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that show the conditional gradient method has a sublinear rate of conver-gence.The main idea is to use a polyhedral trust region constraint in the stan-dard linear programming subproblem of the conditional gradient method.This maintains the attractive computational feature that all subproblems arelinear programs, for which a wealth of highly e�ective and e�cient softwarehas been developed. It also guarantees that every subproblem we generatehas an optimal solution. We develop an adaptive mechanism to update thetrust region parameter that guarantees the linear convergence of the methodunder the standard assumptions given by Luo and Tseng [20].Our analysis is somewhat involved and relies upon estimating descentproperties of the directions generated by our algorithm in terms of standardquadratic subproblems arising for example in gradient projection algorithms.To our knowledge, every linearly convergent technique for such problems isbased on such quadratic subproblems. The main contribution of this paperis that the solutions of our linear subproblems are considered as approxi-mate solutions of the quadratic subproblems and analysis is carried out toprecisely quantify this relationship.We will consider the following optimization problemP : infx2X f(x);where X � Rn is a nonempty closed convex set, and the objective function fis assumed to be continuously di�erentiable. Furthermore, it will be assumedthat f has a Lipschitz continuous gradient rf on X , that is8x; y 2 X; krf(x)� rf(y)k � L kx � yk :Here L is a positive scalar and k�k represents the Euclidean norm on Rn.We also suppose that fopt = infx2X f(x) > �1;and the optimal solution set for P is not empty.Let NX (x) denote the normal cone to X at x 2 X . The stationary setfor the problem P is the set of all points satisfying the �rst order optimalityconditions for P , that isXstat := fx 2 X j 0 2 rf(x) +NX (x)g= fx 2 X j 8y 2 X; hrf(x); y� xi � 0g :Our algorithm will converge under standard assumptions to a stationarypoint. Conditions relating stationary points to solutions of P are well known.2



Our method resembles a trust region method (see [7, 9]) by virtue of thefact that the subproblems are of the form:LP(x; r) : minh hrf(x); hisubject to x+ h 2 X;khk� � r;where k�k� represents an arbitrary norm on Rn and r is the trust regionradius. We actually prove convergence of our algorithm based on X beinga convex set and the trust region constraint being determined by an arbi-trary norm. When specialized to the case where X polyhedral and k�k� isa polyhedral norm, the subproblems LP(x; r) are linear programs and ouralgorithm is a successive linear programming algorithm.There are two key approximations in our analysis. The �rst is that werelate solutions of our linear programming descent problem LP(x; r) to thefollowing subproblemQP(x; a) : minh hrf(x); hi+ 12a khk2subject to x+ h 2 X;where a is a corresponding stepsize. When X is polyhedral, QP(x; a) isa quadratic programming problem. It is important that we guarantee inour algorithm that the trust region radius r is not too small. We thereforeemploy a special Armijo type procedure for choosing r at each iteration. Theessential di�culty in the proof relates to �nding an expression for the inversea(x; r) of r(x; a), and this is explored in Section 2. The key relationship isbetween solutions of LP(x; r) and QP(x; a) appears as Lemma 4.1.Usually rapid convergence techniques (i.e., at least a linear rate) forsolving P require the solution of a subproblem with a quadratic objectivefunction at each iteration k = 1; 2; : : : . For example, the gradient projectionalgorithm solves subproblems of the form QP(x; a). The second piece ofour analysis, given as Theorem 2.10 in Section 2 of this paper, relates thesolutions of QP(x; r) to solutions of the following (standard) trust regionproblem T P(x; r) : minh hrf(x); hisubject to x+ h 2 X;khk � r:Note that the objective function of this problem is linear and that the trustregion constraint is de�ned in terms of the Euclidean norm.3



In Section 3 we state the general form of the method which we call theSequential Linearization Method, and prove its linear convergence to thestationary set Xstat in Section 4. The special case of polyhedral constraintsis considered in Section 5. The resulting algorithm is a linearly convergentsequential linear programming (SLP) technique, for which we also providesome numerical results using Matlab, Cplex and the Cute suite of problems.2 Technical PreliminariesFor every x 2 X , consider the following auxiliary problemT P(x; r) : minh hrf(x); hisubject to x+ h 2 X;khk � r;where r � 0 is a parameter of the problem. Let H(x; r) and v(x; r) denotethe optimal set and the optimal value of T P(x; r) respectively. We shallrelate this to the following problem:T P(x;1) : minh hrf(x); hisubject to x+ h 2 X:Note that it is possible for v(x;1) = �1 and H(x;1) = ;.The standard optimality conditions (see [21, 25]) for the problem T P(x; r)provide the following lemma.Lemma 2.1 i. For every x 2 X, r > 0 and h 2 Rn (a) and (b) areequivalent:(a) h 2 H(x; r);(b) there exists � � 0 such that0 2 rf(x) + �h+NX (x+ h) ;x+ h 2 X;�(khk � r) = 0; khk � r:ii. For every x 2 X and h 2 Rn (a) and (b) are equivalent:(a) h 2 H(x;1);(b) 0 2 rf(x) +NX (x+ h), x+ h 2 X.4



The following corollary is immediate from Lemma 2.1.Corollary 2.2 For every x 2 X and r > 0 the following assertion holds:x 2 Xstat () v(x; r) = 0:For a subset S � Rn, let �S (x) denote the set of all orthogonal projectionsof x on S, that is�S (x) := fy 2 S j kx� yk = dist (x; S)g :Here dist (x; S) represents the distance from x to Sdist (x; S) := infy2S kx� yk :Let �S (x) be a typical element of �S (x); it is clear that if S is closed andconvex then �S (x) = f�S (x)g:For x 2 X and a � 0 de�nep0 (x; a) := �X (x� arf(x))� x:Clearly, for a > 0, p0 (x; a) is the unique solution of the following problem:QP(x; a) : minh hrf(x); hi+ 12a khk2subject to x+ h 2 X:The following two simple results prove to be useful in the sequel.Lemma 2.3 ([25]) Let x 2 X and a > 0 be given. The following assertionshold.i. h = p0 (x; a) if and only if0 2 rf(x) + 1ah+NX (x+ h) ; x+ h 2 X ;ii. hrf(x); p0 (x; a)i � � 1a kp0 (x; a)k2.Corollary 2.4 Let h 2 Rn be a limit point of a sequence fp0 (x; ak)g, ak !1, then h 2 H(x;1). 5



We now de�ne a residual function r0 (x; �) : R+! R+ byr0 (x; a) := kp0 (x; a)k ;where R+ := fx 2 R j x � 0g. We collect some well known properties ofthe function r0 (x; �) : R+! R+ in the following lemma. The proofs can befound in [10, 17, 27].Lemma 2.5 For every x 2 X the following properties hold:i. r0 (x; �) 2 C(R+);ii. 8a0 � a > 0, r0 (x; a0) � r0 (x; a).iii. 8a0 � a > 0, r0(x;a0)a0 � r0(x;a)a .iv. 8a > 0; r0 (x; a) = 0 () x 2 Xstat.The following lemma bounds the residual in terms of any solution ofT P(x; r).Lemma 2.6 Let x 2 X and suppose H(x;1) 6= ;. Then for every h 2H(x;1) and every a 2 [0;1),r0 (x; a) = kp0 (x; a)k � khk :Proof The result is trivial for a = 0. Otherwise, let us �x arbitrary x 2 X ,h 2 H(x;1), and a > 0. Suppose thatkhk < kp0 (x; a)k : (1)By the de�nition of H(x;1) we havehrf(x); hi � hrf(x); p0 (x; a)i :Hence, applying (1) we obtainhrf(x); hi+ 12a khk2 < hrf(x); p0 (x; a)i+ 12a kp0 (x; a)k2 ;which is a contradiction to the fact that p0 (x; a) is the solution of QP(x; a).6



We now investigate some limiting properties of this residual function.For every x 2 X we let r0 (x;1) := lima!1 r0 (x; a) :Obviously, it is possible that r0 (x;1) = 1 for some x 2 X . The follow-ing lemma allows us to identify certain limits of the functions p0 (x; �) andr0 (x; �). It is really just a technical result used for proving the ensuing result.Lemma 2.7 Let x 2 X and suppose for some a0 2 (0;1)r0 �x; a0� = r0 (x;1) : (2)Then 8a 2 [a0;1); p0 (x; a) = p0 �x; a0� : (3)In this case, lima!1 p0 (x; a) = p0 �x; a0� 2 H(x;1):Proof Let a > a0. Lemma 2.5(ii) and (2) show thatkp0 (x; a)k = p0 �x; a0� : (4)We now derive a contradiction to the supposition thatp0 (x; a) 6= p0 �x; a0� :Since p0 (x; a) and p0 (x; a0) are the unique solutions of the problemsQP(x; a)and QP(x; a0) respectively, we havehrf(x); p0 (x; a)i+ 12a kp0 (x; a)k2 < 
rf(x); p0 �x; a0��+ 12a p0 �x; a0�2< 
rf(x); p0 �x; a0��+ 12a0 p0 �x; a0�2< hrf(x); p0 (x; a)i+ 12a0 kp0 (x; a)k2 :Hence, by (4)hrf(x); p0 (x; a)i < 
rf(x); p0 �x; a0�� < hrf(x); p0 (x; a)i ;which is a contradiction, and so (3) is proved. It now follows from (3)that lima!1 p0 (x; a) = p0 (x; a0), so that Corollary 2.4 implies p0 (x; a0) 2H(x;1). 7



For x 2 X with H(x;1) 6= ;, we de�ne p0 (x;1) as follows:p0 (x;1) := argminh2H(x;1) khk :In particular, note the di�erence between the de�nition of p0 (x;1) andr0 (x;1) to that of p0 (x; a) and r0 (x; a) given above.Lemma 2.8 For every x 2 X the following assertions hold:i. r0 (x;1) <1 () H(x;1) 6= ;.ii. If r0 (x;1) <1 then r0 (x;1) = kp0 (x;1)k ; (5)and for all r � r0 (x;1)H(x; r) = H(x;1) \ B r ;where B r := fx 2 Rn j kxk � rg.Proof i. Let H(x;1) 6= ;. Applying Lemma 2.6 we immediately getthat r0 (x;1) < 1. Conversely, let r0 (x;1) < 1. Then for anarbitrary sequence fakg ! 1 the sequence fp0 (x; ak)g is bounded andhas a limit point p 2 Rn. By Corollary 2.4, we have that p 2 H(x;1),hence H(x;1) 6= ;.ii. Suppose that r0 (x;1) <1. Lemma 2.6 yields kp0 (x;1)k � r0 (x;1).On the other hand, by Corollary 2.41 > r0 (x;1) = lima!1 kp0 (x; a)k � minh2H(x;1) khk = kp0 (x;1)k :For the �nal assertion of the lemma, let us �x an r withr � r0 (x;1) ; (6)and take an arbitrary h 2 H(x; r). We need to show thath 2 H(x;1): (7)Applying Lemma 2.1(i), obtain that there exists � � 0 such that0 2 rf(x) + �h+NX (x + h) ; (8)x+ h 2 X; (9)�(khk � r) = 0; khk � r: (10)8
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Figure 1: r0 (x; a): a0 (x; r) is essentially the inverse of this functionIf � = 0 then (7) follows immediately from (8), (9) and Lemma 2.1(ii).Assume therefore that � > 0. Then (10) implies khk = r. ByLemma 2.3(i) obtain h = p0 �x; ��1�. Therefore, r = p0 �x; ��1� �r0 (x;1). Hence, by (6) and Lemma 2.5(ii) we have8a � ��1 > 0; r0 (x; a) = r0 (x;1) :Now applying Lemma 2.7 we obtain (7).We now de�ne a function a0 (x; r) that acts like the inverse of the functionr0 (x; a), see Figure 1. The inverse is generally set valued (see r = 1); hencefor every x 2 X and r 2 [0;1) de�nea0 (x; r) := min fa � 0 j r0 (x; a) � rg ;where we formally set min ; =1. Note that this is important in the exampleof Figure 1 when r > r�. Furthermore, in that example, note that r0 (x; a) =1 for any a 2 [1=2; 2] but that a0 (x; 1) = 1=2 is well de�ned. The mainproperties of the function a0 (x; �) : R+ ! R+ [ f1g are presented in thefollowing lemma.Lemma 2.9 For every x 2 X the following properties hold.i. For all r0 � r � 0, a0 (x; r0) � a0 (x; r) � a0 (x; 0) = 0.9



ii. 8r 2 (0;1), a0 (x; r) > 0 if x =2 Xstat, and a0 (x; r) =1 if x 2 Xstat.iii. 8r 2 (0;1); a0 (x; r) <1 () H(x;1) = ;.iv. For all r 2 [0;1), r0 (x; a0 (x; r)) � r.Proof i. Follows from Lemma 2.5(ii).ii. Follows from Lemma 2.5(iv).iii. Follows from Lemma 2.8(i).iv. Obviously, for every x 2 X and r > 0 we have the following: if thereexists a0 � 0 such that r � r0 (x; a0) thenr0 (x; a0 (x; r)) = r; (11)Otherwise, r � r0 (x;1), with r0 (x;1) <1 and a0 (x; r) =1.We now present an important relationship that exists between the problemsT P(x; r) and QP(x; a). Essentially, it states that the solution of QP(x; a)is also a solution of T P(x; r).Theorem 2.10 For every x 2 X and r � 0, p0 (x; a0 (x; r)) 2 H(x; r).Proof Let x 2 X and r > 0 be arbitrary. We can suppose that x =2 Xstat,since otherwise 0 = p0 (x; a0 (x; r)) 2 H(x; r). It follows that a0 (x; r) > 0and we consider two possible cases.In the �rst case, suppose that there exists a0 > 0 such that r � r0 (x; a0).Then a0 (x; r) <1, r0 (x; a0 (x; r)) = r by (11) and so kp0 (x; a0 (x; r))k = r.Also, by Lemma 2.3(i) we have0 2 rf(x) + 1a0(x;r)p0 (x; a0 (x; r)) +NX (x+ p0 (x; a0 (x; r))) ;x+ p0 (x; a0 (x; r)) 2 X:Applying Lemma 2.1(i) we obtain p0 (x; a0 (x; r)) 2 H(x; r).Otherwise, r > r0 (x; a0) for all a0 > 0. It follows that r � r0 (x;1),r0 (x;1) < 1, H(x;1) 6= ;, and a0 (x; r) = 1. Now, from Lemma 2.8(ii)we have p0 (x; a0 (x; r)) = p0 (x;1) 2 H(x; r);completing the proof of the theorem.10



The following result that provides a useful bound on the optimal value ofT P(x; r) is now easily established using Lemma 2.3 and Lemma 2.9(iv).Corollary 2.11 For every x 2 X n Xstat and r > 0 the following boundholds: v(x; r) = minx+h2X;khk�r hrf(x); hi � � 1a0 (x; r)r2;where we formally set 11 := 0.3 The Sequential Linearization MethodLet k�k� be an arbitrary norm in Rn. It is well known that there are positiveconstants c1 and c2 such that for all x 2 Rnc1 kxk� � kxk � c2 kxk� :Note that for every x 2 X and r > 0, the following inclusions hold:fh j x+ h 2 X; khk � c1rg � fh j x+ h 2 X; khk� � rg� fh j x+ h 2 X; khk � c2rg : (12)For x 2 X and r > 0 consider the following problem:LP(x; r) : minh hrf(x); hisubject to x+ h 2 X;khk� � r:Clearly, when k�k� is a polyhedral norm andX is a polyhedral set, LP(x; r) isa linear programming problem. Denote by H�(x; r) and v�(x; r) the solutionset and the optimal value of LP(x; r) respectively. The inclusions (12) implythat v(x; c2r) � v�(x; r) � v(x; c1r) (13)for every x 2 X and r � 0. The next result follows immediately fromCorollary 2.2 and (13).Lemma 3.1 For every x 2 X and r > 0, the following assertion holds:x 2 Xstat () v�(x; r) = 0:11



In order to justify the technique that we use to update the trust regionradius, we will also need a simple technical result.Lemma 3.2 For every � > 0 and x 2 X n Xstat, there exist r, r with0 < r < r, such that the following properties hold.i. 8r 2 [r;1); 8h 2 H�(x; r); f(x)� f(x+ h) � �2r2;ii. 8r 2 [0; r]; 8h 2 H�(x; r); f(x)� f(x+ h) � �2r2.Proof Let � > 0 and x 2 X nXstat.i. De�ne r := q2��1(f(x)� fopt), so that for all r 2 [r;1)f(x)� f(x+ h) � f(x)� fopt = �2r2 � �2r2:ii. Let a := 2c21(Lc22 + �)�1; (14)so that by Lemma 2.5, there exists r > 0 with a0 (x; c1r) � a. Takean arbitrary r 2 (0; r] and h 2 H�(x; r). By Lemma 2.9(i)a0 (x; c1r) � a0 (x; c1r) � a;then Corollary 2.11 impliesv(x; c1r) � � 1a0 (x; c1r)(c1r)2 � �c21a r2: (15)It follows from (13) and (15) thathrf(x); hi = v�(x; r)� v(x; c1r) � �c21a r2:Therefore, by (14)f(x+ h)� f(x) � hrf(x); hi+ L2 khk2� �c21a r2 + Lc222 khk2�� �c21a r2 + Lc222 r2= �12  2c21a � Lc22! r2= ��2r2:12



The algorithm we propose will have an Armijo style component to it.To describe this component precisely, let us �x arbitrary parameters � andr� with 0 < � < 1 and r� > 0, and de�neR := nr > 0 j r = �kr�; k = 0;�1;�2; : : :o :The next result now follows immediately from Lemma 3.1 and Lemma 3.2and shows there is an r 2 R that satis�es the Armijo test given below inAlgorithm SLP, but that r=� does not.Corollary 3.3 Let x 2 X and for each r0 2 R, let h�(x; r0) 2 H(x; r0). Thefollowing assertions hold.i. If x 2 Xstat, then8r0 2 R; v�(x; r0) = 
rf(x); h�(x; r0)� = 0:ii. If x =2 Xstat, then8r0 2 R; v�(x; r0) = 
rf(x); h�(x; r0)� < 0;and moreover, there exists r 2 R such thatf(x)� f(x+ h�(x; r� )) < �2 �r��2and f(x)� f(x+ h�(x; r)) � �2r2:We now state the main algorithm. The parameter k counts the numberof iterations, while �k represents the number of subproblems that we havesolved at the kth iteration.Algorithm SLPParameters �, r� > 0, 0 < � < 1.Input x1 2 X .Step 0 (Initialization): Set k := 0, rk := r�, kstop :=1.13



Step 1 Set k := k + 1, � := 1, r := rk�1. Solve the problem LP(xk; r) toobtain a solution h�(xk; r) 2 H(xk ; r). Set� := 8>><>>:0 if v�(xk; r) = Drf(xk); h�(xk; r)E = 0;�1 if v�(xk; r) 6= 0 and f(xk)� f(xk + h�(xk; r)) � �2r2;1 if v�(xk; r) 6= 0 and f(xk)� f(xk + h�(xk; r)) < �2r2;If � = 0, set kstop = k, xkstop = xk and exit.Step 2 Set � := �+1 and r := r�� . Solve the problem LP(xk; r) to obtaina solution h�(xk; r) 2 H(xk ; r).Step 3 If � = �1 and f(xk) � f(xk + h�(xk; r)) < �2r2 or � = 1 andf(xk)� f(xk + h�(xk; r)) � �2r2 then go to Step 4, else go to Step 2.Step 4 If � = �1, set rk = �r, else rk = r. Let �k = � and xk+1 =xk + h�(xk; rk) and go to Step 1.Note that in Step 1, the parameter � can take on one of three values. If� = 0, a stationary point has been found and the algorithm terminates. If� = 1, then su�cient decrease was not achieved and thus the subproblemneeds to be resolved with a smaller value of r. If � = �1, then su�cientdecrease was achieved, but the subproblem is solved again, this time with alarger value of r. Both of these resolves take place in Step 2.If the algorithm terminates after a �nite number of iterations, we cande�ne the iterates xkstop+1; xkstop+2; : : : as equal to xkstop for the purposes ofstating convergence results. Furthermore, it follows from Corollary 3.3 thatfor every sequence of iterates fxkg generated by the algorithm, �k < 1,k = 1; 2; : : : , and hence even if kstop = 1, rk > 0, k = 1; 2; : : : . Therefore,the algorithm is well de�ned. We now proceed to prove the convergence andassociated rates as outlined in the introduction.4 General Case: Convergence TheoryIt is easily seen that every in�nite sequence of iterates fxkg of the algorithmhas the following properties:f(xk)� f(xk + h�(xk; rk� )) < �2 �rk� �2 ; (16)f(xk)� f(xk+1) = f(xk)� f(xk + h�(xk; rk)) � �2r2k; (17)14



rk > 0; k = 1; 2; : : : :We also note thatxk � xk+1 = h�(xk; rk) � c2 h�(xk; rk)� � c2rk:Hence, for k = 1; 2; : : :f(xk)� f(xk+1) � �2c22 xk � xk+12 : (18)To analyze convergence properties of this sequence, we need the followinglemma.Lemma 4.1 Suppose that for some x 2 X n Xstat, r > 0 and h�(x; r� ) 2H�(x; r� ) the following condition holds:f(x)� f(x+ h�(x; r� )) < �2 �r��2 : (19)Then v�(x; r=�) � �Lc22 + �2�2 r2; (20)a0 (x; r) � a0 (x; ~c1r) � a := 2�2 ~c12Lc22 + � ; (21)r � ~ar0 (x; 1) = ~a kx� �X (x� rf(x))k ; (22)where ~c1 := min(1; c1), ~a = min(1; a).Proof It follows from (19) that��2 �r��2 < f(x+ h�(x; r� ))� f(x)� hrf(x); h�(x; r=�)i+ L2 kh�(x; r=�)k2� hrf(x); h�(x; r=�)i+ Lc222 (r=�)2 :Hence v�(x; r=�) = hrf(x); h�(x; r=�)i � �Lc22 + �2�2 r2;15



and so (20) holds.If a0 (x; ~c1r) =1 then a0 (x; r) =1 andr � ~c1r � r0 (x; 1) � ~ar0 (x; 1) :Thus, (21) and (22) are valid.Suppose that a0 (x; ~c1r) < 1. We also note from Lemma 2.9(ii) that0 < a0 (x; ~c1r). By Theorem 2.10 p0 (x; a0 (x; ~c1r)) 2 H(x; ~c1r); thereforehrf(x); p0 (x; a0 (x; ~c1r))i = v(x; ~c1r) � v(x; c1r):Applying (13) and (20) we obtainhrf(x); p0 (x; a0 (x; ~c1r))i � v(x; c1r) � v�(x; r) � v�(x; r=�) � �Lc22 + �2�2 r2:Now by Lemma 2.3(ii), we have�Lc22 + �2�2 r2 � hrf(x); p0 (x; a0 (x; ~c1r))i� � 1a0 (x; ~c1r) kp0 (x; a0 (x; ~c1r))k2= � 1a0 (x; ~c1r)r0 (x; a0 (x; ~c1r))2� � 1a0 (x; ~c1r) ~c12r2;the last inequality following from Lemma 2.9(iv). Hence, by Lemma 2.9(i)a0 (x; r) � a0 (x; ~c1r) � 2�2 ~c12Lc22 + � = aand (21) is proved.Lemma 2.9(iv) and Lemma 2.5(ii) implyr � r0 (x; a0 (x; r)) � r0 (x; a) ;so applying Lemma 2.5(ii) and (iii)r0 (x; a) � (ar0 (x; 1) if a � 1;r0 (x; 1) if a � 1.Thus (22) is proved. 16



Note that the following convergence theorem does not require any as-sumptions apart from the solvability of P and the convexity of X .Theorem 4.2 Every sequence of iterates fxkg produced by SLP has theproperty that r0 �xk; 1� = xk � �X �xk �rf(xk)�! 0:Moreover, ifX is compact, then every sequence of iterates converges to Xstat.Proof It follows from (16), (17) and Lemma 4.1 that for every sequence ofiterates produced by SLPf(xk)� f(xk+1) � �2~a2 xk � �X �xk �rf(xk)�2 ; (23)for k = 1; 2; : : : . However, ff(xk)g is bounded below, hence converges,implying the �rst statement of the theorem. If the second statement isnot valid, then there is a subsequence fxkgk2K and an � > 0 such thatdist �xk; Xstat� > � for k 2 K. Since fxkg is bounded, fxkgk2K has a limitpoint x̂ for which dist (x̂; Xstat) � � > 0. But this is a contradiction to the�rst statement of the theorem.Our convergence analysis is based in part of that given by Luo and Tseng[20]. The following assumptions are part of that work and will be used inour main convergence result.Assumption A1. For every � � fopt there exist scalars � > 0 and � > 0such that dist (x;Xstat) � � kx� �X (x� rf(x))k ;for all x 2 X with f(x) � � and kx� �X (x� rf(x))k � �.Assumption A2. For every � � fopt the setf(fx 2 Xstat j f(x) � �g) � R1is �nite.Theorem 2.1 of [20] gives su�cient conditions to guarantee that the aboveassumptions hold.To obtain more precise convergence properties of SLP, we need the fol-lowing lemma. This result essentially provides a local error bound.17



Lemma 4.3 Let Assumption A1 hold. Then for every v > fopt and a > 0there exists 	1 = 	1(v; a; �; L) > 0 such that for all r � r0 (x; a),f(x+ p0 (x; a0 (x; r)))� f(�Xstat (x)) � 	1r2for all x 2 X with f(x) � � and r0 (x; 1) = kx� �X (x� rf(x))k � �.Proof Let v > fopt and a be arbitrary, and consider any x 2 X withf(x) � v, r0 (x; 1) � �, and r > r0 (x; a). Fix an arbitrary�x = �Xstat (x) 2 �Xstat (x) :Note that Xstat may not be convex. It follows from A1 thatkx� �xk = dist (x;Xstat) � �r0 (x; 1) ;hence, by Lemma 2.5(iii)kx� �xk � ~�r0 (x; a0 (x; r)) = ~� kp0 (x; a0 (x; r))k ; (24)where ~� = �max(1; a�1). Obviously, if x 2 Xstat, then �x = x andx+ p0 (x; a0 (x; r)) = x = �x;and the desired bound holds.Suppose therefore that x =2 Xstat, then a0 (x; r) > 0 (it is possible thata0 (x; r) = 1). For simplicity, denote p0 (x; a0 (x; r)) by �p0. Note that bythe de�nition of a0 (x; r) and Lemma 2.8k�p0k = r0 (x; a0 (x; r))(= r if r � r0 (x;1),< r if r > r0 (x;1).Thus, k�p0k � r: (25)Let us show that hrf(x); x+ �p0 � �xi � 12a kx� �xk2 : (26)If a0 (x; r) =1, then �p0 2 H(x;1) andhrf(x); �p0i � hrf(x); �x� xi ;18



which implies (26).If a0 (x; r) <1, then by the de�nition of p0 (x; a0 (x; r)) we havehrf(x); �p0i+ 12a0 (x; r) k�p0k2 � hrf(x); �x� xi+ 12a0 (x; r) k�x� xk2 ;hence hrf(x); x+ �p0 � �xi � 12a k�x� xk2 :It follows from (26), (24) and (25) thathrf(x); x+ �p0 � �xi � ~�22ar2: (27)Applying the Mean Value Theorem we havef(x+ �p0)� f(�x) = hrf(�); x+ �p0 � �xi (28)for some � 2 [�x; x+ �p0]. Clearly,k� � xk � k�x = xk+ k�p0k � ~�1r; (29)where ~�1 := ~�+ 1. It now follows from (28) thatf(x+ �p0)� f(�x) = hrf(�); x+ �p0 � �xi= hrf(�)�rf(x); x+ �p0 � �xi+ hrf(x); x+ �p0 � �xi� L kx� �k (kx� �xk+ k�p0k) + hrf(x); x+ �p0 � �xi :Using the relations (27) and (29), we obtainf(x+ �p0)� f(�x) � (L~�21 + ~�2=2a)r2;as required.Lemma 4.4 Let A1 hold. Then for every v > fopt there exists 	 =	(v; a; �; L) > 0 such that if x 2 X n Xstat and r > 0 satis�es f(x) � v,r0 (x; 1) � � and (19), then	r2 � f(x)� f(�Xstat (x)):Proof Lemma 4.1 and (19) imply thatv�(x; r=�) � �Lc22 + �2�2 r2;19



so that Theorem 2.10 showsp0 (x; a0 (x; ~c1r)) 2 H(x; ~c1r):Applying (13) we obtainhrf(x); p0 (x; a0 (x; ~c1r))i = v(x; ~c1r) � v(x; c1r)� v�(x; r) � v�(x; r=�) � �Lc22 + �2�2 r2:Thereforef(x+ p0 (x; a0 (x; ~c1r)))� f(x)� hrf(x); p0 (x; a0 (x; ~c1r))i � L2 kp0 (x; a0 (x; ~c1r))k2� �Lc22 + �2�2 r2 � L ~c122 r2= �	2r2; (30)where 	2 := Lc22 + �2L ~c12 + �2�2 :By Lemma 4.1, a0 (x; ~c1r) � a, so that Lemma 2.9(iv) implies~c1r � r0 (x; a0 (x; ~c1r)) � r0 (x; a) :Applying Lemma 4.3 we see thatf(x+ p0 (x; a0 (x; ~c1r)))� f(�Xstat (x)) � 	1r2; (31)where 	1 = 	1(v; a; �; L) > 0. Combining (30) and (31) yieldsf(x)� f(�Xstat (x)) � (	1 +	2)r2:Now the proof of the main convergence theorem is similar to that givenby Luo and Tseng [20, Theorem 3.1] for the linear convergence of a class ofdescent techniques.Theorem 4.5 Let A1, A2 hold. Every in�nite sequence of iterates producedby SLP converges to a point of x� 2 Xstat. Moreover, for every v � fopt,20



there exist q1, q2 with 0 � q1; q2 < 1 such that for every in�nite sequencefxkg, f(x1) � v, the following estimations hold:lim supk!1 f(xk+1 � f(x�)f(xk)� f(x�) � q1;lim supk!1 q�k2 dist �xk; Xstat� <1:Every �nite sequence of iterates fxkg of SLP terminates in the stationaryset, xkstop 2 Xstat.Proof Let v > fopt be chosen arbitrarily and consider the sequence ofiterates fxkg of SLP with f(x1) � v. If kstop <1 then v+(xkstop ; rkstop) = 0and Lemma 3.1 gives xkstop 2 Xstat.Suppose therefore that kstop =1. It is easily seen that for k = 1; 2; : : :�1 < fopt � f(xk+1) � f(xk) � v: (32)Hence, there exists f� 2 [fopt; v] such thatlimk!1 f(xk) = f�: (33)It follows from (23) and (33) thatlimk!1 �f(xk) = f(xk+1)� = limk!1 r0 �xk; 1� = 0; (34)and hence that for some K1 > 0r0 �xk; 1� = xk � �x �xk �rf(xk)� � �; k = K1; K1+ 1; : : : : (35)Since Xstat may not be convex, let us denote an arbitrary projection of xkonto Xstat by �xk , that is�xk = �Xstat �xk� 2 �Xstat �xk� ; k = 1; 2; : : : :Using (32) and (35), the assumption A1 implies that for k = K1; K1+1; : : :�r0 �xk; 1� � dist �xk ; Xstat� = xk � �xk : (36)Therefore, by (34)limk!1 dist �xk; Xstat� = limk!1 xk � �xk = 0: (37)21



It follows from (18) and (34) thatlimk!1 xk � xk+1 = 0;which combined with (37) yieldslimk!1 �xk � �xk+1 = 0: (38)The assumption A2 postulates that there is some fstat 2 R1 and K2 � K1such that f(�xk) = fstat 2 f(Xstat); k = K2; K2 + 1; : : : : (39)The Mean Value Theorem implies that for k � K2f(�xk)� f(xk) = Drf(�k); �xk � xkEfor some �k lying on the line segment joining �xk and xk. Hencefstat � f(xk) = Drf(�k)�rf(�xk); �xk � xkE + Drf(�xk); �xk � xkE :As �xk 2 Xstat, it follows that Drf(�xk); �xk � xkE � 0, so thatfstat � f(xk) � L �k � �xk �xk � xk � L �xk � xk2 :Therefore, by (37), fstat � limk!1 f(xk) = f�. Using (16), (32), (35), (39)and Lemma 4.4 we have	r2k � f(xk)� fstat; k = K2; K2 + 1; : : :so that using (17)f(xk)� f(xk+1) � �2	(f(xk)� fstat); k = K2; K2 + 1; : : : ;and 0 � f(xk+1)� fstat � q1(f(xk)� fstat); k = K2; K2+ 1; : : : ;where q1 = max(0; 1� �=2	), 0 � q1 < 1. Thuslimk!1 f(xk) = f� = fstat; (40)22



and, moreover, f(xk+1 � fstatf(xk)� fstat � q1; k = K2; K2 + 1; : : : : (41)Now it follows from (18) that there exists c0 > 0 such thatxk � xk+1 � c0pq1k; k = K2; K2 + 1; : : : :Hence, P1k=1 xk � xk+1 <1 and there exists an x� such thatlimk!1 xk = x� 2 X:Moreover, by (37), x� 2 Xstat. It follows from (17) and (40) thatf(xk)� fstat � f(xk)� f(xk+1) � �2r2k; k = 1; 2; : : :and by (16), (32), (35), Lemma 4.1 and A1 thatf(xk)� fstat � �~a22�2dist �xk; Xstat�2 ; k = K2; K2 + 1; : : : :Taking into account (41) we obtain that there exist K 0 > 0 and q2 with0 � q2 < 1, such thatdist �xk; Xstat�2 � K 0qk2 k = K2; K2+ 1; : : : :5 Special Case: Polyhedral ConstraintsIn the case where X is de�ned by linear equalities and inequalities, theproblem LP(x; r) is a linear program, and hence the algorithm SLP is asuccessive linear programming algorithm.We have implemented SLP in Matlab [23], using the Cplex [11] linearprogramming code for the trust region subproblems LP(x; r). Using theinterface between Cute [4] and Matlab described in [6], we have tested thealgorithm on a reasonable class of linearly constrained test problems. Theresults are summarized in Tables 1 and 2, which arbitrarily separates theproblems in the Hock-Schittkowski collection [18] from the remaining oneswe tested from the Cute collection. In the tables, the number of general23



linear constraints is denoted by \m" and \n" is used to denote the numberof variables. Lower and upper bounds are treated explicitly by the linearprogramming code and thus are not reported here. The computations werecarried out on a Sun SPARCstation 10 with 96MB RAM, running Matlabversion 4.2c. The time reported in the table was derived using the \cputime"function of Matlab. No attempt was made to optimize the SLP code to allowfor fast restarts in the Armijo test and so this is generally a considerable overestimate of the time that would be required for a sophisticated implementa-tion of the algorithm. Of more importance are the number of iterations andthe total number of LP's that needed to be solved. Note that the numberof LP's is guaranteed to be at least twice the number of iterations due tothe Armijo test.We have excluded the problems BOOTH, EXTRASIM, HIMMELBA,HS54, HS55, HYDROELM, HYDROELS, STANCMIN, SUPERSIM, andZANGWIL3 from the tables of results for the sake of brevity, since in theseexamples a stationary point was found after one iteration with just twolinear program solutions. Note that paradoxically more than one LP wasrequired to solve some of the linear programs in the Cute collection. This isdue to our default choice on the initial trust region radius.The algorithm appears to be very robust. Since the LP solver is veryfast, the resulting NLP code is also very e�cient, even in the Matlab imple-mentation.Note however that the method will only give linear convergence and thusonce an active set has been identi�ed, the algorithm should apply a New-ton process for solving the resulting reduced problem, such as the linearprogramming based technique given in [14]. Furthermore, conditions underwhich this method identi�es the correct active set after a �nite number ofiterations could be derived in a similar fashion to that given by Burke andMor�e [8]. Such a procedure would undoubtedly improve the performanceof the algorithm on problems HS268 and S268. Similar �nitely terminat-ing successive linearization algorithms have been used for machine learningproblems [5, 22]References[1] T. E. Baker and L. S. Lasdon. Successive linear programming at Exxon.Management Science, 31:264{274, 1985.24



Problem m n CPU Iters LPsHS105 1 8 4.417 20 76HS112 3 10 1.95 13 55HS118 17 15 0.3333 2 10HS119 8 16 1.75 12 40HS21 1 2 0.1167 2 4HS21MOD 1 7 0.3667 3 10HS24 3 2 0.2167 2 6HS268 5 5 59.55 600 1349HS28 1 3 0.8333 6 25HS35 1 3 1.333 13 35HS35MOD 1 3 0.95 6 21HS36 1 3 0.35 2 11HS37 2 3 0.8667 8 23HS41 1 4 0.85 9 21HS44 6 4 0.5833 5 12HS44NEW 6 4 0.6667 5 19HS48 2 5 0.9667 8 25HS49 2 5 3.15 22 56HS50 3 5 2.15 17 51HS51 3 5 0.9667 9 20HS52 3 5 2.933 20 47HS53 3 5 1.533 12 27HS62 1 3 1.933 18 40HS76 3 4 0.7833 8 21HS86 10 5 0.9 8 20HS9 1 2 0.6333 8 17Table 1: SLP on polyhedrally constrained HS nonlinear programs25



Problem m n CPU Iters LPsDEGENLPA 15 20 0.2 2 6DEGENLPB 15 20 0.3667 2 8GENHS28 8 10 1.4 14 42GOULDQP2 349 699 5.217 2 14GOULDQP3 349 699 36.43 25 58HAGER1 10 21 1.883 16 34HAGER2 10 21 1.3 12 25HAGER3 10 21 1.55 13 27HAGER4 10 21 0.6167 6 13HATFLDH 7 4 0.25 2 8HIMMELBI 12 100 3.333 23 53HONG 1 4 0.7833 11 23ODFITS 6 10 1.433 10 22PENTAGON 15 6 0.15 2 5QPCBLEND 74 83 2.467 8 22QPCBOEI1 351 384 43.97 18 46QPCBOEI2 166 143 15.38 19 50QPCSTAIR 356 467 20.92 8 21QPNBLEND 74 83 1.983 6 17QPNBOEI1 351 384 104.2 32 74QPNBOEI2 166 143 14.67 18 56QPNSTAIR 356 467 22.22 8 21READING2 200 303 4.167 7 15S268 5 5 65.35 600 1349S277-280 4 4 0.2333 2 6SIMPLLPA 2 2 0.1667 2 4SIMPLLPB 3 2 0.2167 2 5SSEBLIN 72 194 2.067 2 17TAME 1 2 0.15 2 4TFI2 101 3 0.6333 4 10TFI3 101 3 1.167 7 16Table 2: SLP on remaining polyhedrally constrained nonlinear programsfrom Cute 26
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