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Abstract. Brachytherapy (brachy being derived from a Greek word meaning
short) is the treatment of cancer by means of radioactive sources that are placed
at short distances from the target cells. This form of therapy is becoming com-
mon in the treatment of early stage prostate cancer, the most common cancer
and the second leading cause of cancer deaths among American males. We con-
sider the use of mixed-integer programming (MIP) models and branch-and-bound
(BB) methods to optimize the placement within the prostate of the radioactive
“seeds” used in this procedure. Several different optimization models are considered
along with a number of branch-and-bound strategies. With appropriate combina-
tions of modelling and solution strategies, near-optimal seed placements can be
generated for each two-dimensional ultrasound section of the prostate in less than
five minutes on a 333 MHz workstation. The original three-dimensional problem
can then be solved by considering an appropriately interrelated sequence of these
two-dimensional problems.
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1. Introduction

Prostate cancer is the most common cancer and the second leading
cause of cancer death in American males. It is increasingly being treated
with radiation therapy. Radiation therapy is the treatment of malignant
tumors with radiation (photons, electrons, and heavy charged parti-
cles). Radiation can kill both normal and cancerous cells or prevent
them from growing and dividing. As these particles travel through
cells, they deposit energy through various particle interactions. DNA
molecules in human cells are double stranded and helical in nature.
The energy deposited by radiation can cause DNA breaks, and this is
what is believed to be primarily responsible for killing the cell. The
repair mechanism of cancer cells is less efficient than that of normal
cells making them more susceptible to radiation.

Broadly, radiation therapy is sub-divided into teletherapy or exter-
nal beam therapy and brachytherapy. Brachytherapy is the clinical use
of small encapsulated radioactive sources at a short distance from or
directly in the target volume for irradiation of tumors. The goal of
radiation therapy is to deliver adequate dose to the tumor region while
simultaneously sparing sensitive structures and normal tissue. Com-
pared to conventional external beam therapy, the physical advantages
of brachytherapy result from a superior localization of dose to the tumor
volume. Interstitial brachytherapy is the implantation (temporarily or
permanently) of radioactive sources directly in the tumor volume, and
is used to treat prostate, breast, tongue, and gynecological cancers.

In this paper we focus on the application of interstitial brachyther-
apy to prostate cancer using permanently implanted Iodine-125 ra-
dioactive sources (commonly referred to as “seeds”). This is one of the
most common applications of brachytherapy; in fact, NIH (the National
Institutes of Health) estimates that the number of prostate permanent
radioactive implants performed each year will increase from around
6,000 in 1995 to more than 110,000 in the year 2005 given the current
rate of increase of detected cases and the aging population (BBIN,
1996).

Nearly all early stage prostate cancer patients can be appropriately
treated with either brachytherapy alone or brachytherapy combined
with conventional external beam radiation therapy. A detailed descrip-
tion of the seed implantation procedure can be found elsewhere (Blasko
et al, 1987; Grimm et al., 1994). Patients in whom the cancer has spread
to the capsule surrounding the prostate fare better with a combination
of seed implants and conventional radiation therapy. Other treatment
options include prostatectomy (removal of prostate by surgery). The
advantages of seed implantation over prostatectomy include the con-
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venience of an outpatient procedure, less normal tissue morbidity and
the preservation of sexual function.

Effective implants require careful treatment planning based on ul-
trasound or computed tomography images. Traditionally, interstitial
brachytherapy treatment planning has been a trial and error process in
which a dosimetry expert tries to improve an initial treatment plan (de-
rived from geometrical properties of the prostate) by iteratively chang-
ing (on the basis of expert judgement) the configuration of radioactive
sources within the target volume.

From a mathematical viewpoint, one can seek “optimal” seed config-
urations that take into account a number of criteria, including radiation
levels in the target volume and in the nearby normal tissues. Optimiza-
tion in seed implant brachytherapy thus involves spatially distributing
the seeds in order to try to achieve at least a prescribed dose level over
the target region while ensuring that the organs at risk and normal
tissues receive doses well below levels that may cause radiation injury.

The initial ultrasound “volume study” of the prostate generates 10-
15 2-D transverse images (“slices”) and is followed by development of
the corresponding brachytherapy treatment plan several days before
the procedure. However, in a clinical environment in which multiple
patients’ treatment are planned for different disease sites with limited
computing power, only an hour or so can be devoted to the determi-
nation of a single treatment plan. A second set of ultrasound images is
obtained on the day of the procedure. These images may not correlate
perfectly with the images acquired previously. Hence, the treatment
plan may need to be reoptimized at the time of the implantation proce-
dure. In this context the speed of the optimization algorithm is again a
key and necessary feature. The focus of this work was to construct MIP
models and to determine node selection, variable selection, branching
direction, and scaling strategies for branch-and-bound (BB) search that
would result in near seed placement for typical 2-dimensional planar
slices in less than 5 minutes of CPU time. The successful extension of
this methodology to the 3-D case via optimization in successive 2-D
slices is described briefly below and in (D’Souza et al., 2001).

2. Geometry

The prostate gland is a chestnut-shaped structure about 40 mm across
and 30 mm thick that surrounds the beginning of the urethra, and is
located below the urinary bladder (Hole, 1993). Information on prostate
volume and shape is obtained during the “volume study” which is
carried out with transrectal ultrasonography. Transverse images (corre-
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sponding to planar slices) of the prostate are obtained at 5 mm intervals
from the base to the apex of the prostate. The number of transverse
images acquired is typically 10-15. Next, the target volume (prostate)
is outlined on each ultrasound image along with organs at risk (urethra
and rectum) by the radiation oncologist.

In this paper we demonstrate the robustness of the BB approach
to optimum seed placement by considering both an idealized phantom
geometry and actual patient data (additional patient data considered
in (D’Souza et al., 2001) yields similar behavior in all cases). Because
of the mechanics of the seed implantation procedure, the possible lo-
cations of the seeds correspond to the centers of a 5 mm2 grid that is
imposed on each transverse image. The dose calculation grid is finer
than the seed placement grid and for the phantom is an 80 x 80 region
of 1 mm squares. Over this fine grid, an 80 x 80 dose distribution
matrix is pre-computed for each possible source location using the
American Association of Physicists in Medicine (AAPM) Task Group
43 report (Nath et al., 1995) formalism for a point source (further
details are given below). The grid structure of the problem coupled
with radiation pre-computation allows replacement of the continuous
nonlinear radiation model by the linear-integer model that we employ
in the BB approach (further details are given below). In most cases,
the total number of seeds implanted over all of the 2-D sections can
vary between 90 and 110 depending on the size of the prostate.

In the phantom shown in Figure 1, the target is simulated by a cir-
cular structure with a radius of 20 mm. Located posterior to the target
is a structure 13 mm in radius and represents the rectum. Within the
circular target area is a circular structure, 3 mm in radius simulating
the urethra. In addition, we introduced a subset of the target, referred
to as the transition region, 8 mm in radius which is concentrically placed
around the urethral region in the phantom. (Sometimes, it is desired
that the target dose be raised above the normally prescribed level.
While most of the target (namely, the partial target, which is the target
less the transition region) receives this higher dose, it may be required
that the dose to the portion of the target near the urethra remains
unchanged. The transition region is thus added so that it receives less
dose than the partial target region but enough to meet the minimum
dose criteria for the entire target. Thus, the purpose for the introduction
of the transition region is two-fold: (i) to ensure a more gradual fall-off
in dose from regions in the target further away from the urethra to
regions in the target closer to the urethra, and (ii) to ensure that seeds
are not placed too close to the region representing the urethra. The
“full” target refers to the partial target plus the transition region.)
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Figure 1. Simulated and clinical geometries

Figure 1 shows the actual anatomical configuration from a patient
who was subsequently treated with iodine-125 seed implants. This data
was acquired from a transverse ultrasound image towards the central
part of the prostate. The prostate, along with the organs at risk (ure-
thra and rectum) were contoured. We also contoured a transition region
around the urethra. (The rectum appears as a semi-circle in Figure 1
instead of a completed circle, because the ultrasound transducer, while
placed in the rectum, images only the upper half of the anatomy.) In this
clinical data, the dose calculation grid is 116 x 87 mm2. The target in
this case is somewhat larger than for the phantom data, so the solutions
require more seeds. However, as discussed below, our computational
experience in terms of evaluating solution strategy alternatives was
similar in the cases of phantom and clinical data (and several other
geometries that we considered), so the strategy choices we determined
are robust with respect to alternative geometries.

3. Radiation Dose Calculation

The Interstitial Collaborative Working Group (ICWG 1990) and AAPM
Task Group 43 have devised a dose calculation formalism for the dosime-
try of interstitial brachytherapy (Nath et al., 1995). In reality, iodine
sources are cylindrical in shape with a physical length of 4.5 mm and a
diameter of 0.8 mm. The radioactive iodine is adsorbed on a silver rod
3 mm in length and encapsulated in a titanium capsule. In the point
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source approximation, the dose depends only on the radial distance
from the center of the source. The unit of dose is Gray (Gy), where 1
Gy is defined as the deposition of 1 Joule of energy in a 1 kg mass.

Figure 2. Total radiation dose to each point (i,j) in the grid is obtained by summing
contributions from the seeds

The dose rate at a distance r from a single source using the point
source approximation is given by:

Ḋ(r) =
SkΛ

r2
g(r)Φan (1)

where Ḋ(r) is the initial dose rate (cGy hr−1) of the source, Sk is the
(air kerma) strength (U) of the source measured in units of U, where
1 U = 1 µGy m2 hr−1 as recommended by the AAPM Report No.
21 (AAPM, 1987), Λ is the dose rate constant of the source (cGy hr−1

U−1), r is the radial distance (cm) of a point of interest from the source,
g(r) is the radial dose function that accounts for the radial dependence
of dose on the transverse axis due to photon absorption and scatter
in the medium, Φan is the anisotropy factor and is approximated by
a constant in the point source dose formulation (Nath, 1995), (Nath
et al., 1995). For Iodine-125 the values of these parameters are: Λ =
0.88 cGy hr−1 U−1, Φan = 0.993. For purposes of simplicity we used a
source strength Sk of 1 U. The radial dose function used for I-125 is a
fitted fifth-order polynomial of the form:

g(r) = a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5 (2)

and the coefficients of the fit are a0 = 1.01376, a1 = 0.122747, a2

= -0.173025, a3 = 0.0402378, a4 = -0.00385227, a5 = 0.000134283.
The dose rate calculated using the point source approximation on the
transverse axis (perpendicular to the axis of the cylindrical source) in
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the medium is lower than the actual dose rate by 3% to 9% for most
interstitial brachytherapy sources (Nath et al., 1995).

The total dose over time to tissue from a permanent radioactive
implant is given by integrating the dose rate, taking into account the
half-life T1/2 of the radioactive source:

D(r) =

∫ ∞

0

Ḋ(r)exp(
−0.693t

T1/2

)dt (3)

where T1/2 is the the time it takes for the source to exponentially decay
to one-half of its original strength (59.6 days for Iodine-125). Even
though sources are permanently implanted within the tumor volume
most of the radiation dose is delivered during the first five half-lives (∼
300 days for Iodine-125). Carrying out the integration in Equation 3,
the total dose from a permanently implanted source is:

D(r) = 1.44T1/2
˙D(r) (4)

4. MIP Models for Prostate Seed Implants

Methods for optimization of prostate implants include fast simulated
annealing (SA) (Pouliot et al., 1996), genetic algorithms (GA) (Yu
et al.(s), 1996; Ezzell(s), 1996; Yang, 1998) and branch and bound
(Gallagher et al., 1997; Lee et al., 1999). Fast simulated annealing has
been used by Pouliot et al. to optimize the dose distribution by finding
the best seed distribution through the minimization of a cost function
which includes constraints on the dose at the periphery of the planned
target volume and on the dose uniformity within this volume. Yu et

al. have developed a genetic algorithm for prostate implants in which
the objective function is comprised of separable cardinal utility terms.
SA and GA techniques cannot provide the solution guarantees that are
possible with BB. Gallagher and Lee’s model is three-dimensional but
imposes constraints only at sampled points in the region. Here we con-
sider quasi-independent two-dimensional slices and impose constraints
at all relevant points.

The focus of this work is mixed integer models for prostate seed im-
plant brachytherapy using the branch and bound technique and strate-
gies influencing the outcome of the solution process. The Mixed Integer
Program (MIP)model that we used can be represented as follows:

minimize cx + dy
subject to Ax + By ≥ b

y binary,
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where each binary variable yP corresponds to the placement or non-
placement of a seed in a particular location. The possible seed locations
are designated by the use of the ultrasound template. Seeds can only be
placed within the target. The placement of a seed in a particular loca-
tion contributes radiation dose to each point in the dose computation
grid.

If yP is the binary (0/1) variable indicating the presence or absence
of a seed in a particular grid location P within the full target then the
total dose Dij delivered by all seeds to a point (i,j) in the grid is given
by:

Dij =
N∑

P=1

yPDP
ij (5)

where DP
ij is the dose contribution from seed at grid location P, and N

is the number of possible seed positions (in our examples N varies from
50 to 90). Consider Figure 2 for example. If seeds are present in the
pixel locations as shown in Figure 2, then the dose to a pixel (i,j) in
the 2-dimensional matrix is the sum of the doses from individual seeds
1, 2, and 3 to pixel (i,j).

The primary goal in prostate seed implant brachytherapy is to de-
liver a certain minimum dose to the prostate gland while minimizing
the dose to organs at risk such as the urethra and rectum. Hence a
lower bound, Tl is placed on the dose to the (partial) target while
upper bounds Uu and Ru are placed on the dose to the urethra and
the rectum. In brachytherapy, there is a strong dose gradient, over the
tumor volume i.e. the dose is very high at points close to the source
and decreases rapidly as the distance from the source increases. This is
because the dose contribution to a point is inversely proportional to the
square of the distance from the source. Hence, the r2 term dominates
in ( 1) when r is less than 1 mm. Thus, there is no upper bound on the
dose to the target. The above mentioned constraints can be stated as

Dij ≥ Tl ∀(i, j) ∈ T

Dij ≥ Sl ∀(i, j) ∈ S

Dij ≤ Uu ∀(i, j) ∈ U

Dij ≤ Ru ∀(i, j) ∈ R

where T, S, U, and R represent the (partial) target, transition region
(remainder of the target), urethra and rectum respectively. The values
used for the upper and lower bounds (in units of Gy) are as follows:
Tl=145, Sl=140, Uu=240, and Ru=112.

We considered several objective functions in our research. In the
first objective function (see model 1 below), the mean dose to the
urethra was minimized subject to the above constraints. The urethra is
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considered the primary organ at risk and therefore minimizing the dose
to the urethra is of great importance. The mean dose to the urethra
can be stated as:

meandose =

∑
i,j ∈ U Dij

|U |
, (6)

where |U | denotes the number of pixels in the urethra. (While this
is mathematically equivalent to minimizing total dose to the urethra,
mean dose is of greater clinical interest.)

The second objective function (see model 2 below) involved mini-
mizing the total underdose (relative to the prescription target dose).
This can be represented as

min
∑

i

∑
j

zij (7)

with the additional constraint

Dij + zij ≥ Tl ∀(i, j) ∈ T (8)

where Tl is the dose prescribed to the target and zij is a continuous non-
negative variable representing underdose (relative to the prescription
dose). The optimization process ensures that a penalty is introduced
only if the target dose at a point is less than the prescription dose.
This is thus essentially a feasibility problem, since (in most cases) we
are able to find solutions with all zij=0. (In principle, a penalty can be
assigned if the target dose exceeds a certain threshold level (e.g., 1.5 x
Tl) in order to achieve a certain degree of dose homogeneity over the
target region. However, it is not clear if dose homogeneity is preferred
in prostate seed implants or if dose heterogeneity provides better tumor
control, so here we penalize only underdose.)

An MIP model was also constructed seeking to minimize the total
number of seeds utilized to achieve the desired dose distribution. Mini-
mizing the number of seeds is desirable in order to reduced the level of
trauma induced in the prostate gland. However, this resulted in solution
times being too large in most cases. Therefore, instead of minimizing
the total number of seeds in the objective function, an upper bound
was placed on the number of seeds:∑

P

yP ≤ maxseed, (9)

where maxseed is the maximum number of seeds allowed. If this upper
bound is not set too low, reasonable solution times are obtained as will
be discussed below.

The constraints and the objective functions for the two principal
models used are formulated below. Model 1 (urethra objective, hard
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bound on target):

min

∑
(i,j)∈U

Dij

|U |

subject to Dij =
∑N

P=1 yPDP
ij ∀(i, j)

Dij ≥ Tl ∀(i, j) ∈ T

Dij ≥ Sl ∀(i, j) ∈ S

Dij ≤ Uu ∀(i, j) ∈ U

Dij ≤ Ru ∀(i, j) ∈ R∑
P yP ≤ maxseed

yP ∈ 0, 1 ∀ P

Model 2 (feasibility objective, soft bound on target):

min
∑

i

∑
j zij ∀(i, j) ∈ T, S

subject to Dij =
∑N

P=1 yPDP
ij ∀(i, j)

Dij + zij ≥ Tl ∀(i, j) ∈ T

Dij + zij ≥ Sl ∀(i, j) ∈ S

Dij ≤ Uu ∀(i, j) ∈ U

Dij ≤ Ru ∀(i, j) ∈ R∑
P yP ≤ maxseed

yP ∈ 0, 1 ∀ P

zij ≥ 0 ∀(i, j) ∈ T

Finally, we also experimented with a composite objective function
constructed by weighting objective 1 by a factor α < 1 and objective 2
by 1−α and adding the two weighted objective objective functions, us-
ing the “soft” underdose constraint defining the variables zij as opposed
to a strict lower bound on the target dose. Thus the composite objective
function is α x objective 1 + (1−α) x objective 2. As discussed below,
an appropriate choice of α produced good results (from the standpoint
of both objectives) in a reasonable time.

5. Branch-and-Bound Strategies

Branch-and-bound is a global optimization technique that recursively
partitions relaxations of the feasible set. For the problem of prostate
seed implant optimization, a number of different strategies were ex-
plored in conjunction with the General Algebraic Modeling (GAMS)
language (Brooke et al., 1997) and the CPLEX mixed integer program-
ming solver. We provide a brief description of the various GAMS/CPLEX
strategies explored. Table I summarizes these strategy options and the
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combinations of options that we found effective. Strategy 1 provided
good results in all cases and is the focus of most of the discussion below.

Branching Direction: By default, CPLEX will use the magnitude
of the branching variable’s integer infeasibility to decide whether to
process next the up or down branch. Alternatively, this option forces
the consistent selection of either the up or down branch.

Node Selection: We investigated three node selection strategies: 1)
depth-first search, 2) best-bound search, and 3) best-estimate search.
The depth-first search strategy tends to limit the selection of the next
node to one of the two descendants of the current node in the branch
and bound tree. The successor node is more efficiently defined since only
a single additional lower or upper bound need be specified. While depth-
first search results in faster per-node processing times, each branch may
be exhaustively searched to the deepest level before fathoming it in
favor of better branches, thus consuming considerable time.

The best-bound or best-node search selects the unfathomed node
with the best objective function value (or “best-bound”). The best-
estimate search uses estimates of the objective function value that
would be obtained if all integer variables were forced to integer values.
Both best-bound and best-estimate strategies result in more breadth-
first tree development.

Variable Selection: Three variable selection strategies were ex-
plored: 1) branching on the variable with minimum infeasibility, 2)
branching based on pseudo-reduced costs, and 3) strong branching.
Branching on a variable with minimum infeasibility may lead more
quickly to a first integer feasible solution, but will usually be slower
overall to reach the optimal integer solution. The pseudo-reduced costs
represent an estimate of the penalties associated with integerizing vari-
ables, and thereby tend to identify “important” variables for branching.
Strong branching attempts several branches at a node and proceeds
with the “best” such branching.

Scaling: The influence of various types of scaling on the problem
matrix was noted. The model was run with no scaling, standard scal-
ing and modified, more aggressive scaling. Standard scaling uses an
equilibrium scaling method that is generally very effective. Aggressive
scaling can produce improvements on some problems and can be used if
a particular problem has difficulty staying feasible during the solution
process.
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6. Software Interfaces

Using MATLAB, the set of dose distribution matrices corresponding
to possible seed locations was pre-computed in two dimensions over an
80 x 80 mm2 grid (for the phantom data case, with a slightly different
grid being used for clinical data) using a pixel resolution of 1 mm in
each direction. We selected a pixel resolution of 1 mm because the
dose drops of very rapidly in brachytherapy. Using a coarser resolution
would result in the loss of dose gradient information which will result
in a dramatic difference in the optimization.

GAMS is a high-level modeling system for mathematical program-
ming problems. It consists of a language compiler and a suite of inte-
grated high-performance solvers. GAMS is tailored for complex, large
scale modeling applications, and allows the construction of large main-
tainable models that can be adapted quickly to new situations. The
data generated within MATLAB was transferred to GAMS using MATLAB-
GAMS interfacing software (Ferris, 1998). The solver used in con-
junction with GAMS was CPLEX. The CPLEX MIP algorithm is an
implementation of a branch-and-bound search with many algorithmic
options to be considered below. The solution obtained was returned
into the MATLAB workspace where it was visualized.

Branching direction, scaling, node selection and variable selection
strategies were varied and the problem was run with different combina-
tions of branch-and- bound solving options. The two objective functions
and their corresponding constraints as described above were considered.
The model was run on a SunSPARC UltraTM 10 workstation which has
a clock speed of 333 MHz and 256 MB RAM. In each case the CPU
time, the branch-and- bound tree node count, the best integer solution,
and the lower bound of the relaxation were recorded. In addition, the
maximum, minimum and mean doses to the target region and organs
at risk and the total number of seeds were also noted. The relative
optimality gap for model 1 (which minimizes urethral dose) was pre-set
to 3%. The relative gap (rg) is defined as the ratio of the absolute value
of the difference between OBJ, the value of the best integer solution
found and LB, the relaxation (lower bound) over the lower bound,

rg =
| OBJ − LB |

LB
(10)

We investigated the effect of the relative gap on the solution time
only for model 1. Model 2 (minimizing target underdose) was run to
optimality in all cases.

Based on the final dose distribution, isodose lines were constructed.
Isodose line displays are analogous to topographical maps. They are
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formed by connecting points on a 2-dimensional grid that receive equal
dose. With the help of an isodose line display, the radiation oncologist
is able to confirm how well the prescription dose conforms to the target
boundary while also examining the doses received by the urethra and
the rectum. It is also possible to spatially identify regions within the
target or organs at risk that receive excessively high or unacceptably
low doses.

7. Results and Discussion

Both optimization models led to clinically interesting and somewhat
different results, and additionally displayed rather different computa-
tional behavior. This section summarizes these differences.

The MIP relative gap tolerance has a significant impact on the
solution time of model 1 (minimizing urethra dose) as can be seen
from Figure 3. Although this was noted for all strategies, only three
are illustrated in Figure 3. The strategies shown utilize best bound
node selection, pseudo-cost variable selection, aggressive scaling and
only vary in the choice of the branching direction. As the relative
gap is reduced, the solution time increases in a non-linear manner but
rate of increase varies depending on the solving strategy used. Dose
computation algorithms in brachytherapy, such as the one used in the
work described here are accurate to within 5%. Termination with a non-
zero relative gap of a few per cent is appropriate. For most of the cases,
we set the relative gap within the GAMS modeling language to 3%. A
further decrease in this parameter was considered unnecessary due to
the accuracy limits of the dose calculation method and the tremendous
increase in time for a non-significant increase in the quality of the
solution (see Figure 3). For testing purposes, model 1 was actually run
to a proven optimal value of 136.9032 (phantom data), but this required
4864 cpu seconds.

In general, we found that the best-bound node selection strategy
and pseudo-cost variable selection strategy provided the best results.
In the tables listed, we have only included solution strategies that
generally performed well with the models previously described and
with different stopping criteria (relative gap size) for model 1. Overall,
the depth-first search and best-estimate search node selection strate-
gies did not provide solutions in reasonable amounts of time although
the best-estimate search did perform well in certain individual in-
stances. Variable selection strategies such as branching on a variable
with minimum infeasibility and strong branching generally resulted in
an enormous cpu time.
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Figure 3. Effect of the relative gap between the current objective function value and
the lower bound of the LP relaxation of the MIP problem. The time as a function
of the relative gap is shown for three different strategies all of which use best bound
node selection strategy, pseudo-cost variable selection strategy, aggressive scaling but
which vary in the branching direction strategy at each node. Strategy 1 - algorithm
decides branching direction, Strategy 2 - down branch selected first, Strategy 3 - up
branch selected first

Table II shows the results obtained with with clinical data. Included
in the table is a symbolic description of the strategy employed, the best
integer solution (mean urethra dose), lower bound of the LP relaxation,
cpu time, number of nodes generated and the relative gap at the time of
termination of the solution process. Table III lists the results obtained
by minimizing the total underdose to the target (model 2) with clinical
data (similar results were obtained with phantom data).

Model 2 was run to optimality while model 1 was terminated when
the relative gap was less than or equal to 3%. For this reason there are
no entries for the best integer solution, lower bound and relative gap
for model 2 in III. The solutions for model 2 are obtained in far less
computing time than the near-optimal solutions for model 1. Placing
an upper bound on the number of seeds in model 1 increased the cpu
time relative to no upper bound. Due to the amount of information
present in the tables we selected a strategy (which uses best-bound
node selection, pseudo-cost variable selection, aggressive scaling and
branching direction decided by the algorithm) referred to as strategy 1
below to illustrate the salient points.

Strategy 1 uses 272 cpu seconds and 4288 nodes to arrive at a feasible
solution using model 1 (phantom data) with an upper bound of 18
placed on the total number of seeds. The relative gap between the final
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integer solution and the corresponding LP solution is 1.8% Recall that
model 1 was run to optimality in this case and the optimal solution
obtained was 136.9032. In the clinical case, (see Table II) where an
upper bound of 25 is placed on the number of seeds, a good solution is
achieved in 288 cpu seconds with a node count of 1865 and a relative gap
of 2.6%. The target in the clinical data is larger than in the phantom
and a greater number of seeds are needed in order to meet the minimum
dose criterion within the target region.

It was found that scaling affects the speed with which a feasible
solution is achieved. Aggressive scaling led to a quicker solution with
the best-bound node selection search, pseudo-cost variable selection
and branching direction at each node decided by the CPLEX MIP
algorithm. Similarly, an equilibrium scaling method provides a solu-
tion quickly with the best-estimate node selection search, pseudo-cost
variable selection and downward branching direction selected first at
each node while other scaling methods fail with this strategy.

The branching direction can significantly impact the solution times
when using model 1. The down branch resulted in undesirably long
solution times for clinical data and therefore is not listed in Table
II. From Table III, it can be seen that the aggressive scaling method
fairs extremely well when the down branch is selected first while the
equilibrium scaling method does better when the up branch is first
picked. Figure 4 summarizes graphically the computing times for the
two models and the phantom and clinical anatomies.

It was found that the maximum dose to the structure simulating the
urethra in the phantom (OR1) and the urethra itself in the clinical data
was considerably lower (20-40%) for model 1 as compared with model
2. Model 1 does in fact seek to drive the dose to the urethra (OR1) as
far down as possible subject to the minimum dose constraint on the
target. The emphasis in model 2 is on pushing the dose to the target
above the minimum criterion while maintaining an upper limit on the
dose to the critical organs. Hence, in model 2 there is no objective term
forcing down the dose to the critical organs.

Again, we will select strategy 1 to elaborate on the above mentioned
points. Since the minimum dose criteria is satisfied by both models and
the minimum dose to the full target is almost the same, we will not
focus on the target dose in this discussion. It is important to mention
that the minimum full target dose is 0-7 Gy higher when using model 2
as compared with model 1. We will place the emphasis on the difference
in the maximum doses received by the organs at risk between the two
models. Table IV lists the doses to the regions in the phantom and
clinical data. Figures 5 and 6 contrast isodose plots (dose distribution
maps) for a solution based on urethra dose minimization with a solution
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Figure 4. Graphical representation of computing times achieved through viable
branch-and-bound search strategies in brachytherapy treatment optimization

based on target underdose minimization (using in both cases strategy
1 with an upper bound of 25 placed on the number of seeds). The
prescription dose for treatment of prostate cancer using permanent
seed implant brachytherapy is 140 Gy; shown on the isodose plots are
the 280, 168, 140, 98, 70 and 14 Gy isodose lines corresponding to
200%, 120%, 100%, 70%, 50%, and 10% of the prescription dose. Also
indicated on these isodose plots are the positions of the seeds. With
isodose plots it is possible to identify “cold spots” as well as “hot spots”
within the anatomical region. “Hot spots” and “cold spots” are not
absolute but relative terms used in radiation therapy. A “hot spot”
refers to an area receiving much higher dose when compared to other
regions while a “cold spot” refers to an area receiving a much lower
dose relative to other regions or relative to other areas within the same
region. In general “hot spots” near critical organs are to be avoided
and “cold spots” interior to the target are undesirable. Figures 5 and 6
show“cold spots” in and surrounding the urethra and extending into the
transition region but the shape of these “cold spots” is different in the
two treatment plans. The “cold spot” in the urethra dose minimization
case (Figure 5) extends beyond the transition region and into the target
region, but it is important to reiterate that the full target region (partial
target and transition region) does receive at least prescription dose.
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For clinical data with urethra dose minimization (model 1), the
maximum and mean doses to the urethra are 144.4 Gy and 139.8 Gy
respectively, whereas for target underdose minimization (model 2), the
maximum and mean doses to the urethra are 208.1 Gy and 167.6 Gy
respectively. With the composite objective function described above,
which is a weighted combination of the objectives of model 1 and
model 2, we found that a weight of 0.8 yielded a solution that came
acceptably close to the target dose bound (see Figure 7), yet came
close to the low mean urethra dose in model 1. The solution time for
this objective was 70 seconds, which was in between the times for the
two individual objectives. Note that care is needed in the choice of α

in order to obtain high quality solutions within a clinically acceptable
time frame. Composite objectives that include both of the above terms
plus additional terms such as the number of seeds are considered in
(D’Souza et al., 2001).
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Figure 5. Isodose line display for clinical data with an upper bound of 25 on the
number of seeds (mean urethra dose minimization)
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Figure 6. Isodose line display for clinical data with an upper bound of 25 on the
number of seeds (target underdose minimization)
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Figure 7. Effect of composite objective function of the form α x obj1 + (1 -α) x
obj2 where obj1 is the objective function that seeks to minimize the mean dose to
the urethra and obj2 seeks to minimize the underdose to the target. Strategy 1 and
Strategy 2 both employ best bound node selection, pseudo-cost variable selection,
aggressive scaling. Strategy 1 allows the algorithm to choose the branching direction
while Strategy 2 selects the down branch at each node. (Note that the times are
plotted on a log scale)
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8. Summary and Conclusions

Mixed integer programming models for ultrasound guided prostate
seed implant brachytherapy were presented and successfully solved via
branch-and-bound methods. Model 1 focuses on minimizing the dose to
organs at risk and is computationally more expensive. Model 2 focuses
on target dose, and is faster to solve, but the dose received by the
critical structure is higher than with model 1. A composite objective
with carefully chosen relative weights for the two objective terms lead
to low doses to the critical structure in a computing time that was in
between the times required for models 1 and 2. Since the time taken
for the optimization process is an important parameter in a clinical
setting, one has to weigh the results presented in this paper and decide
if a faster solution time is worth the extra dosage to the organs at risk.

From the standpoint of solution quality, introducing a “transition
region” between the urethra (OR1) and the rest of the target region
did help in reducing the dose gradually across from the target to the
urethra. More complex models for constraining the dose gradient be-
tween these two regions are now under consideration. Even though the
prescribed target dose was achieved using both models, the location of
the seeds used to deliver the desired dose distribution is different and
depends on the model used and the number of seeds allowed in the
target region. Lowering the number of seeds below a certain level may
result in undesirable solutions (“hot spots” in the critical structures)
and may be computationally expensive.

We have presented a summary of the solution strategies that per-
formed well with all models. In general, the best-bound node selection
search and pseudo-cost variable selection search provided the best re-
sults. Other node selection strategies such such best-estimate search
and depth-first search did not lead to good solution in a desirable
amount of time. Variable selection strategies such as branching on a
variable with minimum infeasibility and strong branching fared poorly.
In all cases, the following strategy was successful: best-bound node se-
lection, pseudo-cost variable selection, aggressive scaling and branching
direction decided by the algorithm. However, as seen from the results,
several other viable strategies also emerged.

While the results here focus on the application of BB to single 2-
dimensional slices, we have demonstrated (D’Souza et al., 2001) that
this approach may be successfully extended to three dimensions by
using the techniques of this paper on an appropriate sequence of 2-
D problems. That is, for each 2-D slice, we first generate a radiation
contribution to that plane from the remaining planes, and then opti-
mize the seed placements in the current plane taking into account the
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radiation already provided by interplane contributions. Seed positions
are thus computed for successive slices until the variation in seed posi-
tions becomes sufficiently small. As described in (D’Souza et al., 2001)
this sequential approach, coupled with appropriate initializations and
controls over the 2-D optimizations, yields full 3-D solutions in about
30 minutes on a 333 MHz processor.
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Table I. Summary of BB options and effective strategies. All strategies listed make use of the pseudo-cost
variable selection search.

Node selection (ns) Variable selection (vs) Branching direction (br) Scaling (s)

best-bound (bb) minimum infeasibility (mi) up branch (up) equilibrium scaling (0)

best-estimate (be) pseudo-cost (pc) down branch (dn) aggressive scaling (1)

depth-first (df) strong branching (sb) algorithm (alg) -

Strategy 1 ns=bb, br=alg, s=1

Strategy 2 ns=bb, br=dn, s=0

Strategy 3 ns=bb, br=dn, s=1

Strategy 4 ns=bb, br=up, s=0

Strategy 5 ns=bb, br=up, s=1

Strategy 6 ns=be, br=dn, s=0
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Table II. Branch-and-bound solution strategies (relative gap set at 3%) yielding near optimal
solutions with clinical data in less than 15 minutes of CPU time. The objective is to minimize the
mean urethra dose (model 1). Listed in the table is the integer solution at the time of termination.

B-and-B Strategy Integer So-
lution

Lower
Bound

CPU time
(sec)

Node count Relative gap

Strategy 1 139.7917 136.3 288 1865 2.6%

Strategy 4 139.1145 136.3 849 8014 2.0%

Strategy 5 139.1145 136.3 871 8014 2.0%
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Table III. Branch-and-bound solution strategies
yielding optimal solutions with clinical data. The
objective is to minimize the total target underdose
(model 2).

B-and-B Strategy CPU time
(sec)

Node count

Strategy 1 122 1240

Strategy 2 637 6393

Strategy 3 47 447

Strategy 4 25 289

Strategy 5 652 10402

Strategy 6 51 647
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Table IV. Dose to regions within phantom and clinical anatomy; results of Strategy
1 applied to model 1 (urethral dose minimization) and model 2 (target underdose
minimization).

Trial Minimum
Full Target
Dose (Gy)

Maximum
OR1/Urethra
Dose (Gy)

Mean
OR1/Urethra
Dose (Gy)

Maximum
OR2/Rectum
Dose (Gy)

model 1 141.4 144.2 138.3 109.0

(phantom)

model 2 146.2 213.4 162.9 104.2

(phantom)

model 1 141.9 144.4 139.8 109.5

(clinical data)

model 2 145.6 208.1 167.6 111.9

(clinical data)
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