The GAMS Callable Program Library for Variational

and Complementarity Solvers

Steven P. Dirkse * Michael C. Ferris * Paul V. Preckel |
Thomas Rutherford *

July 19, 1994

Abstract

The GAMS modeling language has recently been extended to enable the formulation of Mixed
Complementarity Problems (MCP). The GAMS Callable Program Library (CPLIB) is a set
of Fortran subroutines developed as an extension for the GAMS I/O library and designed
to provide a simple and convenient interface to the MCP defined by a GAMS model. This
paper provides technical documentation for CPLIB for use by those who are developing or
have developed algorithms for MCP, in order that their solvers may be made available as
GAMS subsystems.

1 Introduction

This paper provides technical documentation for the GAMS Callable Program Library
(CPLIB) which has been developed as an extension of the GAMS I/O library (Kalvela-
gen 1992). CPLIB is a set of routines which simplify the implementation of GAMS solution
systems for linear and nonlinear equations, complementarity problems and variational in-
equalities. The GAMS language has only recently been extended to accomodate this class of
problems. Brooke, Kendrick & Meeraus (1988) provide an introduction to the GAMS lan-
guage for optimization. The MCP extension is described by Rutherford (1994). The present
paper is written for algorithm developers rather than modelers. The library detailed here
has been constructed to encourage researchers who have algorithms for the MCP problem
types to make them available to others as part of the GAMS language.

*Computer Sciences Department, University of Wisconsin, Madison, WI 53706. Research supported by
the National Science Foundation grant CCR-9157632.

tAgricultural Economics Department, Purdue University, West Lafayette, IN 47907.

Department of Economics, University of Colorado, Boulder, CO 80309. Research supported by the
Canadian Natural Science and Engineering Research Council grant T306A1.

Draft Copy 2

A large class of problems including systems of equations, complementarity problems,
constrained nonlinear optimization problems and finite dimensional variational inequalities
can be characterized as special cases of the Mixed Complementarity Problem (MCP):

Definition 1 (MCP) Given a function F : R" — IR" and bounds {,u € R",

find zeIR", w,ve R}

Fz)=w—uv (1a)
ot (<z<u (1b)
—0)"w (1c)

u—2z)v= (1d)

Not all solvers may be capable of solving all problems in this class. Certain algorithms
will, for example, only apply to systems of equations (¢ = —oo,u = 400), while others
may apply only to the nonlinear complementarity problem (¢ = 0,u = 400). It will be the
modeler’s job to choose an appropriate solution algorithm for a particular application.

A number of economists currently use GAMS for economic equilibrium analysis. These
models typically use a nonlinear optimizer such as MINOS (Murtagh & Saunders 1983) or
CONOPT (Drud 1985) to solve square systems of smooth nonlinear equations. We believe
that there will be significant interest among these practitioners in solvers for nonsmooth
systems of equations, provided the algorithms are sufficiently robust and efficient. It is likely
that the complementarity facility within GAMS will find applications in other disciplines as
well.

While it is apparent that modelers will benefit from this extension, we feel that the algo-
rithmic community can benefit as well. This is because the GAMS modeling system provides
an excellent framework through which researchers interested in exploring the properties of
new algorithms can interact with people who are building “real” models. Clearly, the avail-
ability of many easily accessed, large scale test problems will provide better insight into the
relative strengths of new algorithms.

We have developed CPLIB to simplify the process of connecting a solver to GAMS.
Until now the coding required to link a solver to GAMS may have deterred those with
non-commercial solvers from making them available for testing on true applications. The
CPLIB interface significantly reduces the set-up cost. We believe that connecting a solver to
GAMS using CPLIB represents less work than programming the input-output and function
evaluation routines for a single large-scale test problem.

The GAMS I/O library is available in both C and Fortran. CPLIB is only available in
Fortran, although its use with solvers written in C is relatively easy under operating sys-
tems where compatible C and Fortran compilers are available. CPLIB is designed to be
used together with the linear and nonlinear components of the GAMS 1/0O library. Using
these tools, it is possible to produce solution systems which are truly portable because all
system-specific functions can be performed by the (platform-specific) GAMS library rou-
tines. The GAMS routines are currently available on many machines, including PCs, many
workstations, mainframes and supercomputers.

Draft Copy 3

From the perspective of an MCP algorithm, CPLIB is simply a function and derivative
evaluation facility. Before connecting a solver to GAMS, it should be debugged to a reason-
able extent using small examples, but it need not be “bullet-proof”. The GAMS interface
can be used from an early stage in algorithm development to generate simple test problems
and to help with debugging.

A schematic representation of the relationship between the developer-written routines,
CPLIB, and the GAMS I/O library is presented in Figure 1. The developer-written routines
are indicated by dashed boxes. Referring to the top of this diagram, we begin with the

———

| CORERQ: workspace | | SOLVER: solution !

. | i | | lgorith |

CPLIB: evaluate function and L e_ s_tfm_a:t_e ______ ! L é_l_g_(?m__frf o
Jacobian, provide initial iter- j o
ate, accept solution, utility rou- e p
tines ~ t
N 1
0
n
a
A 1

Y

GAMS I/0O library: reads/writes machine-specific binary files

A

Y

GAMS model

Figure 1: Interrelationship of Developer Code and CPLIB

developer’s main program, the sole function of which is to call the CPMAIN subroutine. The
CPMAIN routine, which has no arguments, is the top-level CPLIB routine, from which calls
are made to routines from the GAMS I/O library, CPLIB, and the developer-written rou-
tines. CPMAIN first calls I/O library routines to read information from the GAMS compiler

Draft Copy 4

summarizing the model structure. After forming the data structures which associate vari-
ables with equations, it calls the developer-written CORERQ (core-requirments) subroutine.
The purpose of CORERQ is to communicate the following to the CPLIB system:

e an indication of the solver’s capabilities,
e a request for workspace (i.e., dynamically allocated memory) if needed, and

e optionally, special values to install, such as those which are to be used to represent
plus and minus infinity.

In order to simplify development and maintenance of CPLIB, parameter values are gen-
erally not passed as subroutine arguments. Instead, communication between developer code
and the library takes place through calls to the “scalar interrogation” and “scalar return”
routines CPGET* and CPPUT*. (Details are provided below.) We have avoided (where possi-
ble) subroutine argument lists because we feel that this will make it easier to provide upward
compatability in future revisions of the library. Furthermore, this approach simplifies cross-
language linking.

CPMAIN allocates workspace and then calls the developer-written SOLVER subroutine. This
routine does the bulk of the problem solving. In the process of solving the problem, the
SOLVER routine will typically call CPLIB utility routines to

e query the GAMS I/O library regarding the values of machine dependent parameters;

e obtain values of problem-dependent parameters such as variable initial values and
bounds;

e evaluate the nonlinear function and its Jacobian at a given point; and

e return the computed solution, or an indication of why the solution process has termi-
nated without finding a solution.

For the most part, the CPLIB system provides all necessary utilities for an MCP algo-
rithm. The developer may, however, call the GAMS 1/0O library directly to perform certain
input-output functions or string manipulations. At the end of the solution process, control
returns to the CPMAIN routine where additional housekeeping activities are performed to close
down the GAMS I/O library.

A great advantage of CPLIB (with the GAMS I/0 library) is that all machine or installa-
tion dependent code may be removed from a solution system. In writing a solver, a developer
should be careful to employ library routines to perform platform-specific tasks in order that
the algorithmic code remains fully portable. Using the interface routines in this way, the
algorithm developer may concentrate on the mathematics of problem solution rather than
the quirks of porting Fortran or C to particular machines and operating systems.

Reserved names in the CPLIB and GAMS I/O library modules begin with the letters CP
and GF. It is good policy to avoid subroutine and common block names which begin with
either of these pairs of letters.

In Section 2, we introduce the developer-written subroutines and their functions. Sec-
tion 3 provides a description of the CPLIB subroutines and their use, Section 4 a description

Draft Copy 5

of how a solver communicates with a user, and Section 5 a discussion of how a solver is
installed as a GAMS subsystem. Appendix A discusses the use of solvers written in the C
language. Appendix B contains Fortran code for a Newton algorithm from Press, Flannery,
Teukolsky & Vetterling (1988). Appendix C contains a sample solver coded in C.

2 Developer-Written Subroutines

2.1 Workspace estimation: CORERQ

The first of the developer-written subroutines is CORERQ. This routine is used to communicate
to CPLIB the capabilities of the solver (to detect incompatible problem /solver combinations).
It is also the place to compute an estimate of the amount of memory required to process the
problem. This routine may also install special values for plus and minus infinity.

The CORERQ subroutine has no arguments. The communication between CPLIB and
subroutine CORERQ is accomplished through the parameter interface routines CPGETI, CPPUTI
and CPPUTD documented below. The integer parameters to be set are 'ISTYPE’ (solver type
indicator) and 'NWUCOR’ (the memory required, expressed in number of “words” - double-
precision real equivalents). In estimating 'NWUCOR’, CPGETI is typically used to determine
problem size and density. (See Section 3.5 for details.) The double precision values which
may be returned correspond to the strings 'PLINFY’ and "MNINFY’ and are subsequently
used to represent plus and minus infinity. (If these values are not specified, they assume
default values equal to +/ — 10%0.)

2.2 Solution control: SOLVER

The second of the developer-written subroutines is SOLVER. This is the developer’s top-level
routine for problem solution. If memory is dynamically allocated, it is typically in this
routine that the requested workspace is “partitioned” and passed along as separate arrays.
The structure of this subroutine is:

SUBROUTINE SOLVER(WORK, NWUCOR)
INTEGER NWUCOR
DOUBLE PRECISION WORK(NWUCOR)

NWUCOR input number of words (double-precision reals) of memory reserved for
the solver in the previous call to CORERQ
WORK input workspace array of NWUCOR words

In the process of solving a problem, this routine and its subsidiaries will call routines
from CPLIB and (possibly) routines from the GAMS I/O library. The CPLIB routines it
will need to call are described in the following section.

Draft Copy 6

3 CPLIB Subroutines Called by Solvers

The CPLIB subroutines include one routine which returns initial values and bounds, two
routines to evaluate functions and derivatives, one routine for reporting the solution vector,
one routine which triggers a system interrupt, and six routines for passing scalar values
between the solver and the library. This section will introduce these routines.

3.1 Initial levels and bounds: CPBNDS

GAMS/CPLIB passes three values for each variable to the solver. These are the initial level,
the lower bound and the upper bound. The solver obtains these values from CPLIB using
the subroutine CPBNDS, whose structure is:

SUBROUTINE CPBNDS(Z, BL, BU, N)
INTEGER N
DOUBLE PRECISION Z(N), BL(N), BU(N)

Z output initial values of the problem variables
BL output lower bounds

BU output upper bounds

N input problem dimension.

The representations of plus and minus infinity used in BU and BL should be obtained via
calls to CPGETD with the strings 'PLINFY’ and ‘MNINFY”.

3.2 Solution value return: CPSOLN

Before the SOLVER routine returns control to CPMAIN, the level values for the problem variables
may be returned through the CPLIB routine CPSOLN. The structure of this routine is:

SUBROUTINE CPSOLN(Z,N)
INTEGER N
DOUBLE PRECISION Z(N)

Z input solution estimate at solver termination
N input problem dimension.

This routine is optional. If it is not called, CPLIB will return level values to GAMS which
are the “best” values encountered in the solution process, based on ||¢|| . = max; |¢;(2)] (the
box norm of €). The vector € is defined by

€i(2) :=max {F;(2)y min[l, z; — ¢;], (—=F;(2))L min[1,u; — z], (l; — 2i)+, (2 —ui)+},

where x, := max (0,z). An algorithm is not required to use this norm for determining
convergence. The CPLIB calculation is provided only in order that a “good” solution can
be returned in the event of an abnormal exit.

Draft Copy 7

3.3 Abnormal interrupt: CPPUNT

In the normal program sequence, a solver processes the problem, returns the solution values
and status indicators and then returns control to CPMAIN which closes down the GAMS
I[/O library and returns control to the developer’s main program. In certain circumstances,
particularly with solvers which are under development, it is helpful to be able to abort
directly from a lower level routine in the solver. In these cases, the CPPUNT routine should be
used rather than a Fortran STOP statement. CPPUNT will assure that the GAMS I/O library
is properly closed so that the GAMS program exits “gracefully”. CPPUNT has no arguments.

The CPPUNT routine will set MODSTA = 12 (error unknown) and it will trigger a
“SYSOUT” (i.e., the entire status file will be copied onto the listing file, as though the
GAMS program had specified “OPTION SYSOUT = ON;”.) In addition, the current solu-
tion (either based on the CPLIB merit function or installed by the solver through a prior
call to CPSOLN) will be passed to the listing file.

3.4 Function evaluation: CPFUNF, CPSPRJ

Two routines provide function evaluations. One evaluates only the vector function F', while
the second evaluates both F' and its Jacobian .J, returning .J in a sparse matrix data structure.

CPFUNF evaluates the nonlinear function F' at a given point, Z. It does not return the
Jacobian of F. The structure of this subroutine is

SUBROUTINE CPFUNF(Z,F,N)
INTEGER N
DOUBLE PRECISION Z(N), F(IN)

Z input point at which to evaluate the function F
F output value of F' evaluated at Z
N input problem dimension.

CPSPRJ evaluates the function F' and its Jacobian J, the matrix of first partial derivatives
of F with respect to its arguments. The Jacobian is returned in the well-known row index,
column pointer, column length format. The subroutine structure is:

SUBROUTINE CPSPRJ(Z, F, J, JROW, JCOL, JLEN, N, NADIM)
INTEGER N, NADIM, JROW(NADIM), JCOL(N), JLEN(N)
DOUBLE PRECISION Z(N), F(N), J(NADIM)

Z input point at which to evaluate the function F' and Jacobian .J
F output value of F' evaluated at Z

J output nonzero coefficients of the matrix .J evaluated at Z

JROW output row indices of the coefficients stored in J

JCOL output pointers to columns starts in J

JLEN output lengths of the columns in J

N input problem dimension

NADIM input number of nonzero components in J.

Draft Copy 8

The coefficients for the nonzero entries of the k’th column of J are stored in the vector
J, in positions JCOL(k), JCOL(k)+1, ..., JCOL(k)+JLEN(k)-1. The row indices for these
coefficents are stored in the corresponding positions of JROW.

3.5 Scalar interrogation: CPGETD, CPGETI, CPGETL

Three routines are provided to pass scalar values from CPLIB to the solver. The routines
which “get” parameter values from CPLIB are CPGETD, CPGETI and CPGETL. These return
double precision (real), integer and logical parameters, respectively. The structure of these
routines is:

SUBROUTINE CPGETD(NAME, DPARAM)
CHARACTER* (*) NAME
DOUBLE PRECISION DPARAM

SUBROUTINE CPGETI(NAME, IPARAM)
CHARACTER* () NAME
INTEGER IPARAM

SUBROUTINE CPGETL(NAME, LPARAM)
CHARACTER* () NAME
LOGICAL LPARAM

NAME input the name of the parameter to be returned
DPARAM output real parameter returned

IPARAM output integer parameter returned

LPARAM output logical parameter returned

Character string identifiers for which these subroutines produce useful values are listed in
Tables 1, 2, and 3, along with definitions of the results.

3.6 Scalar return: CPPUTD, CPPUTI

Two utility routines similar in design to the CPGET* routines are provided to pass scalar
values from the solver to CPLIB. The structure of these routines is:

SUBROUTINE CPPUTD(NAME, DPARAM)
CHARACTER* () NAME
DOUBLE PRECISION DPARAM

SUBROUTINE CPPUTI(NAME, IPARAM)
CHARACTER* () NAME
INTEGER IPARAM

Draft Copy

Table 1: CPGETD Arguments

String Result returned in double precision argument

"CLOCK’ Current elapsed time (for checking RESLIM).

"CONTOL’ Convergence tolerance (default value = 1.e-6)

'EPS’ The smallest positive number that can be added to 1.0 to obtain a
result different from 1.0.

"GMINE’ GAMS bit pattern for —oo (a logical indicator not to be treated as
a number).

"GPINF” GAMS bit pattern for +o0o (a logical indicator not to be treated as
a number).

"HUGE’ The largest positive number representable on the machine.

"MAXEXP’ The largest positive decimal exponent representable on the
machine.

"MINEXP’ The largest negative decimal exponent representable on the
machine.

"MNINFY”’ Value currently used for —oo.

‘OBJ’ Merit function associated with the most recent function evaluation.

"PLINFY’ Value currently used for 4o0.

"PRECIS’ The number of significant decimal digits.

'REALL - Five real values can be set in a user’s GAMS program using option

'REALY’ statements of the form:
option REAL3 = 0.1;
these should be used only during solver development.

"RESLIM’ The resource limit in CPU seconds.

"TINY’ The smallest positive number representable on the machine.

Draft Copy

Table 2: CPGETI Arguments

String Result returned in integer argument

'DOMERR’ The number of domain errors which have been encountered.

'DOMLIM’ Maximum number of domain errors allowed before the iterations
are terminated.

'INTEGER1- Five integer values can be set in a user’s GAMS program using

'INTEGERS’ option statements of the form:
option INTEGER3 = 10;
these should be used only during solver development.

INTW? The number of long integers per “word” (1 word = 1 double preci-
sion real).

TOLOG’ The I/O unit number of the log file.

'TOOPT’ The I/O unit number of the options file (cf. USEOPT from CPGETL
to see if an options file has been provided).

TOSTA’ The I/O unit number of the status file.

TTERLIM’ An iteration limit set via the GAMS ITERLIM option; default =
1000.

'LLOGW? The number of long logicals per “word”.

"MAXCOL’ The maximum number of nonzeros in any column of the matrix.

N’ The number of equations/structural variables in the condensed
problem (after fixed variables are removed).

'NADIM’ The number of nonzeros in the Jacobian matrix of the condensed
problem.

'NUMCOL’ The number of structural variables in the original problem.

'NUMNNZ’ The number of nonzeros in the Jacobian matrix of the original
problem.

'NUMROW’ The number of rows in the original problem.

'SCREEN’ The I/O unit number of the screen.

'SHORTW’ The number of short integers per “word”. 'INTW? is returned if no
short integers exist. (If possible, avoid using short integers).

'SLOGW’ The number of short logicals per “word”. "LLOGW?’ is returned if

no short logicals exist. (If possible, avoid using short logicals).

10

Draft Copy 11

Table 3: CPGETL Arguments

String Result returned in logical argument
"USEBAS’ If true, use basis information implied by the bounds and initial
values.
"USEOPT”’ If true, attempt to read user’s options file, whose format and syntax
are solver-defined.
'SYSOUT’ If true, GAMS will copy the complete status file to the listing file.
NAME input the name of the parameter to be passed

DPARAM input real parameter passed
IPARAM input integer parameter passed

Character string identifiers used as input to these routines are listed in Tables 4 and 5, along
with definitions of the results.

Table 4: CPPUTD Arguments

String Description of associated value

"CONTOL’ Convergence tolerance — used to identify infeasible equations in the
solution listing.

4 Communication and Control

This section describes how a solver communicates with the user. It also indicates how a
GAMS user can affect the solution algorithm, either through the use of iteration or resource
limits or through the provision of a solver-specific “option” file with tolerances and switches.
For most applications, the CPLIB routines provide all the necessary hooks. Some developers
may choose to call utility routines from the GAMS I/O library directly. Potentially relevant
utilities are listed at the end of this section.

4.1 Communicating with the User

The solver communicates with the GAMS user through the status file, the log file, and the
screen. The unit numbers for these devices are accessed through calls to CPGETI using the
identifiers 'TOSTA’, "YIOLOG’ and 'SCREEN’.

The status file contains two classes of information — information which is always be copied
to the GAMS listing file and information which is copied to the listing file only when the

Draft Copy

Table 5: CPPUTI Arguments

String

Description of associated value

ISTYPE’

TTSUSD’

"MODSTA’

'NWUCOR?’
"SOLSTA’

'STARTC’
'STOPC”

Indicator of solution algorithm capability (passed from CORERQ):
1 nonlinear equations (I = —o0, u = 400)
2 general MCP (—oco <1 <u < +00)
The number of iterations used by the solver. If not set, this records
the number of function/derivative evaluations.
Model status indicator. Values relevant to MCP models are:
1 model solved
7 model not solved
13 error - no solution (GAMS triggers a SYSOUT)
Words of memory requested for solver (passed from CORERQ)
Solver status indicator. Values relevant to MCP algorithms are:
1 normal completion
2 iteration interrupt
3 resource interrupt
4 terminated by solver (GAMS triggers a SYSOUT)
5 evaluation error limit
11 internal solver error
Start copying status file output to the listing file.
Stop copying status file output to the listing file.

12

Draft Copy 13

GAMS user specifies the option SYSOUT = ON. The first type of output is identified by
first calling CPPUTI with the string 'STARTC’ (the integer argument is ignored). Subsequent
solver output to the status file will then appear in the GAMS listing. To stop copying to the
listing file, call CPPUTI with the string 'STOPC’ (again, the integer argument is ignored).

The log file and the screen are typically the same unit. On interactive platforms, the
solver may send messages to the log file to indicate progress. This is particularly reassuring to
the user when the system is slow. It is possible, however, for the user to redirect this output.
(A user might do this if he is operating over a slow phone line.) Only when information
(such as a copyright notice) is always to be displayed on the screen should the SCREEN unit
be used.

4.2 Iteration limits

It is up to the solver to see to it that iteration limits set by the user (through the ITERLIM
option) are not exceeded. By querying CPLIB for the value of ITERLIM’ (using CPGETI),
a solver can obtain the iterations limit. It is a GAMS convention that for algorithms with
major and minor iterations, 'ITERLIM’ refers to the cumulative minor iterations performed.
Other iteration limits may be specified in the solver-specific options file. The solver should
see that these limits are not exceeded as well.

4.3 CPU time limits

GAMS also provides a way to limit the amount of CPU resources used by a solver. This
resource limit is set using the RESLIM option, and is obtained from CPLIB via a call to
CPGETD, using the string 'RESLIM’. This limit is expressed in units (typically CPU sec-
onds) which are consistent with the value returned by CPGETD through the string 'CLOCK".
The value of "CLOCK” should be evaluated at various times during problem solution and
compared with the CPU limit "RESLIM’. The run should be terminated when 'RESLIM’ is
exceeded.

4.4 Options files

Some algorithms may need tuning for particular problems. Tuning parameters are typically
specified in an options file, the format and contents of which are the choice of the algorithm
developer. Typically, these are free-format files containing optional key words and parameter
values. CPLIB routine CPGETL returns a logical value for ’'OPTFIL’ which is true if an options
file exists. When a file is provided, CPLIB routine CPGETI returns the unit number of the
options file (an integer value) when passed the string TOOPT".

4.5 GAMS I/0 utilities

The CPLIB package has been designed so that direct calls to the GAMS 1/0 library are
not absolutely necessary. Developers may, however, wish to use some of the I/O utilities
in order to improve portability of their code or to perform special functions. The names

Draft Copy 14

and short descriptions of potentially relevant utilities are presented here. Interested readers
should consult the I/O library manual for calling sequences (Kalvelagen 1992).
Input library routines:

GFOPTI Return options file name

GFTIME Return GAMS time.

GFWDIR Return GAMS working directory.
GFSDIR Return GAMS system directory.

GFCDIR Return GAMS scratch directory.

Resident library routines:

GFMSG Write a message.

MEMINF Print memory statistics.

GFUOPN Open a file.

GFFRST Return position of first non-blank in a string.

GFINDX Return length of a string excluding trailing blanks.

GFFRMT Return a string with a “good” format for printing a real number.

5 Introducing a Solver to GAMS

Once a solver has been linked to CPLIB and the GAMS I/O library, it must be introduced
as a GAMS subsystem before it is used by a GAMS program. This section describes the
various files which must be written and modified for this purpose. In this discussion, file
names and batch command language for the DOS version of GAMS are used. Different file
name extensions etc. may be used on other platforms.

5.1 Updating gamscomp.txt

To introduce a new solver, the gamscomp.txt file in the GAMS directory must be updated.
In this file there are entries for each of the solvers currently connected to the GAMS system.
For example, if the system is licensed for MINOS, there will be an entry such as:

minos5 2 O LP RMIP NLP DNLP RMINLP
gamsmns3

The first line indicates the name of the solver (MINOS5 in this case). Two integers follow
the solver name. They signify the data file type and the dictionary file type, respectively.
The capability list for the solver follows these integers. This is the class of problems for
which this solver may be employed. The line immediately following the solver capability list
indicates the name of the batch control file in the GAMS system directory which invokes
your solver. In this case, the batch file is named gamsmns3.bat.

The data file types include 0 for flat (ASCII), 1 for stream (binary with no header or
footer), 2 for binary with four byte header and footer, and 3 for “special”. When introducing
a new solver, use the file type which is appropriate for your compiler. File type 0 works for

Draft Copy 15

all compilers but it introduces a significant performance penalty for large models. On the
PC, file type 2 is used for programs compiled with NDP Fortran and type 1 is used for Lahey
Fortran.

The dictionary file types include 0 for none, 1 for a flat file with no quotes, and 2 for
a flat file with quoted strings. When using CPLIB, the library file type must be of type 2.
Unlike other optimization models, the dictionary file is always needed for MCP models; it is
read using Fortran free-format (list-directed) input.

To introduce a new solver, give it a name and then make the appropriate two-line entry
in gamscomp.txt. For example:

newton 0 2 mcp
runnwt

If you want this to become the default MCP solver, you enter the solver name after MCP
at the bottom of the gamscomp.txt file.

5.2 The solver batch command file

After introducing a solver in gamscomp.txt, the batch command file which is named in the
solver definition must be written. A batch file is used in order that the executable image can
be stored in a directory other than the GAMS system directory. For example, the NEWTON
solver invocation file (runnwt.bat) is:

Q@echo off
C:\gams\mnewt\newton %4
gamscmex %3

gamsnext %3

Here (in the DOS version), %3 and %4 are the third and fourth arguments in the batch
file invocation. %4 is the control file name which is obtained from the command line by the
[/O library routines. The control file is read by the I/O library, providing model dimensions,
control parameters and file locations.

5.3 Shortening the debug cycle

After linking a solver to GAMS it can be expected that one or more test problems will prove
to be particularly recalcitrant. When using GAMS test problems to debug a solver, it is
not necessary to recompile the GAMS input file each time the solver is invoked. Instead,
temporarily modify the GAMS batch files in order to skip the scratch file clean-up step. In
the PC version of GAMS, this simply involves omitting the following line from gamsexit.bat:

if exist %l1*.scr erase %l*.scr

(This can be done by simply placing a comment flag (“:”) in the first column of the record.)

Draft Copy 16

Having done this, run GAMS on the input file once to generate the data and instructions.
These will be saved in a set of intermediate files with the . scr extension on the GAMS scratch
directory. (See parameter SCRDIR in gamsparm.txt for the scratch directory location.)
As long as you do not delete these files, you can then invoke the solver directly without
running GAMS. For example, typing newton D:gamscntr.scr at the DOS prompt (when
SCRDIR=D:\) will run the NEWTON solver from a saved model. gamscntr.scr is the
control file in which the location of all other files is passed to the I/O library.

Acknowledgements

The authors are indebted to Alex Meeraus and Erwin Kalvelagen for their suggestions on
the design of this library. We assume responsibility for errors remaining in the code and
documentation.

References

Brooke, A., Kendrick, D. & Meeraus, A. (1988), GAMS: A User’s Guide, The Scientific
Press, South San Francisco, CA.

Drud, A. (1985), ‘CONOPT: A GRG code for large sparse dynamic nonlinear optimization
problems’, Mathematical Programming 31, 153-191.

Kalvelagen, E. (1992), ‘The GAMS I/0 library’, mimeo, GAMS Development Corporation.
Preliminary Version.

Murtagh, B. A. & Saunders, M. A. (1983), MINOS 5.0 user’s guide, Technical Report SOL
83.20, Stanford University.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1988), Numerical Recipes
: the Art of Scientific Computing, Cambridge University Press.

Rutherford, T. F. (1994), Extensions of GAMS for complementarity problems arising in ap-
plied economic analysis, Manuscript, Department of Economics, University of Colorado,
Boulder.

Draft Copy 17

A The C Interface

On many platforms, CPLIB can be used in conjunction with solvers written in the C pro-
gramming language. While the tasks of linking a Fortran solver and a C solver are quite
similar, there are some important differences. Because of these differences, we have written a
set, of C routines which act as an interface to CPLIB. These routines allow the writer of a C
solver to ignore many of the (perhaps platform-specific) cross-language issues he or she would
otherwise have to consider in making direct calls to Fortran CPLIB subroutines; instead, a
C routine is called, which performs the dirty work. The following paragraphs indicate why
we have chosen to write the C interface and how the interface can best be used. By way of
example, a simple solver written in C is included in Appendix C.

There are a number of standard conventions used in calling Fortran routines from C and
vice versa. Perhaps most importantly, Fortran arguments are “called-by-reference” (pointers
to data are passed, not the actual data values), while C passes by value. Of course, arrays
are stored column-major in Fortran, but row-major in C. Also, on some systems, a Fortran
subroutine named FOO0 gets an underscore appended to its name before being passed to the
loader, so a C call to SUBROUTINE FOO must actually call foo_. The case is significant in
the C code, while Fortran names are all generally converted to lower case. Calls from C to
CPLIB which use only integer and real arguments can be made easily, and in a portable
manner, by keeping these conventions in mind. An extra interface layer in these cases is not
necessary.

While passing numeric arguments is simple, the interrogation routines (CPGETI, CPPUTI,
etc.) in CPLIB require that a character string be passed to a Fortran subroutine. Passing
this string from a C routine is a bit more complicated than passing a numeric value; the code
necessary to do this may vary from machine to machine. Because of this, we have chosen
to write C routines which act as logical replacements for the CPLIB interrogation routines.
The details of passing a string from C to Fortran are taken care of in the body of these C
routines; the programmer need not be aware of how this is done. In addition to making
programming easier, these interface routines serve to isolate much of the code used to make
CPLIB calls. This eases the task of porting the C solver to a different architecture, since
changes need be made only to the interface routines; the calls to them in the solver remain
unchanged.

From a solver writer’s perspective, the essential details of the C interface are contained
in the header file c_cplib.h. The first lines of this file define BOOLEAN, CHAR, DREAL, and
INT to be the C type declarators for logical, character, floating-point and integer types,
respectively. When writing a C solver, it is recommended that these type declarators be
used for all variables which will be passed to CPLIB functions or to the C interface. The
declarators have been defined to assure correspondence in size and type to the Fortran
variables used in CPLIB; their use increases solver portability.

Declarations for routines called from the solver are also included in the c_cplib.h header.
The functions c_cpget* have a single string pointer argument, and return a value of the
appropriate type. The functions c_cpput* have two arguments, a string pointer and the
value to be put. The c_print_msg routine is used to print messages to the various Fortran
I/O units opened by CPLIB. Its first (integer) argument is the unit number to print to; its

Draft Copy 18

second argument is a pointer to the string to be printed. This string must be null-terminated.
Thus, one technique for writing to the CPLIB status and log files from a C solver is to use
sprintf to write to a message buffer, and to pass a pointer to this buffer to the c_print_msg
routine. This is the technique used in the solver in Appendix C. The remaining calls to
CPLIB routines (CPBNDS, CPFUNF, etc.) are made without an interface. In making these
calls, care must be taken to observe the conventions described above. C-type declarations
for the CPLIB routines are included in c_cplib.h to aid in error detection.

/* defines, etc for the C solver interface to CPLIB
by
Steven Dirkse
Computer Sciences Department
UW-Madison
*/
/* we want INT to correspond in size to Fortran’s integer, etc */
#define BOOLEAN int
#define CHAR char
#define DREAL double
#define INT int

#define CPBUF_LEN 8
#define OPTFLN_LEN 80

/* defines for modsta, solsta return values */
#define MODEL_SOLVED 1

#define MODEL_NOT_SOLVED 7

#define MODEL_ERROR 13

#define SOLU_NORMAL
#define SOLU_ITERATION
#define SOLU_RESLIM
#define SOLU_KILLED
#define SOLU_EVAL_LIMIT
#define SOLU_ERROR

= oW N

INT c_cpgeti (CHAR *string);

DREAL c_cpgetd (CHAR #*string);

BOOLEAN c_cpgetl (CHAR *string);

void c_cpputi (CHAR *string, INT ivalue);

void c_cpputd (CHAR *string, DREAL dvalue);

void c_cpputl (CHAR *string, BOOLEAN lvalue);

void c_print_msg (INT unit_no, CHAR *msg);

CHAR *get_row_name (INT index, CHAR *s, INT len);
CHAR #*get_variable_name (INT index, CHAR *s, INT len);

/* compile with -DPOSTUC when trailing underscores are needed
This is what user-written C routines should look like */
#ifdef POSTUC

Draft Copy

void corerqg_ (void);

void solver_ (DREAL *z, INT *nwucor);
#else

void corerq (void);

void solver (DREAL *z, INT #*nwucor);
#endif

/* headers for Fortran CPLIB routines called direct from C solver */

#ifdef POSTUC

void cpbnds_ (DREAL initial_point_z[], DREAL lower_bound[],
DREAL upper_bound[], INT *n);

void cpsoln_ (DREAL solution_point_z[], INT *n);

void cppunt_ (void);

void cpfunf_ (DREAL z[], DREAL f[], INT #*n);

void cpsprj_ (DREAL z[], DREAL f[], DREAL J[], INT rowindex[],
INT colptr[], INT collen[], INT *n, INT *nnz);

#else

void cpbnds (DREAL initial_point_z[], DREAL lower_bound[],
DREAL upper_bound[], INT *n);

void cpsoln (DREAL solution_point_z[], INT *n);

void cppunt (void);

void cpfunf (DREAL z[], DREAL f[], INT #*n);

void cpsprj (DREAL z[], DREAL f[], DREAL J[], INT rowindex[],
INT colptr[], INT collen[], INT *n, INT *nnz);

#endif

19

Draft Copy 20

B Sample Solver Coded in Fortran

PROGRAM NEWTON

A SIMPLE NEWTON ALGORITHM FOR NONLINEAR
EQUATIONS USING THE GAMS CALLABLE PROGRAM LIBRARY

THIS FILE CONTAINS AN ALGORITHM FROM PRESS,
FLANNERY, TEUKOLSKY AND VETTERLING: "NUMERICAL RECIPIES";
CAMBRIDGE UNIVERITY PRESS (1986).

THOMAS RUTHERFORD

DEPARTMENT OF ECONOMICS
UNIVERSITY OF WESTERN ONTARIO

THE MAIN PROGRAM SIMPLY CALLS THE CPLIB MAIN PROGRAM:

Qoo

CALL CPMAIN
END

SUBROUTINE CORERQ

Q

CORE REQUIREMENTS ROUTINE

Q

IMPLICIT NONE

ISTYPE = SOLVER TYPE INDICATOR

N = DIMENSION OF THE NONLINEAR SYSTEM

NADIM # OF NONZEROES IN JACOBIAN

INTW NUMBER OF INTEGERS PER "WORD" (DOUBLE PRECISION REAL)
NWUCOR = CORE REQUIRMENT

QO

INTEGER ISTYPE, N, NADIM, INTW, NWUCOR

CONTROL PARAMETERS FOR THE NEWTON ALGORITHM:

NTRIAL
TOLX
TOLF

NUMBER OF NEWTON STEPS
X ITERATE TOLERANCE (NOT USED HERE)
FUNCTION CONVERGENCE TOLERANCE (CONTOL)

QO

INTEGER NTRIAL
DOUBLE PRECISION TOLX, TOLF

Draft Copy 21

Q

Q Q

Qoo

Q

COMMON /NWTCOM/ TOLX, TOLF, NTRIAL
INDICATE THAT WE CAN ONLY SOLVE SMOOTH NONLINEAR EQUATIONS

ISTYPE = 1
CALL CPPUTI(’ISTYPE’,ISTYPE)

READ DIMENSION:

CALL CPGETI(’N’,N)
CALL CPGETI(’NADIM’,NADIM)

READ COUNT OF INTEGERS PER DOUBLE PRECISION ON PRESENT PLATFORM:
CALL CPGETI(’INTW’,INTW)
DETERMINE WORKSPACE REQUIREMENT:

2 N-DIMENSION DOUBLE PRECISION VECTORS

1 NADIM-DIMENSIONAL DOUBLE PRECISION VECTOR
1 NADIM-DIMENSIONAL INTEGER VECTOR

2 N-DIMENSIONAL INTEGER VECTORS

(ADD ONE WORD IN CASE N/INTW IS NOT INTEGRAL)

NWUCOR = 2 * N + NADIM + NADIM/INTW + 1 + 2 % (N/INTW + 1)
CALL CPPUTI (’NWUCOR’ ,NWUCOR)

QUERY FOR THE CONVERGENCE TOLERANCES AND ITERATION LIMIT:

TOLX = 0.0
CALL CPGETD(’CONTOL’,TOLF)
CALL CPGETI(’ITERLIM’,NTRIAL)

RETURN
END

SUBROUTINE SOLVER(Z, NWUCOR)
IMPLICIT NONE

INTEGER NWUCOR

DOUBLE PRECISION Z(NWUCOR)

INTEGER NTRIAL

DOUBLE PRECISION TOLX, TOLF

COMMON /NWTCOM/ TOLX, TOLF, NTRIAL
INTEGER IOLOG, IOSTA

Draft Copy 22

Q

Q

110

QQQQQQ

Qoo

Q Q

* X X *

THE FOLLOWING ARE POINTERS TO SUBVECTORS OF Z:

INTEGER LX, LBETA, LGRAD, LJROW, LJCOL, LJLEN
INTEGER N, NADIM, INTW

ANNQOUNCE THE PROGRAM

CALL CPGETI(’IOSTA’,IOSTA)

CALL CPGETI(’IOL0OG’,IOLOG)

CALL CPGETI(’STARTC’,IDSTA)

WRITE(IOL0G,110)

WRITE(IOSTA,110)

FORMAT(//,’ Newton-Raphson Algorithm MNEWT’/
’ //

> from Numerical Recipes (The Art of Scientific Computing)’/

> by Press, Flannery, Teukolsky, Vetterling’/

> Cambridge University Press’//)

CALL CPGETI(’STOPC’,IOSTA)

PARTITION THE WORKSPACE HERE (COMPUTE POINTERS TO THE FIRST
ELEMENT OF EACH OF THE ARRAYS WHICH WILL BE STORED IN Z)

CALL CPGETI(’N’,N)
CALL CPGETI(’NADIM’,NADIM)
CALL CPGETI(’INTW’,INTW)

LX =1

LBETA = LX + N

LGRAD = LBETA + N

LJROW = LGRAD + NADIM

LJCOL = LJROW + (NADIM/INTW)+1
LJLEN = LJCOL + (N/INTW)+1

LOAD THE INITIAL VALUE (THE SECOND AND THIRD ARGUMENTS
RETURN THE BOUNDS WHICH WILL NOT BE USED HERE, S0 WE PASS
BETA AND GRAD AS PLACE-HOLDERS):

WE "PARTITION" THE WORKSPACE ARRAY Z BY PASSING LOCATIONS
ACROSS THE CALL. (NOTICE THE DECLARATIONS FOR THE FIRST THREE
ARGUMENTS IN CPBNDS.)

CALL CPBNDS(Z(LX), Z(LBETA), Z(LGRAD), N)

INVOKE THE ALGORITHM, ONCE AGAIN PARTITIONING THE WORKSPACE:

CALL MNEWT(Z(LX), N, NADIM, Z(LBETA), Z(LGRAD), Z(LJROW),
Z(LJCOL), Z(LJLEN))

Draft Copy 23

Q

Q

QQ QQQ

11

QQQQ

RETURN
END

SUBROUTINE MNEWT(X, N, NADIM, BETA, GRAD, JROW, JCOL, JLEN)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION X(N), ALPHA(N,N), BETA(N), INDX(N), VV(N)

DOUBLE PRECISION 0BJ

INTEGER IOLOG

THIS CODE IS MORE OR LESS STRAIGHT FROM PRESS ET AL.

INTEGER NTRIAL
DOUBLE PRECISION TOLX, TOLF
COMMON /NWTCOM/ TOLX, TOLF, NTRIAL

GENERATE SOME OUTPUT TO THE LOG FILE:
CALL CPGETI(’IOLOG’,IOLOG)

WRITE(IOLOG,’ (A)?*)
> ITER 0BJ ERRF ERRX’

ERRX = 0.

DO 13 K=1,NTRIAL
CALL CPSPRJ(X,BETA,GRAD, JROW,JCOL, JLEN,N,NADIM)
ERRF=0.
DO 11 I=1,N

CPLIB RETURNS +F, BUT BETA MUST EQUAL -F, SO WE
REVERSE THE SIGN HERE:

BETA(I) = -BETA(I)
ERRF=ERRF+DABS (BETA(I))
CONTINUE
CALL CPGETD(’0BJ’,0BJ)
WRITE(IOLOG,100) K,OBJ,ERRF,ERRX
IF (ERRF.LE.TOLF)RETURN

call to factorization routine to solve J x = beta,
overwriting beta with x, is omitted

ERRX=0.
DO 12 I=1,N
ERRX=ERRX+DABS(BETA(I))

Draft Copy

X(I)=X(I)+BETA(I)
12 CONTINUE
IF (ERRX.LE.TOLX)RETURN
13 CONTINUE
RETURN
100 FORMAT(1H ,I4,1P3E12.2)
END

24

Draft Copy 25

C Sample Solver Coded in C

/* projgrad,c 3k 3k 5k 3k 3k >k 5k 3k %k 3k 5k 3k %k 5K 5k >k >k 5k Sk %k 3k 5k 3k %k 5k 5k %k 5k 5k %k 5k 5k %k 5k 5k %k 5k Sk sk >k k k k ki k
Steven Dirkse
Computer Science Department, UW-Madison

Source for a (simple) projected-gradient solver for MCP
***/

#include <stdio.h>
#include <malloc.h>
#include <math.h>
#include "c_cplib.h"

#define MEMALLOC(type,num) ((type *) mymalloc(sizeof (type)*(num)))
#define PROJECT(1,z,u) ((z) < (1) 7 (1) : ((z) > (w) ? (W : (2)))

void projected_gradient (INT n);

DREAL nonsmooth_norm (INT n, DREAL z[], DREAL f[], DREAL 1b[], DREAL ub[l);
void *mymalloc(long Len);

/* code for nonsmooth_norm and mymalloc not included */

INT iterlimit, iosta, iolog, screen;
DREAL =z, xlower, *upper, *f;
CHAR msgbuf [256];

#ifdef POSTUC
void corerq_ (void)

#else

void corerq (void)

#endif

{
c_cpputi ("nwucor", 1); /* ask for one "word", it won’t be used */
c_cpputi ("istype", 2); /* istype == 2 means we solve general MCP’s x/
return;

}

#ifdef POSTUC
void solver_ (DREAL *work, INT *nwucor)
#else
void solver (DREAL *work, INT *nwucor)
#endif
{

INT n;

/* get n, unit numbers, iterations limit */
n = c_cpgeti ("n");
iosta = c_cpgeti ("iosta");

Draft Copy

iolog = c_cpgeti ("iolog");
iterlimit = c_cpgeti ("iterlim");

c_cpputi ("startc", 0);

sprintf (msgbuf, "Sample solver programmed by Steve Dirkse");
c_print_msg (screen, msgbuf);

c_print_msg (iolog, msgbuf);

c_print_msg (iosta, msgbuf);

c_cpputi ("stopc", 0);

projected_gradient (n);
return;

/* Not a complete implementation, just a model */
void projected_gradient (INT n)

{

int iteration = O,
i;

CHAR x*s;

DREAL metric, obj,
stepsize = 0.5;

lower = MEMALLOC (DREAL,n);
upper = MEMALLOC (DREAL,n);
z = MEMALLOC (DREAL,n);
f = MEMALLOC (DREAL,n);

/* get initial iterate and lower, upper bounds */
cpbnds_ (z, lower, upper, &n);

cpfunf_ (z, £, &n);

s = msgbuf;

sprintf (s, "\n iterate\t residual norm\t CPLIB norm\n");
while (*s) s++;

sprintf (s, " -—————- \t - \t ")

c_print_msg (iolog, msgbuf);

metric = nonsmooth_norm (n, z, f, lower, upper);

obj = c_cpgetd ("obj");

sprintf (msgbuf, "%6d\t%15.7£f\t%15.7f", iteration, metric, obj);
c_print_msg (iolog, msgbuf);

while (iteration < iterlimit) {
if (metric < 1le-6) { /* convergence! */
cpsoln_ (z, &n);
c_cpputi ("modsta", MODEL_SOLVED) ;
c_cpputi ("solsta", SOLU_NORMAL);

26

Draft Copy

return;
}
for (i = 0; i < n; i++) {
z[i] -= stepsize * f[i];
z[i] = PROJECT(lower[i], z[i], upperl[il);
}
iteration++;
cpfunf_ (z, f, &n);
metric = nonsmooth_norm (n, z, f, lower, upper);
obj = c_cpgetd ("obj");
sprintf (msgbuf, "%6d\t%15.7£\t%15.7f", iteration, metric, obj);
c_print_msg (iolog, msgbuf);
}
c_cpputi ("modsta", MODEL_NOT_SOLVED);
c_cpputi ("solsta", SOLU_ITERATION);
return;

¥

27

