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Abstract

We present a successive linear programming algorithm for solving
constrained nonlinear optimization problems. The algorithm employs
an Armijo procedure for updating a trust region radius. We prove the
linear convergence of the method by relating the solutions of our sub-
problems to standard trust region and gradient projection subproblems
and adapting an error bound analysis due to Luo and Tseng. Com-
putational results are provided for polyhedrally constrained nonlinear
programs.

1 Introduction

In this paper we develop a first order technique for constrained optimization
problems based on subproblems with a linear objective function. There have
been many attempts to generate robust successive linear programming al-
gorithms for nonlinear programming (see, for example [1, 14, 15, 19, 24, 26,
28]). This paper specifies a new algorithm that has the same convergence
properties as the gradient projection method. We modify the conditional
gradient method [3] (sometimes called the Frank-Wolfe method [2, 16]) for
polyhedrally constrained optimization problems to obtain a linearly con-
vergent algorithm. The only known linear rate of convergence is given in
[12, 13], but this is for problems where the constraints are not polyhedral,
but have “positive curvature”; there are even simple examples [3, p. 199]
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that show the conditional gradient method has a sublinear rate of conver-
gence.

The main idea is to use a polyhedral trust region constraint in the stan-
dard linear programming subproblem of the conditional gradient method.
This maintains the attractive computational feature that all subproblems are
linear programs, for which a wealth of highly effective and efficient software
has been developed. It also guarantees that every subproblem we generate
has an optimal solution. We develop an adaptive mechanism to update the
trust region parameter that guarantees the linear convergence of the method
under the standard assumptions given by Luo and Tseng [20].

Our analysis is somewhat involved and relies upon estimating descent
properties of the directions generated by our algorithm in terms of standard
quadratic subproblems arising for example in gradient projection algorithms.
To our knowledge, every linearly convergent technique for such problems is
based on such quadratic subproblems. The main contribution of this paper
is that the solutions of our linear subproblems are considered as approxi-
mate solutions of the quadratic subproblems and analysis is carried out to
precisely quantify this relationship.

We will consider the following optimization problem

P inf f(e),
where X C R™is a nonempty closed convex set, and the objective function f
is assumed to be continuously differentiable. Furthermore, it will be assumed
that f has a Lipschitz continuous gradient V f on X, that is

Ve,ye X, [VF(2) = VIl < Lile -yl

Here L is a positive scalar and [|-|| represents the Euclidean norm on R™.
We also suppose that

fopt = ;gg(f(x) > =00,
and the optimal solution set for P is not empty.
Let Nx (2) denote the normal cone to X at @ € X. The stationary set

for the problem P is the set of all points satisfying the first order optimality
conditions for P, that is

Xstat = {2€X|0eVf(z)+Nx(2)}
= {veX|Vye X, (Vf(x),y—z)>0}.

Our algorithm will converge under standard assumptions to a stationary
point. Conditions relating stationary points to solutions of P are well known.



Our method resembles a trust region method (see [7, 9]) by virtue of the
fact that the subproblems are of the form:

miny, (Vf(z),h)

LP(x,r): subject to x+h € X,

1Al <y

where [|-||, represents an arbitrary norm on R™ and r is the trust region
radius. We actually prove convergence of our algorithm based on X being
a convex set and the trust region constraint being determined by an arbi-
trary norm. When specialized to the case where X polyhedral and |[|-]|, is
a polyhedral norm, the subproblems L£LP(z,r) are linear programs and our
algorithm is a successive linear programming algorithm.

There are two key approximations in our analysis. The first is that we
relate solutions of our linear programming descent problem LP(z,r) to the
following subproblem

ming (V@) )+ & |
OP(z,a):
subject to z+h € X,

where @ is a corresponding stepsize. When X is polyhedral, QP(z,a) is
a quadratic programming problem. It is important that we guarantee in
our algorithm that the trust region radius r is not too small. We therefore
employ a special Armijo type procedure for choosing r at each iteration. The
essential difficulty in the proof relates to finding an expression for the inverse
a(xz,r) of r(z,a), and this is explored in Section 2. The key relationship is
between solutions of LP(z,r) and QP(z,a) appears as Lemma 4.1.

Usually rapid convergence techniques (i.e., at least a linear rate) for
solving P require the solution of a subproblem with a quadratic objective
function at each iteration k£ = 1,2, .... For example, the gradient projection
algorithm solves subproblems of the form QP(z,a). The second piece of
our analysis, given as Theorem 2.10 in Section 2 of this paper, relates the
solutions of QP (xz,r) to solutions of the following (standard) trust region
problem

ming (Vf(z),h)
TP(z,r): subject to x+ h € X,
[2]] < .

Note that the objective function of this problem is linear and that the trust
region constraint is defined in terms of the Euclidean norm.



In Section 3 we state the general form of the method which we call the
Sequential Linearization Method, and prove its linear convergence to the
stationary set Xgiat in Section 4. The special case of polyhedral constraints
is considered in Section 5. The resulting algorithm is a linearly convergent
sequential linear programming (SLP) technique, for which we also provide
some numerical results using Matlab, Cplex and the Cute suite of problems.

2 Technical Preliminaries

For every 2 € X, consider the following auxiliary problem

miny, (V[(z), h)
TP(z,r): subject to x+ h € X,
|2l <,

where r > 0 is a parameter of the problem. Let H(z,r) and v(z,r) denote
the optimal set and the optimal value of TP(z,r) respectively. We shall
relate this to the following problem:

ming (Vf(z),h)
TP(x,00):
subject to x+h € X.

Note that it is possible for v(z,00) = —oo and H(z,c0) = 0.
The standard optimality conditions (see [21, 25]) for the problem TP (z, r)
provide the following lemma.

Lemma 2.1 i. For everyx € X, r > 0 and h € R" (a) and (b) are
equivalent:
(a) h € H(z,r);
(b) there exists A > 0 such that
0eVf(z)+A+Nx (z+h),

x+heX,
A(|Al] =) =0, [[A]| < .

ii. For everyz € X and h € R™ (a) and (b) are equivalent:

(a) h € H(z,o00);
() 0 € Vf(x)+Nx (x+h), 2 +heX.



The following corollary is immediate from Lemma 2.1.
Corollary 2.2 For every x € X and r > 0 the following assertion holds:
z € Xgtat <= v(az,r)=0.

For a subset S C R", let Ilg (z) denote the set of all orthogonal projections
of z on S, that is

s (&) = {y € S | o — yl| = dist (, 5} .
Here dist (z,.9) represents the distance from z to S

dist (2, 9) := ;Iég lz =yl -

Let 7g (z) be a typical element of Ilg (z); it is clear that if S is closed and
convex then

s (z) = {ms ()}
For 2 € X and a > 0 define
po(z,a) =7y (x —aVf(z)) — .

Clearly, for a > 0, pg (2, a) is the unique solution of the following problem:

ming (V@) )+ & |
QP (z,a):
subject to z+h € X.

The following two simple results prove to be useful in the sequel.

Lemma 2.3 ([25]) Letz € X and a > 0 be given. The following assertions
hold.

i. h=po(x,a) if and only if
1
OEVf($)+Eh+Nx(x—|-h), r+heX;

ii. (V f(2),p0 (2, 0)) < L Ipo ()]

Corollary 2.4 Let h € R™ be a limit point of a sequence {po (z,ax)}, ar —
0o, then h € H(x,o0).



We now define a residual function rg (z,-) : Ry — R4 by

ro (2, a) = lpo (z, a)ll,

where Ry := {z ¢ R| 2 > 0}. We collect some well known properties of
the function rg (z,-) : Ry — Ry in the following lemma. The proofs can be
found in [10, 17, 27].

Lemma 2.5 For every x € X the following properties hold:
i. ro(z,-) € C(R4);
ii. Ya' > a >0, ro(z,d) > ro(z,a).

104, va/ Z a > 0’ To(x;a’) S 7’0(1’7(1).

a a

iv. Ya >0, ro(z,0) =0 <= 2 € Xgat-

The following lemma bounds the residual in terms of any solution of

TP(z,r).

Lemma 2.6 Let @ € X and suppose H(x,00) # 0. Then for every h €
H(z,00) and every a € [0,00),

ro(z,a) = [|po (z, a)[| < [|A]] .

Proof The result is trivial for ¢ = 0. Otherwise, let us fix arbitrary « € X,
h € H(z,00), and a > 0. Suppose that

120 < llpo (z, )] - (1)
By the definition of H(z,c0) we have
(V@) h) <(Vf(2),po(z,a)).
Hence, applying (1) we obtain
1 1
(VI(@)hy+ o I < (VF(), po (@, @)y + - llpo (2, 0)]

which is a contradiction to the fact that pg (z, a) is the solution of QP(z,a).
a



We now investigate some limiting properties of this residual function.
For every ¢ € X we let
ro (z,00) := lim ro(z,a).

a—r00

Obviously, it is possible that rq (2,00) = oo for some & € X. The follow-
ing lemma allows us to identify certain limits of the functions pg (z,-) and
ro (z,-). It is really just a technical result used for proving the ensuing result.

Lemma 2.7 Let @ € X and suppose for some a' € (0,00)
ro (z,a") = ro (z,00) . (2)
Then
Va € [d',0), po (z,a) = po (x,d') . (3)
In this case,

lim po (z,a) = po(z,d") € H(x,o0).

a—r00

Proof Let a > «'. Lemma 2.5(ii) and (2) show that
170 (2, )|l = |[po (x, )| . (4)
We now derive a contradiction to the supposition that

po (2, a) # po (xva/) .

Since pg (x, a) and pg (2, a’) are the unique solutions of the problems QP(z, a)
and QP(z,a’) respectively, we have

(V7)o (e.0)) + 5 o (e )P < (V7). o0 (2, 0)) 4 o o (2,0
< (@) po (o)) + 5 o (o )|
< (VS po ()} + 5 o (2, )

Hence, by (4)

<Vf($),po (xva» < <Vf($),po (xva/» < <Vf($),po (xva)>7

which is a contradiction, and so (3) is proved. It now follows from (3)
that lim,—e0 po (2, a) = po (2, a'), so that Corollary 2.4 implies po (z,a') €
H(z,00). 0



For 2 € X with H(z,00) # 0, we define pg (2, 00) as follows:

po (z,00) := argmin ||h]].
heH(z,00)

In particular, note the difference between the definition of pg (2, 00) and
ro (z,00) to that of pg (2, a) and rg (x, a) given above.

Lemma 2.8 For every x € X the following assertions hold:
i. 7o (2,00) < 00 <= H(x,00) #0.
ii. If ro (z,00) < 0o then
ro (2, 00) = [|po (z, )|, (5)
and for all r > rq (z,00)
H(z,r)=H(x,00) N B,,
where B, := {x € R" | ||z|| < r}.

Proof i. Let H(x,00) # (0. Applying Lemma 2.6 we immediately get
that ro(z,00) < oo. Conversely, let rg(z,00) < oo. Then for an
arbitrary sequence {ay} — oo the sequence {pg (¢, ax)} is bounded and
has a limit point p € R™. By Corollary 2.4, we have that p € H(z, o0),
hence H(z, 00) # 0.

ii. Suppose that rg (z,00) < co. Lemma 2.6 yields ||po (z, 00)|| > ro (z,00).
On the other hand, by Corollary 2.4

%0 > ro(2,50) = fim [lpo (r. )] = _min _|}h]| = lpo (v,

For the final assertion of the lemma, let us fix an r with

P> o (2,00), (6)
and take an arbitrary h € H(x,r). We need to show that

h € H(x,o0). (7)

Applying Lemma 2.1(i), obtain that there exists A > 0 such that

0eVf(x)+ A+ Nx (z+h), (])
r+heX, (9)
ARl = r) = 0, [|h]] < r. (10)
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Figure 1: ro (x,a): ag (x,r) is essentially the inverse of this function

If A = 0 then (7) follows immediately from (8), (9) and Lemma 2.1(ii).
Assume therefore that A > 0. Then (10) implies ||h]] = r. By
Lemma 2.3(i) obtain h = pg (2, A71). Therefore, r = |po (2, A7Y)| <
ro (2,00). Hence, by (6) and Lemma 2.5(ii) we have

Ya> A1 >0, ro(z,a) = ro (2, 00).
Now applying Lemma 2.7 we obtain (7).
O

We now define a function ag (z, r) that acts like the inverse of the function
ro (z,a), see Figure 1. The inverse is generally set valued (see r = 1); hence
for every z € X and r € [0,00) define

ag (z,r):=min{a > 0| ro(z,a) > r},

where we formally set min ) = co. Note that this is important in the example
of Figure 1 when r > r*. Furthermore, in that example, note that ro (z,a) =
1 for any @ € [1/2,2] but that ag (z,1) = 1/2 is well defined. The main
properties of the function ag (2, ) : R4 — Ry U {oo} are presented in the
following lemma.

Lemma 2.9 For every x € X the following properties hold.

i. Forallr'>r>0,a(z,r")>ao(z,r) > ag(z,0)=0.



ii. Yr € (0,00), ag (z,7) > 0 if & ¢ Xstat, and ag (z,1) = 00 if © € Xgtat-
iii. Vr € (0,00), a9 (2,7) < 00 <= H(z,00) = 0.
iv. For all r € [0,00), ro (2, a0 (z,r)) < 7.
Proof i. Follows from Lemma 2.5(ii).
ii. Follows from Lemma 2.5(iv).
iii. Follows from Lemma 2.8(i).

iv. Obviously, for every € X and r > 0 we have the following: if there
exists ¢’ > 0 such that r < rg(z,d’) then

ro (x, a0 (z,7)) = r; (11)

Otherwise, r > rq (2, 00), with rq (2, 00) < 0o and ag (z,r) = 0.
g

We now present an important relationship that exists between the problems
TP(xz,r) and QP(x,a). Essentially, it states that the solution of QP(z,a)
is also a solution of TP (z,r).

Theorem 2.10 For every z € X and r > 0, po (z, a0 (z,r)) € H(z,r).

Proof Let z € X and r > 0 be arbitrary. We can suppose that @ ¢ X,
since otherwise 0 = po (2, aq (z,7)) € H(z,r). It follows that ag (,7) > 0
and we consider two possible cases.

In the first case, suppose that there exists a’ > 0 such that r < rg (2, d’).
Then ag (x,r) < 0o, ro (z,a0 (z,r)) = r by (11) and so ||po (z, ag (z,1))|| = r.
Also, by Lemma 2.3(i) we have

0€Vf(z)+ ——=po(z,a0(z,r)) +Nx (x4 po (z,a0 (z,7))),

ag(z,r)
x4 po (2, a0 (z,7)) € X.

Applying Lemma 2.1(i) we obtain pg (z,aq (z,7)) € H(z, ).

Otherwise, r > ro (z,d') for all @’ > 0. It follows that r > rq (2, 00),
ro (2,00) < 00, H(x,00) # 0, and ag (z,7) = co. Now, from Lemma 2.8(ii)
we have

po (@, a0 (z,7)) = po (x,00) € H(w,r),

completing the proof of the theorem. 0
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The following result that provides a useful bound on the optimal value of
TP(z,r)is now easily established using Lemma 2.3 and Lemma 2.9(iv).

Corollary 2.11 For every @ € X \ Xgtat and r > 0 the following bound
holds:

= i \v h) < —
o(@,r x+h£(l,ﬂh||§r< fz),h) < ag (z,r)

where we formally set é = 0.

3 The Sequential Linearization Method

Let ||-]|, be an arbitrary norm in R”. It is well known that there are positive
constants ¢; and ¢y such that for all z € R"

crflell, < [l < eaflzl. -
Note that for every 2 € X and r > 0, the following inclusions hold:

{hlo+he Xl <er} C {hle+heX,|h], <r}
For z € X and r > 0 consider the following problem:
ming (Vf(z),h)
LP(x,r): subject to x+h € X,
1Al <

Clearly, when [|-||, is a polyhedral norm and X is a polyhedral set, LP(z,r) is
a linear programming problem. Denote by #H.(z,r) and v.(z, ) the solution
set and the optimal value of LP(z, r) respectively. The inclusions (12) imply
that

v(z, cor) < wilz,r) < vz, cr) (13)

for every @ € X and r > 0. The next result follows immediately from
Corollary 2.2 and (13).

Lemma 3.1 For every x € X and r > 0, the following assertion holds:

z € Xgtat <= v<(2,r)=0.

11



In order to justify the technique that we use to update the trust region
radius, we will also need a simple technical result.

Lemma 3.2 For every § > 0 and © € X \ Xgtat, there exist r, T with
0 < r < T, such that the following properties hold.

i ¥r € [7,00), ¥h € Helw,r), flo) = flath) < 5r
ii. ¥r € [0,0],¥h € Hala,r), f(2) = flath) 2 52
Proof Let § > 0 and z € X \ Xgat.
i. Define 7 := \/25_1(f($) — fopt), so that for all r € [F, 0o)

f($)—f($—|—h) Sf(w)_fopt:
ii. Let
a:=2ci(Les+6)7, (14)

so that by Lemma 2.5, there exists r > 0 with ag (2, c1r) < a. Take
an arbitrary r € (0,r] and h € H.(z,7). By Lemma 2.9(i)

ao (z,c11) < ap (2, c9r) < a,

then Corollary 2.11 implies

1 c?
< - 2L 2. 15
v(z,er) < P P (err)* < Qr (15)

It follows from (13) and (15) that

2
(Vf(z),h) =vi(z,r) <v(z,er) < —Elrz.

Therefore, by (14)

Fleth) = f@) < (V)R o P

2
4

Le?
< e 22
< =D e
a 2
1 {22
= —= ﬂ—Lc%)rz
2\ a
o
= ——r2
2

12



O

The algorithm we propose will have an Armijo style component to it.
To describe this component precisely, let us fix arbitrary parameters 6 and
7. with 0 < 8 < 1 and r, > 0, and define

R::{r>0|r:0kr*, k:O,il,iQ,...}.

The next result now follows immediately from Lemma 3.1 and Lemma 3.2
and shows there is an r € R that satisfies the Armijo test given below in
Algorithm SLP, but that r/6 does not.

Corollary 3.3 Let ¢ € X and for each v’ € R, let hy(x,r") € H(x,r"). The
following assertions hold.

i. If x € Xgpat, then

Vr' € R, vi(a, 1) = (Vf(2), he(z, 1)) = 0.

1. If$ ¢ Xstat; then
Vr' € R, vi(z, 1) = (Vf(2), hulz, 1)) <0,

and moreover, there exists r € R such that

S = S et < 5 (0)

and

F(@) = flo ) > 5

We now state the main algorithm. The parameter k counts the number
of iterations, while uj represents the number of subproblems that we have
solved at the kth iteration.

Algorithm SLP

Parameters 6, r, > 0,0 < 8 < 1.
Input z!' € X.

Step 0 (Initialization): Set k := 0, ry := r., kgop 1= 00.

13



Step 1 Set k:=k -+ 1, u:= 1, 7 := r4_;. Solve the problem LP (2%, r) to
obtain a solution h,(z*,r) € H(z*,r). Set

0 if v*(ack,r):<Vf($k),h*(xk,r)>:0;
vi=1 -1 ifva¥ r) #0and f(2%) - f(2% + he(a¥, r)) > %rz;
1 if v(@¥,r) £ 0and f(2%) — f(2% + ha(2F, 1)) < Lr%;

If v =0, set kgpop = £, aFsror = 2k and exit.

Step 2 Set u:=p+1 and r := r8”. Solve the problem LP(z*,r) to obtain
a solution h,(z*,r) € H(z*, r).

Step 3 If v = —1 and f(a*) — f(z* 4+ ha(2®,7)) < $r? or v = 1 and

f(ggk) — f(ack + h*(gvk7 r)) > %rz then go to Step 4, else go to Step 2.

Step 4 If v = —1, set r,, = Or, else r, = r. Let pp = p and zFt! =
a* + h. (2%, rg) and go to Step 1.

Note that in Step 1, the parameter v can take on one of three values. If
v = 0, a stationary point has been found and the algorithm terminates. If
v = 1, then sufficient decrease was not achieved and thus the subproblem
needs to be resolved with a smaller value of r. If v = —1, then sufficient
decrease was achieved, but the subproblem is solved again, this time with a
larger value of r. Both of these resolves take place in Step 2.

If the algorithm terminates after a finite number of iterations, we can
define the iterates gfstort1 ghstort2 a5 equal to a’stor for the purposes of
stating convergence results. Furthermore, it follows from Corollary 3.3 that
for every sequence of iterates {2*} generated by the algorithm, . < oo,
k =1,2,..., and hence even if ksop = 00, 1, > 0, k = 1,2,.... Therefore,
the algorithm is well defined. We now proceed to prove the convergence and
associated rates as outlined in the introduction.

4 General Case: Convergence Theory

It is easily seen that every infinite sequence of iterates {2*} of the algorithm
has the following properties:

Ft) 1 e, ) < () (16

FEM) = f@M) = f@F) = F@ 4 (2P ) >

14



ry >0, k=1,2,....
We also note that

ka - wk‘HH = ‘h*(ack,rk)H < e ‘ (2%, 1) . < oy,
Hence, for k =1,2,...
Fa) = 1) 2 g [t - 1 (19)

To analyze convergence properties of this sequence, we need the following
lemma.

Lemma 4.1 Suppose that for some v € X \ Xgar, r > 0 and h.(z,%) €
H.(z, %) the following condition holds:

) 2
f@) - S+ hele ) < 5 (5) (19)
Then
v.(@,7/6) > —Lcjgj‘s 2, (20)
ag (x,1r) > ag (x,617) > a:= ifjjiy (21)
2
r>aro(z,1) =allz —7x (z = V), (22)

where ¢1 := min(1, ¢1), a = min(1,a).

Proof It follows from (19) that

_¢ (C)2 < f(ac—l—h*(%g))—f@)

2 \4
< (V@) e /0) + 5 (e, /0]
< (V) bl 1/ 0)) T2 (/6
Hence 124
ou(@,1/0) = (V f(2), hulz, 7/0)) > — C;Oj 2,

15



and so (20) holds.

If ag (x, é1r) = oo then ag (z,r) = 0o and
r>ar>ro(z,1) >arg(z,1).

Thus, (21) and (22) are valid.
Suppose that ag (z,¢17) < co. We also note from Lemma 2.9(ii) that
0 < ag (x,¢1r). By Theorem 2.10 po (2, ag (z, é17)) € H(z, é1r); therefore
(Vf(x),po(x,a0 (z,c1r))) =vlz, ér) > v(z, aqr).
Applying (13) and (20) we obtain
Lc2 + 57‘2.

(Vf(z),po(x,a0(z,c1r))) > vz, cr) > vz, r) > vz, r/0) > — YE

Now by Lemma 2.3(ii), we have

L2+ 65 .
ot < (Vf(@)po (e, ag (x, )
1 - 2
< - -
— ag ($7C~17‘) HpO (x7a0 ($7clr))H
—_ 1 ~ 2
- ag ($7€1r)r0 (2, a0 (2, 1))
ap (x, érr)

the last inequality following from Lemma 2.9(iv). Hence, by Lemma 2.9(i)

26%¢,2
Lc% + 4

ao (x,7) > ag (x,é1r) > =a

and (21) is proved.
Lemma 2.9(iv) and Lemma 2.5(ii) imply

r Z L] ($7a0 ($7T‘)) Z L] ($7Q)7

so applying Lemma 2.5(ii) and (iii)

Thus (22) is proved. 0

16



Note that the following convergence theorem does not require any as-
sumptions apart from the solvability of P and the convexity of X.

Theorem 4.2 Every sequence of iterates {x*} produced by SLP has the
property that

o (wk, 1) = ka - Tx (xk — Vf(wk)) H — 0.
Moreover, if X is compact, then every sequence of iterates converges to Xgiay.

Proof It follows from (16), (17) and Lemma 4.1 that for every sequence of
iterates produced by SLP

S 2

Fb) = fth) = Sat ok - mx (oF - VAN | (23)

for k = 1,2,.... However, {f(z¥)} is bounded below, hence converges,

implying the first statement of the theorem. If the second statement is

not valid, then there is a subsequence {z*}.cxc and an ¢ > 0 such that

dist (xk,Xstat) > ¢ for k € K. Since {2*} is bounded, {2*}.cx has a limit

point & for which dist (&, Xgat) > € > 0. But this is a contradiction to the

first statement of the theorem. 0

Our convergence analysis is based in part of that given by Luo and Tseng
[20]. The following assumptions are part of that work and will be used in
our main convergence result.

Assumption Al. For every v > fo,¢ there exist scalars x > 0 and 7 > 0
such that
dist (z, Xstat) < k|2 —7x (2 = Vf(2))],

for all z € X with f(z) <vand ||z — 7x (z — Vf(2))]| < n.

Assumption A2. For every v > fo,¢ the set

f{z € Xgat | f(x) <v}) CR!

is finite.

Theorem 2.1 of [20] gives sufficient conditions to guarantee that the above
assumptions hold.

To obtain more precise convergence properties of SLP, we need the fol-
lowing lemma. This result essentially provides a local error bound.
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Lemma 4.3 Let Assumption A1 hold. Then for every v > fop and a > 0
there exists U1 = Wy (v, a, k, L) > 0 such that for all r > ro(z,a),

Fl@+po(x,a0 (2,1))) = f(7x, () < Wit
forallz € X with f(z) <vandro(z,1) = ||z —7x (z = Vf(2))]| <n.

Proof Let v > f,5t and a be arbitrary, and consider any =z € X with
f(z) <w,ro(x,1) <n,and r > rg (2, a). Fix an arbitrary

T=7x,., () €llx,,, ().
Note that Xga¢ may not be convex. It follows from Al that
||z — z|| = dist (2, Xgat) < K10 (2,1),
hence, by Lemma 2.5(iii)
e = 2| < o (&, a0 (2, ) = &llpo (2, a0 (&, )], (24
where & = k max(1,a!). Obviously, if 2 € Xy, then 7 = 2 and
z+po(z,a0(z,r))=2=7,

and the desired bound holds.

Suppose therefore that @ ¢ Xgiat, then ag (x,7) > 0 (it is possible that
ag (x,r) = o0). For simplicity, denote pg (x,aq (z,r)) by po. Note that by
the definition of ag (z,r) and Lemma 2.8

=r ifr <rg(z,o0),

llpoll = ro (z, a0 (z,7)) {

<r ifr>rg(x,00).
Thus,

[[Pol| < r. (25)
Let us show that

(Vf(e),x+po—7) < o |la —2|*. (26)

|[§|H

If ag (z,r) = oo, then py € H(x,00) and
<Vf($)7]30> < <Vf($)7 T = $>7

18



which implies (26).
If ag (z,7) < oo, then by the definition of pg (z, ap (2, 7)) we have

— SN2 < - — 2.
<Vf($)7p0>+2a0 ($,T‘) HpOH = <Vf($),$ x>+2@0 ($,T‘) H$ $H )
hence .
(V(@),2+po =) < o7 = 2|
a
It follows from (26), (24) and (25) that
%2
(Vf(z),z2+po—Z) < %rQ. (27)
Applying the Mean Value Theorem we have
[ +po) = f(2) =(V[(§),2 4+ po — &) (28)
for some £ € [z, x + pp]. Clearly,
1€ =[] < |7 =[] + [|poll < Far, (29)

where &y := &+ 1. It now follows from (28) that

fle+po) = f(z) = (Vf(§)z+po—2)
= (V) = Vf(z),z+po—2) +(Vf(z), 2+ po— )
< Lz =&l (lz = 2l + [1poll) + (Vf(2), 2 + po — 7).

A

Using the relations (27) and (29), we obtain
Flx+po) = f(2) < (LR] + &*[2a)r*,
as required. 0

Lemma 4.4 Let Al hold. Then for every v > fopi there exists ¥ =
V(v,a,k,L) > 0 such that if @ € X \ Xgae and r > 0 satisfies f(z) < v,
ro(z,1) <nand (19), then

\IIr2 Z f(x) - f(ﬂ-Xstat (x))
Proof Lemma 4.1 and (19) imply that

L2 +46
202

vi(z,r/0) > —

19



so that Theorem 2.10 shows
po (x, ag (x,é1r)) € H(x, ér).
Applying (13) we obtain

(Vf(z),po(z,a0(z,c1r))) = v(a,ér) > v(z, eqr)

2
vuf,r) > vale,r/0) > —L2 0

262

v

Therefore

F(o 1o a0 (2, )~ F(2)
> (V). po (a0 (e, 1)) — 5 llpo (o (2 1)
= —\1127‘2, (30)

where

L3+ 602LeP 46

B 262 '

By Lemma 4.1, ag (z, é17) > @, so that Lemma 2.9(iv) implies

\1123

ér >ro(x, a0 (x,611m)) > 1o (2,0) .
Applying Lemma 4.3 we see that
Fle+po(z,a0 (2,617)) = f(Fx (2) < Uir?, (31)
where Uy = Uy (v, g, K, L) > 0. Combining (30) and (31) yields
F@) = £ () < (B + W32,

O

Now the proof of the main convergence theorem is similar to that given
by Luo and Tseng [20, Theorem 3.1] for the linear convergence of a class of
descent techniques.

Theorem 4.5 Let A1, A2 hold. Fuvery infinite sequence of iterates produced
by SLP converges to a point of ™ € Xgar. Moreover, for every v > fop,
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there exist q1, g2 with 0 < q1,q2 < 1 such that for every infinite sequence
{2}, f(a') < v, the following estimations hold:

. f($k+1 _ f(ac*)
S [F R ry

< q;

lim sup qz_kdist (wk, Xstat) < 0.

k—oc0

Every finite sequence of iterates {x*} of SLP terminates in the stationary
set, ahkstor € X or.

Proof Let v > f,,¢ be chosen arbitrarily and consider the sequence of
iterates {2*} of SLP with f(2') < v. If kgop < 00 then vy (aFtor vy ) =0
and Lemma 3.1 gives zhstor € Xpar.

Suppose therefore that Esop = 00. It is easily seen that for k =1,2,...

— 00 < fopt < f(@*) < f2) <. (32)

Hence, there exists fi € [fopt, v] such that

Jm f(et) = £ (33
It follows from (23) and (33) that
kli}rgo (f(wk) = f(xk‘i'l)) = kh_}n(r)lo o (wk, 1) =0, (34)

and hence that for some Ky > 0

ro (wk, 1) = ka — Ty (xk - Vf(xk))H < k=K, Ki+1,....
(35)

Since Xyt may not be convex, let us denote an arbitrary projection of z*
onto Xgas by 2%, that is

=7, (xk) €lly,.. (xk) ck=1,2,....
Using (32) and (35), the assumption Al implies that for k = Ky, K1 +1, ...
KT (wk, 1) > dist (xk,Xstat) = ka - ikH . (36)
Therefore, by (34)

lim dist (wk, Xstat)

k—oc0

m ka — ikH =0. (37)

=1
k—oc0
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It follows from (18) and (34) that

lim ka — xk‘HH =0,
k—oo

which combined with (37) yields

lim H@’“ - ik"HH = 0. (38)

k—oc0

The assumption A2 postulates that there is some fya € R' and Ky > K,
such that

F(Z%) = fua € f(Xatar), k=Ko, Ko +1,.... (39)
The Mean Value Theorem implies that for & > Ky
f@*) = f@ty = (Vb et - ot)
for some & lying on the line segment joining #* and 2*. Hence
Fuae = () = (VAE5) = V(¥ a8 =¥ ) 4 (V(ab), 25— ")

As 7% € X,iat, it follows that <Vf(fk), b — $k> <0, so that

e e e B g

Therefore, by (37), faar < limj_oo f(2¥) = f.. Using (16), (32), (35), (39)

and Lemma 4.4 we have
Urf > f(@%) = faat, b= Ko, Ko+ 1,...

so that using (17)

f(fk) - f(fk-H) > (f(fk) — fstat), k=Ko, Ko+ 1,...;

0
20
and

0 < f(@™Y) = faat < @ (f(@") = fatar), k= Ky, Ky 41,
where ¢; = max(0,1—6/2¥), 0 < ¢ < 1. Thus

kh—g)lo f($k) = f* = fstat7 (40)
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and, moreover,

f($k+1 — Jstat
f(fk) — [stat

Now it follows from (18) that there exists ¢g > 0 such that

thkII(Q,I(Q—FL.... (41)

H$k — $k+1H S Coq/(]lk7 k= I(Q, I(Q + 17 e
Hence, >"72, ka - wk‘HH < oo and there exists an 2™ such that
lim «* = 2" € X.
k—o0

Moreover, by (37), 2* € Xgtat. It follows from (17) and (40) that

f(xk) - fstat > f(xk) - f(xk-l—l) > gr?m k= 1727 cee

and by (16), (32), (35), Lemma 4.1 and A1 that

Sa? 2
F() = Faat 2 Gpdist (2, Xawat) s b= Koo Ko+ 1,
K

Taking into account (41) we obtain that there exist K/ > 0 and ¢z with
0 < g2 < 1, such that

2
dist (xk Xstat) <K'¢h k=Ko Kyt 1,....

5 Special Case: Polyhedral Constraints

In the case where X is defined by linear equalities and inequalities, the
problem LP(z,r) is a linear program, and hence the algorithm SLP is a
successive linear programming algorithm.

We have implemented SLP in Matlab [23], using the Cplex [11] linear
programming code for the trust region subproblems L£P(z,r). Using the
interface between Cute [4] and Matlab described in [6], we have tested the
algorithm on a reasonable class of linearly constrained test problems. The
results are summarized in Tables 1 and 2, which arbitrarily separates the
problems in the Hock-Schittkowski collection [18] from the remaining ones
we tested from the Cute collection. In the tables, the number of general
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linear constraints is denoted by “m” and “n” is used to denote the number
of variables. Lower and upper bounds are treated explicitly by the linear
programming code and thus are not reported here. The computations were
carried out on a Sun SPARCstation 10 with 96MB RAM, running Matlab
version 4.2c. The time reported in the table was derived using the “cputime”
function of Matlab. No attempt was made to optimize the SLP code to allow
for fast restarts in the Armijo test and so this is generally a considerable over
estimate of the time that would be required for a sophisticated implementa-
tion of the algorithm. Of more importance are the number of iterations and
the total number of LP’s that needed to be solved. Note that the number
of LP’s is guaranteed to be at least twice the number of iterations due to
the Armijo test.

We have excluded the problems BOOTH, EXTRASIM, HIMMELBA,
HS54, HS55, HYDROELM, HYDROELS, STANCMIN, SUPERSIM, and
ZANGWIL3 from the tables of results for the sake of brevity, since in these
examples a stationary point was found after one iteration with just two
linear program solutions. Note that paradoxically more than one LP was
required to solve some of the linear programs in the Cute collection. This is
due to our default choice on the initial trust region radius.

The algorithm appears to be very robust. Since the LP solver is very
fast, the resulting NLP code is also very eflicient, even in the Matlab imple-
mentation.

Note however that the method will only give linear convergence and thus
once an active set has been identified, the algorithm should apply a New-
ton process for solving the resulting reduced problem, such as the linear
programming based technique given in [14]. Furthermore, conditions under
which this method identifies the correct active set after a finite number of
iterations could be derived in a similar fashion to that given by Burke and
Moré [8]. Such a procedure would undoubtedly improve the performance
of the algorithm on problems HS268 and S268. Similar finitely terminat-
ing successive linearization algorithms have been used for machine learning
problems [5, 22]
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