄ = 0. Since Q is positive
definite, this implies that x̄ = 0. In this case, it follows from w̄ ≥ 0 that −Deγ̄ ≥ 0.
Now, because card (P+) > 0 and card (P−) > 0, this implies that γ̄ = 0. However, this
contradicts the fact that (x̄, γ̄ ) �= 0. Thus, ‖�‖ is coercive, and the proof is complete. ��

Note that Theorem 7 remains valid for any function φ that satisfies the NCP-property
and the simple implications given in the first paragraph of the proof above.

Corollary 1. Suppose that card (P+) > 0 and card (P−) > 0. Algorithm 2 applied to
(6) converges, and the rate of convergence is Q-quadratic.

Proof. � is strongly semismooth for this problem, since F is linear and 	 is continu-
ously differentiable. Furthermore, by Theorem 7 and Theorem 3, there is an accumulation
point of the sequence generated by Algorithm 2 that is a stationary point for 	. Since
all of the elements of the B-subdifferential are invertible by Theorem 6, this stationary
point solves the system �(x) = 0 by Theorem 4. The conclusion then follows from
Theorem 3. ��

4. Implementation and computational results

The main computation performed at each iteration of Algorithm 2 is to compute the
Newton direction given �(xk) and Hk ∈ ∂B�(xk).As shown in Theorem 6, the required
direction generation can be calculated by using

x = (D̄ + DbDAAT D)−1(DbDeγ + r1)

eT D(D̄ + DbDAAT D)−1DbDeγ = r2 − eT D(D̄ + DbDAAT D)−1r1.

Defining the two common components,

y = (D̄ + DbDAAT D)−1DbDe

z = (D̄ + DbDAAT D)−1r1,

leaves the equivalent system of equations:

γ = r2 − eT Dz

eT Dy

x = yγ + z.

Note that Theorem 6 guarantees that eT Dy �= 0. The implementation uses the Sherman-
Morrison-Woodbury identity to calculate y and z simultaneously with only two passes
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through the A matrix. Having y and z, one can easily construct the direction (x, γ ).
The major computational effort when using the Sherman-Morrison-Woodbury identity
to apply (D̄ + DbDAAT D)−1 is in calculating (I + AT DD̄−1DbDA)−1, since this
requires mf 2 floating-point operations, where m is typically very large.

However, further inspection reveals that the number of operations is a function of
the number of active elements for which (Db)ii > 0. By Proposition 1 the inactive
elements (those with (Db)ii = 0) have zi = 0 and Fi(z) ≥ 0. For the support vector
machine application, the active components at the solution correspond to the support
vectors, and the number of support vectors is typically much smaller than m. Therefore,
one would expect that near the solution most of the components of Db would be equal to
zero. Hence, as the iterations proceed, the amount of work per iteration should decrease
as a result of the removal of the inactive components. This reduction in computational
effort is similar to that found in active set methods, even though the algorithm does not
explicitly use an active set.

To calculate Hk and �(zk) is straightforward and uses two passes through the A

matrix. Whenever an element is found for which ‖zi, Fi(z)‖ = 0, the code simply sets
Da = 1

2 and Db = 1
2 . While, in this case, the resulting Hk may not be an element of

∂B�(zk), no difficulties were encountered on the test problems by using this definition.
Note that the theory from [1] can be used to calculate an element of ∂B�(zk) in these
cases by using two additional passes through the A matrix.

The main drawback of the semismooth method is in the number of function evalua-
tions that may be needed in order to satisfy the linesearch rule. Therefore, a nonmonotone
linesearch procedure [12, 13, 6] is used within the semismooth implementation to limit
the number of linesearches performed. The nonmonotone procedure allows for increases
in the merit function by using a reference value in the linesearch test that decreases on
average. The use of such a technique affects neither the convergence nor rate of conver-
gence results for the algorithm. For all of the tests reported, the Newton direction was
always accepted, without resorting to the linesearch procedure. Furthermore, the need
to use the gradient of the merit function was not encountered. As a result, the code is
optimized for the case where the Newton direction is accepted.

The implementation of the semismooth algorithm for the support vector machine
application uses a total of five vectors with n elements, one f × f matrix, and several
vectors with f elements. Four passes through the A matrix are performed during each
iteration of the algorithm. Access to the n vectors and observation matrix is provided
by the low-level routines developed for the interior-point method in [8]. Access to the
problem data (feature measurements) and vectors is provided by using asynchronous I/O
constructs. All of the data is stored on a large disk and sequentially accessed. While one
block of data is being read from the disk, work is performed on the data currently avail-
able. A buffer size of 250,000 elements is used by this particular code. The buffer size
corresponds to the number of rows of the A matrix kept in-core, as well as the number
of elements of the vectors kept. For the massive problem with 60 million observations
studied in Section 4.1, a total of 75 MB of RAM was used, which is easily accommodated
by most personal computers.

In principle, a conjugate gradient method could be used to calculate the Newton
direction by solving the linear system of equations. However, the number of operations
per solve is of the same order as using the Sherman-Morrison-Woodbury identity, while



198 M.C. Ferris, T.S. Munson

many more passes through the data are required. Since accessing a large data set stored
on disk is expensive, the direct method is preferred.

4.1. Interior-point comparison

A comparison with the interior-point method in [8] shows that the linear algebra
performed is similar. However, the semismooth method can use the reduction in the
linear algebra cost because of the active component identification, whereas the interior-
point method cannot, because of the interiority condition. Furthermore, the semismooth
method performs only one solve per iteration, while the (predictor-corrector) interior-
point method does two. One would therefore expect to obtain better performance from
the semismooth method than from the interior-point method. To test this hypothesis, we
used the randomly generated test problem from [8], which has 60 million observations
where each observation measures 34 features and each feature is an integer between 1
and 10. A starting point of (x, γ ) = 0 was used for these tests. The log of the residual is
plotted in Figure 1 for a run using the full dataset of 60 million observations. Note the
observed convergence behaves in the manner predicted by the theory.

Figure 2 plots the percentage of elements per iteration where (Db)ii > 0. Toward
the beginning of the computation, all of the elements are active, leading to full cost
factor/solves. In later iterations, however, the potential support vectors are reduced to
80% of the original problem data, leading to an 80% reduction in the time to perform the
factor. A zero tolerance of 10−10 was used during the calculation; that is, components
for which (Db)ii < 10−10 were treated as zero in the computations.

As the number of observations selected was varied between 1 million and 60 million
elements, the number of iterations performed by semismooth method remained constant.
In all cases, 11 function evaluations and 10 factor/solves were performed. The inf-norm
of the residual at the solution was between 10−12 and 10−9 for all of these tests. In
Figure 3, the number of iterations and the total time taken with the semismooth method
and the interior-point method from [8] for varying problem size is compared. The same
machine and setup from [8] were used for this test so that the times are comparable.
In particular, the machine used was a 296 MHz SUN Ultrasparc with 2 processors and
768 MB of RAM. Throughout the testing the second processor was typically running a
different user’s jobs. All data was stored on a locally mounted disk with 18 gigabytes
of storage space to prevent overhead resulting from network communication and disk
contention with nightly backups.

Even though the total number of iterations taken by the semismooth method is larger
than that of the interior-point method, a reduction in time of over 35% is observed on
the 60 million observation problem. This reduction comes primarily from three sources.
First, the amount of I/O required per iteration is less for the semismooth method than
for the interior-point method. Second, each iteration of the semismooth method requires
one solve instead of two for the predictor-corrector interior-point code. Third, the work
involved in factorization is reduced by the (implicit) active set nature of the semismooth
method.

Note that [8] shows that the interior-point method significantly outperforms SVM-
Torch [4], a method from the machine learning community, on the chosen dataset. The
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Fig. 1. Log of the residual per iteration on example problem with 60 million observations and 34 features.
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Fig. 2. Percentage of observations that are active per iteration on example problem with 60 million observations
and 34 features.
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Table 1. Comparison of iterations and times when observation data is added.

Interior-Point Semismooth
Scratch Restart

Observations Iter. Time Iter. Time Iter. Time
3760 15 3.30 15 2.26 - -
4177 18 4.47 16 2.53 8 1.09

same conclusion can be made with regard to the semismooth method because it outper-
forms the interior-point method.

4.2. Restarts

The semismooth algorithm presented is globally convergent from any starting point.
This feature can be used, for example, when new observations are added to an existing
dataset. Restarting the semismooth method from the solution obtained for the old data-
set may be beneficial and result in a reduction in time when compared with solving the
problem from scratch. In comparison, interior-point methods cannot currently be started
from an arbitrary point.

The Abalone dataset from the UCI Repository [26] was used as the basis for this
test. This dataset contains 10 features and 4,177 observations. The observation data was
scaled and shifted so that all measurements were between −1 and 1, and some mea-
surements have values of −1 and 1 for each feature. An approximation to a nonlinear
separating surface was used for this problem. In particular, the kernel used (defined
componentwise) was

K(a, b) := (aT b + 1)5

and corresponds to using a surface defined by a fifth degree polynomial to separate the
data. The dense kernel matrix was approximated by using the technique from [10] where
an incomplete Cholesky factorization of K(AT , A) is used to obtain the features for the
support vector machine computation.

In order to study the impact on performance when the number of observations is
increased, the number of columns in the nonlinear kernel approximation was fixed at 50.
The resulting dataset fits into main memory. The test starts by solving the support vector
machine problem with 90% of the data (3,760 observations). The optimization is then
restarted using the full data (4,177 observations) from the solution obtained with the
reduced set. The solution values x for the new observations are initialized to zero. The
iterations and times for solving the problem from scratch and restarting are compared
in Table 1. The results indicate that if all the data is known a priori, the best strategy is
to solve the entire problem. If the dataset evolves, however, the semismooth method can
be effectively restarted, leading to fewer iterations and a reduced time when compared
with starting from scratch. Furthermore, all of the iterations of the restarted problem
exhibit significant reductions in the linear algebra cost because of the active component
identification.

Note that when using an approximation to a nonlinear kernel, new features are added
when the approximation is refined. Restarting the semismooth method from the solution
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obtained for the lower fidelity model is not beneficial in this case because significant
changes in the optimal surface are made in order to reduce the misclassification error.

The results from [10], which uses an interior-point algorithm similar to [8] and the
same nonlinear kernel approximation, indicate that the interior-point methods can be
much faster than alternative methods from the machine learning community. In par-
ticular, they show significant reductions in time when compared with SMO [28] and
SVMlight [14] on particular test problems. Since the semismooth method is typically
faster than the interior-point method, a similar conclusion can be reached for the semi-
smooth method.

5. Conclusions

This paper presented a formulation for the support vector machine problem and proved
that the semismooth algorithm converges when applied to it. These results extend the
general theory to the special case of support vector machine problems.

Significant reductions in the direction generation time can be obtained by using infor-
mation related to the active components. Furthermore, the algorithm identifies these
active components automatically. The number of active components is related to the
number of support vectors in the model, which is typically much smaller than the num-
ber of variables. The results presented indicate this to be the case and show substantial
reductions in solution time by exploiting this fact. An added benefit of the semismooth
algorithm is the ability to restart when the data evolves.

A comparison of the semismooth method with an interior-point method applied to
the same model demonstrated a significant decrease in the total solution time. A problem
with 60 million variables on a standard workstation (using only 75 MB of RAM) was
solved in around 9.5 hours. Parallel implementations of the code are also possible. How-
ever, the main benefit of this work is to show that a large machine with many processors
and a huge amount of RAM is not needed to obtain reasonable performance.

Other reformulations of the support vector machine that do not contain the linear
constraint can also be used. In this case, similar improvements in performance are real-
ized when compared with the interior-point method on the same model. This formulation
was not discussed here, because the theory is uninteresting. For completeness, we note
that removing the linear constraint gives a different model that is simply a bound-con-
strained positive definite quadratic program. When the semismooth method is used, the
amount of computation and number of iterations is about the same with or without the
linear constraint. Other techniques have been described for this case in [20]. Further-
more, it may be possible to use some of the techniques outlined in [10] as an alternative
to the Sherman-Morrison-Woodbury formula, provided issues related to symmetry can
be addressed.

While the semismooth method developed in this paper outperforms the interior-point
method detailed in [8], the latter method is more general in that even more formulations
can be solved. A key requirement for the semismooth method is the positive definiteness
of the quadratic term in the optimization problem. This assumption is not required for
the interior-point method, so it can solve problems where the quadratic term is only
positive semidefinite.
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