
The GAMS Callable Program Library for Variationaland Complementarity SolversSteven P. Dirkse � Michael C. Ferris � Paul V. Preckel yThomas Rutherford zJuly 19, 1994
AbstractThe GAMS modeling language has recently been extended to enable the formulation of MixedComplementarity Problems (MCP). The GAMS Callable Program Library (CPLIB) is a setof Fortran subroutines developed as an extension for the GAMS I/O library and designedto provide a simple and convenient interface to the MCP de�ned by a GAMS model. Thispaper provides technical documentation for CPLIB for use by those who are developing orhave developed algorithms for MCP, in order that their solvers may be made available asGAMS subsystems.1 IntroductionThis paper provides technical documentation for the GAMS Callable Program Library(CPLIB) which has been developed as an extension of the GAMS I/O library (Kalvela-gen 1992). CPLIB is a set of routines which simplify the implementation of GAMS solutionsystems for linear and nonlinear equations, complementarity problems and variational in-equalities. The GAMS language has only recently been extended to accomodate this class ofproblems. Brooke, Kendrick & Meeraus (1988) provide an introduction to the GAMS lan-guage for optimization. The MCP extension is described by Rutherford (1994). The presentpaper is written for algorithm developers rather than modelers. The library detailed herehas been constructed to encourage researchers who have algorithms for the MCP problemtypes to make them available to others as part of the GAMS language.�Computer Sciences Department, University of Wisconsin, Madison, WI 53706. Research supported bythe National Science Foundation grant CCR{9157632.yAgricultural Economics Department, Purdue University, West Lafayette, IN 47907.zDepartment of Economics, University of Colorado, Boulder, CO 80309. Research supported by theCanadian Natural Science and Engineering Research Council grant T306A1.1

Draft Copy 2A large class of problems including systems of equations, complementarity problems,constrained nonlinear optimization problems and �nite dimensional variational inequalitiescan be characterized as special cases of the Mixed Complementarity Problem (MCP):De�nition 1 (MCP) Given a function F : IRn ! IRn and bounds `; u 2 IR n,
s: t:�nd z 2 IRn; w; v 2 IRn+F (z) = w � v (1a)` � z � u (1b)(z � `)>w = 0 (1c)(u� z)>v = 0 (1d)Not all solvers may be capable of solving all problems in this class. Certain algorithmswill, for example, only apply to systems of equations (` = �1; u = +1), while othersmay apply only to the nonlinear complementarity problem (` = 0; u = +1). It will be themodeler's job to choose an appropriate solution algorithm for a particular application.A number of economists currently use GAMS for economic equilibrium analysis. Thesemodels typically use a nonlinear optimizer such as MINOS (Murtagh & Saunders 1983) orCONOPT (Drud 1985) to solve square systems of smooth nonlinear equations. We believethat there will be signi�cant interest among these practitioners in solvers for nonsmoothsystems of equations, provided the algorithms are su�ciently robust and e�cient. It is likelythat the complementarity facility within GAMS will �nd applications in other disciplines aswell.While it is apparent that modelers will bene�t from this extension, we feel that the algo-rithmic community can bene�t as well. This is because the GAMS modeling system providesan excellent framework through which researchers interested in exploring the properties ofnew algorithms can interact with people who are building \real" models. Clearly, the avail-ability of many easily accessed, large scale test problems will provide better insight into therelative strengths of new algorithms.We have developed CPLIB to simplify the process of connecting a solver to GAMS.Until now the coding required to link a solver to GAMS may have deterred those withnon-commercial solvers from making them available for testing on true applications. TheCPLIB interface signi�cantly reduces the set-up cost. We believe that connecting a solver toGAMS using CPLIB represents less work than programming the input-output and functionevaluation routines for a single large-scale test problem.The GAMS I/O library is available in both C and Fortran. CPLIB is only available inFortran, although its use with solvers written in C is relatively easy under operating sys-tems where compatible C and Fortran compilers are available. CPLIB is designed to beused together with the linear and nonlinear components of the GAMS I/O library. Usingthese tools, it is possible to produce solution systems which are truly portable because allsystem-speci�c functions can be performed by the (platform-speci�c) GAMS library rou-tines. The GAMS routines are currently available on many machines, including PCs, manyworkstations, mainframes and supercomputers.

Draft Copy 3From the perspective of an MCP algorithm, CPLIB is simply a function and derivativeevaluation facility. Before connecting a solver to GAMS, it should be debugged to a reason-able extent using small examples, but it need not be \bullet-proof". The GAMS interfacecan be used from an early stage in algorithm development to generate simple test problemsand to help with debugging.A schematic representation of the relationship between the developer-written routines,CPLIB, and the GAMS I/O library is presented in Figure 1. The developer-written routinesare indicated by dashed boxes. Referring to the top of this diagram, we begin with the
?

??6

?6
?6

? 6� �6�
 6
� �

optional

MAIN routine: calls CPMAIN
CPMAIN: calls CPLIB and developer routines

CORERQ: workspaceestimate SOLVER: solutionalgorithmCPLIB: evaluate function andJacobian, provide initial iter-ate, accept solution, utility rou-tines
GAMS I/O library: reads/writes machine-speci�c binary �les

GAMS modelFigure 1: Interrelationship of Developer Code and CPLIBdeveloper's main program, the sole function of which is to call the CPMAIN subroutine. TheCPMAIN routine, which has no arguments, is the top-level CPLIB routine, from which callsare made to routines from the GAMS I/O library, CPLIB, and the developer-written rou-tines. CPMAIN �rst calls I/O library routines to read information from the GAMS compiler

Draft Copy 4summarizing the model structure. After forming the data structures which associate vari-ables with equations, it calls the developer-written CORERQ (core-requirments) subroutine.The purpose of CORERQ is to communicate the following to the CPLIB system:� an indication of the solver's capabilities,� a request for workspace (i.e., dynamically allocated memory) if needed, and� optionally, special values to install, such as those which are to be used to representplus and minus in�nity.In order to simplify development and maintenance of CPLIB, parameter values are gen-erally not passed as subroutine arguments. Instead, communication between developer codeand the library takes place through calls to the \scalar interrogation" and \scalar return"routines CPGET* and CPPUT*. (Details are provided below.) We have avoided (where possi-ble) subroutine argument lists because we feel that this will make it easier to provide upwardcompatability in future revisions of the library. Furthermore, this approach simpli�es cross-language linking.CPMAIN allocates workspace and then calls the developer-written SOLVER subroutine. Thisroutine does the bulk of the problem solving. In the process of solving the problem, theSOLVER routine will typically call CPLIB utility routines to� query the GAMS I/O library regarding the values of machine dependent parameters;� obtain values of problem-dependent parameters such as variable initial values andbounds;� evaluate the nonlinear function and its Jacobian at a given point; and� return the computed solution, or an indication of why the solution process has termi-nated without �nding a solution.For the most part, the CPLIB system provides all necessary utilities for an MCP algo-rithm. The developer may, however, call the GAMS I/O library directly to perform certaininput-output functions or string manipulations. At the end of the solution process, controlreturns to the CPMAIN routine where additional housekeeping activities are performed to closedown the GAMS I/O library.A great advantage of CPLIB (with the GAMS I/O library) is that all machine or installa-tion dependent code may be removed from a solution system. In writing a solver, a developershould be careful to employ library routines to perform platform-speci�c tasks in order thatthe algorithmic code remains fully portable. Using the interface routines in this way, thealgorithm developer may concentrate on the mathematics of problem solution rather thanthe quirks of porting Fortran or C to particular machines and operating systems.Reserved names in the CPLIB and GAMS I/O library modules begin with the letters CPand GF. It is good policy to avoid subroutine and common block names which begin witheither of these pairs of letters.In Section 2, we introduce the developer-written subroutines and their functions. Sec-tion 3 provides a description of the CPLIB subroutines and their use, Section 4 a description

Draft Copy 5of how a solver communicates with a user, and Section 5 a discussion of how a solver isinstalled as a GAMS subsystem. Appendix A discusses the use of solvers written in the Clanguage. Appendix B contains Fortran code for a Newton algorithm from Press, Flannery,Teukolsky & Vetterling (1988). Appendix C contains a sample solver coded in C.2 Developer-Written Subroutines2.1 Workspace estimation: CORERQThe �rst of the developer-written subroutines is CORERQ. This routine is used to communicateto CPLIB the capabilities of the solver (to detect incompatible problem/solver combinations).It is also the place to compute an estimate of the amount of memory required to process theproblem. This routine may also install special values for plus and minus in�nity.The CORERQ subroutine has no arguments. The communication between CPLIB andsubroutine CORERQ is accomplished through the parameter interface routines CPGETI, CPPUTIand CPPUTD documented below. The integer parameters to be set are 'ISTYPE' (solver typeindicator) and 'NWUCOR' (the memory required, expressed in number of \words" - double-precision real equivalents). In estimating 'NWUCOR', CPGETI is typically used to determineproblem size and density. (See Section 3.5 for details.) The double precision values whichmay be returned correspond to the strings 'PLINFY' and 'MNINFY' and are subsequentlyused to represent plus and minus in�nity. (If these values are not speci�ed, they assumedefault values equal to +=� 1020.)2.2 Solution control: SOLVERThe second of the developer-written subroutines is SOLVER. This is the developer's top-levelroutine for problem solution. If memory is dynamically allocated, it is typically in thisroutine that the requested workspace is \partitioned" and passed along as separate arrays.The structure of this subroutine is:SUBROUTINE SOLVER(WORK, NWUCOR)INTEGER NWUCORDOUBLE PRECISION WORK(NWUCOR)NWUCOR input number of words (double-precision reals) of memory reserved forthe solver in the previous call to CORERQWORK input workspace array of NWUCOR wordsIn the process of solving a problem, this routine and its subsidiaries will call routinesfrom CPLIB and (possibly) routines from the GAMS I/O library. The CPLIB routines itwill need to call are described in the following section.

Draft Copy 63 CPLIB Subroutines Called by SolversThe CPLIB subroutines include one routine which returns initial values and bounds, tworoutines to evaluate functions and derivatives, one routine for reporting the solution vector,one routine which triggers a system interrupt, and six routines for passing scalar valuesbetween the solver and the library. This section will introduce these routines.3.1 Initial levels and bounds: CPBNDSGAMS/CPLIB passes three values for each variable to the solver. These are the initial level,the lower bound and the upper bound. The solver obtains these values from CPLIB usingthe subroutine CPBNDS, whose structure is:SUBROUTINE CPBNDS(Z, BL, BU, N)INTEGER NDOUBLE PRECISION Z(N), BL(N), BU(N)Z output initial values of the problem variablesBL output lower boundsBU output upper boundsN input problem dimension.The representations of plus and minus in�nity used in BU and BL should be obtained viacalls to CPGETD with the strings 'PLINFY' and `MNINFY'.3.2 Solution value return: CPSOLNBefore the SOLVER routine returns control to CPMAIN, the level values for the problem variablesmay be returned through the CPLIB routine CPSOLN. The structure of this routine is:SUBROUTINE CPSOLN(Z,N)INTEGER NDOUBLE PRECISION Z(N)Z input solution estimate at solver terminationN input problem dimension.This routine is optional. If it is not called, CPLIB will return level values to GAMS whichare the \best" values encountered in the solution process, based on k�k1 = maxi j�i(z)j (thebox norm of �). The vector � is de�ned by�i(z) := max fFi(z)+min[1; zi � `i]; (�Fi(z))+min[1; ui � zi]; (li � zi)+; (zi � ui)+g;where x+ := max (0; x). An algorithm is not required to use this norm for determiningconvergence. The CPLIB calculation is provided only in order that a \good" solution canbe returned in the event of an abnormal exit.

Draft Copy 73.3 Abnormal interrupt: CPPUNTIn the normal program sequence, a solver processes the problem, returns the solution valuesand status indicators and then returns control to CPMAIN which closes down the GAMSI/O library and returns control to the developer's main program. In certain circumstances,particularly with solvers which are under development, it is helpful to be able to abortdirectly from a lower level routine in the solver. In these cases, the CPPUNT routine should beused rather than a Fortran STOP statement. CPPUNT will assure that the GAMS I/O libraryis properly closed so that the GAMS program exits \gracefully". CPPUNT has no arguments.The CPPUNT routine will set MODSTA = 12 (error unknown) and it will trigger a\SYSOUT" (i.e., the entire status �le will be copied onto the listing �le, as though theGAMS program had speci�ed \OPTION SYSOUT = ON;".) In addition, the current solu-tion (either based on the CPLIB merit function or installed by the solver through a priorcall to CPSOLN) will be passed to the listing �le.3.4 Function evaluation: CPFUNF, CPSPRJTwo routines provide function evaluations. One evaluates only the vector function F , whilethe second evaluates both F and its Jacobian J , returning J in a sparse matrix data structure.CPFUNF evaluates the nonlinear function F at a given point, Z. It does not return theJacobian of F . The structure of this subroutine isSUBROUTINE CPFUNF(Z,F,N)INTEGER NDOUBLE PRECISION Z(N), F(N)Z input point at which to evaluate the function FF output value of F evaluated at ZN input problem dimension.CPSPRJ evaluates the function F and its Jacobian J , the matrix of �rst partial derivativesof F with respect to its arguments. The Jacobian is returned in the well-known row index,column pointer, column length format. The subroutine structure is:SUBROUTINE CPSPRJ(Z, F, J, JROW, JCOL, JLEN, N, NADIM)INTEGER N, NADIM, JROW(NADIM), JCOL(N), JLEN(N)DOUBLE PRECISION Z(N), F(N), J(NADIM)Z input point at which to evaluate the function F and Jacobian JF output value of F evaluated at ZJ output nonzero coe�cients of the matrix J evaluated at ZJROW output row indices of the coe�cients stored in JJCOL output pointers to columns starts in JJLEN output lengths of the columns in JN input problem dimensionNADIM input number of nonzero components in J.

Draft Copy 8The coe�cients for the nonzero entries of the k'th column of J are stored in the vectorJ, in positions JCOL(k), JCOL(k)+1, : : : , JCOL(k)+JLEN(k)-1. The row indices for thesecoe�cents are stored in the corresponding positions of JROW.3.5 Scalar interrogation: CPGETD, CPGETI, CPGETLThree routines are provided to pass scalar values from CPLIB to the solver. The routineswhich \get" parameter values from CPLIB are CPGETD, CPGETI and CPGETL. These returndouble precision (real), integer and logical parameters, respectively. The structure of theseroutines is:SUBROUTINE CPGETD(NAME, DPARAM)CHARACTER*(*) NAMEDOUBLE PRECISION DPARAMSUBROUTINE CPGETI(NAME, IPARAM)CHARACTER*(*) NAMEINTEGER IPARAMSUBROUTINE CPGETL(NAME, LPARAM)CHARACTER*(*) NAMELOGICAL LPARAMNAME input the name of the parameter to be returnedDPARAM output real parameter returnedIPARAM output integer parameter returnedLPARAM output logical parameter returnedCharacter string identi�ers for which these subroutines produce useful values are listed inTables 1, 2, and 3, along with de�nitions of the results.3.6 Scalar return: CPPUTD, CPPUTITwo utility routines similar in design to the CPGET* routines are provided to pass scalarvalues from the solver to CPLIB. The structure of these routines is:SUBROUTINE CPPUTD(NAME, DPARAM)CHARACTER*(*) NAMEDOUBLE PRECISION DPARAMSUBROUTINE CPPUTI(NAME, IPARAM)CHARACTER*(*) NAMEINTEGER IPARAM

Draft Copy 9

Table 1: CPGETD ArgumentsString Result returned in double precision argument'CLOCK' Current elapsed time (for checking RESLIM).'CONTOL' Convergence tolerance (default value = 1.e-6)'EPS' The smallest positive number that can be added to 1.0 to obtain aresult di�erent from 1.0.'GMINF' GAMS bit pattern for �1 (a logical indicator not to be treated asa number).'GPINF' GAMS bit pattern for +1 (a logical indicator not to be treated asa number).'HUGE' The largest positive number representable on the machine.'MAXEXP' The largest positive decimal exponent representable on themachine.'MINEXP' The largest negative decimal exponent representable on themachine.'MNINFY' Value currently used for �1.'OBJ' Merit function associated with the most recent function evaluation.'PLINFY' Value currently used for +1.'PRECIS' The number of signi�cant decimal digits.'REAL1' {'REAL5' Five real values can be set in a user's GAMS program using optionstatements of the form:option REAL3 = 0.1;these should be used only during solver development.'RESLIM' The resource limit in CPU seconds.'TINY' The smallest positive number representable on the machine.

Draft Copy 10
Table 2: CPGETI ArgumentsString Result returned in integer argument'DOMERR' The number of domain errors which have been encountered.'DOMLIM' Maximum number of domain errors allowed before the iterationsare terminated.'INTEGER1'-'INTEGER5' Five integer values can be set in a user's GAMS program usingoption statements of the form:option INTEGER3 = 10;these should be used only during solver development.'INTW' The number of long integers per \word" (1 word = 1 double preci-sion real).'IOLOG' The I/O unit number of the log �le.'IOOPT' The I/O unit number of the options �le (cf. USEOPT from CPGETLto see if an options �le has been provided).'IOSTA' The I/O unit number of the status �le.'ITERLIM' An iteration limit set via the GAMS ITERLIM option; default =1000.'LLOGW' The number of long logicals per \word".'MAXCOL' The maximum number of nonzeros in any column of the matrix.'N' The number of equations/structural variables in the condensedproblem (after �xed variables are removed).'NADIM' The number of nonzeros in the Jacobian matrix of the condensedproblem.'NUMCOL' The number of structural variables in the original problem.'NUMNNZ' The number of nonzeros in the Jacobian matrix of the originalproblem.'NUMROW' The number of rows in the original problem.'SCREEN' The I/O unit number of the screen.'SHORTW' The number of short integers per \word". 'INTW' is returned if noshort integers exist. (If possible, avoid using short integers).'SLOGW' The number of short logicals per \word". 'LLOGW' is returned ifno short logicals exist. (If possible, avoid using short logicals).

Draft Copy 11Table 3: CPGETL ArgumentsString Result returned in logical argument'USEBAS' If true, use basis information implied by the bounds and initialvalues.'USEOPT' If true, attempt to read user's options �le, whose format and syntaxare solver-de�ned.'SYSOUT' If true, GAMS will copy the complete status �le to the listing �le.NAME input the name of the parameter to be passedDPARAM input real parameter passedIPARAM input integer parameter passedCharacter string identi�ers used as input to these routines are listed in Tables 4 and 5, alongwith de�nitions of the results. Table 4: CPPUTD ArgumentsString Description of associated value'CONTOL' Convergence tolerance { used to identify infeasible equations in thesolution listing.
4 Communication and ControlThis section describes how a solver communicates with the user. It also indicates how aGAMS user can a�ect the solution algorithm, either through the use of iteration or resourcelimits or through the provision of a solver-speci�c \option" �le with tolerances and switches.For most applications, the CPLIB routines provide all the necessary hooks. Some developersmay choose to call utility routines from the GAMS I/O library directly. Potentially relevantutilities are listed at the end of this section.4.1 Communicating with the UserThe solver communicates with the GAMS user through the status �le, the log �le, and thescreen. The unit numbers for these devices are accessed through calls to CPGETI using theidenti�ers 'IOSTA', 'IOLOG' and 'SCREEN'.The status �le contains two classes of information { information which is always be copiedto the GAMS listing �le and information which is copied to the listing �le only when the

Draft Copy 12

Table 5: CPPUTI ArgumentsString Description of associated value'ISTYPE' Indicator of solution algorithm capability (passed from CORERQ):1 nonlinear equations (l = �1; u = +1)2 general MCP (�1 � l � u � +1)'ITSUSD' The number of iterations used by the solver. If not set, this recordsthe number of function/derivative evaluations.'MODSTA' Model status indicator. Values relevant to MCP models are:1 model solved7 model not solved13 error - no solution (GAMS triggers a SYSOUT)'NWUCOR' Words of memory requested for solver (passed from CORERQ)'SOLSTA' Solver status indicator. Values relevant to MCP algorithms are:1 normal completion2 iteration interrupt3 resource interrupt4 terminated by solver (GAMS triggers a SYSOUT)5 evaluation error limit11 internal solver error'STARTC' Start copying status �le output to the listing �le.'STOPC' Stop copying status �le output to the listing �le.

Draft Copy 13GAMS user speci�es the option SYSOUT = ON. The �rst type of output is identi�ed by�rst calling CPPUTI with the string 'STARTC' (the integer argument is ignored). Subsequentsolver output to the status �le will then appear in the GAMS listing. To stop copying to thelisting �le, call CPPUTI with the string 'STOPC' (again, the integer argument is ignored).The log �le and the screen are typically the same unit. On interactive platforms, thesolver may send messages to the log �le to indicate progress. This is particularly reassuring tothe user when the system is slow. It is possible, however, for the user to redirect this output.(A user might do this if he is operating over a slow phone line.) Only when information(such as a copyright notice) is always to be displayed on the screen should the SCREEN unitbe used.4.2 Iteration limitsIt is up to the solver to see to it that iteration limits set by the user (through the ITERLIMoption) are not exceeded. By querying CPLIB for the value of 'ITERLIM' (using CPGETI),a solver can obtain the iterations limit. It is a GAMS convention that for algorithms withmajor and minor iterations, 'ITERLIM' refers to the cumulative minor iterations performed.Other iteration limits may be speci�ed in the solver-speci�c options �le. The solver shouldsee that these limits are not exceeded as well.4.3 CPU time limitsGAMS also provides a way to limit the amount of CPU resources used by a solver. Thisresource limit is set using the RESLIM option, and is obtained from CPLIB via a call toCPGETD, using the string 'RESLIM'. This limit is expressed in units (typically CPU sec-onds) which are consistent with the value returned by CPGETD through the string 'CLOCK'.The value of 'CLOCK' should be evaluated at various times during problem solution andcompared with the CPU limit 'RESLIM'. The run should be terminated when 'RESLIM' isexceeded.4.4 Options �lesSome algorithms may need tuning for particular problems. Tuning parameters are typicallyspeci�ed in an options �le, the format and contents of which are the choice of the algorithmdeveloper. Typically, these are free-format �les containing optional key words and parametervalues. CPLIB routine CPGETL returns a logical value for 'OPTFIL' which is true if an options�le exists. When a �le is provided, CPLIB routine CPGETI returns the unit number of theoptions �le (an integer value) when passed the string 'IOOPT'.4.5 GAMS I/O utilitiesThe CPLIB package has been designed so that direct calls to the GAMS I/O library arenot absolutely necessary. Developers may, however, wish to use some of the I/O utilitiesin order to improve portability of their code or to perform special functions. The names

Draft Copy 14and short descriptions of potentially relevant utilities are presented here. Interested readersshould consult the I/O library manual for calling sequences (Kalvelagen 1992).Input library routines:GFOPTI Return options �le nameGFTIME Return GAMS time.GFWDIR Return GAMS working directory.GFSDIR Return GAMS system directory.GFCDIR Return GAMS scratch directory.Resident library routines:GFMSG Write a message.MEMINF Print memory statistics.GFUOPN Open a �le.GFFRST Return position of �rst non-blank in a string.GFINDX Return length of a string excluding trailing blanks.GFFRMT Return a string with a \good" format for printing a real number.5 Introducing a Solver to GAMSOnce a solver has been linked to CPLIB and the GAMS I/O library, it must be introducedas a GAMS subsystem before it is used by a GAMS program. This section describes thevarious �les which must be written and modi�ed for this purpose. In this discussion, �lenames and batch command language for the DOS version of GAMS are used. Di�erent �lename extensions etc. may be used on other platforms.5.1 Updating gamscomp.txtTo introduce a new solver, the gamscomp.txt �le in the GAMS directory must be updated.In this �le there are entries for each of the solvers currently connected to the GAMS system.For example, if the system is licensed for MINOS, there will be an entry such as:minos5 2 0 LP RMIP NLP DNLP RMINLPgamsmns3The �rst line indicates the name of the solver (MINOS5 in this case). Two integers followthe solver name. They signify the data �le type and the dictionary �le type, respectively.The capability list for the solver follows these integers. This is the class of problems forwhich this solver may be employed. The line immediately following the solver capability listindicates the name of the batch control �le in the GAMS system directory which invokesyour solver. In this case, the batch �le is named gamsmns3.bat.The data �le types include 0 for
at (ASCII), 1 for stream (binary with no header orfooter), 2 for binary with four byte header and footer, and 3 for \special". When introducinga new solver, use the �le type which is appropriate for your compiler. File type 0 works for

Draft Copy 15all compilers but it introduces a signi�cant performance penalty for large models. On thePC, �le type 2 is used for programs compiled with NDP Fortran and type 1 is used for LaheyFortran.The dictionary �le types include 0 for none, 1 for a
at �le with no quotes, and 2 fora
at �le with quoted strings. When using CPLIB, the library �le type must be of type 2.Unlike other optimization models, the dictionary �le is always needed for MCP models; it isread using Fortran free-format (list-directed) input.To introduce a new solver, give it a name and then make the appropriate two-line entryin gamscomp.txt. For example:newton 0 2 mcprunnwtIf you want this to become the default MCP solver, you enter the solver name after MCPat the bottom of the gamscomp.txt �le.5.2 The solver batch command �leAfter introducing a solver in gamscomp.txt, the batch command �le which is named in thesolver de�nition must be written. A batch �le is used in order that the executable image canbe stored in a directory other than the GAMS system directory. For example, the NEWTONsolver invocation �le (runnwt.bat) is:@echo offC:ngamsnmnewtnnewton %4gamscmex %3gamsnext %3Here (in the DOS version), %3 and %4 are the third and fourth arguments in the batch�le invocation. %4 is the control �le name which is obtained from the command line by theI/O library routines. The control �le is read by the I/O library, providing model dimensions,control parameters and �le locations.5.3 Shortening the debug cycleAfter linking a solver to GAMS it can be expected that one or more test problems will proveto be particularly recalcitrant. When using GAMS test problems to debug a solver, it isnot necessary to recompile the GAMS input �le each time the solver is invoked. Instead,temporarily modify the GAMS batch �les in order to skip the scratch �le clean-up step. Inthe PC version of GAMS, this simply involves omitting the following line from gamsexit.bat:if exist %1*.scr erase %1*.scr(This can be done by simply placing a comment
ag (\:") in the �rst column of the record.)

Draft Copy 16Having done this, run GAMS on the input �le once to generate the data and instructions.These will be saved in a set of intermediate �les with the .scr extension on the GAMS scratchdirectory. (See parameter SCRDIR in gamsparm.txt for the scratch directory location.)As long as you do not delete these �les, you can then invoke the solver directly withoutrunning GAMS. For example, typing newton D:gamscntr.scr at the DOS prompt (whenSCRDIR=D:n) will run the NEWTON solver from a saved model. gamscntr.scr is thecontrol �le in which the location of all other �les is passed to the I/O library.AcknowledgementsThe authors are indebted to Alex Meeraus and Erwin Kalvelagen for their suggestions onthe design of this library. We assume responsibility for errors remaining in the code anddocumentation.ReferencesBrooke, A., Kendrick, D. & Meeraus, A. (1988), GAMS: A User's Guide, The Scienti�cPress, South San Francisco, CA.Drud, A. (1985), `CONOPT: A GRG code for large sparse dynamic nonlinear optimizationproblems', Mathematical Programming 31, 153{191.Kalvelagen, E. (1992), `The GAMS I/O library', mimeo, GAMS Development Corporation.Preliminary Version.Murtagh, B. A. & Saunders, M. A. (1983), MINOS 5.0 user's guide, Technical Report SOL83.20, Stanford University.Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1988), Numerical Recipes: the Art of Scienti�c Computing, Cambridge University Press.Rutherford, T. F. (1994), Extensions of GAMS for complementarity problems arising in ap-plied economic analysis, Manuscript, Department of Economics, University of Colorado,Boulder.

Draft Copy 17A The C InterfaceOn many platforms, CPLIB can be used in conjunction with solvers written in the C pro-gramming language. While the tasks of linking a Fortran solver and a C solver are quitesimilar, there are some important di�erences. Because of these di�erences, we have written aset of C routines which act as an interface to CPLIB. These routines allow the writer of a Csolver to ignore many of the (perhaps platform-speci�c) cross-language issues he or she wouldotherwise have to consider in making direct calls to Fortran CPLIB subroutines; instead, aC routine is called, which performs the dirty work. The following paragraphs indicate whywe have chosen to write the C interface and how the interface can best be used. By way ofexample, a simple solver written in C is included in Appendix C.There are a number of standard conventions used in calling Fortran routines from C andvice versa. Perhaps most importantly, Fortran arguments are \called-by-reference" (pointersto data are passed, not the actual data values), while C passes by value. Of course, arraysare stored column-major in Fortran, but row-major in C. Also, on some systems, a Fortransubroutine named FOO gets an underscore appended to its name before being passed to theloader, so a C call to SUBROUTINE FOO must actually call foo . The case is signi�cant inthe C code, while Fortran names are all generally converted to lower case. Calls from C toCPLIB which use only integer and real arguments can be made easily, and in a portablemanner, by keeping these conventions in mind. An extra interface layer in these cases is notnecessary.While passing numeric arguments is simple, the interrogation routines (CPGETI, CPPUTI,etc.) in CPLIB require that a character string be passed to a Fortran subroutine. Passingthis string from a C routine is a bit more complicated than passing a numeric value; the codenecessary to do this may vary from machine to machine. Because of this, we have chosento write C routines which act as logical replacements for the CPLIB interrogation routines.The details of passing a string from C to Fortran are taken care of in the body of these Croutines; the programmer need not be aware of how this is done. In addition to makingprogramming easier, these interface routines serve to isolate much of the code used to makeCPLIB calls. This eases the task of porting the C solver to a di�erent architecture, sincechanges need be made only to the interface routines; the calls to them in the solver remainunchanged.From a solver writer's perspective, the essential details of the C interface are containedin the header �le c cplib.h. The �rst lines of this �le de�ne BOOLEAN, CHAR, DREAL, andINT to be the C type declarators for logical, character,
oating-point and integer types,respectively. When writing a C solver, it is recommended that these type declarators beused for all variables which will be passed to CPLIB functions or to the C interface. Thedeclarators have been de�ned to assure correspondence in size and type to the Fortranvariables used in CPLIB; their use increases solver portability.Declarations for routines called from the solver are also included in the c cplib.h header.The functions c cpget* have a single string pointer argument, and return a value of theappropriate type. The functions c cpput* have two arguments, a string pointer and thevalue to be put. The c print msg routine is used to print messages to the various FortranI/O units opened by CPLIB. Its �rst (integer) argument is the unit number to print to; its

Draft Copy 18second argument is a pointer to the string to be printed. This string must be null-terminated.Thus, one technique for writing to the CPLIB status and log �les from a C solver is to usesprintf to write to a message bu�er, and to pass a pointer to this bu�er to the c print msgroutine. This is the technique used in the solver in Appendix C. The remaining calls toCPLIB routines (CPBNDS, CPFUNF, etc.) are made without an interface. In making thesecalls, care must be taken to observe the conventions described above. C-type declarationsfor the CPLIB routines are included in c cplib.h to aid in error detection./* defines, etc for the C solver interface to CPLIBbySteven DirkseComputer Sciences DepartmentUW-Madison*//* we want INT to correspond in size to Fortran's integer, etc */#define BOOLEAN int#define CHAR char#define DREAL double#define INT int#define CPBUF_LEN 8#define OPTFLN_LEN 80/* defines for modsta, solsta return values */#define MODEL_SOLVED 1#define MODEL_NOT_SOLVED 7#define MODEL_ERROR 13#define SOLU_NORMAL 1#define SOLU_ITERATION 2#define SOLU_RESLIM 3#define SOLU_KILLED 4#define SOLU_EVAL_LIMIT 5#define SOLU_ERROR 11INT c_cpgeti (CHAR *string);DREAL c_cpgetd (CHAR *string);BOOLEAN c_cpgetl (CHAR *string);void c_cpputi (CHAR *string, INT ivalue);void c_cpputd (CHAR *string, DREAL dvalue);void c_cpputl (CHAR *string, BOOLEAN lvalue);void c_print_msg (INT unit_no, CHAR *msg);CHAR *get_row_name (INT index, CHAR *s, INT len);CHAR *get_variable_name (INT index, CHAR *s, INT len);/* compile with -DPOSTUC when trailing underscores are neededThis is what user-written C routines should look like */#ifdef POSTUC

Draft Copy 19void corerq_ (void);void solver_ (DREAL *z, INT *nwucor);#elsevoid corerq (void);void solver (DREAL *z, INT *nwucor);#endif/* headers for Fortran CPLIB routines called direct from C solver */#ifdef POSTUCvoid cpbnds_ (DREAL initial_point_z[], DREAL lower_bound[],DREAL upper_bound[], INT *n);void cpsoln_ (DREAL solution_point_z[], INT *n);void cppunt_ (void);void cpfunf_ (DREAL z[], DREAL f[], INT *n);void cpsprj_ (DREAL z[], DREAL f[], DREAL J[], INT rowindex[],INT colptr[], INT collen[], INT *n, INT *nnz);#elsevoid cpbnds (DREAL initial_point_z[], DREAL lower_bound[],DREAL upper_bound[], INT *n);void cpsoln (DREAL solution_point_z[], INT *n);void cppunt (void);void cpfunf (DREAL z[], DREAL f[], INT *n);void cpsprj (DREAL z[], DREAL f[], DREAL J[], INT rowindex[],INT colptr[], INT collen[], INT *n, INT *nnz);#endif

Draft Copy 20B Sample Solver Coded in FortranC --PROGRAM NEWTONCC A SIMPLE NEWTON ALGORITHM FOR NONLINEARC EQUATIONS USING THE GAMS CALLABLE PROGRAM LIBRARYCC THIS FILE CONTAINS AN ALGORITHM FROM PRESS,C FLANNERY, TEUKOLSKY AND VETTERLING: "NUMERICAL RECIPIES";C CAMBRIDGE UNIVERITY PRESS (1986).CC THOMAS RUTHERFORDC DEPARTMENT OF ECONOMICSC UNIVERSITY OF WESTERN ONTARIOCCC THE MAIN PROGRAM SIMPLY CALLS THE CPLIB MAIN PROGRAM:C CALL CPMAINENDC --SUBROUTINE CORERQCC CORE REQUIREMENTS ROUTINEC IMPLICIT NONECC ISTYPE = SOLVER TYPE INDICATORC N = DIMENSION OF THE NONLINEAR SYSTEMC NADIM = # OF NONZEROES IN JACOBIANC INTW = NUMBER OF INTEGERS PER "WORD" (DOUBLE PRECISION REAL)C NWUCOR = CORE REQUIRMENTC INTEGER ISTYPE, N, NADIM, INTW, NWUCORCC CONTROL PARAMETERS FOR THE NEWTON ALGORITHM:CC NTRIAL = NUMBER OF NEWTON STEPSC TOLX = X ITERATE TOLERANCE (NOT USED HERE)C TOLF = FUNCTION CONVERGENCE TOLERANCE (CONTOL)C INTEGER NTRIALDOUBLE PRECISION TOLX, TOLF

Draft Copy 21COMMON /NWTCOM/ TOLX, TOLF, NTRIALCC INDICATE THAT WE CAN ONLY SOLVE SMOOTH NONLINEAR EQUATIONSC ISTYPE = 1CALL CPPUTI('ISTYPE',ISTYPE)CC READ DIMENSION:C CALL CPGETI('N',N)CALL CPGETI('NADIM',NADIM)CC READ COUNT OF INTEGERS PER DOUBLE PRECISION ON PRESENT PLATFORM:C CALL CPGETI('INTW',INTW)CC DETERMINE WORKSPACE REQUIREMENT:CC 2 N-DIMENSION DOUBLE PRECISION VECTORSC 1 NADIM-DIMENSIONAL DOUBLE PRECISION VECTORC 1 NADIM-DIMENSIONAL INTEGER VECTORC 2 N-DIMENSIONAL INTEGER VECTORSC (ADD ONE WORD IN CASE N/INTW IS NOT INTEGRAL)C NWUCOR = 2 * N + NADIM + NADIM/INTW + 1 + 2 * (N/INTW + 1)CALL CPPUTI('NWUCOR',NWUCOR)CC QUERY FOR THE CONVERGENCE TOLERANCES AND ITERATION LIMIT:C TOLX = 0.0CALL CPGETD('CONTOL',TOLF)CALL CPGETI('ITERLIM',NTRIAL)C RETURNENDC --SUBROUTINE SOLVER(Z, NWUCOR)IMPLICIT NONEINTEGER NWUCORDOUBLE PRECISION Z(NWUCOR)C INTEGER NTRIALDOUBLE PRECISION TOLX, TOLFCOMMON /NWTCOM/ TOLX, TOLF, NTRIALINTEGER IOLOG, IOSTA

Draft Copy 22CC THE FOLLOWING ARE POINTERS TO SUBVECTORS OF Z:C INTEGER LX, LBETA, LGRAD, LJROW, LJCOL, LJLENINTEGER N, NADIM, INTWCC ANNOUNCE THE PROGRAMC CALL CPGETI('IOSTA',IOSTA)CALL CPGETI('IOLOG',IOLOG)CALL CPGETI('STARTC',IOSTA)WRITE(IOLOG,110)WRITE(IOSTA,110)110 FORMAT(//,' Newton-Raphson Algorithm MNEWT'/* ' =============================='//* ' from Numerical Recipes (The Art of Scientific Computing)'/* ' by Press, Flannery, Teukolsky, Vetterling'/* ' Cambridge University Press'//)CALL CPGETI('STOPC',IOSTA)CC PARTITION THE WORKSPACE HERE (COMPUTE POINTERS TO THE FIRSTC ELEMENT OF EACH OF THE ARRAYS WHICH WILL BE STORED IN Z)C CALL CPGETI('N',N)CALL CPGETI('NADIM',NADIM)CALL CPGETI('INTW',INTW)LX = 1LBETA = LX + NLGRAD = LBETA + NLJROW = LGRAD + NADIMLJCOL = LJROW + (NADIM/INTW)+1LJLEN = LJCOL + (N/INTW)+1CC LOAD THE INITIAL VALUE (THE SECOND AND THIRD ARGUMENTSC RETURN THE BOUNDS WHICH WILL NOT BE USED HERE, SO WE PASSC BETA AND GRAD AS PLACE-HOLDERS):CC WE "PARTITION" THE WORKSPACE ARRAY Z BY PASSING LOCATIONSC ACROSS THE CALL. (NOTICE THE DECLARATIONS FOR THE FIRST THREEC ARGUMENTS IN CPBNDS.)C CALL CPBNDS(Z(LX), Z(LBETA), Z(LGRAD), N)CC INVOKE THE ALGORITHM, ONCE AGAIN PARTITIONING THE WORKSPACE:C CALL MNEWT(Z(LX), N, NADIM, Z(LBETA), Z(LGRAD), Z(LJROW),$ Z(LJCOL), Z(LJLEN))

Draft Copy 23C RETURNENDSUBROUTINE MNEWT(X, N, NADIM, BETA, GRAD, JROW, JCOL, JLEN)IMPLICIT DOUBLE PRECISION (A-H,O-Z)DIMENSION X(N), ALPHA(N,N), BETA(N), INDX(N), VV(N)DOUBLE PRECISION OBJINTEGER IOLOGCC THIS CODE IS MORE OR LESS STRAIGHT FROM PRESS ET AL.C INTEGER NTRIALDOUBLE PRECISION TOLX, TOLFCOMMON /NWTCOM/ TOLX, TOLF, NTRIALCC GENERATE SOME OUTPUT TO THE LOG FILE:C CALL CPGETI('IOLOG',IOLOG)C WRITE(IOLOG,'(A)')* ' ITER OBJ ERRF ERRX'ERRX = 0.DO 13 K=1,NTRIALCALL CPSPRJ(X,BETA,GRAD,JROW,JCOL,JLEN,N,NADIM)ERRF=0.DO 11 I=1,NCC CPLIB RETURNS +F, BUT BETA MUST EQUAL -F, SO WEC REVERSE THE SIGN HERE:C BETA(I) = -BETA(I)ERRF=ERRF+DABS(BETA(I))11 CONTINUECALL CPGETD('OBJ',OBJ)WRITE(IOLOG,100) K,OBJ,ERRF,ERRXIF(ERRF.LE.TOLF)RETURNCC call to factorization routine to solve J x = beta,C overwriting beta with x, is omittedC ERRX=0.DO 12 I=1,NERRX=ERRX+DABS(BETA(I))

Draft Copy 24X(I)=X(I)+BETA(I)12 CONTINUEIF(ERRX.LE.TOLX)RETURN13 CONTINUERETURN100 FORMAT(1H ,I4,1P3E12.2)END

Draft Copy 25C Sample Solver Coded in C/* projgrad.c ***Steven DirkseComputer Science Department, UW-MadisonSource for a (simple) projected-gradient solver for MCP***/#include <stdio.h>#include <malloc.h>#include <math.h>#include "c_cplib.h"#define MEMALLOC(type,num) ((type *) mymalloc(sizeof(type)*(num)))#define PROJECT(l,z,u) ((z) < (l) ? (l) : ((z) > (u) ? (u) : (z)))void projected_gradient (INT n);DREAL nonsmooth_norm (INT n, DREAL z[], DREAL f[], DREAL lb[], DREAL ub[]);void *mymalloc(long Len);/* code for nonsmooth_norm and mymalloc not included */INT iterlimit, iosta, iolog, screen;DREAL *z, *lower, *upper, *f;CHAR msgbuf[256];#ifdef POSTUCvoid corerq_ (void)#elsevoid corerq (void)#endif{ c_cpputi ("nwucor", 1); /* ask for one "word", it won't be used */c_cpputi ("istype", 2); /* istype == 2 means we solve general MCP's */return;}#ifdef POSTUCvoid solver_ (DREAL *work, INT *nwucor)#elsevoid solver (DREAL *work, INT *nwucor)#endif{ INT n;/* get n, unit numbers, iterations limit */n = c_cpgeti ("n");iosta = c_cpgeti ("iosta");

Draft Copy 26iolog = c_cpgeti ("iolog");iterlimit = c_cpgeti ("iterlim");c_cpputi ("startc", 0);sprintf (msgbuf, "Sample solver programmed by Steve Dirkse");c_print_msg (screen, msgbuf);c_print_msg (iolog, msgbuf);c_print_msg (iosta, msgbuf);c_cpputi ("stopc", 0);projected_gradient (n);return;}/* Not a complete implementation, just a model */void projected_gradient (INT n){ int iteration = 0,i;CHAR *s;DREAL metric, obj,stepsize = 0.5;lower = MEMALLOC (DREAL,n);upper = MEMALLOC (DREAL,n);z = MEMALLOC (DREAL,n);f = MEMALLOC (DREAL,n);/* get initial iterate and lower, upper bounds */cpbnds_ (z, lower, upper, &n);cpfunf_ (z, f, &n);s = msgbuf;sprintf (s, "\n iterate\t residual norm\t CPLIB norm\n");while (*s) s++;sprintf (s, " -------\t -------------\t ----------");c_print_msg (iolog, msgbuf);metric = nonsmooth_norm (n, z, f, lower, upper);obj = c_cpgetd ("obj");sprintf (msgbuf, "%6d\t%15.7f\t%15.7f", iteration, metric, obj);c_print_msg (iolog, msgbuf);while (iteration < iterlimit) {if (metric < 1e-6) { /* convergence! */cpsoln_ (z, &n);c_cpputi ("modsta", MODEL_SOLVED);c_cpputi ("solsta", SOLU_NORMAL);

Draft Copy 27return;}for (i = 0; i < n; i++) {z[i] -= stepsize * f[i];z[i] = PROJECT(lower[i], z[i], upper[i]);}iteration++;cpfunf_ (z, f, &n);metric = nonsmooth_norm (n, z, f, lower, upper);obj = c_cpgetd ("obj");sprintf (msgbuf, "%6d\t%15.7f\t%15.7f", iteration, metric, obj);c_print_msg (iolog, msgbuf);}c_cpputi ("modsta", MODEL_NOT_SOLVED);c_cpputi ("solsta", SOLU_ITERATION);return;}

