
MCPLIB: A Collection of Nonlinear MixedComplementarity ProblemsSteven P. Dirkse � Michael C. Ferris �July 5, 1994AbstractThe origins and some motivational details of a collection of nonlinear mixed complementarityproblems are given. This collection serves two purposes. Firstly, it gives a uniform basisfor testing currently available and new algorithms for mixed complementarity problems.Function and Jacobian evaluations for the resulting problems are provided via a GAMSinterface, making thorough testing of algorithms on practical complementarity problemspossible. Secondly, it gives examples of how to formulate many popular problem formatsas mixed complementarity problems and how to describe the resulting problems in GAMSformat. We demonstrate the ease and power of formulating practical models in the MCPformat. Given these examples, it is hoped that this collection will grow to include manyproblems that test complementarity algorithms more fully.The collection is available by anonymous ftp. Computational results using the PATHsolver covering all of these problems are described.1 IntroductionRecently, an extension to the GAMS modeling language has been developed which allowsthe formulation and solution of complementarity problems via GAMS. The use of GAMSspeeds both the formulation of new models and the application of new algorithms to existingproblems. As an aid to those developing new algorithms and to those wishing to formulatetheir own complementarity problems, we have developed a library of test problems. Thisreport describes the origin and structure of the problems in the library. It is our intention�Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706. This material isbased on research supported by the National Science Foundation Grant CCR{9157632 and the Air ForceO�ce of Scienti�c Research Grant F49620{94{1{00361



2that those developing complementarity solvers use the models in MCPLIB both to test theirsolvers and as a standard of comparison with other algorithms.Several of the problems in the library have arisen from problems in economics. Whilean understanding of the underlying economics is not necessary in order to use the problems,it can be helpful; some of the problems have characteristics best understood in the contextof the economics which determine them. Since this is the case, the economic backgroundbehind some of the models is given in this report; this has been done at a level which assumeslittle, if any, knowledge of economics.While a GAMS model should be as self-documenting as possible, this report providesdocumentation which one could not hope to include with the code. It is hoped that by usingthis report, a user can gain a deeper understanding of the models in MCPLIB; referencesare provided as well.Regardless of the origin of a complementarity problem, it must be correctly expressedas a mixed complementarity problem, or MCP, in order to be solved using GAMS. LettingIR := fIR;�1;1g denote the extended reals, we have the following:De�nition 1 (MCP) Given a function F : IRn ! IRn and bounds l; u 2 IR n,s: t:�nd x 2 IRn; u; v 2 IRn+F (x) = w � v (1a)l � x � u (1b)(x� l)>w = 0 (1c)(u� x)>v = 0 (1d)In contrast to the standard complementarity problem, lower and upper bounds on the vari-ables x are explicitly included in MCP. This is of critical importance in developing e�cientsolution algorithms.In Section 2, we describe some basic types of problems which serve as source problemsfor the models in the library. The relationship between the source problems and the MCPis summarized brie
y and will be used in discussing the derivation of the models in the MC-PLIB library. Included in the library are all the problems attempted in [13], [26], and [8].Furthermore, new problem classes such as extended linear-quadratic programming and gen-eral equilibriummodels are also included. In addition, a number of large general equilibriummodels have been formulated by Rutherford [34] and are available directly from GAMS. Thewide range of disciplines from which the MCPLIB models are drawn shows the versatility ofthe MCP format and the ease with which these models can be coded in GAMS. Currently,two solvers are available for solving these models, and new ones can easily be included.An AMPL version of the library, complete with solver interface routines, is currently underdevelopment.Section 3 contains the descriptions of the larger, more complex models in the library,and a discussion of their derivation, where appropriate. The details of how to express these



3MCP's in the GAMS language are not discussed in this paper, but the actual GAMS �lesare publicly available via anonymous ftp from ftp.cs.wisc.edu:~/pub/mcplib/. Section4 contains numerical results for some of the problems in the library; these augment thenumerical results given in [8].A word about notation is in order. The transposition of a matrix or vector A is denotedby A>. The inner product of two vectors in IRn is de�ned ashx; yi := x>y = nXi=1 xiyiIf � is a subset of f1; : : : ; ng, x� := (xi); i 2 �. The concept of complementarity is centralto our discussion. We will use the following notation to indicate a complementary function/ variable pair and its associated bounds:f(x) � 0; x � 0; ? (2)This should be understood to mean that as well as satisfying the indicated constraints,hf(x); xi = 0.2 Problem TypesA number of well-known problem classes can be formulated as MCP's. The models inMCPLIB are drawn from nonlinear equations, nonlinear programming, nonlinear comple-mentarity problems, and variational inequalities.2.1 Nonlinear EquationsThe nonlinear equations problem is that of �nding a zero of a function F : IRn ! IRn, wherethe argument to F is unconstrained. If the bounds l and u in the MCP are set to �1 and1 respectively, the MCP variable x is unconstrained. Conditions (1c) and (1d) imply thatboth w and v are 0, so that (1a) reduces to requiring that x be a zero of F .Nonlinear equations are of crucial importance in applications, and examples abound inthe literature (e.g. the CUTE problems [3] and the Minpack-2 problems [1]). We include inMCPLIB examples of a distillation column model contributed by R. Fletcher and describedin [23]. In this model, a steady state solution is sought in which a feed stream suppliesmaterial near the middle of a column and liquid and vapor are drawn out of the bottomand top of the column, respectively. GAMS models corresponding to each of three data sets(hydrocarbon-6, hydrocarbon-20, and methanol-8) are given. The damped Newton methodemployed by the PATH solver solves each of these problems. These problems are includedas examples of how the many nonlinear equations models in the literature can be put intoGAMS/MCP format.



42.2 Nonlinear ProgrammingNonlinear programs consist of minimizing a smooth function of several variables over afeasible set de�ned by a number of constraints on these variables, as follows:minimizex f(x)subject to x 2 X := fx j g(x) � 0; x � 0g (P)Here x 2 IRn, while f : IRn ! IR and g : IRn ! IRm are continuously di�erentiable functions.The Karush{Kuhn{Tucker conditions [20] for (P) arerf(x) + u>rg(x) � 0; x � 0; ?�g(x) � 0; u � 0; ? (KKT)When f and g are convex functions, it is well known that solving (KKT) is su�cient for(P), in the sense that a solution (x; u) for (KKT) yields a solution x for (P). However, underslightly more restrictive assumptions, this equivalence can be made complete.Theorem 2 ([20]) Let f and g be convex, continuously di�erentiable functions de�ned onan open, nonempty subset X0 of IRn, and let g satisfy a suitable constraint quali�cation([20]). Then �x solves (P) if and only if there exists �u � 0 such that (�x; �u) solves (KKT).The simplest example of a nonlinear program is the quadratic program:minimizex 12x>Qx+ c>xsubject to Ax � b (QP)Here Q 2 IRn�n, A 2 IRm�n, c 2 IRn, and b 2 IRm, with Q symmetric. If Q is positivesemi-de�nite, the KKT conditions for (QP) are necessary and su�cient for a solution of(QP). Since (QP) does not bound x explicitly, its KKT conditions di�er from those givenfor the problem (P): Qx+ c+A>u = 0; x free; ?b�Ax � 0; u � 0; ?These conditions constitute an MCP. If, in addition, x � 0, the problem has the form (KKT).2.3 Nonlinear Complementarity ProblemsGiven a function F : IRn ! IRn of x, the nonlinear complementarity problem (NCP) is to�nd x such that F (x) � 0; x � 0; ? : (NCP)The NCP is formulated as an MCP by setting u = +1 and l = 0. In this case, (1d) impliesthat v = 0, while the rest of (1) implies that F (x) and x are non-negative and complementary.When F is a�ne, we have a linear complementarity problem (LCP).



5A small example of an NCP, due to Kojima and Shindo [18], is de�ned by the polynomialfunction F (x) := 26664 3x21 + 2x1x2 + 2x22 + x3 + 3x4 � 62x21 + x22 + x1 + 10x3 + 2x4 � 23x21 + x1x2 + 2x22 + 2x3 + 9x4 � 9x21 + 3x22 + 2x3 + 3x4 � 3 37775 : (3)This problem has two solution points,x1 = (p62 ; 0; 0; 0:5); x2 = (1; 0; 3; 0);and is di�cult for simple Newton-type methods, since the LCP formed by linearizing Faround x = 0 has no solution. Josephy [16] reports computational experience with a similarproblem due to Kojima [17].2.4 Variational InequalitiesAn important and interesting problem, intimately related to the MCP, is the variationalinequality, or VI: �nd �x 2 X such thatF (�x)>(x� �x) � 0; 8x 2 X (VI)where F : IRn ! IRn and X � IRn is convex. If the feasible set X in VI(F;X) is rectangular(i.e. X := fx j l � x � ug), then MCP and VI are completely equivalent, as their solutionsets are identical. The proof of this is elementary. When X is polyhedral rather thanrectangular, VI(F;X) can be reduced to an MCP by explicitly including the dual variablesto the constraints de�ning X. Let B := fx j l � x � ug and X := fx j Ax � bg, whereA 2 IRm�n. It can be shown that VI(F;BTX) is equivalent to VI(H;B � IRm+ ), whereH(x; u) = " F (x) +A>u�Ax+ b # :When equality constraints are used to de�ne X, the associated dual variables u are free.3 The Model LibraryThe models discussed in this section have all been formulated in GAMS/MCP format. Whilemany of the models are discussed in some detail, parameter values are not given in this report,since they can be found in the GAMS �les. Table 1 lists the models currently contained inthe library. In addition, some of the model types are described below.



6Table 1: MCPLIB modelsModel origin GAMS �le SizeNonlinear equationsDistillation column modeling hydroc20.gms 99" " hydroc06.gms 39" " methan08.gms 39Nonlinear programmingQuadratic programming qp.gms 4NLP test problem from Colville colvncp.gms 15Dual of Colville problem colvdual.gms 20Obstacle problems obstacle.gms NObstacle Bratu problems bratu.gms NNonlinear complementarity josephy.gms 4kojshin.gms 4Elastohydrodynamic lubrication ehl kost.gms NVariational inequalitiesNash equilibrium nash.gms 10" " choi.gms 14Spatial price equilibrium sppe.gms 27" " tobin.gms 42Walrasian equilibrium mathi*.gms 4" " scarfa*.gms 14" " scarfb*.gms 40Tra�c assignment gafni.gms 5Invariant capital stock hanskoop.gms 14Project Independence energy system (PIES) pies.gms 42Von Th�unen land use vonthun.gms 186Extended linear-quadratic programmingOptimal control opt cont.gms N



73.1 Computing a Nash Equilibrium - nash.gmsThe problem of computing a Nash equilibrium appears often in the literature (see [25, 12,13]). The problem concerns a number of �rms, each competitively producing a commongood. We de�ne the following:N number of �rms, indexed i = 1; : : : ; Nx = (xi) production vector; �rm i produces a quantity xi of the good� e>x, the sum total of the quantity being producedp(�) inverse demand function; p(�) is the unit price at which consumers willdemand (and actually purchase) a quantity �Ci(xi) the production cost for �rm i; note that this is the total cost, not a per{unitcost.The �rms comprise a market which we assume evolves over a number of time periods.At the beginning of each period, each �rm sets its production level xi so as to maximize itsown pro�t, under the assumption that the production for all other �rms remains constantat some level x�j ; j 6= i. (These �rms are said to operate in a Nash manner.) Intuitively, aNash equilibrium point x� is a production pattern in which no �rm can increase its pro�t byunilaterally changing its level of production. Since no �rm chooses to change its production inthe current period, there is no change in the market, hence the equilibrium. Mathematically,a Nash equilibrium is a vector x� such that8 i; x�i 2 argmaxxi�0 xi p(xi +Xj 6=i x�j )� Ci(xi) (4)The KKT conditions for (4) take the following simple form:8 i; rCi(xi)� p(�) � xirp(�) � 0; xi � 0; ? (NE)which we call the Nash equilibrium conditions. In conformity with generally accepted eco-nomic behavior, the inverse demand function p is assumed to be strictly decreasing, the costfunction C to be convex, and the \industry revenue curve" �p(�) to be concave for � � 0.Under these assumptions, the objective function in (4) is concave [25]. By Theorem 2, theNash equilibrium conditions (NE) are both necessary and su�cient for x� to maximize (4).By combining the Nash equilibrium conditions for each i, we get an NCP in N variables.The functions p and C used in the GAMS �le nash.gms are de�ned below; ci; Li; �i;and 
 are parameters, with 
 > 1. p(�) = 5000 1
 ��1
Ci(xi) = cixi + �i1 + �i L 1�ii x�i+1�ii



8Another Nash equilibrium problem is given by Choi et. al. in [4]. In this problem, the�rms are di�erentiated by the characteristics of the analgesic pain relievers they produce,rather than by production costs, while demand is determined by the prices and ingredientlists of the pain relievers. Data for this problem, and a description of the demand function,are given in the �le choi.gms.3.2 A Spatial Price Equilibrium Model - sppe.gmsIn [11], Harker gives a number of models which describe the spatial and competitive structureof markets embedded in a network (i.e. a set of nodes and the arcs connecting them). Eachnode represents a unit or site separated spatially from the others. In each model, a spatialprice equilibrium is sought. One competitive structure modeled is an oligopoly, a marketsituation in which a few producers control the deliveries to and demands from a large numberof buyers. In our example, each producer tries to maximize the pro�t associated with hisproduction of a single commodity common to all producers. We de�ne the following:L set of distinct production units or sitesW � L� L set of transportation arcs between the sites in LQ set of producers, or �rms, operating in the marketIq 2 L set of sites controlled by �rm q 2 Q. The set of sites L is partitionedamong the sets Iq; q 2 Q.Example 3 Eight sites partitioned among 3 producers.���������@@@@@@@@@a � b � c � d � e � f �g � L = fa; : : : ; ggQ = f1; 2; 3gI1 = fa;bgI2 = fc;d; egI3 = ff; ggsl; l 2 L amount of commodity supplied (produced) by site lCl(sl) total cost of producing sl units of output at site l (integral of inversesupply function)dl; l 2 L amount of commodity delivered (demanded) at site l�l(dl) purchase price dictated by the delivery to site l (inverse demand func-tion)tij; ij 2 W 
ow from site i to site jcij(tij); ij 2 W unit transportation cost at level tijdlq amount of commodity produced by �rm q delivered to site l.We will assume that each �rm q acts in a Nash manner (see Section 3.1) when makingdecisions regarding the following quantities:



9si; i 2 Iq the amounts produced at the sites q controlsdlq; l 2 L amount of �rm q's production delivered to each site in Ltij; i 2 Iq; j 2 L 
ow from sites under �rm q's control to each site in L.The aggregation of these variables is �rm q's strategy vector xq. The constraints on xqare those which ensure a conservation of 
ow at each site. Constraints for sites which �rmq controls are more complicated than those for sites outside of �rm q's control. The supply,delivery, and transportation variables are subject to lower and upper bounds, which we havetaken to be 0 and +1, respectively. Thus, the set Xq of feasible strategies for the �rm q isXq = 8>>>>>>>><>>>>>>>>: xq := 264 sidlqtij 375 � 0 �������������� dlq +Xj2L tlj = sl +Xi2Iq til (8 l 2 Iq) (5a)dlq = Xi2Iq til (8 l 2 L n Iq) (5b)9>>>>>>>>=>>>>>>>>; :Let X := Qq2QXq, so that x 2 X is a feasible strategy for all �rms. Firm q's pro�t is thengiven by the function fq:fq(x) :=Xl2L�l(Xj2L tjl)dlq �Xi2Iq Ci(si)�Xi2Iq Xj2L cij(tij)tij; (6)so that �rm q wishes to �nd a strategy xq which solves the following problem:maximizexq2Xq fq(x)subject to xp = �xp 8 p 6= q; (7)where �xp is the current strategy employed by �rm p. If we assume that, for all l; i; j 2 L, �l(dl)is a decreasing function, Cl(sl) is a convex function, and cij(tij) is an increasing function,then fq is convex. If fq is de�ned on the feasible set X and X contains a positive point,then, by applying a theorem from Rockafellar ([27], Theorem 27.4), we see that problem (7)is equivalent to VI(rfq;Xq), where fq is di�erentiated with respect to xq. A spatial priceequilibrium [11] is therefore a point x which solves the following VI:�nd �x 2 Xs.t. Pq2Qrfq(�x)>(xq � �xq) � 0 8x 2 X (8)The GAMS model for this problem can be obtained from (8) or, more directly, from theKKT conditions for (7). The particular model formulated contains 3 sites and 3 �rms, sothat each �rm controls only one site; the relevant functions are de�ned as follows:Cl(sl) := �lsl + �ls2l ; �l(dl) := �l � �ldl; cij(tij) := 
ij + �ijt2ij:



10While this particular example is somewhat limited, the GAMS model is coded for the generalsituation, where each �rm controls multiple sites.In [36], Tobin describes a spatial price equilibrium in a multi-commodity market modeledas a network. In this example, the variables are the prices at the various nodes in the network.These prices determine supply and demand, and not conversely, as in Harker's SPPE model.The competitive structure assumed in this example is one of perfect competition; it's \everynode for itself". We de�ne the following:l = 1; : : : ; n the nodes (markets) in the networkk = 1; : : : ; p the commodities being traded in the network� = (�lk) price vector; for each node-commodity pair (l; k), �lk is the unit price ofcommodity k at node lDlk(�) demand for commodity k at node lSlk(�) supply of commodity k at node la = (ij) an arc in the network, from node i to node jA = [Ala] the standard node-arc incidence matrix. A is mainly zeros, with theseexceptions: if a = (ij); Aia = 1 & Aja = �1:t = (tak) 
ow vector; for each arc-commodity pair (a; k), tak is the 
ow of com-modity k on arc acak(tak) unit cost of tranportation service for commodity k on arc aSection 2 of [36] gives the following conditions for a spatial price equilibrium (SPE):Nonnegative 
ows, prices, demands, & supplies:tak � 0; �lk � 0; Dlk � 0; Slk � 0 8 a; l; k (9a)Conservation of 
ow at each node:Slk +Xi t(il)k = Dlk +Xj t(lj)k 8 l; k (9b)Delivered price exceeds local price:�ik + c(ij)k(t) � �jk 8 a := (ij); k (9c)Delivered/local price di�erence or path 
ow = 0D�ik + c(ij)k � �jk; takE = 0 8 a := (ij); k (9d)A set of 
ows and prices are feasible if they satisfy conditions (9a) and (9b). Condition(9c) and the complementarity condition (9d) imply that if the delivered price strictly exceedsthe local price, no commodity is being delivered, and that if there is a commodity beingdelivered, its delivered price equals the local price.If we relax the conservation of 
ow constraint (9b) to allow excessive supply, we get thefollowing NCP: c(t) +A>� � 0; t � 0; ? (10a)S(�)�D(�)�At � 0; � � 0; ? (10b)



11The following lemma gives conditions under which the conditions for a SPE are equivalentto the NCP de�ned in (10).Lemma 4 ([9]) Suppose the arc cost functions c(t) > 0 and the demand and supply func-tions are such that �lk = 0 ) Dlk(�)� Slk(�) � 0 (11)Then a set of 
ows and prices (�t; ��) is a spatial price equilibrium i� it solves the NCP de�nedby (10a) - (10b).In the GAMS model tobin.gms, the relevant functions are de�ned as follows:cak(t) := �ak + 
akt4ak + Xm6=k�akmtamSlk(�) := Blk + Jlk�2lk +Xi 6=l ulik�ikDlk(�) := Elk �Glk�2lk +Xi 6=l wlik�ik3.3 A Walrasian Equilibrium Model - mathi*.gmsAn equilibrium can be characterized as Walrasian if there are no goods for which demandstrictly exceeds supply [37]. In [21], an economy containing a number of goods, a numberof utility-maximizing consumers, and a number of pro�t-maximizing producers is described.Both consumers and producers act as price-takers, that is, they assume that the market pricefor each good does not change as a result of their actions. The role of the consumers here isto demand goods; this demand is determined by the prices. The producers determine theiroptimal levels of production based on these demands. Our objective is to �nd an equilibrium,or a steady state, for the economy. More speci�cally, we de�ne the following:i = 1; : : : ;m indices corresponding to the m types of goods or commodities in theeconomyj = 1; : : : ; n index corresponding to the n sectors or types of production processesin the economyp = (pi) vector of prices for the goodsb = (bi) vector of initial endowments for the goods (i.e. the amount of eachgood initially available)d(p) = (di(p)) consumer demand functions; given a price vector, the demand for goodi is di(p)y = (yj) vector of activites; yj is the activity or production level in sector jA = (aij) technology matrix; a unit production level in sector j results in anoutput of aij units of good i. Negative values of aij indicate an inputof good i is required for activity j. ColumnA�j describes the process ofsector j, while row of Ai indicates where good i is used and produced.



12The equilibrium conditions ([35], De�nition 5.1.3) are as follows:No activity earns a positive pro�t: A>p � 0 (12a)No good is in excess demand: b+Ay � d(p) � 0 (12b)No prices or activity levels are negative: p � 0 y � 0 (12c)An activity earning a de�cit is not run, andan operated activity runs at zero pro�t: y>A>p = 0 (12d)A good in excess supply has a zero price, anda positive price implies market clearance: p>(b+Ay � d(p)) = 0 (12e)At equilibrium, no activity earns a positive pro�t; if this were the case, others wouldstep in to duplicate the activity, driving the pro�t to zero. Condition (12b) characterizes theequilibrium as Walrasian; there is no excess demand for any good. Condition (12e) impliesthat goods in excess supply have a zero price; if we assume that the goods are \desirable",(i.e. any good with a zero price must be in demand), then (12e) implies that all marketsclear, or that supply equals demand.A noteworthy property of Walrasian models is the assumption that the demand functiond(p) is homogeneous of degree 0 (i.e. d(p) = d(tp) 8 t > 0). As a consequence, theequilibrium price vector is not unique; if p� is an equilibrium price vector, so is tp� for t > 0.An additional consequence of the homogeneity of d, shown in [21], is the singularity of thematrix rd(p). This singularity can make �nding a solution di�cult. Two customary waysof avoiding this singularity are normalizing the price vector or �xing one of the prices, calledthe num�eraire price.In the example given by Mathiesen [21], the consumer demand function d(p) is determinedby a single consumer; there is one production activity, and 3 goods. The problem is a di�cultone because of the singularity of the Jacobian of the NCP formulation when no \�x" isapplied, and because of the form of d:di(�) := ai Pk bk�k�iIf we require that Pi ai = 1, then ai determines the fraction of the budget Pk bk�k spenton good i.In [35], Scarf describes two similar Walrasian models, the smaller of which contains sixcommodities, eight activity sectors, and 6 consumers. Each consumer n has an initial assetein of each good i; the initial endowment bi of good i is given by summing over all theconsumers n. The individual initial assets are used in computing the demand function d,which is the sum of the individual consumers' demands. The equilibrium conditions (12) arethe optimality conditions for this problem as well.



13If �in is the demand share parameter for good i and consumer n, and �n is the elasticityof substitution for consumer n, then the demand function for this problem isdi(�) :=Xn �in��ni Pk ekn�kPk �kn�1��nk3.4 A Tra�c Assignment Model - gafni.gmsIn [2], a tra�c assignment problem is given where there are 5 cities connected by a networkof one{way links (see Figure 1). In each city i, there is a shipper who must ship di units ofa commodity to city (i+3). Thus, there are 5 origin-destination (OD) pairs in the network.There are only two paths or routes linking each OD pair, the inside and the outside paths.On each of these paths, a delay is incurred, which is equal to the sum of the delays onthe links in that path. The delay on a link k is determined by the 
ow on and near linkk, and is given in terms of a convex function g and a parameter 
 � 0; we have takeng(x) := 1 + x + x2. Figure 1 gives the con�guration of the network, and the link delayfunctions. It is assumed that all 
ow not intended for a city will bypass that city.Let xi denote the amount shipped from city i via the outside path, and yi the amountshipped via the inside path. Then the vectors x = (xi) and y = (yi) determine the 
ow onthe paths, and also on each of the links. A 
ow is said to be feasible if xy ! 2 X := ( xy !����� xi + yi = di; x; y � 0)Given a 
ow  xy !, we de�ne the e�ective delay between two cities in an OD pair to bethe maximum delay among paths with non-zero 
ow between the two cities. The problemis to �nd a feasible 
ow in which each user has minimized her e�ective delay, subject toall other users' 
ows remaining constant. This occurs when the delay on every path withnon-zero 
ow is the minimum among all paths between the corresponding OD pair. This
ow is optimal in the sense that no user can reduce her e�ective delay by adjusting the 
owsshe controls, while remaining feasible.The conditions described in the above paragraph can be encapsulated by the optimalityconditions VI(T;X), where T  xy ! :=  outside-delay(x)inside-delay(y) ! : (13)This VI in 10 variables and 5 demand constraints can be written simply as an NCP in15 variables, if the demand constraints are relaxed to permit excess 
ow (there is no excess
ow at the solution; clearly, sending excess 
ow increases any user's e�ective delay.) Thesimple demand constraints lead to NCP(G), whereG0B@ xyu 1CA := 0B@ outside-delay(x)� uinside-delay(y)� ux+ y � d 1CA :



14

highway links An arrow near midpoint indicates direction of 
ow. Delay on highwaylink k: 10g[flowk] + 2
g[flowexit from k].exit ramps An arrowhead indicates 
ow from a highway to a city. Delay on exitramp k: g[flowk].entrance ramps An arrowhead indicates 
ow from a city to a highway. Delay on exitramp k: g[flowk] + 
g[flowbypass of k].bypass links No arrows; 
ow direction clear from �gure. Delay on bypass link k:g[flowk]. Solid lines indicate positive 
ow.Figure 1: Tra�c Network



15The problem can be expressed even more compactly by taking advantage of the constraintx+ y = d and the generality of the MCP model. Let B := fz j 0 � z � dg, thenX = fa+Az j z 2 Bg ; a = " 0d # ; A = " I�I # :Expressing VI(T;X) in term of z, we have the conditionhT (a+A�z); (a+Az)� (a+A�z)i = hA>T (a+A�z); z � �zi � 0 8 z 2 B;so that for F (z) := A>T (a+Az), VI(T;X) is equivalent to VI(F;B).The intuition behind this latest VI is the clearest of any yet o�ered: Fi(�z) represents thedi�erence in delay between the outside and inside paths from node i at optimality. Whenthe di�erence is positive, the outside path is more expensive; all 
ow from node i should goto the inside. When the di�erence is negative, the inside path is more expensive; all 
owfrom node i should go to the outside. When the di�erence is 0, any 
ow pattern from node iwhich satis�es the demand constraints is acceptable. Since the feasible set B is rectangular,the VI(F;B) is an MCP. Thus, we need only solve an MCP in 5 variables, rather than theforty-plus variables in the problem on the links, or the 15 variables in NCP(G).3.5 Computing an Invariant Capital Stock - hanskoop.gmsHansen and Koopmans [10] consider the problem of determining an invariant optimal capitalstock. In this problem, an economy is assumed to grow over an in�nite number of timeperiods. The technology (i.e. the production processes which can be run) and the availableresources are assumed constant over all time periods. At the beginning of each time period,the economy invests its capital goods into the production processes, which produce bothcapital goods and consumption goods. The capital produced will be invested in the nextperiod, while the consumption goods produced determine the utility of the investment. Thetotal utility is a discounted sum; that is, the utility earned by an investment of capital attime t is discounted by a factor of �t, where the discount factor � 2 (0; 1). We wish to �ndan initial endowment of capital for which the investment strategy necessary to maximize thediscounted sum of the utilities is constant. More formally, we have the following:r index for the set of resources typesi index for the set of capital good types to be invested in production.j index for the set of production processes to run; each process consumescapital and resources, and produces capital and consumption goods.w = (wr) The resources available at the beginning of each time period; this isassumed constant over time.zt = (zi)t A capital stock; the amount of capital goods available for investmentat the beginning of time period t.xt = (xj)t The level at which to run the production processes during time periodt. This e�ectively determines the investment of the capital stock zt.



16v(x) Utility derived from the production/investment speci�ed by x.A = (aij) capital input matrix; running production process j at unit level re-quires aij units of capital good i (A � 0)B = (bij) capital output matrix; running production process j at unit level pro-duces bij units of capital good i (B � 0)C = (crj) resource input matrix; running production process j at unit level re-quires crj units of resource good r (C � 0)0 < � < 1 discount factor for future utilityAssuming an integer time variable t, and given an initial capital stock z0, we might wishto optimize our growth by solving the following:maximizext;zt 1Xt=0�tv(xt)subject to Axt � ztBxt � zt+1Cxt � wxt � 0 (14)A solution of (14) maximizes the discounted sum of the utilities v; the feasibility condi-tions ensure that the growth path f(zt; xt)g determining these utilities is consistent with thegiven technology and resource constraints. Notice that in (14), the initial capital stock z0 isgiven; this stock determines the optimal growth path. Note also that the sequence of capitalstocks fztg is not �xed explicitly by the constraints in (14). However, it is likely that, overtime, some optimal pattern of investment and return may evolve; that is, the growth pathapproaches a constant value.This motivates the following problem. An initial capital stock z0 is desired for which theoptimal growth path does not vary. It should be noted that one cannot merely require thatthe path be constant, and optimize the choice of z0. The invariance of the path must be aresult of the optimality conditions in (14) and the choice of z0, not of any explicit constraint.We will not derive here the conditions for a z0 with a constant optimal growth path, sincethe motivation for the result is rather lengthy, and the proof is longer still. The interestedreader is referred to [10], or to [7] for an example where v is linear.We will assume that the utility function to be maximized in (14) is concave and continu-ously di�erentiable. Under some reasonable constraints on the technology, and a regularitycondition on z0, an initial capital stock z0 whose optimal growth path (zt; xt) is constantsatis�es the following NCP:�rv(x) + (A� �B)>y + C>u � 0; x � 0; ? (15a)(B �A)x � 0; y � 0; ? (15b)�Cx+ w � 0; u � 0; ? (15c)



17A solution to NCP (15) su�ces to determine an initial capital stock whose optimal growthpath is constant; no regularity condition on z0 is necessary in this direction. If (�x; �u; �y) satisfy(15), the capital stock z0 = A�x.3.6 Extended Linear-Quadratic Programming - opt cont.gmsA number of recent papers have proposed an extended linear-quadratic programming (ELQP)model [29, 30] as a means of taking advantage of the special structure found in large-scaleproblems in multi-stage optimization [31], stochastic programming [32], and optimal control[29]. While problems formulated in this way are generally more di�cult to solve than theconventional quadratic program, there exists an elegant duality theory for ELQP, which canbe exploited in solution procedures. In this section, the ELQP is de�ned, and a signi�cantspecial case is shown to be an instance of the MCP.A problem in extended linear-quadratic programming is de�ned using the primal variablesu 2 IRn, the dual variables v 2 IRm, and the nonempty, polyhedral sets U � IRn and V � IRm.Let p 2 IRn and P 2 IRn�n, and let q 2 IRm and Q 2 IRm�m, where Q and P are bothsymmetric positive semi-de�nite. In the ELQP model, some constraints are incorporatedinto a penalty or monitoring function added to the objective, rather than being consideredexplicitly. Given the set V and the matrix Q, this monitoring function is de�ned as�V Q(w) := supv2V w>v � 12v>Qv for w 2 IRm (16)An extended linear-quadratic program may be de�ned using either a primal or dual form,both of which follow:minimizeu2U f(u) := p>u+ 12u>Pu+ �VQ(q �Ru) (P)maximizev2V g(v) := q>v � 12v>Qv � �UP (R>v � p) (D)The di�culties in solving problems (P) and (D) arise from the monitoring functions �.Theorem 5 ([28], Proposition 2.3) The function �V Q is lower semicontinuous, convex,and piecewise linear-quadratic: its e�ective domaindom�V Q := fw 2 IRm j �V Q(w) <1gis a nonempty convex polyhedron that can be decomposed into �nitely many polyhedral convexsets, on each of which �V Q is quadratic (or linear); a similar result holds for �UP and itse�ective domain.Thus, the objective function f is convex and piecewise linear-quadratic, as is �g. Thismakes it di�cult to apply techniques from smooth optimization in a straightforward manner.



18However, duality theory can be used to show that problems (P) and (D) above are relatedthrough the following Lagrangian function:L(u; v) := p>u+ 12u>Pu+ q>v � 12v>Qv � v>Ru; (17)with f(u) = supv2V L(u; v) and g(v) = infu2U L(u; v). The following theorem from Rock-afellar [28] characterizes a pair of solutions to (P) and (D) as a saddle point of L.Theorem 6 It is always true that inf(P ) � sup(D). Furthermore, a pair (�u; �v) is a saddlepoint of the Lagrangian L(u; v) on U � V if and only �u solves (P), �v solves (D), and theoptimum values are equal.The characterization of an optimal solution pair (�u; �v) as a saddle point leads to a char-acterization in terms of a VI. We de�neT  uv ! :=  ruL(u; v)�rvL(u; v) ! =  P �R>R Q ! uv !+  p�q ! (18)and note from Theorem 6 that the pair (�u; �v) is optimal for (P) and (D) if and only if (�u; �v)solves VI(T;U � V ).Any ELQP can be reformulated as a conventional QP, and hence as a complementarityproblem [32]. Unfortunately, this may greatly increase the problem size and disguise anyspecial problem structure. Although specialized techniques can solve ELQP's quickly, weshow that a frequently occurring special case of ELQP can be reformulated as an equivalentMCP, without any increase in size or loss of special structure. In a commonpractical situation[33, 32, 30], the feasible sets U and V are rectangular. In this case, the VI(T;U�V ) de�nedby (18) is one involving only rectangular constraints, so that no reformulation is necessary tosolve the problem as an MCP. In the remainder of this section, we discuss a continuous-timeoptimal control problem whose discretization results in a problem of this type.Given a �xed time interval [t0; t1], we de�ne the primal problem in terms of the instan-taneous control variables u(t) 2 U � IRk and the left endpoint control variables uL 2 UL �IRkL ; the free state variables x(t) 2 IRn depend on these control variables. The data for theproblem (i.e. the matrices ~A; ~B; ~C; ~D; ~P ; and ~Q, the vectors ~b; ~c; ~p; and ~q, and the feasiblesets U and V ) are generally assumed to vary continuously in t; we will assume that thesematrices are constant as well. We seek to minimize the functionalF(uL; u) := Z t1t0 [~pu(t) + 12u(t) ~Pu(t)� ~cx(t)] dt + pLuL + 12uLPLuL � cRx(t1)+ Z t1t0 �V ~Q(~q � ~Cx(t)� ~Du(t)) dt + �VRQR(qR � CRx(t1))over the state trajectorydxdt (t) = ~Ax(t) + ~Bu(t) + ~b; x(t0) = BLuL + bL; (19)



19where the subscripts L and R denote data and variables used to de�ne boundary conditionsat the left and right endpoints, respectively. In this model, the feasible sets U;UL; V; and VRare bounded rectangular sets.The ELQP model arises as a discretization of the continuous problem above. The interval[t0; t1] is divided intoN segments, so that the variables u(t) and x(t) are discretized as follows,
N = 3t0 t1uL u1 u2 u3x1 x2 x3 xRHHHHHj HHHHHj- HHHHHj- HHHHHj-

where the arrows indicate the dependence of the state variables on previous states andcontrols, as determined by (19). If we assume that t1 � t0 = 1, the resulting discrete-timeELQP is that of minimizing1N NX1 [~pui + 12ui ~Pui � ~cxi] + pLuL + 12uLPLuL � cRxR+ 1N NX1 �V ~Q(~q � ~Cxi � ~Dui) + �VRQR(qR �CRxR)subject to the state constraintsx1 = BLuL + bL (20)xi+1 = xi + 1N ( ~Bui + ~Axi +~b) i = 1; : : : ; N � 1 (21)xR = xN + 1N ( ~BuN + ~AxN +~b): (22)If we de�ne A := I + 1N ~A, B := 1N ~B, b := 1N~b, C := 1N ~C, c := 1N ~c, D := 1N ~D, P := 1N ~P ,



20p := 1N ~p, Q := 1N ~Q, and q := 1N ~q, we obtain the following ELQP:minimizeuL;ui;xi;xR FD(uL; ui; xi; xR) :=NX1 [pui + 12uiPui � cxi] + pLuL + 12uLPLuL � cRxR+ NX1 �V Q(q � Cxi �Dui) + �VRQR(qR � CRxR)subject to the constraints x1 = BLuL + bLxi+1 = Bui +Axi + b i = 1; : : : ; N � 1xR = BuN +AxN + b:Using (18), we can express the optimality conditions for the discrete-time minimizationproblem as the VI(F;UL � UN � IRn(N+1)�V N � VR � IRn(N+1)), withF 0BBB@uxvy1CCCA = 26664 �P 0 � �D> � �B>0 0 � �C> I � �A>�D �C �Q 0�B �A� I 0 0 3777526664uxvy37775+ 26664 �p��c��q�b 37775 ;where �P := 266664PL P . . . P377775 ; �D := 26666640 D0 . . .. . . D0 3777775 ; �B := 266664BL B . . . B377775 ;�C := 266664C . . . C CR377775 ; �A := 2666640A 0. . . . . .A 0377775 ; �Q := 266664Q . . . Q QR377775 ;�p := 266664pLp...p 377775 ; �c := 266664 c...ccR377775 ; �q := 266664 q...qqR377775 ; �b := 266664bLb...b 377775 ;and the dots represent replication N times.In the GAMS implementation, the data elements for the continous-time problem aregenerated randomly, where the matrices ~P and ~Q are generated to be positive (semi)de�nite.



21The division by N takes place during the formation of the discretized problem. Note that thediscrete-time problem makes use of the function FD(uL; ui; xi; xR) in the variables u and x,while the continuous problem is expressed as a minimization over u only. While it is possibleto express the discrete time problem without using the x variables, this results in a denseproblem. For this reason, the state variables x and y are retained in the MCP formulation.3.7 An Obstacle Problem - obstacle.gmsThe obstacle problem [5] consists of �nding the equilibrium position of an elastic membranesubject to a vertical force f pushing upwards. In our example, we consider a membrane withheight v on a domain D := (0; 1) � (0; 1). We restrict our attention to those functions v inthe space H10 (D) of functions with compact support in D such that v and krvk2 belong tothe square integrable class L2(D). Note that this implies that v = 0 on the boundary of D.In addition, we have lower and upper bounds v` and vu on v which represent the positionof solid objects below and above the membrane, respectively. The membrane's equilibriumposition is its position of minimum energy, where the energy of the membrane is given bythe quadratic functional q(v) in the following quadratic program:minimizev q(v) = 12 ZD krvk2 dD � ZD fvdDsubject to v 2 H10 (D) : v` � v � vu : (23)In [24], the force f is taken to be the constant c = 1.In order to solve this problem numerically, the domain D is discretized by a triangulationof a rectangular grid with grid spacing h := 1N+1 in both theX and Y axes. The function v isthen approximated by a piecewise linear function which can be represented by its values vi;j,for i; j = 1; : : : ; N , at the N2 interior vertices of the triangulation. Using this approximation,the objective function q in (23) can be reduced (see for example [24]) to a quadratic functionq(v) := 12v>Mv � q>v; (24)where the components of v 2 IRN2 are the values vi;j at the vertices of the triangularization,qi;j = ch2, and M is the usual pentadiagonal matrix obtained via a di�erence approxima-tion of the Laplacian operator (diagonal entries of 4, o�-diagonal entries of -1). Given theconstraints v` � v � vu, the optimality conditions for minimizing the discretized q(�) can bewritten as the following MCP:f(v) :=Mv + q free; v` � v � vu; ? : (25)If the force f acting on the membrane is taken taken to be the nonlinear function �ev,the obstacle Bratu problem results. This problem, solved in [22, 15], di�ers from the one justdescribed in that the components of the vector q are no longer constant but are a functionof v, i.e., qi;j = �evi;j .



223.8 The Elastohydrodynamic Lubrication Problem - ehl kost.gmsThe problem of the elastohydrodynamic lubrication of cylinders in line contact is consideredby Kostreva [19]. A particular example would consider (cylindrical) roller bearings lubricatedby oil. The standard mathematical model for this problem is governed by 3 equations: alinear integral equation for the deformation of the cylinders, Reynolds' di�erential equationfor the pressure in the lubricant, and a linear integral equation which represents a balanceof load constraint. If the lubricant pressure at position x is represented by p(x), then thethickness h of the lubricant �lm between the cylinders at position x is given byh(x) = x2 + k � 2� Z ba p(s) ln jx� sjds; (26)where k is a free variable of the model, xa is an inlet point and xb is an outlet point to bedetermined from the model solution, with xa < xb. The pressure will be positive betweenthe inlet and outlet points, while the boundary conditions are p(xa) = p(xb) = p0(xb) = 0.In the region of positive pressure, Reynolds' equation, which relates lubricant pressure tolubricant �lm thickness, holds:R(p; k) := � ddx  h(x)3e�p dpdx!+ �dhdx = 0: (27)Downstream of xb, the pressure will be 0, so that Reynolds' equation need not be satis�ed;in this area, R(p; k) is allowed to become positive and reduces to �dhdx . Since � > 0, thisrepresents a divergence of the cylinders downstream of the outlet point. The �nal equationrepresents a constraint placed on the cumulative pressure required by the speci�ed load onthe cylinders: T (p; k) := 1 � 2� Z ba p(s)ds = 0: (28)Given the inlet point xa, the complementarity form of this problem makes use of �nitedi�erence approximations to R and T on the interval [xa; xF ], where xF is chosen to be fardownstream, so that xF > xb. Given a uniform grid of N intervals such that xF = xa+N�x,let pi = p(xa + i�x) and let hj = h(xa + j�x) for i = 1; : : : ; N; j = i � 12. The values ofhj at the intermediate points can be approximated by numerical integration of (26) or bythe following, computationally recommended, integral obtained from (26) via integration byparts: h(x) = x2 + k + 1 + 2� Z xbxa (s� x) ln jx� sj dpds! ds: (29)In the GAMS model, both hj and T are approximated using the trapezoidal rule. Theformula for hj is substituted into the �nite di�erence approximation to Reynolds' equation



23at the points xi for i = 1; : : : ; N as follows:Ri(k; p) :=� 1(�x)2 24 (hi+ 12 )3exp(�pi+ 12 )(pi+1 � pi)� (hi� 12 )3exp(�pi� 12 )(pi � pi�1)35+ ��x(hi+ 12 � hi� 12 ): (30)The �nal MCP is given byT (k; p) = 0; k free; ? (31a)Ri(k; p) � 0; pi � 0; ?; for i = 1; : : : ; N: (31b)As mentioned earlier, the location of the free boundary xb is not known a priori ; it isdetermined as part of the solution to the complementarity problem. This is in contrast toother methods proposed for this problem, which rely on heuristics to locate the free boundary.In [19], Kostreva considers examples where the free boundary has been mislocated by thesetechniques, as well as other examples where the computed �lm thickness h di�ers fromprevious results.The elastohydrodynamic lubrication model is interesting both because of its highly non-linear nature and because of its potentially large size. Unfortunately, it is a fully dense, sothat sparse techniques cannot be used to improve performance. In his computational work,Kostreva [19] used a grid of size 0:05 on an interval of length 5, resulting in a highly nonlinearmodel with 100 equations. However, for higher pressure and load conditions, the solution tothis problem develops a large pressure spike, which can be di�cult to compute, and leads to�ner grid approximations and larger problems.4 Numerical ResultsIn this section, we give numerical results obtained by solving some of the models describedabove. Unless otherwise indicated, these results were obtained through the use of the PATHsolver for MCP, described in [8] and running as a GAMS subsystem on a DECstation5000/125. Solution times given are those reported as the resource usage in the GAMS listing�le. Computational results for the models not considered in this section, and comparisonsof the PATH solver to other MCP algorithms, are found in [8].We consider �rst the optimal control problem described in Section 3.6. This problemcan be expressed and solved as both an MCP or a QP; we have taken both approaches insolving this problem. In our computational tests, we have solved a single continuous timeproblem with 8 control and 8 state variables and 8 dual control and 8 dual state variables.By varying the number of points N in the discretization of the continuous interval, we varythe problem size. The table below shows the times required to solve the problem for di�erentvalues of N . The MCP's were solved using the PATH solver, while the QP's were solved



24using GAMS/MINOS 5.3 with the default parameters. The solution times and pivot countswere obtained by averaging the results of several runs using di�erent random number seeds.A time limit of 10 hours was placed on all the runs, as the larger problems were not solvableusing MINOS. Table 2: Solution Times - Optimal Control ModelMCP QPN size nonzeros pivots time (sec) size time15 512�512 8448 220 12 257�641 5431 1024�1024 17152 432 45 513�1281 953127 4096�4096 69376 1828 717 2049�5121 28423255 8192�8192 139008 3967 3550 na na350 11232�11232 190687 5549 7417 na naTable 2 illustrates the e�ectiveness of the PATH solver in solving large complementarityproblems, and also provides further evidence for the validity of the MCP model. In the caseof the ELQP given in Section 3.6, the QP formulation has proven much more di�cult tosolve than an equivalent formulation as an MCP.Table 3: Solution Times - Obstacle Model AMCPN v0 size nonzeros pivots time (sec)75 ` 5625�5625 28124 2123 54475 e 5625�5625 28124 3505 2713Table 4: Solution Times - Obstacle Model BMCPN v0 size nonzeros pivots time (sec)75 ` 5625�5625 28124 6367 269275 u 5625�5625 28124 4885 162375 (`+u)2 5625�5625 28124 1455 1202



25Table 5: Solution Times - Obstacle Model CMCPN v0 size nonzeros pivots time (sec)75 ` 5625�5625 28124 6205 307375 u 5625�5625 28124 5047 185075 (`+u)2 5625�5625 28124 1942 1782The MCP arising from the obstacle problem considered in Section 3.7 was solved usingthe PATH solver for N = 75 and with the obstacles A, B, and C, where the lower and upperbounds for obstacle A arev`(x; y) = sin(3:2x) sin(3:3x); vu(x; y) = 2000;for obstacle B,v`(x; y) = (sin(9:2x) sin(9:3x))3; vu(x; y) = (sin(9:2x) sin(9:3x))2 + :02;and for obstacle C,v`(x; y) = (16x(1 � x)y(1� y))3; vu(x; y) = (16x(1 � x)y(1� y))2 + :01:The data in Tables 2, 3, 4, and 5 indicate that the PATH solver performs a large number ofpivot steps when solving these large problems. This is to be expected: the pivotal techniquesemployed by the PATH solver place it among those QP solvers which use an active setstrategy. For solvers that add or subtract one constraint at a time from the active set, thenumber of pivots required is bounded below by the di�erence in size between the optimaland initial set of active constraints. This bound can be expected to grow with the size ofthe problem, as is seen in the computational examples presented in Table 2.Table 6: Solution Times - EHL ModelN � � p0 major pivots time (sec)100 2.832 6.057 hertz 6 89 20100 3.746 9.889 hertz 21 927 98100 4.477 9.692 hertz 13 381 52The nonlinear nature of the elastohydrodynamic lubrication model makes it particularlyamenable to solution by the PATH solver. The stabilization techniques used by this solver
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