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Abstract. The Gamma Knife is a highly specialized treatment unit that pro-
vides an advanced stereotactic approach to the treatment of tumors, vascular
malformations, and pain disorders within the head. Inside a shielded treatment
unit, beams from 201 radioactive sources are focused so that they intersect at
the same location in space, resulting in a spherical region of high dose referred
to as a shot of radiation. The location and width of the shots can be ad-
justed using focussing helmets. By properly combining a set of shots, larger
treatment volumes can be successfully treated with the Gamma Knife.

The goal of this project is to automate the treatment planning process.
For each patient, an optimization seeks to produce a dose distribution that
conforms closely to the treatment volume. The variables in the optimization
can include the number of shots of radiation along with the size, the location,
and the weight assigned to each. Formulation of such problems using a variety
of mathematical programming models is described, and the solution of several
test and real-patient examples is demonstrated.

1. Introduction

The Leksell Gamma Knife is a highly specialized treatment unit that provides
an advanced stereotactic approach to the treatment of tumors, vascular malforma-
tions, and pain disorders within the head [Gan97]. Over 100 Gamma Knife units
are installed worldwide, and more than 20,000 patients are treated each year. In-
side the shielded treatment unit (see Figure 1), beams from 201 Co-60 radioactive
sources are focused so that they intersect at the same location in space. The result
is a spherical region of high dose referred to as a shot of radiation. Four different
shot sizes are available to the user. By combining multiple shots of radiation, the
treatment plan can be customized to treat lesions of varying sizes and shapes.

The goal of this project is to automate the treatment planning process. For
each patient, the optimization seeks to produce a dose distribution that conforms
closely to the treatment volume. The variables in the optimization can include
the number of shots of radiation along with the size, the location, and the weight
assigned to each. This paper will address the approaches that we have investigated
for solving this problem. The advantages and disadvantages of two approaches will
be discussed, and optimized patient plans will be shown.
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Figure 1. Gamma Knife Treatment Unit

The success of radiosurgery, in large part, depends upon the ability to accu-
rately locate the treatment volume. The localization procedure begins with the
fitting of a stereotactic head frame onto the patient’s head (see Figure 2). This

Figure 2. Stereotactic Head Frame

head frame is screwed into the patient’s skull on the morning of the treatment.
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Once the head frame is in place, the patient undergoes MRI or CT imaging.
The imaging studies make it possible to precisely determine the position of the
treatment volume with respect to the stereotactic head frame.

During the treatment, the patient’s head frame attaches to a focusing helmet
(see Figure 3). This focusing helmet serves as a collimator that further reduces the

Figure 3. Focussing Helmet Attached to Frame

size of each beam. There are a total of four focusing helmets. These helmets can be
used produce a shot of radiation that is 4mm, 8mm, 14mm, or 18mm in diameter
(see Figure 4).

The neurosurgeon, the radiation oncologist, and the physicist work together
in order to develop the patient’s treatment plan. For some cases, the treatment
planning process is relatively straightforward. For example, some small lesions can
be covered with a single shot of radiation. Consequently, the treatment planning
process can be completed in a few minutes. Unfortunately, the treatment planning
process becomes much more complex when the tumor volume is large or irregularly
shaped. These cases typically require several shots of radiation. Through an itera-
tive process, the planners must determine the number of shots of radiation that are
required along with the size, the location, and the weight that should be assigned
to each. Each time that there is a change in the shot size, the staff must remove
the current focusing helmet and replace it with the helmet of the correct size. This
is a fairly time consuming process, because each helmet weighs approximately 500
pounds and must be manipulated mechanically. For each shot of radiation, the lo-
cation of the center of the shot is determined by the connection between the helmet
and the patient’s head frame. Adjustments in this connection are made between
each shot. At the time of delivery, the door to the treatment unit opens and the
patient couch is advanced inside the shielded treatment vault (see Figure 5).

For many patients, the treatment planning process becomes both tedious and
time consuming, and the quality of the treatment plan that is produced depends
upon both the experience and the patience of the planner. Because of these fac-
tors, we have sought to develop an automated process for creating Gamma Knife
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Figure 4. Stored Focussing Helmets for 4mm, 8mm, 14mm and
18mm shots

Figure 5. Operation of the Gamma Knife

treatment plans. As a first step in this process, the planner outlines the treatment
volume and any sensitive structures. A series of treatment goals are then defined.
Based upon these goals, an optimization algorithm determines the best possible
treatment plan.

The ideal optimization technique for Gamma Knife treatment planning must be
fast, flexible, and robust. The system must be fast, because the treatment planning
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process cannot begin until after the patient’s head frame is in place and MRI or
CT images have been obtained. It is therefore unacceptable to have a planning
procedure that takes hours to complete. Our goal has been to create an automated
planning system that can produce a treatment plan in 20 minutes or less.

The system must also be flexible. This is because the treatment goals will vary
from one patient to the next. Finally, the system must be robust enough that it
produces a high quality solution for treatment volumes of all sizes and shapes. A
robust technique ensures a reasonable result regardless of the quality of the initial
guess. An automated treatment planning process can potentially provide several
benefits. Most importantly, the quality of patient care could be improved. Due to
the large number of variables involved, it is unlikely that a manual approach will
produce a truly optimal dose distribution. Improvements in the quality of a dose
distribution can lead to an increase in the the probability of uncomplicated tumor
control. An automated approach to treatment planning would also greatly reduce
the amount of time that the neurosurgeon must commit to treatment planning.
Finally, with optimization, it may be possible to reduce the number of shots and
the variation in the shot size without sacrificing the quality of a patient’s dose
distribution. Therefore, the total treatment time would be reduced. Reduced
treatment times are appreciated by the patient, and can make it possible to treat
more patients in a day.

A number of researchers have studied techniques for automating the Gamma
Knife treatment planning process [WB99, LSY+99]. One approach incorporates
the assumption that each shot of radiation can be modeled as a sphere. The problem
is then reduced to one of geometric coverage, and a ball packing approach [SSV93,
WB99] can be used to determine the shot locations and sizes. The use of a modified
Powell’s method in conjunction with simulated annealing has also been proposed
[LSY+99, YSB97].

This paper addresses a different approach, whereby the actual dose distribution
is modeled and a formal constrained optimization model is solved to determine the
treatment plan. In Section 2, we outline a nonparametric optimization approach
for generating a dose model for the Gamma Knife. This dose model is a critical
component for developing the ensuing optimization models. In Section 3, we de-
scribe two different optimization formulations that can be used for the treatment
planning problem, one based on mixed integer programming, the other on nonlinear
programming. We demonstrate the effectiveness of these approaches in Section 4
by comparing them on several test examples that we generate in a new testing
environment. We also report computational results on several real patient cases
using the nonlinear programming approach. The modeling and optimization uses
various combinations of GAMS, MATLAB, CPLEX and CONOPT. The paper con-
cludes with several remarks regarding incorporation of the methodology into the
real patient planning process, along with some pointers regarding future work.

2. Dose Model

Each patient is currently modeled on a three dimensional grid of pixels. Given
such a grid, the first task is to determine the dose that will be delivered by a
particular plan at each pixel. We require an algebraic model of the distribution of
the dose for use in our optimization formulations. In this model, we let S represent



6 MICHAEL C. FERRIS AND DAVID M. SHEPARD

the set of the shots that we will consider, and W represent the possible shot sizes
(typically 4mm, 8mm, 14mm and 18mm).

The complete dose distribution can be calculated as a sum of contributions
from each shot delivered, once the location of the center of that shot (xs, ys, zs) is
known, and the length of time of delivery ts,w is known. In practice this means
that for all (i, j, k)

Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(xs, ys, zs, i, j, k),(2.1)

where Dw(xs, ys, zs, i, j, k) is the dose delivered to the pixel (i, j, k) by the shot of
width w centered at (xs, ys, zs).

To determine the form of Dw, the following procedure was followed. First,
we simulated the delivery of a shot of width w ∈ W , centered at the middle of the
head of a previously scanned patient on the Gamma Knife. For each shot width, we
determined the dose delivered in the x, y and z directions at given distances from
the center of the shot from the simulation. The three values were then averaged
to give a value of dose (for each width of shot) at a particular distance from the
center, for example,

D̄w(d) =
Dw(0, 0, 0, d, 0, 0) +Dw(0, 0, 0, 0, d, 0) +Dw(0, 0, 0, 0, 0, d)

3
.

These values were used as data in a nonlinear parameter estimation problem.
The problem is reduced to determining a functional form for the dose delivered

at a pixel that is a distance d away from the center of the shot. A sum of error
functions has been noted in the literature to approximate this dose distribution
[CKM98]. We therefore used the following functional form

2
∑

i=1

λi

(

1 − erf

(

d− ri

σi

))

(2.2)

(with d representing the distance) and fit the six parameters λi, ri and σi to the
data described above via least-squares, with different values for each width shot.
In our work, we use the notation erf (x) to represent the integral of the standard
normal distribution from −∞ to x. The resulting nonlinear optimization problem

min
λ,r,σ
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was solved using CONOPT. As can be seen by two representative pictorial repre-
sentations of the resulting fits in Figure 6, the functional fit is very close to the
observed data. The fit is best for the small shots (see Figure 6(a) for example),
and decreases slightly in accuracy for the larger ones (see Figure 6(b) for example).
The particular values of the parameters that we generated are given in Table 1. It
is clear that a closer fit can be achieved using more parameters in (2.2). However,
this will lead to more computational overhead in the optimization, which we believe
is not necessary.

It is possible that the averaging in the x, y and z directions creates a small error
for the particular patient at hand. Furthermore, there may be variations in dose
across patients. These effects have been ignored in the subsequent formulations.
In future work, along with investigations of the above issues, we may fit ellipsoids
instead of spheres to the dose data since various researchers have commented that
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Figure 6. Nonlinear Parametric Fitting for Dose Data

Shot λ1 r1 σ1 λ2 r2 σ2

4mm 0.649200 1.365916 4.413680 0.599844 2.661771 0.668291

8mm 0.401007 7.035785 5.702334 0.648584 4.849365 1.149176

14mm 0.363704 13.97259 7.196694 0.657808 8.199979 1.321161

18mm 0.381801 17.67857 8.194611 0.634696 10.31583 1.441725

Table 1. Parameter for Dose Model

the dose is skewed in certain directions. While cubic b-spline approaches may
outperform the fit that we achieve here, it is currently unclear how to use such
approaches within the GAMS modeling format that we employ.

3. Optimization Formulation

Once a description of the dose is determined, an optimization model can be
formulated. The basic variables of the optimization include the number of shots of
radiation that will be delivered, along with the width of the shot w, the coordinates
of the center location of the shot (xs, ys, zs), and the time ts,w that each shot is
exposed. In practice, we consider a grid of pixels, noting two subsets of this grid,
namely T and N , that represent the subset of pixels that are in (out) of the target
respectively.

Neurosurgeons commonly use isodose curves as a means of judging the quality
of a treatment plan. The 50% isodose curve is a curve that encompasses all of the
pixels that receive at least 50% of that maximum dose that is delivered to any pixel
in the patient. The neurosurgeon may wish to impose a requirement that the entire
target is surrounded by an isodose line of x%. For example, a constraint that the
50% line must surround the target can be modeled by imposing strict lower and
upper bounds on the dose allowed in the target, namely for all (i, j, k) ∈ T

1 ≤ Dose(i, j, k) ≤ 2.
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In this way, the 50% isodose curve is guaranteed to cover the target. The iso-
dose requirements can be changed by simply modifying the numerical values of the
bounds.

We have tested a variety of optimization formulations. For this paper, however,
we will simply discuss two. The first formulation imposes a constraint on the
minimum isodose line that must surround the target. Given this constraint, the
goal is to minimize the dose outside of the target. The formulation is:

min
∑

(i,j,k)∈N

Dose(i, j, k)

subject to Dose(i, j, k) =
∑

(s,w)∈S×W

ts,wDw(xs, ys, zs, i, j, k)

1 ≤ Dose(i, j, k) ≤ 2, ∀(i, j, k) ∈ T

ts,w ≥ 0

card ({(s, w) ∈ S ×W|ts,w > 0}) ≤ n.

(3.1)

The final constraint states that no more than n shots are to be used in the plan.
The second formulation uses a constraint to control the conformity of the plan.

The constraint specifies that at least y% of the total dose must be deposited in
the target. An upper bound is also placed on the dose to the target. Given these
constraints the optimizer seeks to minimize the total underdosage in the target. A
pixel is considered to be underdosed if it receives less than the prescribed isodose,
which for the example formulation is assumed to be 1. We actually use the opti-
mization process to model UnderDose. UnderDose is constrained to be no less that
max(0, 1 −Dose) at every pixel in the target, and since we minimize UnderDose,
it will take on the maximium of these two values at optimality. The complete
formulation is:

min
∑

(i,j,k)∈T

UnderDose(i, j, k)

subject to Dose(i, j, k) =
∑

(s,w)∈S×W ts,wDw(xs, ys, zs, i, j, k)
∑

(i,j,k)∈T Dose(i, j, k)
∑

(i,j,k)Dose(i, j, k)
≥ P

0 ≤ UnderDose(i, j, k) ≥ 1 −Dose(i, j, k), ∀(i, j, k) ∈ T

Dose(i, j, k) ≤ 2, ∀(i, j, k) ∈ T

ts,w ≥ 0

card ({(s, w) ∈ S ×W|ts,w > 0}) ≤ n.

(3.2)

In this formulation, P is the fraction of the total dose that must be deposited in
the target; typically we choose values for P between 25% and 40%. For solution
purposes, we rearrange the equation involving P so that it is a purely linear equation
(i.e. multiply both sides by the term in the denominator). In practical application,
rather than calculate the dose at every pixel, it is easy to accurately estimate the
total dose delivered by a plan based solely on the ts,w variables and other pre-
calculated constants.
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Both of the formulations are based on the assumption that the neurosurgeon
can use the volume of the target and the irregularity of its shape in order to a-priori
determine a realistic upper bound n on the number of shots required for treatment.
Therefore, the model bounds the number of shots a priori, rather than forcing the
model to minimize this number. Since most of the comments we make in the sequel
apply equally well to either formulation, we will restrict our exposition mainly to
(3.1) in the sequel solely for clarity.

Practical issues must also be considered. For example, a large number of shots
can lead to a treatment time that is unacceptably long. This is because after each
shot is delivered, the staff must enter the room and perform a series of adjustments.
Also, if a change in the shot width is required, the user must exchange focusing
helmets.

Several issues need to be resolved to create models that are practical, imple-
mentable, and solvable (in a reasonable time frame). Two main approaches are
proposed in this paper, namely using mixed integer programming (MIP) and non-
linear programming (NLP).

3.1. MIP approach. Since the optimization technology associated with solv-
ing nonlinear mixed integer programming problems is very limited, we restrict at-
tention to linear models and thus need to ensure that the dose calculation constraint
(2.1) is linear. To do this, we need to have Dw(· · · ) as data, and thus need to deter-
mine all possible (xs, ys, zs) before optimization. We therefore a-priori choose a grid
of possible shot locations GS , and precalculate Ds,w(i, j, k) := Dw(xs, ys, zs, i, j, k)
for each grid location s ∈ GS , every pixel (i, j, k) and each width w ∈ W and use
the optimization algorithm to decide whether or not to use a shot at a particu-
lar location. A major drawback of this approach is the enormous amount of data
that is required. We will discuss approaches to overcome this in the sequel. It is
clear that the only shots that will be considered in this approach are shots that lie
within the target. This is because our grid is generated a-priori, and we can easily
determine whether or not a shot lies within the target.

However, the mixed integer approach allows us to introduce a new binary vari-
able ψs,w (heuristically, use the shot (s, w) or not) and impose the constraint

ts,w ≤ T̄ψs,w

to force ψs,w = 1 whenever ts,w > 0. Here T̄ is an (easy to estimate) upper bound
on the length of time that a particular shot can be exposed. Once these variables
are introduced, we then write the limiting shot constraint as

∑

(s,w)∈GS×W

ψs,w ≤ n.
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For the problem outlined in (3.1), the resulting mixed integer optimization problem
is:

min
∑

(i,j,k)∈R

Dose(i, j, k)

subject to Dose(i, j, k) =
∑

(s,w)∈GS×W

ts,wDs,w(i, j, k)

1 ≤ Dose(i, j, k) ≤ 2, ∀(i, j, k) ∈ T

0 ≤ ts,w ≤ T̄ψs,w, ψs,w ∈ {0, 1}
∑

(s,w)∈GS×W ψs,w ≤ n.

Note that we have replaced N with R in the above problem. In order to reduce the
amount of data required and since the dose drops off rapidly away from its center,
we only minimize the dose in a rind R around the target, instead of everywhere.

The above formulation is a large-scale mixed integer problem [NW88, Wol98]
that is typically computationally intractable in the time allowed. Several methods
are outlined below to further reduce the large amounts of data arising from the
realistic dose calculations.

The benefits of reducing the possible shot locations GS are two-fold. Firstly,
the number of integer variables ψs,w (typically the limiting computational factor
for solution) is reduced. Secondly, the amount of precalculated data required is
reduced. The following heuristic was used to attempt to reduce the number of
shots as much as possible. We first generate a coarse grid of large shots and for
a particular grid spacing and grid offset, we calculate the number of these shots
that hit the target. By searching over all grid offsets, we determine the offset that
maximizes the number of large shots from this grid that are on target. Having
established this, we randomly place small shots near the boundary of the target
until a prespecified number of shots is generated. It is an unresolved research issue
to determine the proportion of large to small shots, and the number of possible
locations that we should use.

There are several interesting features of the MIP approach. As noted above,
there are large amounts of data, and many integer variables unless GS is severely
restricted. By restricting the grid too much, the resulting constrained problem
is infeasible. Furthermore, even with the restrictions and a very fast MIP solver
such as CPLEX, the problems take enormous amounts of time to solve or determine
integer infeasibility. The major benefit of this approach, however, is that it provides
a guarantee of global optimality for that particular choice of GS and R.

3.2. Nonlinear Approach. A very different approach is to use nonlinear
programming and approximate the counting of shots. The basic idea is to use a
migrating shot technique. This approach takes a limited number of shots, and the
position each shot can change over the course of the optimization. Given we are
using n shots, we introduce variables xs, ys and zs and use the nonlinear function
formulation (2.2) for the dose calculation. Note that with this approach there are
just 3n variables to specify shot location, and n is typically small in the application
(namely 5 - 20).

This has the key advantage over the MIP formulation that the “data” is much
smaller. However, the nonlinear programming problems are still quite difficult to
solve (they are not convex, and hence may have local solutions that are not global
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solutions). Secondly, while it is easy to limit the number of shot locations to n, the
actual constraint requires that there are no more than n shots are to be used in the
plan. The missing feature is to choose a particular width of shot at each location.

To implement this feature, we use a two phase approach. Note that a shot of
width w is used at location s if ts,w > 0. The main idea is to approximate the step
function H(t) = 1 if t > 0 and H(t) = 0 when t = 0 by a nonlinear function,

H(t) ≈ Hα(t) :=
2 arctanαt

π
.

For increasing values of α, Hα becomes a closer approximation to the step function
H . Therfore, for the approach outlined with (3.1), we solve the following problem

min
∑

(i,j,k)∈R

Dose(i, j, k)

subject to Dose(i, j, k) =
∑

(s,w)∈{1,... ,n}×W

ts,wDw(xs, ys, zs, i, j, k)

1 ≤ Dose(i, j, k) ≤ 2, ∀(i, j, k) ∈ T

ts,w ≥ 0
∑

w∈W Hα(ts,w) ≤ 1, ∀s ∈ {1, . . . , n},

with this approximation and α = 10, then we fix any shots that have zero width to
have ts,w = 0, and reoptimize the following problem (with α = 100)

min
∑

(i,j,k)∈R

Dose(i, j, k)

subject to Dose(i, j, k) =
∑

(s,w)∈{1,... ,n}×W

ts,wDw(xs, ys, zs, i, j, k)

1 ≤ Dose(i, j, k) ≤ 2, ∀(i, j, k) ∈ T

ts,w ≥ 0
∑

(s,w)∈{1,... ,n}×W Hα(ts,w) ≤ n

ts,w = 0, ∀(s, w) ∈ F.

Here F represents the subset of {1, . . . , n} × W of variables that were fixed at 0
based on the solution of the first optimization. Note that both problems are highly
nonconvex, so there is no guarantee of global optimality. We experimented with
starting points somewhat and use equal values of t for the results of the sequel.

Another disadvantage of the nonlinear approach is that it is difficult to constrain
the location of the shots to within the target. In fact, we do not add such a
constraint, but choose appropriate starting values for (xs, ys, zs) within the (interior
of the) target to encourage the final shot locations to also be within the target. In
all our experiments, this was indeed the case, although several shots can be located
close to the boundary.

4. Computational Results

4.1. Two-dimensional testing environment. We created a testing envi-
ronment for our models within MATLAB, using the image processing toolbox. The
testing environment provided a means to generate two-dimensional “tumors” of var-
ious shapes and sizes and visualize the results of the optimization applied to these
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targets. The optimization models were written in the GAMS modeling language
[BKM88], a high-level modeling system for mathematical programming problems.
It consists of a language compiler and a variety of integrated high-performance
solvers. We used the MATLAB/GAMS interface [Fer98] to communicate between
these two software packages. GAMS was chosen for the optimizations based on its
ability to formulate various types of models and then apply state-of-the-art opti-
mization algorithms for their solution. In particular, for the mixed integer problems
we used the CPLEX optimization package [ILO], whereas for nonlinear programs,
CONOPT [Dru85] was used. While the two dimensional testing environment sig-
nificantly reduces the amount of data present in the model, we found this to be
an excellent testing tool to pinpoint the advantages and disadvantages of various
formulations. In particular, it is very easy to change between a wide variety of
model types, objective functions and constraints.

We present results for two cases. In the first instance, we prescribe 3 shots
of radiation. The rind around the target has width 10. The resulting size of the
target and rind is respectively 235 and 1092 pixels. The results of applying the
mixed integer and nonlinear programming approaches are shown in Figure 7. The
tumor outline is shown is cyan, while the scale of the intensities is given on the bar
to the right of each figure. The MIP solution, shown in Figure 7(a), results in two
8mm and one 14mm shots, with a total dose to the rind of 510. The optimization
took 165 seconds, terminating with a relative optimality tolerance of 1%. The size
of the grid of potential shots was 150.

The NLP solution, shown in Figure 7(a), results in one 8mm and two 14mm
shots, that combine to give a total dose to the rind of 490. The optimization took
65 seconds, somewhat faster than the MIP algorithm. Although the solution is not
guaranteed optimal, it results in a comparable solution to the MIP code. Since the
NLP code can choose the locations of the shots (as opposed to selecting one of the
shots from the grid) it is possible to find better solutions using the NLP approach
than the MIP approach.

To show the effects of more data on our approaches, Figure 8 exhibits the
corresponding solutions for a larger case. Again, the target is outlined in cyan, this
time containing 1008 pixels. The rind again has radius 10, resulting in 1365 pixels.
We attempted to find solutions using seven shots.

The NLP solution, shown as Figure 8(b) took 1354 seconds to generate. It uses
two 8mm, three 14mm and two 18mm, with a total dose to the enclosing rind of
1017. Note that the optimization time is slightly over the 20 minute limit, but can
be reduced (for example) by reducing the number of pixels in the rind.

The MIP solution that is shown as Figure 8(a) consists of one 8mm, two 14mm
and four 18mm, with a total dose to the disk of 1123, again with 150 potential
locations for shots. The optimization was terminated after two hours with relative
optimality tolerance 17%, having explored 15,000 nodes of the branch and bound
tree. We believe that this demonstrates that more work is needed in this area before
the MIP approach becomes a viable alternative to the NLP approach.

4.2. Real patient (three-dimensional) data. After determining which mod-
els gave satisfactory results, we switched to three dimensional models, based on
real patient data. Currently, the mixed integer programming solvers are unable to
process the real patient data in an acceptable time, so we present only nonlinear
programming results in this section.
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Figure 7. Smaller Two-Dimensional Test Case
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Figure 8. Larger Two-Dimensional Test Case
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Figure 9. Isodose Curves for Patient 1; Axial Slice
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The nonlinear programming approach to treatment planning has currently been
applied to eight patient cases, and each optimized plan was compared to the original
treatment plan produced by the neurosurgeon. These comparisons were based
upon analysis of the dose-volume histogram, the minimum target dose and the
the conformity index (the volume of the prescription isodose divided by the target
volume). Treatment plans using 5-8 shots were typically optimized in less than 15
minutes on a Sparc Ultra-10 with a 330 MHz processor.

A treatment plan comparison is shown in Figure 9. Each image includes a
pink line that indicates the border of the tumor. The 50% isodose line is shown in
yellow, and the 30% isodose line is shown in green. Due to the massive size of this
patient’s tumor (35.3 cubic centimeters), a large number of shots were required
in order to achieve adequate tumor coverage. In fact, this tumor is at the very
limit of size of tumors that are treated using the Gamma Knife at the University
of Maryland. Consequently, the treatment planning process was very tedious and
required a great deal of artful manipulation on the part of the neurosurgeon.

The manual treatment plan (Figure 9a) used 13 shots of radiation, and is
an excellent plan for such a large tumor. An optimized plan (Figure 9b) was
produced using the same number of shots. A constraint guaranteed that the entire
tumor volume was surrounded by the 47% isodose line, and the optimizer sought
to minimize the total dose delivered outside of the tumor. The optimized plan is
very similar in quality to the plan produced by an experienced nuerosugeon. In
fact, the optimized plan increased the minimum target dose by 2% and provided
a small improvement in the conformity index (1.28 versus 1.27). The purpose of
including these results here is to show that an automatic plan can reproduce (or
slightly improve) a plan determined by an expert in the field, for even the most
difficult cases.

The results for a second patient are shown in Figure 10. In each figure, the
purple line denotes the border of the tumor. The 50% isodose line is in yellow, and
the 30% is line is in green. In this case, the manual treatement plan used 7 shots
of radiation. The optimization was set up to use 6 shots of radiation. A constraint
was included that specified that at least 30% of the total dose delivered to the pa-
tient had to be deposited in the target. Given this contraint, the optimizer sought
to minimize the underdosage to the tumor (as in (3.2)). A voxel was considered to
be underdosed if it received less than 50% of the maximum tumor dose. Again, the
figures show the plan to be similar in quality, although in this case, the minimum
tumor dose was increased from 43% to 44% and the conformity index was simul-
taneously improved from 1.70 to 1.75. Furthermore, the optimization process used
one less shot of radiation than the expert.

The results shown in Figures 9-10 illustrate that this inverse treatment planning
can be used to produce high-quality conformal treatment plans. A more detailed
analysis of patient data will be provided in a future publication.

The robustness of the technique is of critical importance. For the eight pa-
tient cases optimized thus far, each shot was initially assigned a random location
inside of the target. The initial guess incorporated uniform beam weights. Despite
this somewhat arbitrary starting point, high-quality dose distributions have been
obtained in all cases.
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(a) Manual 7 shot solution; Ax-

ial Slice

(b) Optimized 6 shot solution;

Axial Slice

(c) Manual 7 shot solution;

Coronal Slice

(d) Optimized 6 shot solution;

Coronal Slice

(e) Manual 7 shot solution;

Sagittal Slice

(f) Optimized 6 shot solution;

Sagittal Slice

Figure 10. Isodose Curves for Patient 2
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5. Conclusions and Future Work

Currently neurosurgeons produce suboptimal treatment plans by hand. We
believe an automated approach based on optimization will generate not only more
uniform, better treatment plans, but also produce them in less time than is currently
used. The results given in this paper seem to indicate that the approach outlined
here is sufficiently robust and quick to be used in a practical setting.

We believe it is important to integrate our procedure into the real system.
Currently, we generate the target volume on the Gamma Knife and export it to the
optimization program. The optimization program then generates a treatment plan
that is imported back onto the Gamma Knife. This is somewhat time consuming,
and likely to produce some data errors due to finite precision arithmetic and fixed
size output. A full integration into the Gamma Knife planning system would reduce
this time, and remove any of these errors.

We believe it is important to reduce the optimization times still further. This
would give the ability to try “what if scenarios” at treatment planning time. For
example, can conformality be improved if more shots are allowed? Can we treat
the tumor at the 60% isodose level?

Apart from the time considerations, the outstanding question from an optimiza-
tion viewpoint is the issue of global versus local optimality. While the nonlinear
programming approach has proven very effective in practice, there is no guarantee
that there is not a better treatment plan. Understanding how to improve the ro-
bustness of the model and solution techniques will enable more definite bounds to
be given on the solution quality compared to the best possible solution.
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