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A general problem formulation

@ We formulate a noisy optimization problem as

min f(x) = E[F(x, {(w))],
xeS
&(w) is a random component arising in some simulation process.

@ The sample response function F(x,&(w))

» typically does not have a closed form, thus cannot provide gradient or

Hessian information
> is normally computationally expensive
» is affected by uncertain factors in simulation

@ The underlying objective function f(x) has to be estimated.
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WISOPT two-phase optimization framework

© Phase | is a global exploration step. The algorithm explores the
entire domain and proceeds to determine potentially good subregions
for future investigation.

@ Phase Il is a local exploitation step. Local optimization algorithms
are applied to determine the final solution.
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The flow chart of WISOPT

Phase I

Classification-based global
optimization
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Noisy DIRECT

Phase transition
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WISOPT Phase I: a classification based global search

o Classifier: surrogate for indicator function of the level set

N
L) = {x| () < e = { x| F) = 1 S Fxg) <
j=1

¢ is a quantile point of the responses
@ The level set corresponds to promising regions

e Training set: space-filling samples (points) from the whole domain
(e.g. mesh grid; the Latin Hypercube Sampling)
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Classifiers predict new refined samples as promising

(a) Training samples in L(c) (b) Classify a set of more

are classified as positive and refined space-filling samples.
others are negative. The Four points are predicted as
solid circle represents esti- positive and rest are negative.
mated L(c). The classifier is refined.

Validate the subset of the identified promising points by performing
additional simulations
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Imbalanced data

e To identify the top promising regions, the best 10% of the training
samples are labeled as ‘+’, and the rest are ‘-’
@ The imbalance of the training set causes low classification accuracy,
especially for positive members
@ Balance the training data set
» Under-sample of the negative class using one-sided selection
* Use 1-NN and retain only those negative samples needed to predict
training set
* Clean the dataset with Tomek links
» Over-sample of the positive class by duplicating positive samples
@ Adjust the misclassification penalty
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Cleaning the dataset with Tomek links

(c) Determine the pairs of (d) Remove the negative sam-
Tomek links ples participating as Tomek
links
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Assemble classifiers using a voting scheme

ﬁlnput

Use or not?

SVM C4.5 k-NN

Use g-means on training set to determine which to use
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Classifier Phase | approach

Phase I

Initial samples

Imbalanced training set Balanced training set

I

Evaluate potentially goo
via simulation

O

d samples

Training the combined
classifier

>

O
O

Test the evaluation set

Phase I1

Phase Il local optimization methods
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The non-parametric “linking” idea
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Determine subregion radius by non-parametric regression

The idea is to determine the best ‘window size’ for non-parametric local
quadratic regression

Q A € argminy sse(h)

@ sse(h) is the sum of squared error of knock-one out prediction. Given
a window-size h and a point y, the knock-one out predicted value is
QY (y), where @/ (x) is a quadratic regression function constructed
using the data points within the ball {x|||x — y|| < h}/{y}.

Q1) = e+ 87 (x —y) + 5 (x— )T H(x )
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Phase |l: refine solution

@ Local optimization methods to handle noise

@ Derivative-free methods

@ Basic approach: reduce function uncertainty by averaging multiple
samples per point.

o Potential difficulty:
efficiency of algorithm vs number of simulation runs

@ We apply Bayesian approach to determine appropriate number of
samples per point, while simultaneously enhancing the algorithm
efficiency
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Quadratic model construction and trust region subproblem
solution

For iteration k =1,2,...,
° P

@ Construct a quadratic model via interpolation

Qx.) = Fx, &) + 8 (€)x — ) + 3 (x — )T GalE)(x — )

The model is unstable since interpolating noisy data

@ Solve the trust region subproblem

s¢(&) = argmins  Q(xk +5,¢)
s.t. HSH2 < Ay

The solution is thus unstable
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Bayesian posterior distributions
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Constraining the variance of solutions (Monte Carlo
validation)

@ Generate ‘'sample quadratic functions’ that could arise given current
function evaluations.

@ Trial solutions are generated within a trust region. The standard
deviation of the solutions are constrained.

mg,f(std([s*(l)(;)’5*(2)(,')’ s M) < BA.
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Simulation calibration

@ Detailed individual-woman level discrete event simulation of
Wisconsin Breast Cancer Incidence (using 4 processes):

» Breast cancer natural history

» Breast cancer detection

> Breast cancer treatment

> Non-breast cancer mortality among US women

@ Replicate breast cancer surveillance data: 1975-2000

In Situ Inc./100K pop.
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Application to WBCE

@ 500,000 points x generated uniformly at random
@ Using CONDOR (120 machines) can evaluate approximately 1000 per
day
> F(x,£) involves simulation of 3 million women
> 363 are in L(10): “simulated points out of data envelope”
@ Using Phase I: 10,000 points evaluated, 220 points suggested, 195 are
in L(10)
@ Phase | results in new points (all are good), but 2 of which seem
better than the “experts” best solution

@ Phase II: application was not necessary
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Design a coaxial antenna for hepatic tumor ablation

Dipole tip length  Slot size Floating sleeve Outer conductor
#
Sleeve position Inner conductor Teflon catheter

Teflon coating
Inner conductor

Teflon isolation layer

Outer conductor

Floating sleeve
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Simulation of the electromagnetic radiation profile

Finite element models (COMSOL MultiPhysics v3.2) are used to generate
the electromagnetic (EM) radiation fields in liver given a particular design

Lesion Size=a
© Axial Ratio (AR) =a/b
b 14 13
4 — ¢
Metric Measure of Goal
Lesion radius Size of lesion in radial direction Maximize
Axial ratio Proximity of lesion shape to a sphere Fit to 0.5
Si1 Tail reflection of antenna Minimize
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Two-phase approach to optimize antenna design
parameters

Uniform LHS to generate 1,000 design samples to evaluate with the
FE simulation model (range [-0.1409, 0.2903])

¢ = —0.0354 the 10% quantile. L(c) has 100 positive samples (900
negative)

Balancing procedure: 200 positive vs. 269 negative samples

3 (of 6 tested using g-means) classifiers in ensemble

Refined data: 20,000 designs, 1914 predicted by classifiers as positive,
74.5% correctly

The best Phase | design has value -0.2238
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Coaxial antenna design
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(e) First stage initial designs (f) Designs predicted by clas-
sifiers

Phase Il started from 5 points predicted: value -0.2238
Phase Il returned an optimal solution: value -0.2501
Total simulations used = 1000 + 1914 + 750
DIRECT (4000): -0.2064; SnobFit (4000): -0.1955
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Noisy extension: changing liver properties

@ Dielectric tissue properties varied within £10% of average properties
to simulate the individual variation.

@ WISOPT yields an optimal design that is a 27.3% improvement over
the original design and is more robust in terms of lesion shape and
efficiency.
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Ambulance simulation

An ambulance is called when an emergency call occurs. Determine the
locations of the ambulance bases such that the expected response time to
emergency calls is minimized.
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Conclusions and future work

@ Coupling statistical and optimization techniques can effectively
process noisy function optimizations
@ Significant gains in system performance and robustness are possible

o WISOPT framework allows multiple methods to be “hooked” up

Future work:
@ Problems with general constraints
@ More optimization algorithms in both phases

@ A phase transition module with variable radii
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