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Abstract

How can an intelligent agent learn an effective representation of its world? This dis-

sertation applies the psychological principle of cognitive economy to the problem of

representation in reinforcement learning. Psychologists have shown that humans cope

with difficult tasks by simplifying the task domain, focusing on relevant features and

generalizing over states of the world which are “the same” with respect to the task.

This dissertation defines a principled set of requirements for representations in rein-

forcement learning, by applying these principles of cognitive economy to the agent’s

need to choose the correct actions in its task.

The dissertation formalizes the principle of cognitive economy into algorithmic crite-

ria for feature extraction in reinforcement learning. To do this, it develops mathematical

definitions of feature importance, sound decisions, state compatibility, and necessary

distinctions, in terms of the rewards expected by the agent in the task. The analysis

shows how the representation determines the apparent values of the agent’s actions,

and proves that the state compatibility criteria presented here result in representations

which satisfy a criterion for task learnability.

The dissertation reports on experiments that illustrate one implementation of these

ideas in a system which constructs its representation as it goes about learning the

task. Results with the puck-on-a-hill task and the pole-balancing task show that the

ideas are sound and can be of practical benefit. The principal contributions of this

dissertation are a new framework for thinking about feature extraction in terms of

cognitive economy, and a demonstration of the effectiveness of an algorithm based on

this new framework.
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Chapter 1

Introduction

Life is like playing a violin solo in public and learning the instrument as one

goes on.

—Samuel Butler

Intelligence reveals itself in many ways; one of the most impressive is the ability to

adapt to unknown or changing environments. Without this capability, one can only

respond to situations according to instinct, or by applying a previously-written set of

rules. If our machines are to be intelligent servants, they must not require us to give

them precisely-defined lists of rules for every possible contingency.

Learning “what to look for” in a new situation is one of the hardest aspects of

adaptive behavior. It is also one of the critical differences between experts and novices;

the experts are able to ignore irrelevant information and focus on details which have a

bearing on the task at hand. For example, a first-year medical student will often reach

a wrong diagnosis because he has not learned which symptoms are the important ones,

and is misled by irrelevant features—“red herrings.” If he looks at a blood smear, he will

often miss the pathologic clue — say, a fairly rare myeloblast—because of odd shapes

of the much more abundant red cells, which are of no importance (Professor Archie

MacKinney, University of Wisconsin School of Medicine, personal communication). An

expert chess player can quickly reproduce a chess position taken from a game after a
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five-second glance at the board—but only if the pieces are placed according to an actual

game. With randomly generated chess boards, the expert does as poorly as a beginner

in reconstructing the board (de Groot, 1965). In both examples, the expert knows

“what to look for” in order to act intelligently. The important features are those which

help him perform the task at hand, even though these features may not be sufficient

for some other task (such as reproducing random chess-boards).

Although knowing the important features is critical for intelligent action, it is diffi-

cult to learn an effective representation from scratch. Yet this is a critical component

of adaptive problem-solving: learning to identify the important features through our

interaction with the world. This dissertation attempts to show what is required for such

on-line feature extraction to succeed. To answer this question in its most general form

would require an analysis of representation and cognition far beyond that possible in

a single dissertation. Therefore, this dissertation frames the issues within a particular

framework for understanding intelligent action: reinforcement learning.

1.1 The focus of this dissertation

The central question addressed by this dissertation is this: How can an autonomous

agent construct a good representation for its task, as it learns the task? In other words,

how can the agent learn “what to look for?” This question leads to the related questions

What are the characteristics of a good representation? and How do these characteristics

affect learning? These are profound, open questions; the aim of this dissertation is

simply to indicate new directions for the analysis and to propose some provisional

criteria for constructing and evaluating representations.

Because this dissertation is about representation—how representations contribute
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to problem-solving, and how we can learn them—it takes some of the other parts of

the problem for granted. The analysis will assume that we learn the task by learning

a set of action values, which are estimates of the long-term reward which will result

from taking various actions. Much previous research has been devoted to showing

how an agent can learn these values, and how it can be sure that the values converge.

This dissertation builds on previous work by showing the link between representation

and action values. It analyzes representations in terms of the “true” action values—the

steady-state values that the agent would eventually arrive at after sufficient experience,

leaving aside the questions of how these values are learned. The assumption is that a

representation has certain fixed properties which will either help or hinder the agent in

a particular task. Therefore, the steady-state action values reflect these properties of

the representation, independent of the particular learning strategy used to learn them

(assuming that it works). The agent may converge upon a set of value estimates for

various actions and policies, but whether these final estimates are appropriate to the

task depends critically on the representation.

This dissertation attempts to find principled answers to questions of representation.

The analysis makes some basic assumptions about the task, but is meant to describe

principles which are independent of any single task. Although some of the ideas are

illustrated by means of a very simple gridworld task, the reader must bear in mind

that the autonomous agent lacks our human understanding of grid problems and treats

them the same way it treats any arbitrary task — as a black box providing it with

certain sensory inputs, effector outputs, and occasional reward signals.

The remainder of this introduction presents reinforcement learning, and shows how

the representation problem arises. At its conclusion, the chapter lists the dissertation’s
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contributions and outlines the following chapters.

1.2 Reinforcement Learning

1.2.1 A qualitative introduction

In a reinforcement learning task, an agent faces the world without a script; it must

explore its environment and experiment in order to learn what to do when it faces

different situations. Although it does not have a teacher, the agent does receive rewards

or reinforcements from time to time. Unfortunately, there can be long delays between an

action and the resulting reward; as a result, the agent faces a difficult credit-assignment

problem in determining which action was responsible for a negative reward, and what it

should have done differently. Learning an effective representation can be a profoundly

difficult task in this paradigm.

Reinforcement learning is an important field of study for two reasons. First, it

may lead to a better understanding of cognition in general, by providing a quantitative

model for the analysis of goal-seeking behavior and intelligent adaptation. This model

grounds the values of the agent’s actions in the rewards it receives from its environment

as a result of the actions it chooses. Second, reinforcement learning studies may show us

how to make software more useful by allowing it to adapt to the needs of a task instead

of having to be explicitly programmed for each narrowly-defined set of circumstances.

1.2.2 The distinguishing characteristic

The distinguishing characteristic of reinforcement learning is the type of feedback given

to the agent—not the type of algorithm or representation employed by the agent. In
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reinforcement learning, the feedback to the agent is usually just a number, possibly

delayed in time. Thus if we categorize learning problems along a continuum, from rich

feedback to sparse feedback, reinforcement learning problems are close to the sparse

end of the feedback spectrum. In contrast, most supervised learning problems are at

the rich end of the scale: the agent has a teacher which presents it with a series of

situations to be classified, along with the correct response for each situation. This

means that the agent is shown which situations are important, and it can immediately

correct each action by comparing it with the correct response. One way of making the

feedback less informative is to merely give the agent a number indicating how useful its

response was, instead of telling it what it should have done. Another way of making the

feedback more sparse is to allow it to be delayed in time, only given for certain “result”

states. In reinforcement learning tasks, the agent typically has to cope with both of

these complications. Therefore reinforcement learning is a kind of “trial-and-error”

learning with occasional feedback from a critic, rather than from a teacher. Yet there

are learning problems with even less feedback, in which the agent associates data points

with action outcomes, without any external guidance at all. Although reinforcement

learning systems may include mechanisms for assimilating the advice of a teacher (for

example, see Maclin and Shavlik, 1996), this dissertation focuses on the representational

issues that arise in the basic reinforcement learning problem.

1.2.3 Examples of reinforcement learning tasks

The practical applications of reinforcement learning are tasks where we need a system

to adapt to its environment, but find it infeasible to provide the system with a teacher.

For some tasks, specifying a complete list of the important situations to be learned may
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simply be too tedious or expensive. In this case, it may be more economical to enable

the system to detect its current state and its degree of success and failure, and then

allow the system to learn to maximize its successes. Tesauro’s (1995) TD-Gammon

used this approach to learn to play backgammon at the level of world-class human

players (but note that TD-Gammon also incorporated some helpful bias in the form of

human-supplied feature detectors, which is relevant to the issue of feature extraction,

discussed below).

In some cases, it might be impossible to anticipate every possible scenario the system

could face. A robot explorer should be robust and flexible in its ability to handle

unanticipated situations, especially if it is at a great distance, and there is a significant

time lag for commands from a controlling station. This is true of the robotic exploration

of our solar system, and a reason why some reinforcement learning capability could be

important for such tasks.

Sometimes the optimal strategy for a task is simply unknown; in such cases, we

would like the learning system to learn a strategy better than its teachers. For exam-

ple, Crites and Barto (1996) applied reinforcement learning to a four-elevator, ten-floor

system, and produced a control policy which out-performed the elevator motion plan-

ning schemes devised by Otis engineers. Another example is the job-shop system of

Zhang and Dietterich (1996), which used reinforcement learning to produce better space

shuttle pre-launch scheduling than NASA experts.

As computers, networks, and embedded computer control become more complex

and more prevalent, reinforcement learning may be a key approach for flexible, robust

performance without the expense of explicit programming.
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1.2.4 A brief history of reinforcement learning

Modern reinforcement learning descends from two separate research threads: the study

of animal learning, and the solution of optimal control problems using value functions

and dynamic programming. From the research on animal learning, the field draws its

emphasis on learning by trial-and-error. For example, Edward Thorndike’s “Law of

Effect” described how animals alter their tendency to select particular responses to a

situation, according to the strength of the satisfaction or discomfort which results as

the animal tries various actions in various situations (Thorndike, 1911).

From optimal control, reinforcement learning gained a mathematical formulation of

tasks as Markov decision processes, a characterization of the value of a state in terms of

the optimal return function (the expectation of the sum of future rewards if the agent

acts optimally from this point onward), and an incremental method of calculating

state values. An important distinction is that optimal control methods usually require

complete knowledge of the system to be controlled, and this information is typically not

available to the reinforcement learner. Instead, in a reinforcement learning task, the

agent must learn the task dynamics along with the values of states, as it experiences

the results of its actions.

These two research threads came together in the late 1980s, along with a third

thread concerning temporal-difference learning. In temporal-difference (TD) methods,

we make repeated predictions of the value of some quantity, but we update the sys-

tem according to error estimates that we get by comparing each estimate with the

one which followed it, instead of by comparing each estimate with the final outcome.

Temporal-difference learning originated in animal learning psychology with the concept

of secondary reinforcers. Examples of work incorporating TD methods include Arthur
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Samuel’s (1959) famous checkers program, Holland’s (1986) Bucket-Brigade algorithm,

the Adaptive Heuristic Critic (Sutton, 1984; Barto, Sutton & Anderson, 1983), and

Richard Sutton’s (1988) presentation of TD(λ) as a general prediction method.

In 1989, Christopher Watkins brought these threads together with his development

of Q-learning. In Q-learning, the agent maintains a value for each (state, action)

pairing, representing a prediction of the worth of taking that action from the state.

(These values were represented by the function Q; hence the name “Q-learning”). The

agent updates these action values according to the difference between the values at

the current state and the best action value of the resulting state. Thus Q-learning

combines a trial-and-error sampling of the problem space with an iterative, temporal-

difference method for updating the values. The agent updates these values according

to its experience of going from one state to the next, either in the real world, or by

hypothetical actions in an internal model of the world.

The temporal-difference method is not the only way of doing reinforcement learning.

Other methods, such as Monte Carlo, attempt to correlate actions directly with the

eventual rewards without considering the intervening history of other states. What all

these methods have in common is that they learn a set of action values, based on the

results of the agent’s actions in the task. These action values allow the agent to act

intelligently by always selecting the action which has the highest potential for future

reward (the greedy policy). This approach is called value iteration. Alternatively, we

may learn reinforcement learning tasks by updating policy functions without learning

action values; this approach is called policy iteration. The analysis of this dissertation

is based on the value iteration approach.
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Figure 1: A 5× 4 gridworld with start state S (2, 3) and goal state G (4, 2)

1.2.5 An illustration of reinforcement learning

Many of the issues of reinforcement learning, feature extraction, cognitive economy and

efficient exploration may be demonstrated by a simple gridworld task. This section

shows how an intelligent agent might create a more efficient representation for the

task. Although the simplicity of this particular task makes such efforts unnecessary,

this exercise brings to light the basic issues, which will be covered in more depth in later

chapters. These issues become critical for designing good representations in complex

tasks, but the simplicity of the gridworld task makes it a better introduction and

demonstration.

The gridworld is shown in Figure 1. The bottom-left cell has coordinates (1, 1) in

the grid, and the top-right cell is at (5, 4). In this task, the learning agent starts in

state S and its goal is to enter state G as quickly as possible without hitting the walls

enclosing the grid. The agent has four possible actions: left, right, up, down. It has no
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idea what its goal is, apart from the rewards it receives: when the agent enters state G,

it is given a positive reward of +1 and the episode ends; when it takes an action which

moves it against the enclosing wall it receives a reward of −1, but its position remains

the same. Otherwise the agent’s reward is 0, and its actions move it one cell across the

grid.

Since the agent has no teacher to focus its attention, it learns by stumbling along

from its start state until it hits the goal state. If it is extremely lucky, its first attempt

may be an optimal path to the goal, say, right, right, down, or down, right, right. More

likely, the agent conducts a random walk: it retraces its steps a few times, hits the

wall several times, and finally stumbles upon the goal. How can the agent discover a

good policy, which produces one of the optimal paths to the goal? This is the problem

of reinforcement learning. In general, the agent needs to learn the best action to take

from any state it finds itself in. The standard way of doing this is for the agent to learn

the action values, as it observes the results of its actions in the grid.

Notice that the goals of the problem depend on the rewards. Changing the reward

function changes the nature of the task. For example, we could change the nature of

the task from goal-seeking to failure-avoidance by changing the reward function and list

of terminal states: Punish the agent with a reward of −1 whenever it hits one of the

outer cells, and otherwise give no reward. (That is, the reward is zero for all actions

which leave the agent within the “safe” interior—cells [2, 2], [3, 2], [4, 2], [2, 3], [3, 3],

[4, 3]). Now the agent’s objective is to avoid the exterior of the grid. If we also specify

that the outer cells are terminal but that G is no longer a special terminal cell, the

agent’s initial episodes will usually result in a failed episode, as it eventually wanders

into one of the outer cells. The optimal policy is to wander about in the interior of
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the grid. Because most of the agent’s initial efforts appear to lead to failure, finding

important features can be especially difficult in failure-avoidance tasks. Although the

agent never receives positive feedback (it can never “win”), it can eventually learn that

some actions postpone failure indefinitely.

In order to know which action to take from a particular state, the agent needs to

know which action will lead to the best reward in the long run. The agent can select its

actions intelligently by constructing an action value function, Q(s, a), which measures

the “goodness” of individual actions. This function should indicate the total reward

the agent will receive if it takes action a from state s, acting optimally thereafter. In

addition, the function should give higher weight to rewards which come sooner rather

than later.

Suppose that as a consequence of taking action a from state s, the agent experiences

the reward r(s, a) from the environment and ends up in state s1. From each successive

state si, suppose that the agent selects the action with greatest reward, which we will

denote a∗
i . The sequence of rewards experienced by the agent is

r(s, a), r(s1, a
∗

1), r(s2, a
∗

2), r(s3, a
∗

3), . . .

Let γ < 1 be a discount factor to be applied to the rewards. We define the action

value Q(s, a) as the sum of discounted rewards resulting from taking action a and then

choosing the best possible actions for the rest of the episode:

Q(s, a) = r(s, a) + γr(s1, a
∗

1) + γ2r(s2, a
∗

2) + γ3r(s3, a
∗

3) + · · ·

This sum is called a return. If action a is optimal, then Q(s, a) is equivalent to the

maximum return from s, because the remaining actions, a∗
i , are optimal.

The next chapter develops a more sophisticated definition of action values, in which

the rewards and the state transitions may both be stochastic, but this simpler definition
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will suffice for a demonstration. We can calculate the action values for our grid task

as follows. First, calculate the maximum return possible for each cell. This is easy to

calculate because of the following considerations. The only rewards in this task are +1

for the actions which lead to G, and −1 for the actions which result in a collision with

the wall. From any cell, there is always a path which leads to G without collisions with

the wall; therefore, the maximum return will always be positive. Furthermore, on an

optimal path the agent will only experience reward on its final move to the goal state.

Therefore, the return for an optimal path will simply be the reward (+1), discounted

according to its distance into the future. For example, consider the cells which border

G on its top, bottom, left and right edges. Since these cells are one step away from G,

the agent may move from any of them directly to G, producing a maximum return of

+1. Next, consider the cells which are one step away from one of the cells bordering G.

Since these cells are two actions away from G, their maximum return will be the reward

(0) for the action to the cell bordering G, plus γ times the reward (+1) for moving from

the border cell to G. This adds up to a return of γ. The cells whose shortest path to G

is three steps will have a maximum action value of γ2, because the only non-zero reward

will still be the final one in the path, but this time it is discounted by an extra factor

of γ because it is one step further in the future. In the same way, we can calculate the

maximum returns for the remaining cells, as shown in Table 1.

γ4 γ3 γ2 γ γ2

γ3 γ2 γ 1 γ
γ2 γ 1 G 1
γ3 γ2 γ 1 γ

Table 1: Maximum returns

Given the maximum returns, it is easy to calculate the action values for the grid.
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According to our definition of Q(s, a), we may rewrite the action value as the sum of

the immediate reward for taking action a and γ times the maximum return for the

resulting state:

Q(s, a) = r(s, a) + γ(r(s1, a
∗

1) + γr(s2, a
∗

2) + γ2r(s3, a
∗

3) + · · · ) = r(s, a) + γR∗

s1

where R∗
s1

represents the maximum return from s1. As noted above, if action a takes

the agent on an optimal path toward G, then Q(s, a) is the same as the maximum

return calculated for s in Table 1. But if a is a bad move, Q(s, a) will be less than

the maximum return for s. For example, consider the value of moving up from cell

(4, 4), which happens to be two cells above G. This action results in a collision with

the wall, and a reward of −1. After moving up, the agent remains in (4, 4), which

has a maximum return of γ. Therefore, Q((4, 4), up) = −1 + γ(γ) = γ2 − 1. Table 2

lists the complete set of action values for this task. Although this table does not

organize the values according to their placement in the grid, it exemplifies the idea of

discrete representation. A discrete representation has no high-level features or state-

generalization; instead, each state’s values are stored separately, with no connection to

the values of other states. In the literature, discrete representations are often referred

to as tabular (Sutton and Barto, 1998, p. 80) or look-up table representations (Watkins

and Dayan, 1992); however, note that we could also have a table look-up representation

where the rows of the table refer to groups of states instead of discrete states. For this

reason, I will use the term discrete representation.

This example illustrates several important facts about value iteration. First, each

action value collapses the entire set of future rewards into the sum of the immediate

reward for taking a particular action and the discounted value of the next state. Second,

we assume that the action values do not depend on how the agent arrived at its current
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s\a up right down left

(1,1) γ3 γ3 γ4 − 1 γ4 − 1
(1,2) γ4 γ2 γ4 γ3 − 1
(1,3) γ5 γ3 γ3 γ4 − 1
(1,4) γ5 − 1 γ4 γ4 γ5 − 1
(2,1) γ2 γ2 γ3 − 1 γ4

(2,2) γ3 γ γ3 γ3

(2,3) γ4 γ2 γ2 γ4

(2,4) γ4 − 1 γ3 γ3 γ5

(3,1) γ γ γ2 − 1 γ3

(3,2) γ2 1 γ2 γ2

(3,3) γ3 γ γ γ3

(3,4) γ3 − 1 γ2 γ2 γ4

(4,1) 1 γ2 γ − 1 γ2

(4,2) — — — —
(4,3) γ2 γ2 1 γ2

(4,4) γ2 − 1 γ3 γ γ3

(5,1) γ γ2 − 1 γ2 − 1 γ
(5,2) γ2 γ − 1 γ2 1
(5,3) γ3 γ2 − 1 γ γ
(5,4) γ3 − 1 γ3 − 1 γ2 γ2

Table 2: Tabular representation of the action values Q(s, a)

state. This assumption—that the identity of the current state alone is sufficient to

determine its value, without consideration of the agent’s history—is known as the

Markov property. Third, the agent learns the action values for the task in reverse order.

That is, the agent first learns the value of actions which result in immediate rewards,

then the values of the actions which led to those states where it receives immediate

rewards, then the values of actions which set the stage for those intermediate actions,

and so on—from the final states of the task backwards to the starting state. Fourth, the

learning is complicated by the need for the agent to explore its environment. The agent

lacks our human knowledge of rectangular grids; it does not know which cells result

from particular actions without trying them, and it does not even know which direction
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to move toward the goal state. The agent only knows its current coordinates on the

grid. As far as the agent can tell, there is always a possibility that some un-sampled

path may present a “short-cut” to the goal state. For example, moving left from the

start state is probably a move in the wrong direction, but could be a smart move if

there were some kind of automatic transport from cell (1, 3) to the goal state, (4, 2).

Therefore, the agent must explore the grid, even though doing so may appear wasteful

in the short-term.

1.3 The representation problem

Action values can be difficult to compute because the values at a particular state depend

on all possible paths through future states. As the number of states grows, the number

of potential paths through the space explodes.The complexity of computing the action

values increases as the square of the number of states (Kaelbling, Littman and Moore,

1996). In addition, the number of distinct values which must be maintained becomes

huge; for example, we need a separate row of values for each state in Table 2. In many

practical problems the number of states is larger than we would wish for the size of such

a table. In particular, any continuous-valued state-space contains an infinite number

of states, even if the reachable portion of the space has a small area. As a result, an

agent might explore the space indefinitely without twice reaching precisely the same

state.

To prevent value iteration from becoming infeasible, the representation must map

the actual states of the task onto a smaller number of categories. This results in a

manageable number of “generalized states.” Whenever the agent needs an action value

for a particular state, it references the action value for the corresponding generalized
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state or states. The danger is that the values associated with the generalized states are

compromises, and if the representation generalizes over states which are too dissimilar,

it may lose critical information needed to solve the task. The point is to know what

“dissimilar” means in the context of a particular task. By grouping similar states

together, the agent no longer has to re-learn the appropriate behavior for each of them

separately. Thus the agent requires fewer experiences to learn the task. From the

perspective of the agent, the task appears smaller and easier to solve. The trick is

to know which states can be grouped together and which distinctions can be safely

ignored—and to learn to detect such relationships simply by experiencing the task.

1.3.1 Features, detectors, and generalized states

A feature is an attribute which the agent can use to classify its current state. The

features used by the agent constitute the set of things that the agent looks for in

attempting to describe and understand its situation. For example, in a program which

plays chess, the program might characterize the current state in terms of features such

as the number of its pieces remaining on the board, the number of the opponent’s pieces,

whether pieces are threatened or in position to attack, and so on. If the environment

simply gives the agent the identity and location of the chess pieces, the agent may

need to supplement these low-level features with a set of higher-level features which are

functions of the raw inputs.

I use the term generalized state to describe a set of states which imply the presence

of a particular feature. For example, the top row of our gridworld is a generalized state

which covers the individual states (1, 4), (2, 4), (3, 4), (4, 4), and (5, 4). Sometimes

it will be convenient to talk about a generalized state in terms of the set of states
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which it covers, but sometimes it will be more convenient to give a rule which describes

which states are included. I will call such a rule or function a feature, even though

it might not be given explicitly in the representation. For example, we can define a

function which outputs the value 1 for states in the top row, and otherwise outputs

the value 0. This function and the description “top row of the grid” are equivalent

rules for the feature “top-row.” Although the agent may or may not have a particular

feature detector which outputs a 1 for states in the top row, we can still analyze the

representation in terms of this feature, even though it is not explicitly realized in the

agent. Therefore, generalized states and features are both ways of describing the state

generalization: generalized states do so in terms of the actual sets of states, and features

do so by means of rules describing those sets.

Hence a generalized state is associated with a feature describing its members. Con-

versely, each feature defines a corresponding generalized state, which is the set of states

recognized by that feature. Given a set of binary, non-overlapping features, these gener-

alized states are partition regions. If the features are allowed to have continuous values

and overlap, we can still talk about the recognition set for a feature as a generalized

state, but with the realization that these sets will then be fuzzy sets which may overlap.

The point is that the action values associated with a particular feature are shared by,

or generalized over, the states in the corresponding generalized state.

In the case of the discrete representation (for example, Figure 1 and Table 2), we

can think of a set of features which each correspond to a particular cell in the grid.

Therefore, a discrete representation of the 5 × 4 gridworld has a set of 20 features.

The discrete representation is fine for this task, but the method does not scale to

complex tasks and is simply infeasible for continuous state-spaces. State generalization
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can result in a smaller representation, in which some of the features correspond to

generalized states. The action values are stored on the basis of the features, so that

states detected by a particular feature share the same set of action values and tend to

be grouped together as “the same kind of thing.” If we allow features with continuous

membership functions, states may have different degrees of membership in a particular

generalized state. (Another interpretation is that the features represent probabilities

that a particular state is a member of various generalized states). Chapter 3 defines

these terms explicitly, and the following chapters use them to analyze the effects of state

generalization upon action value. The purpose of state generalization is to transform

the agent’s problem into a smaller (and we hope, simpler) problem which has the same

solution. The principal benefit of such a representation is that the agent may generalize

information across similar states, requiring fewer training examples to learn the action

values.

Regions of similar states

In order to decide which states should be grouped together, we need to know which

states count as “the same thing” in the context of the agent’s task. In the goal-

seeking formulation of our gridworld task, we can identify the optimal policy for a cell

as an action which has the maximum action value for that cell. Since there may be

multiple actions which appear optimal, we may also describe a state in terms of its

preferred action set, or preference set. The preference sets can be useful in categorizing

compatible states. For example, in cell (1, 4) the values for actions right and down are

both γ4, but left and up have values of γ5−1, so the preference set for cell (1, 4) is {right,

down}. Now consider cell (2, 4), where the actions right and down have values of γ3, the
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value for left is γ5, and the value for up is γ4−1. Thus (2, 4) has the same preference set

as (1, 4): {right, down}. We can define regions of cells which share the same preference

sets, leading to the representation shown in Figure 2. In this representation, the six

G 

right, down 

right

right, up 

 left, 
down down 

up 

left 

left, 
up 

Figure 2: Gridworld partitioned according to preferred actions

cells in the upper left of the grid are grouped together because they share the same

preference set: {right, down}. Therefore, we simplify the representation by collapsing

them into a single state region. To the right of this group is the group of cells directly

above G; the optimal policy for this group is simply to move down. We group the other

cells into generalized states in the same way.

Notice that the table of maximum returns (Table 1) does not give us enough in-

formation to group states effectively because it does not take the preferred action into

account. If we grouped states according to their maximum values, we would put (4, 1)

and (4, 3) in the same group, even though one is below G and the other is above G.

The agent needs to take different actions from these two cells, moving up from (4, 1),
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and down from (4, 3). Therefore, these cells must not be grouped together.

Thus we segregate cells having different preferred actions into different state regions.

We would also want to separate cells whose maximum returns differ greatly, even if they

have the same preference sets—although this situation does not arise in our simple

example. The distinctions between cells within the same region are irrelevant because

they tell the agent nothing which will add to its ability to perform the task. For

example, knowing that cell (1, 4) is distinct from (2, 4) makes no difference to the agent’s

policy, which is {right, down} for both these cells. Neither will the slight differences in

action values for these cells result in policy differences at earlier states. We learn from

this example that some distinctions are not important, but others will prove important

if the agent is to perform its task well.

In this way, we may map the complete set of original states onto a smaller set of

generalized states. Whether these groupings are appropriate to the task determines

whether the agent will meet with success in the task. By choosing good groupings,

the agent ignores irrelevant information, while still making whatever distinctions are

necessary for solving the task.

How the representation affects learning

By grouping states into regions, the agent is categorizing the world it perceives. In

general, the smaller the number of categories, the easier the learning task will be—

provided that this categorization preserves all the information needed to perform the

task. For any task, we can imagine a continuum of categorization, from very general

to very specific. At one extreme, the representation is very simple, but the agent

cannot perform the task because it cannot distinguish situations which require different
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responses; the agent is ignoring too much information. A simple example would be a

gridworld task with a single, large state region for the entire grid. At the opposite end

of the continuum, the agent regards every distinct pattern of sensory information as

unique; learning is very slow because the agent has to learn the same behavior over

and over again for all the different states which might have been grouped together.

For example, a discrete representation for a 1000× 1000 cell gridworld would result in

1,000,000 cells and very slow learning of the task.

The agent can make its work easier by constructing a representation of the world

which is only as fine-grained as it has to be. So the agent should adjust the granularity

of the representation in order to make important distinctions where necessary, but

otherwise rely on broad general categories. This may mean that the representation

makes finer discriminations between states in some areas of the state space than in other

areas; therefore, its resolution may vary in granularity. In addition, the representation

should be tailored to the task at hand, grounded in the actual rewards that the agent

experiences as a result of its actions in that task. The efficiency gained by this kind

of goal-oriented categorization may be critical for scaling up reinforcement learning to

large tasks.

1.3.2 Feature extraction

Feature extraction is the process by which the agent modifies its representation to detect

features which are relevant to its task. Since any generalized state corresponds to a

feature (which we can think of as a membership function for the states covered by that

generalized state), state generalization and feature extraction are merely different ways

of looking at the same problem. Therefore, the agent’s performance depends critically
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on its feature set, since the features are isomorphic to the generalized states. Future

chapters will base the analysis of representation and action value in terms of features

which describe the generalized states.

If the agent is unable to recognize features that distinguish states requiring different

actions, the agent will not be able to perform the task. But if the features separate

states which count as “the same kind of thing” in the task, the features represent

irrelevant distinctions, and the agent is presented with needless complexity. Ideally,

the representation should filter out irrelevant detail, while avoiding over-generalization.

Furthermore, when states must be distinguished, some features may do a better job

than others at making those distinctions clear; therefore, some features may appear to

be more important than others.

How can the agent find good features as it learns the task? If we limit ourselves

to small tasks which we already understand, we can design a set of feature detectors

for the agent. One disadvantage to this approach is that it can involve significant

human effort, which may prevent reinforcement learning from scaling up to large tasks

or learning tasks which humans have not yet solved. From a research perspective, using

hand-designed representations is unsatisfying because it removes the need to understand

some of the most important aspects of learning.

The alternative is to automate the process of feature extraction. We want the agent

to find important features on its own, grounding its decisions in the actual effects of

its actions in the task. The standard approach is to approximate the action values

by mathematical functions of the raw state information given by the environment; the

agent then tunes these functions by gradient-descent in order to minimize the errors in

its prediction of the action values. Gradient-descent techniques tune all the parameters
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at once. In effect, this adjusts the value functions for regions of states, as well as the

boundaries between those regions.

The gradient-descent approach is often successful, but there are reasons for suspect-

ing that it may be ineffective for some tasks. In order for the value functions to be able

to represent the values accurately, they must be tuned so that they do not generalize

over states which are too dissimilar. But the error in the current action value does

not indicate whether the state generalization is appropriate. For example, suppose

that the value functions already generalize correctly over similar states, and put the

“boundaries” in the right places. But before learning begins, the predicted values will

be inaccurate because the agent has no experience with those states. The errors in

the action values will lead the agent to tune the value functions, resulting in changes

to the (perhaps implicit) boundaries between generalized states. This is not what was

needed.

State generalization usually results in errors in the action values, but those errors

are benign when the generalization is done over states which are compatible. Unfor-

tunately, gradient-descent cannot distinguish benign errors from harmful ones (caused

by generalization over incompatible states, and reflecting an inability to make needed

distinctions in the task).

Another current approach is to attempt to ensure that features distinguish states

whenever those states have significant differences in any action value. But this approach

can make irrelevant distinctions if two states differ on the value of some action which is

not a preferred action for either state. In that case, the difference is irrelevant, because

the agent would never choose that action from either state. For example, in Figure 2

we grouped the cells (1, 4) and (1, 3), even though they have very different values for
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the action up: Q((1, 3), up) = γ5, while Q((1, 4), up) = γ5 − 1. The difference in value

for the action up is irrelevant, because up would be a bad action from either state, and

would not be chosen.

This dissertation presents a new approach, aimed at finding features which only

cover compatible states. It defines state compatibility in terms of the preference sets

for the states, so that irrelevant differences are ignored. The goal is to construct a

representation according to the same general principles of cognitive economy which

enable humans and animals to cope with the cognitive demands of difficult tasks.

1.3.3 Cognitive economy and the big picture

Natural intelligences appear to represent the world in ways which filter out irrelevant

information and allow them to function in a challenging environment. This seems

to hold for both the organization of raw sensory information (perception) as well as

higher-level constructs (conception). The resulting categorization of information allows

the representation to “provide maximum information with the least cognitive effort,”

(Rosch, 1978, p. 28).

In the broadest sense, cognitive economy has to do with avoiding irrelevant represen-

tational distinctions. The term cognitive economy has also been used in the literature

to refer to a particular strategy for information storage in semantic memory nets. To

avoid confusion, this section summarizes the earlier work and explains the connection

between these two different definitions of cognitive economy. Collins and Quillian (1969)

used the term cognitive economy to refer to a principle for eliminating the redundant

storage of information. They presented a semantic network model of human memory,
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in which facts about different objects are stored at different nodes in a hierarchical net-

work. According to Collins and Quillian, facts which are common to the instances of a

category will be stored with the node for the category, rather than being redundantly

stored at the nodes for each of the instances. For example, the information that birds

can fly would be stored once at the node for “bird,” rather than being stored at all

the nodes for different kinds of birds. Information about unique traits of a particular

object would be stored at the node for that object. Thus accessing category-level facts

would require a movement through the hierarchy to the node for the category, resulting

in longer reaction times for evaluating the truth of sentences such as “A canary can fly”

than for “A canary can sing.” Later work by Conrad (1972) supported the claim that

words are organized hierarchically in memory, but seemed to show that attributes are

stored separately with each instance, rather than once at the level of the superordinate

node.

Although Conrad’s work seems to be a blow against the idea of cognitive economy,

it only applies to the cognitive economy of storage in semantic memory nets. It is based

on a model of representation which assumes that instance and category information are

stored in separate nodes, and that all possible distinctions are already present in the

representation. The question then is whether information is stored in this model in such

a way that storage space is conserved at the expense of processing time. Thus Conrad’s

results do not argue against the more general idea that representing the world efficiently

makes us effective in cognitive tasks. In this dissertation, ‘cognitive economy’ will

refer to the more general idea of making relevant distinctions while ignoring irrelevant

information.

The phenomenon of categorical perception (CP) appears to be an example of this
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type of cognitive economy. Stevan Harnad describes categorical perception as “a quali-

tative difference in how similar things look or sound depending on whether or not they

are in the same category” (Harnad, 1987, p. 2). For example, even though color stimuli

vary along a smooth continuum of wavelengths, humans break that continuum up into

a small set of labelled regions.

Physically, the wavelength spectrum varies continuously — one wave-length

differs from another by simple quantitative change. Psychophysically, hu-

man observers can discriminate many wavelengths — our powers to discern

are keen. Psychologically, however, hues vary in a categorical fashion—our

perceptions cross more or less discretely from one wavelength region to an-

other. Considering hue, brightness, and saturation together, we can tell

literally thousands of color nuances apart, but we still partition the color

space into relatively few distinct qualitative sensations. (Bornstein, 1987,

p. 288)

According to Berlin and Kay (1969), humans break the color spectrum into 11 basic

color categories, although languages differ in whether they have basic color terms for

all 11. We judge differences between two wavelengths as smaller if they come from

the same category, and larger if they come from different categories. For example, we

might judge two shades of green as more similar to each other than one of those greens

is to a particular shade of yellow, even though the green-yellow comparison may have

an equivalent difference in wavelength.

The same effect characterizes perception of speech sounds such as the stop-consonant

categories /ba/, /da/, and /ga/. “In other words, in CP there is a quantitative dis-

continuity in discrimination at the category boundaries of a physical continuum, as
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measured by a peak in discriminative acuity at the transition region for the identifica-

tion of members of adjacent categories” (Harnad, 1987, p. 3). The advantage of this

kind of categorization is cognitive economy: “It is more efficient to organize the world

into a small number of superordinate units than to deal with each individual exemplar”

(Snowdon, 1987, p. 336).

This categorization appears to be the product of both biology and experience. That

different human cultures arrive at the same categorical perception of color (Berlin and

Kay, 1969) appears to show that some categories are the result of biological constraints.

But other evidence indicates that perceptual categories are also the result of experience

and learning, resulting in a set of perceptual distinctions which are relevant and diag-

nostic in the particular cognitive tasks we face. For example, infants that grow up in

a particular language environment, say, English, appear to lose the ability to discrim-

inate speech sounds absent in that environment within the first year of life. Werker

and Tees (1984) chose two phonetic contrasts which are not present in English, and

showed that they could be discriminated by infants from English-speaking homes at

six months of age but failed to be discriminated by virtually all of those infants at 12

months. Whether these changes are permanent or not, they are evidence that human

perception is organized around distinctions which give us a functional advantage in

interacting with our world.

In higher-level tasks, experts appear to learn to represent the relevant details of the

environment much more efficiently than novices. In his experiments with chess players,

Adriaan de Groot found that the primary difference between master chess players and

lesser players was that the masters were able to immediately recognize the important

attributes of a chess position. Of the chessmaster, de Groot writes “as a result of his
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experience he quite literally ‘sees’ the position in a totally different (and much more

adequate) way than a weaker player [. . . ] His extremely extensive, widely branched and

highly organized system of knowledge and experience enables him, first, to recognize

immediately a chess position as one belonging to an unwritten category (type) with cor-

responding board means to be applied, and second, to ‘see’ immediately and in a highly

adequate way its specific, individual features against the background of the type (cate-

gory)” (de Groot, 1965, p. 306). Thus “[t]he difference in achievement between master

and non-master rests primarily on the fact that the master, basing himself on an enor-

mous experience, can start his operational thinking at a much more advanced stage

and can consequently function much more specifically and efficiently in his problem

solving field” (ibid, p. 307).

To summarize, natural intelligences categorize information in order to reduce the

cognitive load of difficult tasks. This categorization is functional, allowing us to ignore

irrelevant detail, and to more easily recognize distinctions which are relevant in our

world. “It is to the organism’s advantage not to differentiate one stimulus from others

when that differentiation is irrelevant to the purposes at hand,” (Rosch, 1978, p. 29).

As a result, the organism is able to perform difficult tasks in spite of its limited cognitive

resources.

This dissertation takes the position that artificial intelligences should make use of

similar strategies, in order to make the most efficient use of their limited cognitive

resources. Specifically, feature extraction should be guided by the principle of cognitive

economy. Therefore, a good representation should not make all possible distinctions

for the tasks we face, but should use broader categories when distinctions are irrelevant

to the tasks and rewards we experience. But what does it mean for a feature to be
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relevant, and how does that depend on the tasks we want to solve and the nature

of our environment? How does our representation change the nature of the apparent

task? When should we regard things as “the same”? And how can we learn a good

representation of the world through our interactions with it?

1.4 Contributions of This Dissertation

This dissertation translates the idea of cognitive economy into algorithmic criteria for

feature extraction in reinforcement learning. To do this, it develops mathematical

definitions of feature importance, sound decisions, state compatibility, and necessary

distinctions, in terms of the rewards experienced by the agent in its task. It analyzes

the connection between the representation and the resulting action values, and offers

criteria which ensure that a representation is adequate for the learning of the task.

These ideas are explored through theoretical analysis, as well as by implementation

and simulation. Contributions include the following:

1. Characterization of learnability in terms of criteria for the allowable loss of reward

at each state (incremental regret).

2. Definition of feature importance (relevance) in terms of action values, and analysis

of the relation between importance and the robustness and efficiency of learning.

3. Characterization of necessary distinctions in terms of learnability.

4. Definition of a set of criteria for state compatibility, and demonstration of the

link between these criteria and learnability. (Under certain reasonable condi-

tions, representations which separate incompatible states are proven to meet the
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learnability criteria). The compatibility rules specify when states should be con-

sidered as “the same kind of thing” in a particular task.

5. Characterization of generalized action values for features and for sets of states,

including the role of our prior assumptions in choosing a definition of general-

ized action values. By defining these values by the steady-state expectations of

reward, we may consider the generalized action values to be properties of the

representation, apart from any consideration of the convergence of the learning

algorithm. Therefore, these definitions of generalized action values show how the

representation changes the task perceived by the agent.

6. Successful implementation of an algorithm which generates an effective represen-

tation for its task, as it goes about learning the task.

These topics are central to effective learning, because they have to do with the

way that state generalization changes the agent’s view of the task, whether this makes

learning easier or harder, and how the agent may exploit this information to find im-

portant features and effective representations, making the most of its limited cognitive

resources.

1.5 A Brief Preview of Subsequent Chapters

Chapter 2 formulates the reinforcement learning problem, establishing its essential ele-

ments and their mathematical foundation. This provides a basis for considering learning

and feature extraction in terms of action values. Along the way, the chapter reviews

related work.
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Chapter 3 formalizes the principle of cognitive economy into objective criteria ex-

pressed in terms of action values. The chapter begins by briefly reviewing cognitive

economy from the perspectives of psychologists, economists, and other reinforcement

learning researchers. Then it presents the representational model, assumptions, and

definitions that form the basis for the rest of the dissertation. Most of the chapter is

devoted to the development of criteria for feature importance, sound decisions, neces-

sary distinctions, representational adequacy, and state compatibility.

Chapter 4 extends the definition of action value to generalized states, including those

which correspond to continuous-valued, overlapping feature detectors. The chapter

indicates how our assumptions about the reinforcement learning problem can lead to

different definitions of generalized action values. It applies these definitions to a simple

gridworld task, and shows how state generalization changes the agent’s perception of

the values of its actions.

Chapter 5 analyzes the role that representation plays in allowing the agent to make

sound decisions. The chapter builds a link between the previously-derived criteria

for compatible states and representational adequacy: partition representations which

separate incompatible states are proved to make all necessary distinctions required for

the agent to solve the task. This result adds support to the conclusion that the criteria

are a well-founded, principled application of cognitive economy to the reinforcement

learning problem.

Chapter 6 presents an algorithm which applies the ideas developed in the previous

chapters to the solution of two reinforcement learning problems: the puck-on-a-hill, and

pole-balancing. The success of the algorithm in constructing an effective representation

from scratch demonstrates the potential of a feature extraction strategy which is driven
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by considerations of cognitive economy, rather than by the minimization of the top-

down errors in action values.

Chapter 7 summarizes the dissertation and gives some thoughts about future work.

The Afterword offers a brief consideration of the place of this work within the larger

picture of intelligent action.
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Chapter 2

Reinforcement Learning and

Feature Extraction

Vast wodges of complex computer codes governing robot behavior in all

possible contingencies could be replaced very simply. All that robots needed

was the capacity to be either bored or happy, and a few conditions that

needed to be satisfied in order to bring those states about. They would

then work the rest out for themselves.

—Douglas Adams, Mostly Harmless

This chapter formulates the reinforcement learning problem and reviews related

work on feature extraction and active learning. The formulation and assumptions

presented here are the foundation for the rest of the dissertation. A more comprehensive

introduction to reinforcement learning may be found in Kaelbling, Littman and Moore’s

(1996) survey paper, and in Sutton and Barto’s (1998) text.
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2.1 The Elements of Reinforcement Learning

2.1.1 The agent and the environment

Reinforcement learning concerns an agent which interacts with its environment at dis-

crete moments in time; the agent is the learner and decision-maker, while the environ-

ment consists of everything outside the agent. (In some literature the agent is referred

to as the controller and the environment is called the plant). The environment may be

characterized in terms of the tuple (S,A,Ps,Pr), defined as follows:

S The set of possible states of the environment. st ∈ S denotes the state at time t.

A The set of actions available to the agent. A(st) denotes the subset of actions available

to the agent in state st. We write at for the agent’s action at time t.

Ps(t) The state transition probabilities. This function gives the probability of being

in state s at time t, based on the past interaction of the agent with the environ-

ment. In the most general case, the current state may be a probabilistic function

of the entire past history of the agent and the environment. Taking rt as the

reinforcement observed by the agent at time t, we may write

Ps(t) = Pr{st = s | st−1, at−1, rt−1, st−2, at−2, rt−2, . . . , r1, s0, a0}

Pr(t) The reinforcement distribution. The environment gives the agent numerical re-

wards, rt ∈ <. Pr(t) is the probability that r is the reward value at time t, based

on the previous history of the agent’s interaction with the environment. We write

Pr(t) = Pr{rt = r | st−1, at−1, rt−1, st−2, at−2, rt−2, . . . , r1, s0, a0}
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Thus a reinforcement learning task may be specified in terms of its states, actions,

and a set of rules which determine how the system dynamics depend on the agent’s

actions. Any task which can be characterized in this way is a reinforcement learning

task. The definition of reinforcement learning has to do with the specification of the

task, not with the internal structure or processing of the agent. Usually, the state

transition and reinforcement functions are initially unknown to the agent, and must be

learned through its interaction with the environment.

The interface between the agent and the environment consists of the inputs to the

agent from the environment and the action selection of the agent, which may affect the

state of the environment. The inputs to the agent are the current reinforcement, rt

and a signal, xt, which is a vector of observations (the state-space coordinates) of the

current state, st.

This dissertation adopts the discrete-time simplification typically assumed in the

literature, namely that the agent interacts with the environment at discrete times,

t = 0, 1, 2, 3, · · · . At time t the agent is given inputs xt and rt and chooses an action,

at. The agent observes the results of its action in the environment at time t + 1, when

its inputs are xt+1 and reinforcement rt+1. Figure 3 shows the relationship between the

agent and its environment.

Simply put, the goal of the agent is to maximize its reinforcement over the long

run. The challenge of reinforcement learning is for the agent to adjust its behavior as

a result of its interaction with the environment, in order to achieve this goal.
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Figure 3: An agent and its environment
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2.1.2 Common assumptions

These basic elements define the most general reinforcement learning problem, but most

of the research makes some additional assumptions. These include assumptions about

the task itself, as well as our criteria for optimal behavior and our standards for judging

the success of a reinforcement learning agent. The rest of the dissertation will make

the following assumptions.

Number of states and actions In general, S may contain an infinite number of

states, as is the case with tasks having continuous state spaces.

Assume that A is a small, finite set of actions. Since A(st) is a subset of A, the

task may constrain the actions which the agent can take from particular states.

For example, a chess task might incorporate a legal-move filter so that the agent

only needs to choose among legal moves.

Markov property Assume that the task is Markov: the environment’s response to the

agent at time t + 1 depends only on the situation at time t, instead of depending

on the entire past history of the agent. Therefore, we may write the transition

probability for arriving in state s′ as a function of the preceding state and action,

ignoring the previous history of the agent:

Pa
ss′ = Pr{st+1 = s′ | st = s, at = a}

We could also rewrite the reinforcement probabilities in the same way, but it

will be more helpful to deal with the expectation of the reinforcement. Therefore

define the expectation of the reinforcement given to the agent after it takes action

a from state s and arrives in state s′, as follows:

Ra
ss′ = E{rt+1 | st = s, at = a, st+1 = s′}
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Assume also that the state observations given to the agent, xt, are sufficient to

uniquely identify the current state st without requiring further information about

the agent’s history; i.e., the task is observable.

Existence of terminal states Assume that the task is episodic, having absorbing

terminal states. This means that the agent’s continuing behavior may be broken

into a series of episodes, with each episode ending when the agent enters a state

which has transitions only to itself (absorbing), and in which the agent only

receives reinforcements of zero.

Although some tasks are not episodic, we can sometimes study them by choosing

to define certain states as terminal and resetting the system state when the agent

enters such a terminal state.

The normal mode of training is to end the episode when the agent arrives at a

terminal state, and re-position the agent in a start state for the beginning of a

new episode.

Criterion for optimal behavior We will say that the agent acts optimally when it

chooses its actions in order to maximize its reinforcement over time—but this

could mean different things, depending on how far ahead the agent looks for

reinforcement, and how it weighs the value of future reinforcement against current

reinforcement.

If the task only lasts for a finite number of steps, we could adopt a finite horizon

model of optimality, and define the reinforcement over time as the return

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT
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where T is either the index of the last step of the task, or else some fixed number

of steps into the future. Then optimal behavior would consist of choosing actions

which lead to the highest expected returns.

Instead, this dissertation, assumes the infinite horizon model of optimality, in

which the return sums up all the reinforcements which follow. We weight the

reinforcements by a discount rate, γ ∈ [0, 1]. Thus

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞
∑

k=0

γkrt+k+1

The value of γ controls the relative weight of future reinforcement. When γ = 0,

optimal behavior consists of simply selecting the action which is likely to produce

the highest immediate reinforcement, without considering the effect that action

will have on future reinforcement. For γ between 0 and 1, optimal behavior

considers future reinforcements; as γ increases, the optimal agent becomes more

farsighted, placing a greater importance upon future reinforcement. Normally, we

assume that γ < 1, unless we know in advance that the task only requires a finite

number of steps; this guarantees that the returns are finite, provided that the

individual rewards rt are bounded. Note that stopping the episode at terminal

states has no effect on Rt, since all future reinforcements to the agent are zero

once it enters a terminal state.

Measuring learning performance It is difficult to assess the worth of a particular

learning algorithm without knowing what sort of tasks it is meant to solve, and

the reason for learning those tasks. If our goal is to construct a map of the

agent’s environment and the effects of its actions in all states, we might choose

an algorithm which is slow but very accurate. On the other hand, if the agent



40

needs to quickly adapt to changing conditions, we might care more about the

speed of learning than we do about whether the algorithm converges to optimal

or near-optimal behavior. It is difficult to characterize convergence speed to near-

optimal behavior in a general way.

This dissertation takes the position that the standard for successful reinforcement

learning is that the agent learn to act optimally, exerting as little effort as possible.

This standard is based on the assumption that not all the information given to the

agent is important for enabling it to make the decisions it needs to make in order

to perform optimally. By generalizing over similar states, the agent may learn

an optimal behavior more efficiently, although this may mean approximating the

true values of states and actions at times.

Wisdom is in knowing what details are important, knowing where we must act

optimally, and where we can get by with an approximation to the true values

of states or actions. This dissertation attempts to demonstrate principled meth-

ods of making such judgments, and show that the resulting cognitive economy

contributes to faster, more reliable learning.

2.2 Q-Learning

To understand reinforcement learning, we need to see how the agent’s representation

and its action choices affect the rewards it experiences in the task. To do this, we need

to define the values of states and actions in terms of the expectation of future reward.

This section develops the basic results for Q-learning. In order to develop the theory,

it assumes that the state space, S, is finite, since the theoretical results are based on
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the assumption that the task is a finite Markov decision process. A later section will

discuss some ways in which real tasks often depart from these assumptions, and how

these departures change the learning problem. Although this discussion will focus on

Q-learning, these ideas also apply, at least in spirit, to the other popular reinforcement

learning algorithms, such as SARSA, Adaptive Heuristic Critic, TD(λ) and Q(λ). This

material will provide a basis for defining action values for generalized states in the next

chapter.

2.2.1 Policies and value functions

We may describe the agent’s learned behavior as a policy, π, which defines the agent’s

tendency to take various actions from various states. Thus π(s, a) is the probability

that the agent will choose action a when in state s. At time t

π(s, a) = Pr{at = a | st = s}

According to our assumption of optimal behavior, the agent should learn a policy

in which it selects the action with the highest expected return Rt. Most reinforcement

learning algorithms do this by learning value functions, which predict the return the

agent can expect when proceeding from a particular state under a particular policy.

Thus we define the value of a state s as the expected return for an agent starting in s

at time t, and following policy π:

V π(s) = Eπ{Rt | st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s

}

where Eπ{. . .} denotes the expected value of a quantity, given that the agent follows

policy π.
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V π is called the state-value function for policy π. We can likewise define the action-

value function for policy π, written Qπ(s, a), which is the expected return for an agent

which starts from state s, performs action a, and follows policy π thereafter:

Qπ(s, a) = Eπ{Rt | st = s, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s, at = a

}

Notice that the only difference between Qπ(s, a) and V π(s) is that Qπ(s, a) specifies

that the agent takes action a as its first step. So we can write V π(s) in terms of Qπ(s, a):

V π(s) =
∑

a∈A(s)

π(s, a)Qπ(s, a) (1)

We can also write Q’s in terms of V ’s, since the value of Qπ(s, a) is the sum of the

immediate reinforcement upon taking action a from state s, and the discounted state-

value of the resulting state:

Qπ(s, a) = Eπ {rt+1}+ γV π(st+1)

If st+1 = s′, this is Ra
ss′ + γV π(s′). Taking into account all the possible successor states

s′ reachable from s, we have

Qπ(s, a) =
∑

s′
Pa

ss′ [R
a
ss′ + γV π(s′)] (2)

Let π∗ denote an optimal policy, under which the agent always selects actions which

have the maximum expected return. Therefore, under policy π∗, the state-value (ex-

pected return) of any state is at least as great as under any other policy, π. Writing

V ∗ for V π∗

, we have

V ∗(s) ≥ V π(s), for all s ∈ S

If our task is Markov and has finite state and action spaces S and A, there will always

be at least one such optimal policy; furthermore, if there is more than one optimal
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policy, they will share the same optimal state-value function V ∗(s) and action-value

function Q∗(s, a) (Watkins, 1989).

Under an optimal policy π∗, our previous definition of the state-action values (Equa-

tion 2) becomes

Q∗(s, a) =
∑

s′
Pa

ss′ [R
a
ss′ + γV ∗(s′)] (3)

But notice that we can express V ∗(s′) in terms of Q∗(s′, a′). V ∗(s′) is the expected

return from s′, assuming that we act optimally. Thus, if a′ is an optimal action choice

in state s′, Q∗(s′, a′) = V ∗(s′). Therefore,

V ∗(s′) = max
a′

Q∗(s′, a′),

and, substituting for V ∗(s′) in Equation 3, we have

Q∗(s, a) =
∑

s′
Pa

ss′

[

Ra
ss′ + γ max

a′

Q∗(s′, a′)
]

. (4)

Equation 4 is known as the Bellman optimality equation for Q∗ (Sutton and Barto,

1998, p. 76).

Once the agent has learned the optimal action-value function Q∗, it can easily

determine an optimal policy, as follows

π∗(s, a) =















1 if a = argmaxa′ Q∗(s, a′)

0 otherwise

(Note: in order to ensure that π is valid as a probability, once we find an optimal action

a′ for state s, we set π(s, a′′) = 0 if we find any other optimal actions a′′).

From Equation 4 we see that Q∗(s, a) is really the expectation of the quantity

r̂(s, a) = r + γ max
a′

Q∗(s′, a′),
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taken over transitions to possible resulting states s′ with associated reward r. Therefore,

we might think to estimate Q∗(s, a) by a running average of the observations of r̂(s, a).

We call the algorithm that does this one-step Q-learning. At each step, it updates

Qt(s, a), which is its current estimate of Q∗(s, a), according to the following rule:

Qt+1(st, at)← (1− α)Qt(st, at) + αr̂(st, at)

where α ∈ [0, 1] is a learning rate parameter. This is usually expressed in the following

form:

Qt+1(st, at)← Qt(st, at) + α
[

rt+1 + γ max
a

Qt(st+1, a)−Qt(st, at)
]

(5)

This algorithm is a form of model-free, off-policy, temporal-difference learning. Model-

free refers to the fact that Q-learning does not require the agent to have a complete

model of the environment, as dynamic programming methods typically do. Off-policy

means that the policy that the agent uses to generate its behavior may be unrelated

to the policy which it is estimating. This allows the agent to explore the state-space

by selecting actions stochastically, even though it is learning the action values of an

optimal policy. Temporal-difference learning methods update an estimate of a value

in terms of future estimates of the value; for example, Q(s, a) is an estimate of future

reinforcement, and Q-learning updates these estimates by looking at the estimates

from the next state it enters, rather than waiting until an episode has finished and then

updating all the action values according to the actual returns observed.

2.2.2 An illustration

The following simple task (Figure 4) will serve to illustrate these ideas. In this task,

there are three states: S = {x, y, w}. State w is an absorbing terminal state. The state
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transitions and reinforcement are deterministic, and given in the figure. Thus A(x) =

{right, up}, and A(y) ={left, up}. Moving right from x always results in state y, and

moving left from y always results in state x. These transitions incur a reward of −1.

But moving up from either x or y results in state w and the end of the episode. The

transition x
up
→ w results in reward of +10, and the transition y

up
→ w results in reward

of +100. We will take the value of the discount rate, γ, to be 0.9.

    

 w  
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 right  
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 up  
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Figure 4: A simple three-node reinforcement learning task

In order to calculate the state values for this problem, we must define a policy, since

V π(s) depends on π. Suppose π is defined as follows (with non-existent actions noted

by “—”):

π left right up

x — 0.7 0.3
y 0.8 — 0.2

Working backwards, we may calculate V π(x) and V π(y) in terms of V π(w). To do

this, we can combine Equation 1 and Equation 2:

V π(s) =
∑

a∈A(s)

π(s, a)
∑

s′
Pa

ss′ [R
a
ss′ + γV π(s′)] (6)
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This is known as the Bellman equation for V π (Sutton and Barto, 1998, p. 70).

Ignoring transitions with zero probability (π(s, a) = 0 or is undefined), we have

V π(x) = π(x, right)
{

P right
xx

(

Rright
xx + γV π(x)

)

+P right
xy

(

Rright
xy + γV π(y)

)

+P right
xw

(

Rright
xw + γV π(w)

)}

+ π(x, up) {Pup
xx (Rup

xx + γV π(x))

+Pup
xy

(

Rup
xy + γV π(y)

)

+Pup
xw (Rup

xw + γV π(w))}

This is

V π(x) = 0.7 {0 + 1(−1 + 0.9V π(y)) + 0}

+ 0.3 {0 + 0 + 1(10 + 0.9(0))}

or

V π(x) = 2.3 + 0.63V π(y) (7)

Similarly,

V π(y) = 0.8 {1(−1 + 0.9V π(x)) + 0 + 0}

+ 0.2 {0 + 0 + 1(100 + 0.9(0))}

hence

V π(y) = 19.2 + 0.72V π(x) (8)

Solving Equation 7 and Equation 8 for the state values of x and y yields V π(x)
.
= 26.3

and V π(y)
.
= 38.2.
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It is interesting to compare the state values derived under policy π with those

resulting from an optimal policy. Consider an optimal policy, π∗:

π∗ left right up

x — 1 0
y 0 — 1

In this case, the Bellman equation for V π (Equation 6) gives us

V ∗(x) = −1 + 0.9V ∗(y)

and

V ∗(y) = 100 + 0.9(0).

Therefore, V ∗(x) = 89 and V ∗(y) = 100. As we might have expected, the optimal

policy gives the agent a much higher expected return.

But the reinforcement learning agent usually does not know the system dynamics,

so it cannot directly calculate the state values as we have just done. Furthermore,

even when knowledge of the system dynamics is available, these calculations would

quickly become very difficult as the number of states increases, especially when the state

transitions and reinforcement are non-deterministic. Therefore, most reinforcement

learning agents learn estimates of these values, based on the rewards they receive from

the environment. One way to do this is to observe complete episodes and estimate

the value of a state by the average of the returns which follow the occurrence of that

state. Methods which do this are known as Monte Carlo methods because they take

averages over random samples of actual returns. In the first-visit MC method, the agent

considers only returns following the first occurrence of a state. For example, suppose

that the agent experiences the following five episodes, with the indicated returns R0 :
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1. x
right
→ y

left
→ x

up
→ w.

R0 = 6.2 = −1 + γ(−1) + γ2(10)

2. y
left
→ x

right
→ y

left
→ x

up
→ w.

R0 = 4.58 = −1 + γ(−1) + γ2(−1) + γ3(10)

3. x
right
→ y

up
→ w.

R0 = 89 = −1 + γ(100)

4. x
right
→ y

left
→ x

right
→ y

left
→ x

up
→ w.

R0 = 3.122 = −1 + γ(−1) + γ2(−1) + γ3(−1) + γ4(10)

5. y
left
→ x

right
→ y

up
→ w.

R0 = 79.1 = −1 + γ(−1) + γ2(100)

In trials 1, 3 and 4 the agent begins in state x, so the return following the first occurrence

of state x is R0. In trials 2 and 5, the first occurrence of x is at time t = 1, so the

return following the first occurrence of x will be R1:

From episode 2 : R1 = 6.2 = −1 + γ(−1) + γ2(10)

From episode 5 : R1 = 89 = −1 + γ(100)

Thus the agent could average the returns which followed its being in state x, in order to

form the estimate V π(x) = (6.2+6.2+89+3.122+89)/5
.
= 38.7. The agent could also

use this method to determine the action values. In these particular episodes, the first

occurrence of (x, right) was always also the first occurrence of x, so that the estimate

of Qπ(x, right) = V π(x) = (6.2 + 6.2 + 89 + 3.122 + 89)/5
.
= 38.7. We can expect these

estimates to become more accurate as the agent experiences more episodes and thus

averages the values over a larger set of returns.
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One might expect MC methods to be slow because action values are only updated

at the ends of episodes, when complete returns Rt become available; however, we may

update the action values for each state visited during the episode. This allows the

system to quickly learn action values for “early” states in the task.

In contrast, one-step Q-learning updates a single action value at a time, but it does

so immediately; at each step it updates the value for the previous state and action.

We can see how this works by considering the same series of episodes for our task. As

before, Qt(s, a) is the agent’s estimate at time t of Q∗(s, a), the true action value under

an optimal policy. We will take the learning rate α = 0.1.

Suppose the initial values Q0(s, a) are all 0. The first transition of the first episode

is x
right
→ y, resulting in a reward of −1; we write this as (x, right, y,−1). We update

Q0(x, right) by means of Equation 5:

Q1(x, right) = Q0(x, right) + 0.1
[

−1 + 0.9 max
a

Q0(y, a)−Q0(x, right)
]

= 0 + 0.1(−1 + 0.9 max{0, 0} − 0) = −0.1

All action value estimates other than Q0(x, right) remain unchanged in Q1. Next, the

agent observes the transition (y, left, x,−1). So we update

Q2(y, left) = Q1(y, left) + 0.1
[

−1 + 0.9 max
a

Q1(x, a)−Q1(y, left)
]

= 0 + 0.1(−1 + 0.9 max{−0.1, 0} − 0) = −0.1

Finally, the agent observes the transition (x, up, w, 10). Hence we update

Q3(x, up) = Q2(x, up) + 0.1
[

10 + 0.9 max
a

Q2(w, a)−Q2(x, up)
]

= 0 + 0.1(10 + 0− 0) = 1

Therefore, at the end of the first episode, the agent’s estimate of the action values is
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Q3(s, a) left right up

x — -0.1 1.0
y -0.1 — 0.0

Now consider the second episode. The first transition is (y, left, x,−1), so we update

Q4(y, left) = −0.1 + 0.1 (−1 + 0.9 max{−0.1, 1} − (−0.1)) = −0.1

So the estimate of Q(y, left) remains the same. The second transition is (x, right, y,−1),

resulting in the update

Q5(x, right) = −0.1 + 0.1 (−1 + 0.9 max{−0.1, 0} − (−0.1)) = −0.19

The third transition is (y, left, x,−1). Hence

Q6(y, left) = −0.1 + 0.1 (−1 + 0.9 max{−0.19, 1} − (−0.1)) = −0.1

Finally, the fourth transition is (x, up, w, 10). Thus

Q7(x, up) = 1 + 0.1 (10 + 0.9(0)− 1) = 1.9

Therefore, after the first two episodes, the agent’s estimate of the action values will be

Q7(s, a) left right up

x — -0.19 1.9
y -0.1 — 0.0

Our hope is that under Q-learning, the action values Qt(s, a) will eventually converge

to the true values, Q∗(s, a):

Q∗(s, a) left right up

x — 89 10
y 79.1 — 100

Once these values have been learned, we can easily find the optimal state values by

taking V ∗(s) = maxa Q∗(s, a). This yields V ∗(x) = 89 and V ∗(y) = 100, as expected.
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2.2.3 Theoretical convergence

Watkins and Dayan (1992) proved that Q-learning converges to the optimal action-

values with probability 1, under the following conditions.

Given: The task is a finite Markov decision process, meaning that S and A are finite

sets and the Markov property holds;

. . . the rewards, rt, are bounded, meaning that there exists some positive number

c for which |rt| ≤ c, for all t;

. . . the action values are represented discretely; that is, the values Q(s, a) are

stored separately for each combination of s and a;

. . . updates are performed according to Equation 5, with discount rate γ such

that 0 ≤ γ < 1;

. . . each combination of state and action (s, a) is visited infinitely often, although

not necessarily in any particular sequence;

. . . the learning rate, αt, is chosen so that 0 ≤ αt < 1. In addition, αt decreases

in a particular way:

Let t(i, s, a) represent the time of the ith experience of the pair (s, a).

∑

i αt(i,s,a) =∞ and
∑

i α
2
t(i,s,a) <∞, for all s and a.

Then: Qt(s, a)→ Q∗(s, a), as t→∞, with probability 1.
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2.2.4 Practical considerations

Limited sampling, and the need for exploration

In practice, we usually cannot meet all of the conditions necessary for the convergence

proof. Perhaps the most severe restriction is the requirement that we continue to sample

each state-action pair forever. According to our definition of optimal behavior, the agent

should always choose actions which maximize the cumulative reward it receives, but

it cannot do this if it continues to sample all actions, including the bad ones. Thus a

purely exploratory policy is usually sub-optimal. But a purely greedy policy, in which

the agent simply exploits its current understanding in order to choose the action with

the highest value, is also sub-optimal. For example, in our three-state task, the agent

did not experience the transition y
up
→ w in its first two trials. If it continued from

this point with a greedy policy, it would always move up from x and would never learn

that it can achieve a much higher reward of 100 by means of the transitions x
right
→ y

and y
up
→ w. Because of the agent’s limited experience, the transition x

right
→ y appears

sub-optimal. This example shows that in order to learn to optimize its behavior in the

long run, the agent may need to choose some actions which seem sub-optimal in the

short-term.

The usual way of balancing exploration and exploitation is for the agent to begin

with a very exploratory policy and gradually shift to a greedy policy as it acquires more

experience. Two common ways of accomplishing this are the ε-greedy policy and the

soft-max policy. Under an ε-greedy policy, the agent chooses its actions according to

a greedy policy most of the time, but now and then it chooses an action at random.

The probability that the current action will be chosen randomly is ε. In order to make

the policy increasingly greedy, we can gradually decrease the value of ε with time or
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experience (Watkins, 1989, p. 178).

A disadvantage of the ε-greedy policy is that its exploratory actions are completely

random. But under a soft-max policy, the exploration can be biased toward the actions

which appear the most promising, as the agent acquires more experience. One way

of implementing the soft-max policy is to choose actions according to a Boltzmann

distribution, where the likelihood of any particular action a being chosen in state s is

given by the equation

Pr(a|s, τ) =
eQ(s,a)/τ

∑

a′∈A(s) eQ(s,a′)/τ

By initially setting the temperature parameter, τ , to a very large number, the agent

begins with an essentially random selection of the available actions. As the temperature

is lowered, the agent’s choices are weighted in favor of the actions with the highest action

values. As τ → 0, the policy becomes greedy, selecting the action with the maximum

action value. This method is related to simulated annealing algorithms (Kirkpatrick,

Gelatt, and Vecchi, 1983).

The ε-greedy and soft-max policies allow the agent to gradually increase the greed-

iness of its action selection. They do this by decreasing a parameter, ε or τ , as time

passes, reflecting the agent’s increasing confidence in its action values. Instead, we

might attempt to calculate an explicit confidence measure. For example, in Kaelbling’s

(1993a) interval estimation algorithm, the agent maintains a confidence interval for

each state-action pair. This confidence interval is set according to a statistical measure

which takes into account both the action values observed and the amount of experience

that the agent has had with that state and action. By selecting the action with the

highest upper limit, the agent directs its exploration to the actions which appear the

most promising.
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Decreasing the learning rate

The assumption that the learning rate, α, decreases with time is necessary if we are

to guarantee convergence with a stochastic task. Otherwise, continued noise in the

observed reinforcement values might cause the action values to continue to fluctuate.

But if the task is deterministic, such a strategy is unnecessary; setting α ≡ 1 is sufficient

for convergence here (Mitchell, 1997, p. 378). For non-deterministic tasks, the following

is an example of a rule for α which satisfies the conditions required by the convergence

theorem:

αt =
α0

nt(s, a)

where nt(s, a) represents the number of times which the agent has tried action a in

state s, up to time t.

The need for state generalization

To develop the theory behind Q-learning, we have assumed that the action values may

be represented discretely, for example, as a look-up table having separate rows for

each state s, with separate column entries Q(s, a) for each action a. Unfortunately,

the complexity of Q-learning is on the order of the square of the number of states

(Kaelbling, Littman and Moore, 1996, p. 248). For all but the smallest tasks, the

discrete representation makes the task infeasible. In particular, if the state-space is

continuous, the number of states is infinite, and the agent may never see exactly the

same state twice. In order to learn the action values for such tasks, the agent must

employ the same strategy which humans use to reduce their information-processing

burden: generalize over similar states. But placing the region boundaries correctly is

critical if the agent is to solve the task. For example, suppose we have a gridworld of
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size 100 by 100, partitioned into state regions as in Figure 5.
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Figure 5: A larger gridworld, with state generalization

States such as x and y would be treated as examples of the same “generalized state,”

S4, and would share the same action values, Q(S4, ·), along with any other states which

fall in the region S4.

More generally, we can record the action values as a parameterized function of states

and actions, for example: Q(x, a) =
∑

i wifi(x, a), where we call the functions fi feature

detectors. To describe the state generalization of Figure 5 in this way, choose the fi so

that each function fi corresponds to a state region, Si, where

fi(x, a) =















1 if x ∈ Si

0 otherwise

Since in this example the regions Si are disjoint (that is, they form a tiling or partition

of the space), fi(x, a)fj(x, a) = 0 for i 6= j. But in general, the fi might be any sort of

real-valued functions over states and actions.
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By grouping certain states together, the agent’s representation causes the action

values to be generalized over those states. So we adjust the values Q(Si, a) according

to information from any of the separate states covered by the state region Si. Thus,

the apparent value of taking action a in state x will also be affected by the action value

updates for the other states in S4, such as y. All these states share the same action

value for a, Q(S4, a). The success of a particular set of feature detectors will depend

on whether the states which are grouped together are actually similar, in the sense of

having similar action values. Figure 5 is an example of a state generalization scheme

which is poorly chosen if our task is to reach the state G. Here the correct policy in

state x is {down}, while the correct policy in state y is {up}. The agent must be able

to learn that Q(x, up) < Q(x, down), but Q(y, up) > Q(y, down). Therefore, the agent

must be able to distinguish between states x and y, and maintain separate action values

for these states. Thus x and y should not be grouped together. But notice that if our

task is to reach the corner state G2, the correct policy is {up, right} for both x and

y; now it makes sense to group them together. Thus appropriate state generalization

depends on the reinforcement expected under a particular task.

Watkins (1989) noted that Q-learning may not converge correctly if the action values

employ state generalization. Another way of looking at this situation is to realize that,

to the agent, a state region Si may be regarded as a single state whose action values are

very noisy, if individual states in Si have different action values under the discrete state

representation. If the learning rate, α, decays appropriately, the action values may,

in fact, converge, although not necessarily to values which correspond to an optimal

action policy. For example, in the extreme case where we lump all the states into a

single state region, the action values will converge—to the expected value of a random
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walk in the state-space! This is rarely helpful. Effective learning requires that the agent

make appropriate generalizations of states for the task it is learning.

2.3 Survey of Feature Extraction

The lesson of Figure 5 is that representation critically affects the task by the way that it

ties together the action values for different states. The central question this dissertation

poses is “how can an agent learn which states should be tied together in this way?”

This is a question which has been addressed by many other people, but it may help

to first describe some of the terminology before seeing how this dissertation fits with

related work.

This chapter has introduced the idea of state generalization in Figure 5, by means of

a state-space representation which has explicit regions with associated feature detectors,

fi. It seems natural in the context of this system to talk of feature extraction as the

process of discovering the fi. The features and the regions are opposite sides of the

same coin, so that state generalization and feature extraction are the same problem.

We have already seen that if we have state-space regions but no features, we can

construct features fi which correspond to the generalized state regions. But what about

the reverse situation: the action values are defined in terms of parameterized functions

fi without any explicit specification of state-space regions. These fi may still tie the

action values of certain states together, when those states result in similar patterns of

activity in the fi. For the purpose of analysis, we may call the fi feature detectors and

talk about the corresponding generalized states, even though those generalized states

may only be virtual constructions. Thus the generalized state corresponding to the

detector fi would be the set of states for which fi is active; the common activity of fi
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over these states causes a change in the action values of any one of the states to be

reflected in the values of the others.

Therefore, techniques for learning the fi may be just as relevant to this dissertation

as techniques which explicitly change the partitioning of state-space regions. Knowing

how to “group states together” is really about knowing when it is appropriate for the

action values of different states to be “tied,” or mutually dependent.

Most of the related work fits into one of three general categories. The first includes

work which attempts to tune feature detectors according to back-propagated error in

the action values. The second approach attempts to explicitly change the boundaries

of state-space regions, to increase the ability to discriminate states in areas we consider

“interesting” or “important.” A third approach is to attempt to split regions in order

to separate states which show statistical differences in their action values. In contrast,

this dissertation introduces a new approach based on the idea of cognitive economy.

The essence of this new approach is a decision to ignore differences between states and

to group them together, unless distinguishing them can be shown to be important in

learning to behave correctly in the task.

2.3.1 Gradient-descent function approximation

Much of the literature uses the term function approximation to refer to the process of

estimating the action values. Function approximation methods attempt to estimate a

function on the basis of its values at sample points. The process of learning the action

value function may be considered function approximation because the agent is learning

the function Q(s, a), on the basis of the values of Q it observes at individual state

transitions.
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Gradient-descent—a typical function approximation method—has been a common

approach to learning action values in reinforcement learning (Watkins, 1989; Anderson,

1986; Lin,1992; Sutton and Barto, 1998). Sutton and Barto (1998, p. 197) write that

“[g]radient-descent methods are among the most widely used of all function approxi-

mation methods and are particularly well suited to reinforcement learning.” The usual

procedure is to first define an error function for the action values, in terms of the dif-

ference between the current value and an estimate based on observations from future

states. For example, in one-step Q-learning we define the error function

δt =
(

rt+1 + γ max
b

Qt(st+1, b)
)

−Qt(st, at).

We expect that the values obtained at state st+1 will be more accurate than those at

state st, since they are one step closer to the actual reinforcement from the environment.

This is our justification for using the look-ahead values as the training signal for the

action value, Qt(st, at).

Then we adjust the parameters of the function Q according to a gradient descent in

the square of the error. For example, suppose that Q is a linear combination of feature

detectors, where each detector fi has a set of tunable parameters vi = vi1, . . . , vim :

Q(s, aj) =
∑

i

wijfi(s,vi)

Then we update each of the parameters vik according to

vik = vik −
1

2
β

∂

∂vik
(δ2

t ) (9)

= vik − βδt
∂

∂vik

[

rt+1 + γ max
b

Qt(st+1, b) (10)

−
∑

n

wnjfn(s,vn)

]

(11)

= vik + βδtwij
∂fi(s,vi)

∂vik
(12)
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where β is a learning rate, 0 < β < 1. The reason that we do not eliminate all the

error at once (by setting β = 1) is that usually there is no single value function which

will eliminate all the error for all the states in the region. Therefore, we try to find the

best balance by iteratively taking a small step in the direction which will reduce the

error most quickly for the current state. As we might expect, the increased cognitive

economy of state generalization often comes at the cost of some compromise in the

accuracy of the action-value function.

The objective of gradient-descent training is to reduce the mean-squared error

(MSE) over some distribution, P, of states and actions:

MSE =
∑

t

P(st, at)δ
2
t

Ideally, P reflects the actual frequency with which the agent observes states and actions

(the on-policy distribution). Sutton and Barto (1998) state that it is “not completely

clear that we should care about minimizing the MSE” as a performance measure for

evaluating function approximation methods, but that “it is not yet clear what a more

useful alternative goal for value prediction might be,” (p. 196). One advantage of

MSE is that it facilitates mathematical analysis, especially for linear gradient-descent

methods.

Advantages of gradient-descent methods

Gradient-descent methods capitalize on well-understood techniques for function ap-

proximation, such as back-propagation and statistical curve-fitting. By reducing error

in the action values, they allow the system to learn Q(s, a) accurately. Gradient-descent

techniques learn all components of the action value function at once: the appropriate
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“groupings” of states (which may be implicit generalized states), as well as the respon-

sibility of the groups for the overall error.

Disadvantages of gradient-descent methods

There are two principal disadvantages of relying on function approximation to achieve

state generalization: the errors driving the process may not be representative of the

true error, and errors in the action values are not always relevant to learning the correct

behavior for the task.

Gradient-descent techniques are based on the assumptions that the learning system

is given a representative sampling of the kinds of states it is to generalize, and that the

system is given true error signals. Unfortunately, if the agent explores its environment

by selecting actions other than the ones prescribed by an optimal policy, it will be

trained on a set of errors for a non-representative sampling of states and actions. Even

if the agent proceeds according to a greedy policy, its initial policy is likely to be

different than the correct one, again resulting in a non-representative training set for

the gradient-descent. A more serious problem may be that the early states of the task

see false error signals until the states they lead to are learned. The agent typically learns

the final stages of the task first, because they tend to result in direct reinforcement from

the environment. After the agent has learned the values of these states, the preceding

states will receive accurate updates. In Q-learning, the values get backed up one level

for each trial. This means that the values for the first states in the trials are not backed

up according to accurate training signals until a significant amount of learning has been

done. But the gradient-descent methods use those early, inaccurate updates just the

same.
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The position of this dissertation is that the accuracy of the values does not always

correlate with the accuracy of the policy being learned. If we accept the idea of cognitive

economy, then there are some details which are critical to performing the task, and some

which are irrelevant. The error-based approach sees errors as errors, without any way

of telling which errors are critical and which are benign. To construct a representation

which ignores irrelevant detail usually requires that we ignore errors which do not affect

the agent’s ability to learn the correct policy for the task. Gradient-descent techniques

are unable to do this.

2.3.2 Targeting “important” regions in state-space

Another general approach to feature extraction is to focus on regions of state-space

which are important in some sense. For example, we may target the regions of state-

space which the agent visits most frequently, or areas where the agent’s path is most

sensitive to its action choices, or areas which are close to simulated trajectories. The

agent then adjusts its representation in order to make the finest discriminations among

states in these important regions.

Importance is a key concept in this dissertation, but the approach developed here

is quite different from the notions of importance proposed by others. This may be seen

most clearly by considering a simple task and comparing the requirements of the task

with different definitions of importance.

An illustrative example

This section presents a simple gridworld task, displaying the action values and preferred

policies throughout its state-space. Applying different feature extraction schemes to a
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concrete example will enable us to compare their behavior and judge whether they are

able to capture the important distinctions in the task.

Figure 6 shows a 10× 10 gridworld in which the agent must choose to move up or

right to an adjacent cell at each time-step. The agent’s starting state, s0, is the cell in

the lower left corner. The environment returns a reward of +1 when the agent enters

state G, in the upper right corner of the grid. When the agent moves off the top or

right edges of the grid, the environment gives it a reward of −1. Otherwise, the rewards

are zero for the agent’s moves. The cells which are off the grid are terminal states, as

is G; therefore, the agent’s current episode ends when it enters one of these cells, and

it is placed again at s0 for the beginning of a new episode.
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     Action Set = {     ,         } 
 

Figure 6: A two-action gridworld task

In this two-action gridworld, there are many paths from the starting state to the

goal. In fact, until the agent arrives at either the top row or the right edge of the grid,

its choice of action does not matter! The agent needs to move up 10 times and right 10

times in order to reach the goal, but the ordering of these moves does not matter; in
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the interior of the grid, either action leads the agent along an optimal path to the goal.

Consequently, Q(s, up) = Q(s, right), unless s is in the top row or the right edge of the

grid. For states s in the top row of the grid, moving up is a fatal error but moving right

leads toward the goal state, G; thus Q(s, up) < Q(s, right). The situation is reversed

for states on the right edge: here up leads toward success but right leads to a failure

state, so Q(s, up) > Q(s, right). Therefore, the states in the top row require a different

policy than the states on the right edge of the grid; these states must not be grouped

together.

Representational requirements depend on policy differences

One way to discover the optimal policies for the states is to find the difference of the

action values at each state, s: Q(s, right)−Q(s, up). If this quantity is positive for one

state and negative for another, those states have different policies. If this quantity is

zero, that means that the agent has the same expectation of success with either action;

these “don’t care” states may be grouped together with either the up states or the right

states.

First, we must compute the action values. The states in the top row and the right

edge are the only states which experience direct reinforcement from the environment.

They do so by moving to a terminal state, with reinforcement of −1 or 1. Thus for

states s in the top row, Q(s, up) = −1, and for s on the right edge, Q(s, right) = −1.

For the two states which lead directly to the goal state, G, Q((9, 10), right) = 1, and

Q((10, 9), up) = 1. The values of the states (9, 10) and (10, 9) are therefore both 1, since

they both allow an action resulting in reward of 1.

We can find the remaining action values by considering the grid as a series of falling
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diagonals which each contain the set of states {(x, y) : x + y = c} for c ∈ [2, 20]. We

observe that all states on the same diagonal have the same value: γ times the value of

the states on the next diagonal closer to the goal. For example, the closest diagonal to

the goal consists of states (x, y) for which x + y = 19. This includes (9, 10) and (10, 9),

which both have value 1. Now consider states (x, y) on the diagonal where x + y = 18,

which is the set {(8, 10), (9, 9), (10, 8)}. From each of these states, we can reach one

of the states in the previous diagonal (where x + y = 19) in one move, so these states

have a value of γ × 1 = γ. (We can also move off the grid from (8, 10) and (10, 8),

but these fatal moves do not affect the state value because they result in a reward of

−1, which is clearly less than the value of the other action). For any state in the next

diagonal (x + y = 17), each move either results in a state on the preceding diagonal

(where x + y = 18), giving a value of γ2, or takes us to a failure state, with value −1.

Since we always have an alternative to moving to a failure state, all the states on this

diagonal have value γ2. By continuing in this way, we find that for any state (x, y) on

the grid (other than G) and any action a (except for actions leading to failure, which

we have already accounted for) Q((x, y), a) = γ19−(x+y).

Now that we have calculated the action values, we can plot their differences. Figure 7

shows a plot of Q(s, right) − Q(s, up) for the two-action gridworld. The values range

from −2 (for the right edge) to 2 (on the top row).

Since both actions have the same value for any of the interior states, their value

difference is always zero in the interior. We have no need to distinguish these states,

since our policy literally does not matter there. The only interesting differences in the

action values are at states in the top row, where the differences are all positive, and on

the right edge, where they are all negative. Therefore,the agent must distinguish the
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Figure 7: Q(s, right)−Q(s, up) for the two-action gridworld

states in the top row from the states in the right edge; all other feature information is

irrelevant for this task.

Frequency-based feature extraction

In frequency-based feature extraction, the agent focuses on features which identify the

states it sees most frequently. This is often done by a bottom-up clustering process

such as Kohonen’s (1990) Self-Organizing Map or Radial-Basis Function tuning (Moody

and Darken, 1989; Poggio and Girosi, 1990). The objective is to tune a set of detectors

toward the most commonly-visited areas of the state-space, that is, toward peaks in the

probability-density function of the state variables. Examples of this approach include

work by Holdaway (1989) and Wang and Hanson (1993).

Frequency-based feature extraction is a useful technique for developing a model

of the input space, paying special attention to states which are frequently visited.

Unfortunately, this strategy is less useful for control tasks, in which the state frequencies
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sometimes have no relevance to the decisions the agent must make in the task. Since

frequency-based methods ignore the action values, they have no basis for determining

when the optimal policy changes between two state regions. Thus they may group

together states which have different policies, with the result that the agent will be

unable to distinguish those states and will therefore perform incorrectly. In addition,

they are sensitive to the agent’s exploration policy; if the agent conducts off-policy

exploration, the exploratory moves will change the frequencies of the states seen by the

agent, and thus change the feature extraction.

The gridworld task shows that the most frequent states are not necessarily the

most important in the task. Although frequency may be important in some tasks, the

gridworld task is a counter-example to the claim that frequency is an effective measure

of feature importance in the general case. Figure 8 plots the probability of entering

each state in the course of an episode which begins in s0, assuming a random action

selection by the agent. This plot looks very different from the plot of differences in

the action values (Figure 7). The frequency distribution plot emphasizes areas of the

grid which are not important in this task: states close to the diagonal and close to the

initial state. These are the “don’t care” states in our task, but frequency-based feature

extraction will attempt to give the agent the highest resolution for these areas of the

grid. We could arrive at different frequency distributions if we assume something other

than a random policy, but we are unlikely to arrive at a distribution which is relevant

to the task without comparing the action values and policies of neighboring states.
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Figure 8: Plot of the state-probability distribution for the two-action gridworld under
random exploration

Variable Resolution Dynamic Programming

Andrew Moore’s (1991) Variable Resolution Dynamic Programming (VRDP) attempts

to “identify areas of state space important to a task,” in order “to produce a partitioning

with high resolution only in important regions.” To do this, VRDP partitions the state

space into boxes, indexed by a tree data structure. It learns a model of the environment,

which it uses to conduct “mental practice” runs. States visited during mental practice

are considered important, and their boxes receive the finest level of partitioning. The

result is a representation with a fine resolution along trajectories through state space

that correspond to the mental practice. This strategy provides increased resolution

for situations the agent must learn to handle, while making broad generalizations over

parts of the state-space that the agent never visits.

VRDP makes the assumption that all states along the trajectory are of equal im-

portance, and ought to be represented at the highest resolution. This assumption does
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not always hold, and may lead to irrelevant distinctions in control tasks. For example,

the last state of the trajectory is the only important one in the gridworld task we have

just been considering. VRDP would concentrate on an entire path from s0 to G, even

though the only important areas of the grid are the top and right edges. VRDP also

requires the agent to make a good initial guess at a valid trajectory, which prevents the

technique from being useful for the general reinforcement learning problem, in which

the agent has no way of knowing whether there is a “goal” state, or where it might

be. VRDP creates a representation with varying levels of resolution—an important

strategy for creating representations with high cognitive economy. For control tasks,

the disadvantage of VRDP is that it is blind to the reinforcements, so that it is bound

to create many distinctions that are irrelevant to choosing the correct action.

Parti-game

Like VRDP, Moore and Atkeson’s (1995) Parti-game algorithm partitions a continuous

space, with the greatest resolution about “important” regions; but Parti-game has a

more general notion of importance than VRDP. Parti-game assumes that the agent has

access to a controller which can guide it in the direction of the goal-state. The state

space is partitioned into coarse boxes, and the agent’s action at each point is to aim

toward a neighboring box. Parti-game assumes that all paths through state space are

continuous, so that an action will never take the agent farther than a neighboring box.

Therefore, if the agent gets stuck, the agent’s clustering must be too coarse to allow

the agent to see and navigate around an obstacle at its current position. So it splits the

offending box and continues learning. Eventually, the representation has fine enough

resolution about the obstacles for the agent to successfully navigate its way to the goal.
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Parti-game works well in high-dimensional spaces, if the task can be characterized as

a kind of geometric abstraction task: the task is deterministic, there is a known region

of the space which is the goal, and the actions consist of moving to neighboring regions

in the space. But in the general reinforcement learning problem, the agent’s actions

could lead anywhere, and the states of high reward (“goal states”) are only known by

the rewards that the agent receives when it lands in those states. Parti-game treats

states where the agent’s progress is blocked as the important states. This is compatible

with a definition of importance in terms of differences of values and policies between

states; the agent’s failure at these states would typically lead to negative feedback,

while some other choice of action would result in success and positive feedback. But

the assumptions required for the agent to know where the goal is and when its progress

is blocked prevent Parti-game from being a solution to the general problem.

2.3.3 Distinguishing states with different action values

Finally, some work has focused on separating states which differ in the value of one

of their actions. Examples include the G-algorithm (Chapman and Kaelbling, 1991)

and McCallum’s (1995) U-tree and UDM algorithms. Like some of the frequency-based

schemes, these methods create a representation of varying resolution, but they do so

by attempting to make distinctions precisely where necessary in order to distinguish

states which have different action values. Their objective is a representation which

allows the agent to accurately predict the expected reward from any state. Therefore,

if two states differ on the basis of any of their action values, these methods make a

distinction between those states.
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The G-algorithm

In the G-algorithm, Chapman and Kaelbling (1991) considered the case where the

representation is equivalent to a binary tree, noting that this approach may be extended

to the partition case by splitting continuous attribute values at particular thresholds.

The G-algorithm splits a region when it determines that an action has a statistically

significant difference in value for two states in the region. One limitation of the G-

algorithm is that it can only consider a single attribute at a time, and thus cannot

separate states on the basis of a complex feature which represents a combination of two

or more dimensions of the state-space.

U-Tree

McCallum’s U-Tree algorithm (McCallum, 1995) makes utile distinctions—distinctions

necessary to distinguish states which have different expected rewards. Like the G-

algorithm, U-Tree maintains a tree of state-space distinctions, resulting in a set of

partitioned regions (the leaves of the tree). Also like the G-algorithm, U-Tree uses

a robust statistical test to evaluate whether the values of two adjacent regions are

different. U-Tree explores the fringe of the tree, making trial distinctions and then

testing whether they help predict future reward. Unlike the G-algorithm, U-Tree is

an instance-based algorithm and retains all its observations in memory. It then re-

clusters the data for individual states according to its current set of state-space splits,

instead of having to start learning the rewards from scratch in a newly-split region. It

also is able to evaluate region-splitting criteria based on multiple attributes, unlike the

G-algorithm.
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s1 s2 
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Figure 9: This state region appears to have different values for the action, depending
on whether we enter it from s1 or s2. Thus the Markov property does not hold for the
partition region.

Is the Markov property really the key?

These methods assume that the representation is a partition and that the expected re-

wards for partition regions should obey the Markov property. Although the task itself

is Markov, it might no longer appear Markov to the agent if the representation gener-

alizes over groups of states, as illustrated by Figure 9. Although the Markov property

ensures that we may accurately predict future rewards if we know the current state—

no matter how we may have arrived in this state—state generalization may prevent

the agent from distinguishing individual states in a region. This is the hidden state

problem, also known as perceptual aliasing. One way of detecting the problem is to

maintain separate sets of statistics for a region, according to the agent’s actions before

entering that region. If different paths into the region produce different expectations

of reward, it is because the paths lead to aliased states which need to be distinguished.
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McCallum’s UDM algorithm (McCallum, 1995) uses this strategy to split regions. The

other approach, used by the G-algorithm and U-Tree, is to make provisional splits in

a region, and make them permanent if there is a statistically-significant difference in

expected reward for the sub-regions. In both approaches, we assume that the represen-

tation should distinguish states whenever any action has significantly different values

for those states.

The approach developed in this dissertation has a different aim: allowing the agent

to make sound decisions at every state, under the assumption that some differences

in action value are not relevant to the agent’s choices. The agent does not need the

Markov property to hold everywhere in order to learn the best policy. It only needs

to be able to predict the values of the states and to choose the correct policy at each

state. Some action value differences will have no bearing on either the correct policy or

the best expectation of reward from a state. In particular, if two states differ sharply

on the value of an action which is not a preferred action for either state, that difference

is irrelevant to learning the task. For example, suppose actions a, b, and c have values

(1.0, -0.2, 0.3) for state s1, and have values (0.99, 0.4, 0.3) for s2. Is this grounds for

splitting a region which contains s1 and s2? No, because both states have the same

preferred action (a), and nearly the same expected reward for taking that action. The

difference in value for action b may be statistically significant, but it has no bearing on

the expected return seen by the agent, because the agent would not choose that action

from either state. The Markov criterion requires the representation to distinguish these

states so that the agent can accurately predict the values of action b. This example shows

that the Markov criterion sometimes leads us to make distinctions which are irrelevant

to solving a particular task, because it does not take into consideration whether a
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particular distinction is relevant to the decisions the agent must make in the task.

2.3.4 Good representations

What is a good representation? For our gridworld task, a good representation allows the

agent to distinguish the top row from the right edge, as simply as possible. Figure 10

shows three successful state partitionings for this task.

Figure 10: Examples of successful feature extraction for the two-action gridworld task

The first panel shows the grid broken into three regions: the top row, the right

column, and the interior of the grid. The arrows show the optimal policy for each

of the regions: right for the top row, up for the right column, and either action in the

interior. Since either action is optimal in the interior, we could group the interior states

with those in the top row, with a policy of right for this region. This arrangement is

shown in the middle panel of the figure. (Grouping the “don’t care” states with the top

row will cause the action-value differences to be less extreme for the top row, but will

not have any negative consequences for this task). Even if the action-value differences

for a set of states are not zero, if the differences are small enough, it may sometimes

still be advantageous to group them together with a more “opinionated” set of states—

especially if those differences might be due to noise in the agent’s observations. For this

reason, we might decide to regard states as “don’t care” states whenever the differences
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are below some small threshold. Of course, there are many other ways of partitioning

the grid. The right panel of the figure shows the grid divided into two regions by the

diagonal y = x. All three state generalization schemes show great cognitive economy;

they reduce the number of states from 100 to two or three. Notice that while there

is no one unique optimal representation, the representation must distinguish between

states in the top row and states on the right edge. These are the important distinctions

for this task, and they arise out of the differences in optimal policy between the states.

How can the agent learn the important distinctions, as it goes about performing the

task? We have seen that gradient-descent function approximation can be unrelated to

the representational requirements of the task. Frequency-based approaches cannot de-

termine relevant distinctions, because they are blind to differences in the action values.

Separating states whenever they disagree on an action value may lead to irrelevant dis-

tinctions. What is needed is a way of characterizing action-value differences that affect

the agent’s ability to make sound decisions in its task. The goal of my dissertation

is to meet this need by applying the principle of cognitive economy to the problem of

representation. The next chapter begins the analysis with a formalization of cognitive

economy for reinforcement learning.
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Chapter 3

Formalization of Cognitive

Economy for Reinforcement

Learning

At PARC we had a slogan: “Point of view is worth 80 IQ points.” It was

based on a few things from the past like how smart you had to be in Roman

times to multiply two numbers together; only geniuses did it. We haven’t

gotten any smarter, we’ve just changed our representation system. We think

better generally by inventing better representations; that’s something that

we as computer scientists recognize as one of the main things that we try

to do.

—Alan Kay

3.1 Introduction

3.1.1 Overview

Finding a good representation of our world maximizes our ability to function within

it. The previous chapter presented the reinforcement learning problem in terms of
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the discrete representation, but then showed that most tasks can only be solved if the

agent’s representation makes use of some form of state generalization. For example,

discrete representation of any task having a continuous state-space would result in an

infinite number of action values for the agent to learn in order to solve the task.

The most effective representations exhibit high cognitive economy: they present the

information which is most important for performing the task, and otherwise simplify the

task in order to minimize the agent’s effort. Current methods of feature extraction tend

to either obscure important information or complicate the representation by adding

irrelevant information—in both cases, reducing the cognitive economy of the resulting

representation. What is needed is a principled way of determining when to distinguish

states and when the agent may safely group them together, combining their action

values.

The dissertation addresses this need by applying the psychological principle of cog-

nitive economy to the domain of reinforcement learning. Psychologists have shown that

humans cope with difficult tasks by simplifying the task domain, focusing on relevant

features and generalizing over states of the world which are “the same” with respect

to the task. This dissertation defines a principled set of requirements for representa-

tions in reinforcement learning, by applying these principles of cognitive economy to

the agent’s need to choose the correct actions in its task.

3.1.2 State generalization

By allowing the agent to learn action values for entire groups of states, state gener-

alization allows the agent to learn the task with a much smaller number of training
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examples—as long as the experiences are generalized over similar states. If the repre-

sentation groups together states which are “the same kind of thing” in the task, the

agent benefits from sharing the experiences of states with other states in the same

group. The agent does this simply by storing action values for the generalized states

which correspond to those groups of states. Knowing how to group the states is critical

because bad generalized states will result in attempts to learn policies or values which

are incorrect for some of the states. Bad state generalization can make the task harder,

or even impossible, to learn.

Figure 11 shows in schematic form how the representation recodes the environment

into a form which is more relevant to the agent in its task. To the agent, the represen-

tation is its environment, since the agent hangs its action values on the framework of

generalized states given by the representation. For example, in Figure 11, the repre-

sentation groups together states s1 and s2 ; therefore, the agent sees them as instances

of the same generalized state. This grouping will only be helpful if s1 and s2 require

the same behavior in the task and are equally desirable states for the agent.

3.1.3 A principled approach

Chapter 2 described previous research concerning representation learning. Most of these

efforts appear ad hoc in the context of the reinforcement learning problem because they

were not originally developed to meet the needs of a reinforcement learning agent in

its task. They attempt to ensure the accuracy or predictability of the action values or

they increase the resolution of the state-space about frequently visited states. While

these techniques often work, they do not always lead to features which help the agent

choose the correct action.
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Figure 11: The agent’s representation simplifies the environment by grouping states of
the world into generalized states that share the same action values
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The goal of this dissertation is to develop a more principled approach to represen-

tation. The resulting criteria will be principled in the sense that they relate represen-

tational distinctions to the ability of an agent to learn to make sound decisions in its

task. These criteria build on the principle of cognitive economy, and allow the agent

to attend to relevant task details while generalizing over irrelevant information. Since

these criteria are tied to the need for the agent to make good decisions in its task, they

will focus on important features and necessary distinctions, but may allow other action

values to be learned inaccurately. This dissertation takes the point of view that the

action values help us learn correct actions, but that accurate action values are not an

end in themselves. Learning all the action values to a high level of accuracy is usually

a waste of time and effort.

3.2 Cognitive Economy

Cognitive economy generally refers to the combined simplicity and relevance of a catego-

rization scheme or representation. Natural intelligences appear to adopt categorizations

with high cognitive economy in order to make sense of the sea of stimuli impinging on

their senses without overloading their bounded cognitive resources. Under the heading

Cognitive Economy, Eleanor Rosch (1978) writes of the “common-sense notion” that

the function of categorization is to “provide maximum information with the least cog-

nitive effort,” “conserving finite resources as much as possible.” (Rosch, 1978, p. 28).

She notes that an organism benefits from being able to make as many predictions as

possible from the observation of a single property, but that this leads to a huge number

of very narrow categories. Then she writes (p. 29):
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On the other hand, one purpose of categorization is to reduce the infinite

differences among stimuli to behaviorally and cognitively usable propor-

tions. It is to the organism’s advantage not to differentiate one stimulus

from others when that differentiation is irrelevant to the purposes at hand.

Cognitive economy results when the representation makes task-relevant distinctions

while ignoring irrelevant information. This form of selective generalization presents the

agent with a simpler working environment for its task.

In his book Cognitive Economy, Nicholas Rescher expresses this idea in terms of

the economic dimension of knowledge—the costs and benefits of acquiring and manag-

ing information. He argues that “Cost effectiveness—the proper coordination of costs

and benefits in the pursuit of our ends—is an indispensable requisite of rationality,”

(Rescher, 1989, p. 12). Therefore, a rational agent must assess the cognitive importance

of its knowledge: “The assessment of cognitive importance is a key issue for rationality

in its economic concern for returns on resource expenditure,” (p. 69). Rescher adds (p.

71):

Importance turns on the extent to which the removal or diminution of a

given item would undermine or diminish the prospects of realizing the aims,

values, or functions at stake. [. . . ] Accordingly, importance pivots on the

idea of making a difference—of casting a large shadow across the particular

issues in view.

These common-sense ideas describe mechanisms that allow us to solve difficult tasks

in information-dense environments. In order to apply these ideas to the reinforcement

learning problem, we will need to explain what it means for a feature to be “relevant

to the task,” or “make a difference.” This chapter defines these ideas in terms of the
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agent’s action values, which offer an objective measure of its prospects of reaching its

goals.

3.2.1 Related ideas in reinforcement learning

Researchers in reinforcement learning recognize the need for cognitive economy, even

though they may use different terms to describe it. Regarding the need for generaliza-

tion, Sutton and Barto (1998, p. 1993) write:

We have so far assumed that our estimates of value functions are represented

as a table with one entry for each state or for each state-action pair. This

is a particularly clear and instructive case, but of course it is limited to

tasks with small numbers of states and actions. The problem is not just the

memory needed for large tables, but the time and data needed to fill them

accurately. In other words, the key issue is that of generalization. How can

experience with a limited subset of the state space be usefully generalized

to produce a good approximation over a much larger subset?

This is a severe problem. In many tasks to which we would like to apply

reinforcement learning, most states encountered will never have been expe-

rienced exactly before. This will almost always be the case when the state

or action spaces include continuous variables or complex sensations, such as

a visual image. The only way to learn anything at all on these tasks is to

generalize from previously experienced states to ones that have never been

seen.

Cognitive economy demands that the representation generalize over states, but only

when they are “similar,” where the meaning of “similar” depends on the agent and its
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task. Kaelbling, Littman, and Moore (1996, p. 258) comment:

In many cases, what we would like to do is partition the environment into

regions of states that can be considered the same for the purposes of learning

and generating actions.

For most tasks, some areas of the space will require more careful differentiation than

others; if the representation allowed for the same level of resolution throughout the

state-space, it would be needlessly complex in areas of the space where the task re-

quires less care. Therefore, the smallest representation which makes the distinctions

necessary for the task is one which employs a variable resolution, focusing its attention

and resources on the distinctions which are important to the agent. This is the idea

behind Moore’s (1991) Variable Resolution Dynamic Programming algorithm, which

was designed as a means of increasing the resolution of the representation in “important

regions of space.” Along the same lines, Hu and Fellman (1996) write: “The algorithm

we propose distinguishes important or sensitive sections of a trajectory.”

The dissertation builds on these ideas by developing principled criteria for detecting

important features and deciding when states are “the same” with respect to the agent’s

task.

3.2.2 Three aspects of cognitive economy

This dissertation identifies three aspects of cognitive economy that are especially rele-

vant to reinforcement learning: the size of the feature set, the relevance of features to

the task, and the preservation of necessary distinctions for success in the task.

If we describe the state of the world in terms of a set of features, we may reduce the

size of the feature set by choosing features which generalize over large numbers of states.



84

The size of the feature set may be easily measured by simply counting the number of

features, or by more sophisticated measures such as Minimum Description Length.

The need for generalization is a common thread in the literature on representation.

The danger of generalization is that inappropriate generalization may prevent relevant

features and necessary distinctions from being seen.

Feature relevance and necessary distinctions are the more difficult aspects to define,

and are the main focus of this dissertation. Relevant features are properties which make

a difference in the agent’s task because they identify states where the agent’s choice of

action is critical to its success in the task. There may be details in the agent’s world

that are unimportant, because they make little difference in the agent’s course of action.

A good representation will not only allow the agent to focus on important features, but

will capture all the distinctions which are needed to solve the task. This dissertation

characterizes important features and necessary distinctions by criteria which are tied

to a standard for the learnability of the task.

The next section takes the first step toward formalizing cognitive economy for rein-

forcement learning by defining a representational model and presenting some assump-

tions about the agent and its task.

3.3 Preliminaries

For an agent with bounded cognitive resources, state generalization can make the task

easier when groups of adjacent states represent “the same kind of thing” in the task. In

order to ensure that state generalization is beneficial, we need to make some assump-

tions about the nature of the agent and its task. The following section makes these

assumptions explicit, and defines the basic terminology and system model which will
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be common to the rest of the dissertation.

3.3.1 Representational model

In order to analyze the effects of representation upon reinforcement learning we need

to know something about the form of the representation. We will assume the following

representational model. The action values are represented by a weighted sum of feature

detectors, and the weights are updated according to a gradient-descent in the squared

error. Thus the action value for the current state and action is given by

Q(s, ak) =
∑

i

wikfi(s)

Each detector, fi, is a function which maps states to numbers. We associate a weight,

wik ∈ <, with the influence of detector fi upon the value of action ak. Normally, I will

not explicitly indicate the time at which these numbers are taken, but in this section I

will index these by a time parameter, in order to consider the updates to the weights.

Thus we will refer to the current state as st and the current action value as Qt(st, ak)

and the current value of wik as wik(t). Then our current action value and weight updates

are the following:

Qt(st, ak) =
∑

i

wik(t)fi(st) (13)

∆wik(t) = α (< st, ak >−Q(st, ak)) fi(st) (14)

Suppose that the agent takes action ak from state st, resulting in state st+1 and reward

rt+1. The term < st, ak > represents the reward observed by the agent at time t + 1,

after executing action ak in state st. The weight update rule comes from the gradient

of the squared error of the action value for the current state and action, Qt(st, ak):

∆wik(t) = −
1

2
α

∂

∂wik(t)
(< st, ak >−Qt(st, ak))

2 (15)
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There are several ways of defining the observed value, < st, ak >, which is the target

for the updates to Qt(st, ak). One approach is to use the actual return over the whole

path, as in Monte Carlo methods:

< st, ak >= Rt = rt+1 + γrt+2 + γ2rt+3 + · · · (16)

where Rt is only available after a complete episode. Or instead of looking all the way

to the end of the episode, we can base the observed value on a one-step look-ahead, as

Dynamic Programming methods do:

< st, ak >= rt+1 + γV π(st+1) (17)

where the current estimate of the value of st+1 is

V π(st+1) =
∑

a

π(st+1, a)Qt(st+1, a)

and π(st+1, a) represents the probability of taking action a from state st+1 under our

current policy, π. The one-step look-ahead rests on the assumption that the information

available at time t + 1 will provide a better estimate than Qt(st, ak) of the reward for

the current episode. Making use of the whole path gives the true value, but requires the

agent to wait for the completion of the episode before performing the updates to the

function Q. The temporal difference methods, TD(λ), provide a bridge between these

approaches. In TD learning, the parameter λ is set to a value between 0 and 1; TD(0),

also called one-step TD, uses the one-step look-ahead, while TD(1) uses the whole-path

return, Rt. The Q-learning algorithm is an off-policy version of one-step TD.

As an aside, note that as long as the fi are finite, we may assume that their range is

[0, 1]; that is, fi(S) ⊆ [0, 1]. If this is not true for a particular feature set, we can always

normalize the fi to be in the range [0, 1], hiding the normalizing factors in the weight
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terms. For example, suppose the most general case, in which each detector fi has range

[ai, bi]. Then we can write the function Q in terms of a normalized set of detectors {gi},

where gi(s) = fi(s)−ai

bi−ai
∈ [0, 1], and we use appropriate weights uik = (bi − ai)wik. We

also introduce a constant-valued detector, gc(s) ≡ 1, with weights uck =
∑

i aiwik. In

terms of our new, normalized detectors,

Q(s, ak) =
∑

j

ujkgj(s)

=
∑

i

uikgi(s) + uckgc(s)

=
∑

i

wikfi(s)−
∑

i

aiwik +
∑

i

aiwik

=
∑

i

wikfi(s).

Since the feature detectors have range [0, 1], we can think of each detector as an indicator

of the degree to which its feature describes the current state.

This representational model is specific enough to allow us to examine the effects

of state generalization on reinforcement learning; yet it is general enough to cover

a wide variety of representations, such as discrete representations, partitions, coarse-

coded tilings, and functions of overlapping, continuous-valued detectors. This model

is a generalization of Q-learning; we can verify this by showing that its learning rule

reduces to that of Q-learning in the case of discrete representations. Suppose we have

a dedicated detector for each state:

fi(st) =















1 if st = si

0 otherwise

Then the value of action ak is stored separately for each state si, since we know by

Equation 13 and the definition of fi that Qt(si, ak) = wik(t)fi(si) = wik(t). Suppose

that the agent takes action ak from state si, resulting in state sj and reward rt+1. Then
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Equation 14 takes the form

∆wik(t) = α(< si, ak >−wik(t)).

If we take the one-step look-ahead value given by Equation 17, and the agent pursues

a greedy policy, this is the familiar weight update for standard Q-learning, but with

w’s written in place of the Q’s:

∆wik(t) = α(rt+1 + γ max
a

wja(t)− wik(t)). (18)

How does the model generalize to the case where the representation is not discrete?

If the fi are binary detectors which do not overlap, the model takes the form of a

partition, in which the state-space is divided into a set of non-overlapping “boxes” (as

in the inverted pendulum experiments of Michie and Chambers, 1968, for example).

Figure 13a shows a partition representation for the gridworld. Decision trees may also

be regarded as partitions, since exactly one leaf or category is active at any given time.

As in the case of discrete representations, with a partition there will always be one

detector with the value 1 and the rest will all have the value 0. Therefore we again

store the value of action ak for state st in a single weight: Qt(st, ak) = wik(t), and the

update equation is the same as that of the discrete case, given by Equation 18. This is

the standard Q-learning update, except that now we are dealing with action values for

regions, rather than for distinct states. So the weight wik(t) not only stores the value

of action ak for state st, but for other states as well. In effect, the partition regions

take the role of generalized states.

Finally, we can implement a coarse-coded representation (Hinton, 1984; Albus,

1981) by choosing detectors whose recognition sets overlap; that is, more than one

detector will be active for some states. If the detectors are binary, we have an overlap-

ping tiling of the space, as illustrated by Figure 13b. In this case the action values are
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the sum of the weights wik(t) for the active detectors. Here our model departs from the

update rule for discrete-state Q-learning, since the update for wik(t) now depends on

the contribution of other weights, wjk(t), through the term Qt(st, ak) (Equation 14). In

the most general case, the detectors may have continuous-valued membership functions,

as in the example of Figure 13c, and the contribution of wik(t) to Qt(st, ak) depends on

the strength of detector i’s recognition function at the current state, fi(st). Examples

of such representations include those which employ perceptron (Rosenblatt, 1962) or

radial basis function nodes (Moody and Darken, 1989).

Of course, the action values given by Equation 13 are not necessarily the true action

values for state st. We must be careful to distinguish between the agent’s current esti-

mates, Qt(st, ak), and the values the agent observes for time t, < st, ak > (whichever def-

inition we use), and the true expectation of reward, which we will denote by υπ(st, ak).

The agent observes a sequence of values < st, ak >, and learns to estimate these values

by its function Qt(s, a). Whether the function Q actually converges is an important

and interesting issue, but one which is beyond the scope of this dissertation. (Please

see Watkins and Dayan, 1992, and Singh, Jaakkola and Jordan, 1995, for analyses of

the convergence of Q-learning). The true values υπ(s, a) represent the set of targets to

which the Q function converges. Thus the function υ does not depend on the training

of a particular agent or the convergence of its action values. Instead, it reflects the

characteristics of a particular representation, according to our assumptions regarding

the observed values and sampling policy. Defining the function υ is non-trivial, and

will be left until the following chapter. It will make possible further analysis regarding

necessary properties of representations.

This chapter formalizes the principle of cognitive economy into criteria based on
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the action values for generalized states—the wik(t). These generalized action values

are associated with the reward expected after taking action ak from a state for which

detector fi is active. The generalized action values apply to features, and will figure

prominently in criteria for the importance of features and for necessary distinctions.

Since our concern is with the representation, we will assume that these values are the

true, steady-state values which will be learned by an algorithm such as those discussed

in the previous chapter for learning action values.

3.3.2 Assumptions

Control task

The dissertation assumes that the agent’s objective is to learn a specific control task.

This assumption has two important implications: that information not relevant to the

task may be ignored, and that the agent is forced to choose an action at each step of

the problem. Because the agent is facing a specific task, its goal is to learn that task—

not to learn a complete map of the action values for the entire state-space. Although

a complete mapping of the action values makes optimal performance trivial (since

the agent may simply choose the action with the highest value for its current state)

learning the best policy does not necessarily require the agent to learn an arbitrarily

good mapping of the values. The agent only needs to learn the action values well

enough so that it can distinguish the appropriate action at each stage of the problem.

Therefore, the agent may be able to make simplifications or generalizations over features

and states; in general, this will cause its action values to be less accurate, but only in

areas where greater accuracy is not needed for solving the task. A key attribute of

control tasks is that the agent is forced to choose an action at each step of the problem.
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This forced-choice property is the basis for this chapter’s definition of the importance of

a feature in terms of its ability to indicate the advantage of pursuing one action instead

of another.

Irrelevant information

Assume that the task permits state generalization and is learnable. Therefore, some of

the task information may be ignored by the agent; otherwise, there would be no point

in attempting to apply state generalization to the task, since any attempt to generalize

over states would lose information vital for performing the task. This dissertation

is concerned with tasks in which the important attributes of the state-space may be

represented by a simplified model, which will allow the agent to learn the task with less

effort—tasks for which the principle of cognitive economy is valid.

Bounded cognitive resources

If the agent had unlimited memory capacity and processing time, representation would

be easy; the agent could solve the task by brute force, dividing its state-space into

arbitrarily fine divisions. It would regard every configuration of features or sensor

data as a unique state. The convergence result for Q-learning with a discrete state

space guarantees that the agent will eventually find an optimal policy for the task,

given sufficient computational effort. Of course, this brute force approach is simply

infeasible for most interesting tasks, because real agents have limited memory capacity

and processing power.

Human beings face the same obstacles, but cope by ignoring details of the task

which are not important to them. Herbert Simon describes human problem-solving as
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governed by the principle of bounded rationality, which he describes as follows:

The capacity of the human mind of formulating and solving complex prob-

lems is very small compared with the size of the problems whose solution

is required for objectively rational behavior in the real world—or even for

a reasonable approximation to such objective rationality (Simon, 1957, p.

198).

Therefore, human beings transform the task at hand into a simpler task. Simon

writes

For the first consequence of the principle of bounded rationality is that the

intended rationality of an actor requires him to construct a simplified model

of the real situation in order to deal with it. He behaves rationally with

respect to this model, and such behavior is not even approximately optimal

with respect to the real world (ibid, p. 199).

According to Simon, the human response to our bounded rationality is to work

with a simplified model of the world in which our solutions will translate into “good

enough”—though not optimal—solutions in the real world. Hence we may expect that

a reinforcement learning agent will profit from the same strategy of simplifying its

representation by ignoring irrelevant detail. This means that the agent generalizes over

states which differ only in details which are irrelevant to the agent’s task. The trick

is in knowing which details are irrelevant and which generalizations would be harmful

because they obscure important distinctions between states. Unlike Simon, my hope is

that our agent will be able to learn to perform its task nearly optimally, with respect

to the limited reinforcement defined by the task.
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3.3.3 Definitions

Feature A descriptive property of objects.

This definition of feature is consistent with Duda and Hart’s use of the term to

refer to a property which distinguishes objects that belong to different classifi-

cations (Duda and Hart, 1973, p. 2). Features may describe a single object, for

example, my car(x), ordinary sets of objects, such as four door sedan(x) or fuzzy

sets, in which the property may be more or less true for different objects, for

example, tall(x).

The objects we will be concerned with are the system states of our agent: s ∈ S.

The classifications we will make have to do with the preferred policies for these

states. We are interested in features which allow the agent to learn to classify

states according to the actions it must take to maximize reward, and to make

these determinations with minimal cognitive effort.

Feature detector A recognition function of the form f : S → [0, 1]. f(x) indicates

the degree to which the feature is true of the object x.

If the feature is binary, either f(x) = 0 or f(x) = 1. For example, the feature

my car(x) would be represented by a detector which outputs the value 1 if x is my

car, and 0 otherwise. If the feature describes different objects to different degrees,

its recognition function will be continuous-valued. For example, we might choose

to define a feature detector for the feature tall(x) by a function like that plotted

in Figure 12.

We will use the term feature detector to refer to either the system component which

becomes activated when a particular feature is detected (for example, a hidden



94

2 4 6 8
x (in feet)

0.2

0.4

0.6

0.8

1

tall(x)

Figure 12: A possible recognition function for the feature tall
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node in a neural network) or the recognition function, f(x), which describes the

behavior of such a component (for example, a sigmoid function which describes

the behavior of such a node).

Recognition set Let S be the set of objects under consideration, and let f : S → [0, 1]

be a feature detector defined on S. Define

Sf = {s : s ∈ S and f(s) > 0}.

We will call Sf the recognition set for the feature f .

We will say that the detector detects or recognizes the objects in its associated

recognition set.

Generalized state The recognition set associated with a feature detector.

A feature detector f recognizes a set of states (its recognition set), which are

described by some feature. The feature is the intension of that set of states,

describing their properties. The generalized state is the extension of the feature.

The generalized states, features, and detectors may or may not be defined ex-

plicitly by the representation, but they provide the underlying vocabulary for the

analysis. At times it will be more convenient to talk about feature detectors and

feature extraction; at other times, it will be more convenient to think in terms of

the generalized states. The generalized states play a significant role in the anal-

ysis to follow, because they describe regions of the state-space which share the

same set of action values. By determining the generalized states, the represen-

tation determines which action value distinctions will be available to the agent.

Calling these regions generalized states highlights their function as entities which
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organize the action values, just as ordinary states do in representations that do

not generalize.

Preferred action set Define the preferred action set for a state s ∈ S as the set of

actions which result in the maximum reward from s:

pref(s) = {ai ∈ A : Q∗(s, ai) = max
a

Q∗(s, a)}

In practice, we may wish to ignore minuscule differences in reward, and include in

pref(s) actions which lead to rewards which are “close enough” to the maximum.

Given a tolerance, ε, we can thus define

prefε(s) = {ai ∈ A : Q∗(s, ai) ≥ max
a

Q∗(s, a)− ε}

Thus pref(s) = pref0(s) and pref0(s) ⊆ prefε(s).

Pure and mixed sets of states Let Si ⊆ S be a set of states. We will say that Si is

a pure set of states when all the states in Si share the same preferred action set.

That is,

pref(sj) = pref(sk), ∀sj, sk ∈ Si.

If Si is not a pure set of states we will call it a mixed set of states.

We will be interested in the distinction between pure and mixed sets of states

because generalization over mixed sets can obscure important differences in policy.

Such generalization may also reduce the apparent relevance, or importance, of

detectors in a coarse-coded representation. We refer to sets of states with the

same ε-preference sets (prefε(si)) as being ε-pure.
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Some illustrations of features, detectors, pure and mixed sets

Figure 13 shows several different representations for the four-by-four gridworld demon-

stration presented in Chapter 2. Assume that the start state is the cell (1, 1), the goal

state is (4, 4), and let S represent the set of states, which are the the 16 cells (x, y)

in the grid. As in the previous examples, the action set is {up, right}. In part (a) the

a.  An effective 
    representation  

b.  The task cannot be 
     learned with this 
     representation 

c.  The task is learnable 
     with this representation, 
     although the recognition 
     sets are mixed sets 

f1 

f2 

 f1

 f3  f2 
 f2 

 f3 

 f1 

Figure 13: Several different representations of the gridworld

representation is a partition; the three detectors are disjoint and collectively cover all

of S. (That is, except for the goal state. We may safely ignore the goal state because

the episode ends when we enter the goal state; hence, the agent is never called upon

to choose an action from this state. Therefore we could extend either f1 or f3 to cover

the cell (4, 4) without changing any of the action values or policies). The first detector,

f1, covers the top row, except for the goal cell, (4, 4). We can write the recognition

function for f1 as

f1 ((x, y)) =















1 if (x, y) ∈ {(1, 4), (2, 4), (3, 4)}

0 otherwise
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The corresponding recognition set is Sf1
= {(1, 4), (2, 4), (3, 4)}. The preferred action

set for all the states in Sf1
is {right}; therefore, Sf1

is a pure set. The detector f3 is

similar to f1, except that its recognition set consists of the cells in the right column of

the grid: Sf3
= {(4, 1), (4, 2), (4, 3)}. Since the preferred action set for all states in f3

is {up}, Sf3
is also a pure set.

The detector f2 covers the interior cells of the grid; Sf2
= {(x, y) : x < 4, y < 4}.

With a discrete representation, this group of states would appear to be a pure set, since

either action is equally good for any of these states. But the groupings of states into

Sf1
and Sf3

cause the agent to see a different set of action values in the interior states,

and Sf2
will usually be a mixed set. How this occurs illustrates some of the effects of

state generalization. The key idea is that the agent’s action values are shared among all

states included in a generalized state. The action values seen by the agent are the ones

stored for the generalized states, not the actual values for individual states. Therefore,

to the agent, the apparent value of Q((1, 4), right) = Q((3, 4), right) = Q(Sf1
, right).

Consider the cell (1, 3), which is on the left edge of the grid, and just below the top

row. Even though both actions carry the same expectation of reward from (1, 3), state

generalization makes moving up appear more promising than moving right. Since the

agent can only enter the goal state from a state covered by Sf1
or Sf3

, the apparent

action values at (1, 3) depend on how quickly the corresponding actions lead the agent

to either of these regions. In cell (1, 3), the difference between moving up and moving

right is that moving up immediately takes the agent into the generalized state Sf1
, which

appears to set the stage for success. Moving right simply delays the agent’s entry into

either Sf1
or Sf3

. This delay appears to be a wasted move; the value of entering Sf1

appears to be the same, whether the agent enters the region from (1, 3) or from (2, 3)
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or (3, 3). And since the payoff for entering Sf3
is the same as that for Sf1

, moving right,

right, right to Sf3
appears worse than the prospect of immediately entering Sf1

. By this

reasoning, we see that the action up looks most promising in all the states to the left

of the rising diagonal; the action right appears to have higher value for that part of Sf2

to the right of the diagonal. Thus the way in which the representation groups future

states distorts the agent’s perception of its current options, and the interior states now

differ in their preferred action. Even so, this representation is preferable to the discrete

representation, because the reduced representation will usually allow the agent to learn

the task in a smaller number of training episodes.

In part (b) of the figure, the detectors are again binary (meaning that their value is

either 0 or 1), but the representation is not a partition, because the detectors overlap.

Here the detector f1 recognizes all cells in the top two rows, so the recognition set Sf1

is {(x, y) : y > 2}. The detector f3 detects all cells in the right-most two columns;

hence Sf3
= {(x, y) : x > 2}. Detector f2 recognizes every cell in the grid, so Sf2

= S.

Although cells in the lower left quadrant of the grid will only be detected by f2, the

cells in the top right quadrant activate all three detectors. Unfortunately, none of the

detectors can distinguish (3, 4), in which the agent’s preferred action should be right,

from (4, 3), in which the preferred action should be up. Therefore, all three detectors

have mixed recognition sets. Since this representation can only remember a single

policy for the right quadrant, it will always make mistakes on either (3, 4) or (4, 3),

which have no overlap in their preference sets. As a result, the agent will be unable to

completely learn the task, no matter how much training it receives.

The representation in part (c) is made up of two Gaussian-kernel detectors:

fi(s) =
e−(s−ci)

2/2σ2

e−(s−c1)2/2σ2 + e−(s−c2)2/2σ2
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where (s − ci)
2 gives the square of the distance between the current state, s, and the

center of detector i. Here Sf1
= Sf2

= S. Even though both detectors have mixed

recognition sets, f1 responds more strongly to cells in the top row, while f2 responds

more strongly to cells in the right column. Hence this representation allows the agent

to distinguish cells in which it should move up from cells in which it must move right.

This allows the agent to learn the task.

3.4 Relevant Features

If the agent is to construct a representation which focuses on relevant features, it must

have some criterion for assessing their importance. Moore (1991) considered the small

section of state-space experienced by the agent in practice runs as important, with the

unvisited areas of the space unimportant. Hu and Fellman (1996) considered states

close to the initial state to be most important, because those states were the most

critical for controlling their task (the inverted pendulum). In both cases, the definition

of importance had something to do with states which “made a difference” for completing

the task. This idea is the key for generalizing the notion of importance for other tasks.

3.4.1 Importance

If a feature makes a difference in the task, it will be relevant to the decisions the agent

must make. Therefore, when an important feature is active, the values of different

actions will tend to be widely-separated, as illustrated in Figure 14. The generalized

state on the left is the recognition set for an unimportant feature, while the generalized

state on the right is important. Important features are informative, showing clearly
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Unimportant feature Important feature 

a 
b 

c 

a 
b 

c 

3.0 
3.1 

2.9 2.0 

-3.0 
10.0 

Figure 14: Widely-separated action values are characteristic of important features.

which action the agent should take. They tend to make learning more robust, because

their widely-separated values need not be learned as accurately for the agent to discern

the preferred action. The generalized state on the right makes a relevant distinction in

the task. The generalized state on the left provides little help to the agent in deciding

which action to take. It might be the result of bad state generalization; generalizing over

a mixed set of states can cause the action values to be averaged over states which have

opposite preferences, resulting in “mushed,” uninformative values. Or the agent’s policy

for those states might simply have very little consequence to its overall expectation of

success. In either case, the feature (or equivalently, the state-space grouping) is not

informative; it is irrelevant to the agent’s job of selecting the action which has the best

expected reward.

To extract maximum information with the least effort, the agent would like its

representation to focus on important features. Widely-spread action values indicate

features that reliably indicate significant consequences for the agent’s choice of action.

My earlier work on importance-based feature extraction (Finton and Hu, 1994 and 1995),
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explored algorithms which tune feature detectors in order to increase this measure of

importance in the detectors. For example, in a neural network, an unimportant hidden

node can be deleted without affecting the network’s outputs. Such nodes may be reused

by moving them to other parts of the state-space, where they may show themselves to

be important.

3.4.2 Definitions of importance

One of the previous studies applied importance-based feature extraction to the pole-

balancing problem (Finton and Hu, 1994). Since the task had only two actions (push

left or push right), that study simply defined the importance of feature detector fj by

I(fj) =
|wj1 − wj2|

2

To generalize the definition of importance to tasks with larger action spaces, importance

should have the following basic properties:

1. Importance is a function of the differences in action values.

2. Importance is zero when all the action values are the same, and nearly zero for

don’t-care states or features. We will define don’t care to mean that all actions

are in the preferred action set for that state or feature. Therefore, there may be

some differences in action values for a don’t-care state, although these differences

will be negligible, below some error tolerance, ε.

3. Importance is high if one action has a significantly higher expectation of reward

than the others. Such features are highly informative, and indicate critical deci-

sion points in the task.
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One candidate for a generalized definition of importance is the difference in value

between the best action and the closest non-preferred action. This definition captures

the ability of the feature to distinguish the best action from the other actions, but

has the disadvantage that it may be sensitive to the parameter ε, which describes the

membership of the preference set.

Another candidate definition is the standard deviation of the action values for the

feature. This definition has the disadvantage of being influenced by very low values

which correspond to actions that are nowhere near the preference set.

These definitions are useful places to begin; arriving at a generalized definition of

importance is left for future work.

3.5 Necessary Distinctions

The representation should not only focus on relevant features, but it must capture

all the necessary distinctions needed for the agent to solve its task. By generalizing

over states, the representation filters out information; the necessary distinctions are

the information which must be preserved in the representation if the agent is to be

able to learn to make sound decisions in the task. An adequate representation places

states in separate categories if they require different actions or if their values must be

distinguished for the agent to learn the task. Ideally, the representation should provide

these necessary distinctions while focusing on important features and generalizing over

irrelevant information. Such representations have a high degree of cognitive economy,

and provide the agent with a goal-oriented categorization of its world.

This section presents two types of necessary distinctions: policy distinctions and

value distinctions. Then the section explains what it means for the agent to learn to
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Figure 15: A necessary policy distinction: The state grouping must be split to avoid
mistakes in policy.

make sound decisions in the task, in terms of a new property I call incremental regret. It

explains how failing to make policy distinctions or value distinctions may result in large

incremental regret. The section defines the ε-adequacy criterion for the adequacy of the

representation at a particular state, and develops state-compatibility criteria which

specify when to separate states to create an ε-adequate partition representation. These

ideas formalize the ‘necessary distinctions’ aspect of cognitive economy into criteria

which may be implemented in on-line algorithms.

3.5.1 Policy distinctions

Figure 15 illustrates a distinction which must be made by the representation for the

agent to make correct decisions in its task. The figure shows the original generalized

state (on the left), and a pair of generalized states (on the right) which result when

it is split. In the split region, action a is much better than action b for the group of

states on the top, while this preference is reversed for the states in the bottom group.

The original generalized state is a mixed set of states; because its action values are
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Figure 16: An unnecessary distinction: Splitting the generalized state is probably not
worth-while.

averaged over all its members, it slightly prefers action a, which is the wrong policy for

the states in the bottom of the region. Failure to make this policy distinction causes

the agent to make bad decisions for the bottom states. In contrast, Figure 16 shows

a split region where the top and bottom halves both prefer action a; we may simplify

matters by grouping them together in a single generalized state.

3.5.2 Value distinctions

If states require the same behavior, their differences can often be ignored—but not

always. Figure 17 shows generalized state S1, from which action a leads to S2, having

action values (−1.0, 0.0), and action b leads to S3, which has action values (0.0, 1.0).

In this case, the separation between the generalized states S2 and S3 is necessary even

though S2 and S3 have the same action preference (take action b). A representation

which combined S2 and S3 could support a correct policy, but would not allow the

agent the means to learn one from its experience because the agent would seemingly

arrive at the same state by taking either action from S1. The two outcomes must be
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Figure 17: A necessary value distinction: The resulting states must be kept separate
for the agent to seek the better outcome.

separated if the agent is to be able to learn to choose action b from S1, in order to make

possible an expected reward of 1.0 (in S3) instead of 0.0 (in S2).

Value distinctions serve the same purpose as policy distinctions: they enable the

agent to learn to make sound decisions in its task. The distinctions between states with

different preferred policies are forward-looking, allowing the agent to choose its next ac-

tion wisely. The distinctions between states with different values (but possibly the same

preferred policies) are backward-looking, enabling the agent to distinguish different out-

comes for the actions it selects from a previous state. Both forward and backward

distinctions are necessary in allowing the agent to learn to make sound decisions. Fig-

ure 18 illustrates the forward and backward-looking effects of state generalization at

state st.

3.5.3 Making sound decisions

We have seen that the representation must avoid generalizing over certain states if the

agent is to be able to solve its task. When the representation fails to make necessary
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Figure 18: The representation must make appropriate policy distinctions, which affect
its next move, and value distinctions, which allow wise choices from earlier states.

distinctions, the agent is unable to choose actions which maximize its expectation

of reward from the task (the accumulated reinforcement from the environment). If

ignoring the distinction results in a small enough loss of potential reward, we may want

to ignore the distinction, in favor of a simpler representation which enables the agent

to learn the task more quickly and easily. How much lost reward is too much?

If we want the agent to always make perfect decisions, any loss of reward at all is

too much. A more practical criterion is that the agent be able to choose actions which

are close to optimal at each state. Therefore, we will define sound decisions as choices

which are within some tolerance of the best actions. We should also take into account

the information available to the agent. From the standpoint of an omniscient observer,

the agent may appear to be making poor choices; but these may still be sound decisions,

given the limited information available at that point in the task. We will say that the

agent is making sound decisions if it chooses actions which appear best according to a

limited look-ahead, given some tolerance for allowable error.
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Figure 19: Incremental regret: Compare R, the expected long-term reward from s when
we act according to the policy of the generalized state, with Rs, the return that results
from taking the action which is best at s itself.

The general idea is shown by Figure 19: compare the reward the agent would see if

it takes its policy from the generalized state with the reward it would see if it selects

its action according to the action values for its current state, s. The difference between

these two estimates is the error which would result from missing a necessary distinction

at s. If this error is too large, we should make a distinction between s and the other

members of the generalized state.

The regret of a representation

Ideally, we would like to be able to evaluate actions in terms of the total reward the

agent would experience over the remainder of the task episode. If we could do this,

we might define the regret of a representation as the expected loss of reward, due to

the representation’s failure to make necessary state distinctions. This measurement

would indicate how much reward the agent stands to lose if it adopts a particular

representation instead of the discrete representation (assuming that the action values
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are learned correctly and the agent follows the greedy policy). Bad representations

would thus be those with large regrets. This usage of the term regret is different

than that usually found in the literature. In (Kaelbling, Littman and Moore, 1996)

and (Berry and Fristedt, 1985), regret refers to a measure of the effectiveness of a

particular algorithm, and may measure the performance over many task episodes. Here

we are using the term to characterize the post-convergence performance of the system

with different representations.

Incremental regret

Unfortunately, the regret of the representation depends upon complete episodes of the

task, but we want to base our criterion for sound decisions on a limited look-ahead. We

want to isolate the effect the representation has on the quality of individual decisions

made by the agent. For example, if the current state is s, the value Q(s, ai) gives

an estimate of the expected reward for choosing action ai. If state generalization at

s has resulted in compromises in the action values, Q(s, ai) may be averaged over a

large number of states, but inaccurate at s. Suppose that action ai would lead to state

s′. To get a more accurate estimate of the value of ai at s, we can look ahead one

step, and consider the sum of the immediate reward for choosing ai and the value of

the resulting state, given by maxj Q(s′, aj). The action which is best according to this

one-step look-ahead may be different from the action which maximizes Q(s, a). We

will call the difference in expected reward for these two actions the incremental regret.

The incremental regret thus reflects the compromises in action values caused by state

generalization at s : it measures the severity of missing a policy or value distinction.

We will say that an adequate representation is one having low incremental regret at
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each state; therefore, the action values will be accurate enough for the agent to make

sound decisions—to always choose an action which is within some tolerance of the true

best action, according to a limited look-ahead from the current state.

Low incremental regret contributes to low total regret, but this relationship is com-

plicated by the discounting of future rewards. Since we define action values in terms

of discounted future rewards, we cannot determine the contribution of the incremental

regret of a particular state toward the total regret without knowing how far each reward

lies in the future. For example, an agent may make a single bad move at its initial state,

with a small incremental regret. But that small incremental regret could be related to

a large total regret if the loss of reward occurs only at the end of a long episode. In this

case, the eventual loss would be heavily discounted. To further complicate matters,

the amount of discounting also depends on the agent’s choice of action, since different

actions may result in episodes of different lengths. Consequently, adjusting the rep-

resentation to minimize incremental regret will not necessarily minimize total regret;

however, incremental regret may be the appropriate measure of performance, given our

assumptions regarding optimal behavior. Our model of optimality discounts reward by

its distance into the future, and the agent makes its decisions on the basis of discounted

reward without considering how far away that reward may be.

3.5.4 Criterion for representational adequacy

The previous paragraphs defined an adequate representation as one having low incre-

mental regret at each state, allowing the agent to make sound decisions. The following

paragraphs define the ε-adequacy criterion, which allows us to say whether the incre-

mental regret is always less than ε, a predefined tolerance for the amount of error we
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will tolerate before deciding that a policy or value distinction is a necessary one. The

criterion considers whether the representation appreciably changes the agent’s view of

the preference set or overall value of its current state.

The apparent value of a state s is calculated from the generalized action values:

V (s) = Q(s, ak) =
∑

i

wikfi(s)

where action ak is the action which results in the greatest value of Q at s. If the

representation groups s together with states that are incompatible with it, then the

generalized action values wij may be compromised in ways which lead to inaccurate

action values for s. These inaccurate action values may cause the agent to see an

inaccurate value for V (s) as a result, or may cause the agent to erroneously view

some inferior action as preferable to ak at s. In the first case, the agent may fail to

make necessary value distinctions, and in the second case, the agent may fail to make

necessary policy distinctions at s.

Therefore, we will require that the representation present s with enough accuracy

that the preference set and overall state value are close to what they would be if there

was no generalization over s and “neighboring” states. To do this, we calculate the

action values for s individually by conducting a one-step look-ahead from s, in order

to compare them with the values taken from the generalized state. Specifically, we will

require that prefδ(s) only contain actions which would be preferred according to the

one-step look-ahead values, and that V (s) be close to the value which we would get via

the same one-step look-ahead function. By using a one-step look-ahead, we thus bypass

the effects of state generalization at s. Hence, the first step in defining a criterion for

representational accuracy will be to define a one-step look-ahead action value function,

and one-step look-ahead versions of V (s) and prefε(s).
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Q1(s, a)—action value function with a one-step look-ahead

The action value function Q(s, a) is subject to the effects of state generalization at s.

That is, its value at s not only depends on s, but on the values at other states s′ in the

same generalized state. Therefore, we define another action value function, Q1(s, a),

which is the sum of the immediate reward and the value of the resulting state. The

difference between Q1 and Q at s indicates the extent to which the representation’s

generalized action values are compromised at s.

Definition 3.1 (Q1(s, a)) We define the function Q1 for the value of an action, based

on the expected discounted future reward seen one step in the future. Let s be the state

seen by the agent at time t, and s′ a possible resulting state at time t + 1. We define

Q1(s, a) =
∑

s′
Pa

ss′[R
a
ss′ + γV (s′)]

where

V (s′) = max
j

Q(s′, aj) = max
j

∑

i

wijfi(s
′)

Thus Q1(s, a) represents the agent’s best estimate of expected reward for taking action

a from state s, given a one-step look-ahead. But the agent makes its decisions on the

basis of

Q(s, aj) =
∑

i

wijfi(s)

The difference is that Q1(s, aj) is based on the actual result of taking action aj from

s, while Q(s, aj) is based entirely on the generalized action values, wij. The wij reflect

the compromises made by the representation; therefore, wij says something about the

expected reward for the set of states detected by fi. Suppose that the best action from

s is a1, but that the detectors which are active for s (fi(s) > 0) are also activated for
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states which all prefer action a2. Then we would expect that the generalized action

values favor a2; in other words, wi1 < wi2, and Q(s, a1) < Q(s, a2). As a result, the

agent would incorrectly choose action a2 from s. But Q1(s, a1) > Q1(s, a2), since Q1

only considers the expected reward for s alone. If Q1(s, a1)−Q1(s, a2) is large enough,

we would say that the agent fails to make a necessary policy distinction at s.

V 1(s)—state value function, based on a one-step look-ahead

Chapter 2 defined the state value function V (s) in terms of the action values, Q(s, a).

Replacing the values Q(s, a) with Q1(s, a) allows us to define the state value in terms

of a one-step look-ahead:

Definition 3.2 (V 1(s)) Let s be a state, and ai ∈ A(s) an action available to the

agent from state s. Then we define

V 1(s) = max
i

Q1(s, ai)

Thus V 1(s) represents the expected value of state s, based on a one-step look-ahead

from s.

pref1ε(s)—preference set for s, based on a one-step look-ahead

The chapter defined prefε(s) in terms of the action values, Q(s, a). Replacing the values

Q(s, a) with Q1(s, a) allows us to also define the preferred action set according to a

one-step look-ahead:

Definition 3.3 (pref1ε(s)) Let s be a state, and ai ∈ A(s) an action available to the

agent from state s. Then we define

pref1ε(s) = {a ∈ A(s) : Q1(s, a) ≥ max
i

Q1(s, ai)− ε}
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Thus pref1ε(s) is the set of “best actions” for the agent at s, according to a one-step

look-ahead.

The criterion for representational adequacy

Having defined the preferred action set and state value according to a one-step look-

ahead, we can easily compare these with the agent’s information at s in order to evaluate

the accuracy and adequacy of the representation at s :

Definition 3.4 (ε-adequacy) Let δ be given, and assume that the agent always selects

an action from prefδ(s). We will say that a representation of the state-space is an ε-

adequate representation for δ ≤ ε, if for every state s ∈ S reachable by the agent, the

following two properties hold:

|V 1(s)− V (s)| ≤ ε

prefδ(s) ⊆ pref1ε(s)

The meaning of ε-adequacy

Meeting the ε-adequacy criterion guarantees that the state generalization at s does not

prevent the agent from being able to learn the correct policy at s or mislead the agent

at an earlier state as to the desirability of s. Thus, the criterion defines a standard for

representational accuracy at individual states, guaranteeing that the harmful effects

of state generalization are kept in check and that the agent can learn to make sound

decisions. This is our standard for an adequate representation, one which makes the

distinctions needed for the task to remain learnable.

The ε-adequacy criterion is well-suited to our on-line learning problem because it

is based on the regret associated with a single decision. The agent typically chooses
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its actions on the basis of a one-step look-ahead; it does not have access to the true

action values for its actions, but instead it sees generalized action values for the states

immediately ahead, filtered by the representation. Basing the adequacy criterion on

such a small window into the state-space—a single step—does mean that we ignore

certain other considerations. For example, if a task contains cycles or repeated states,

it is possible that the incremental regret of repeated states may affect the total regret

more than the incremental regrets at other states; but the single-step criterion does

not allow detection of cycles. Furthermore, the criterion is recursive, in the sense that

the agent needs the criterion to hold for its future states before the agent can use it

effectively in its current state. This is not a concern for a static representation, since we

simply say that it meets the ε-adequacy criterion at all states. But if we are using the

criterion to construct such a representation through on-line learning, the agent needs

the representation to be adequate for the remainder of the episode in order for the

agent to make correct value distinctions at its current state.

Such limitations are common to most algorithms for reinforcement learning, since

the values of earlier states cannot be determined until the values of the later states

stabilize. The effect is that of a “frontier,” beyond which the action values and rep-

resentation are completely learned, while the values of states in front of the frontier

are still in flux. Initially, the frontier is at the final states of the task episodes. As the

agent learns, and correct information percolates backwards from the ends of episodes

to the beginning states, this frontier moves backwards toward the start of the episode,

arriving at the initial state as the task is learned. The ε-adequacy criterion allows the

agent to consider each decision separately, but is only informative at the frontier of

learning—as are the other mechanisms for reinforcement learning, such as Q-learning.
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Although the ε-adequacy criterion provides an objective standard for an adequate

representation—one which allows the agent to learn its task—these characteristics of

the representation are really the outcome of the particular distinctions the representa-

tion makes or fails to make between individual states. Thus we need to bridge the gap

between the high-level description of adequate representations and the low-level deci-

sions the agent must make as to which states must be kept separate. In other words,

when must the representation distinguish states and when may it generalize over states,

in order for it to be ε-adequate? The next section addresses this issue.

3.5.5 State Compatibility

We want a set of low-level criteria which specify when states may be grouped together,

and when they must be represented separately. One approach is to compare the in-

formation we have for the current state with the information for the group of states

it belongs to. For example, we could compare V 1(s) directly with V (s), and we could

compare pref1ε(s) with prefδ(s). In this way, we may evaluate the ε-adequacy of the rep-

resentation at s, and make additional distinctions if this criterion does not hold. This

approach is reminiscent of Carpenter and Grossberg’s ART (Carpenter and Grossberg,

1988), in which the current observation results in a new category if its best classification

is a poor match. Thus the ε-adequacy criterion essentially defines the compatibility of

states with the regions to which they belong.

This section presents criteria for the compatibility of one state with another. State-

state compatibility may be more useful in on-line feature extraction than state-region

compatibility because a poorly-chosen region could be incompatible with all its member

states. Comparing individual states removes the effect of state generalization at the
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Figure 20: State compatibility: Allow s1 and s2 to be grouped together if a one-step
look-ahead reveals their overall values to be close and their preference sets similar.

current point in the task episode, and allows access to the more reliable information

gained by looking ahead one step. Figure 20 illustrates the general strategy, which is

to look ahead one step from each of a pair of states, so that we may consider whether

grouping them obscures any necessary distinctions.

An agent which attempts to choose the best action may actually choose any of the

actions in its preference set. We will assume that δ is the tolerance which defines those

sets, and is already determined; thus the agent might select any action in prefδ(s). Our

goal is to make sure that this choice results in an incremental regret of no more than ε. If

the representation made no compromises in the action values, then this would always be

the case for δ ≤ ε. More typically, the representation makes state generalizations which

cause deviations from the true action values. The purpose of the compatibility criteria

is to make sure that these errors are not serious enough to prevent the representation

from being ε-adequate.
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Compatibility criteria

Definition 3.5 (State compatibility) Let s1 and s2 be states in S. Let δ be given,

and assume that the agent always selects an action from prefδ(s). Assume that our goal

is to produce an ε-adequate representation, where ε ≥ δ.

We will say that s1 and s2 are compatible in case the following three conditions

hold:

pref1ε(s1) = pref1ε(s2) (19)

|V 1(s1)− V 1(s2)| ≤ δ (20)

and

pref1δ(s1) = pref1δ(s2) if δ ≤ ε/2 (21)

pref10(s1) = pref10(s2) otherwise (22)

The criteria consist of three rules. The first rule ensures that the same actions appear

desirable in each state. The second rule requires that the values of the states are close,

based on a one-step look-ahead. The purpose of the third rule (Equations 21 and 22)

is to ensure that the action which appears to be the best for a set of compatible states

is, in fact, a pretty good action for any of the states in the set. This is difficult to

guarantee when the compatibility criteria are written for pairs of states, rather than in

terms of the whole set. That is why the criteria demand equality of the preference sets

instead of merely requiring the preference sets to overlap. When δ ≤ ε/2, the looser

restriction of Equation 21 allows the states to have slightly different values for the top

actions, making the criteria more suitable for a practical algorithm which must account

for real-world noise in the value estimates. The cut-off value of ε/2 appears to come

from the sum of the errors allowed by combining Equation 20 with Equation 21.
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Regarding the compatibility of a set of states (for example, a partition region), we

will say that all the states in the set are compatible if each pair of states is compatible.

We will refer to such sets as pure sets.

Although these are certainly not the only possible criteria for state compatibility,

I have not been able to find less restrictive criteria that meet my requirements and

still guarantee ε-adequacy. I leave that to future work. The two following chapters

discuss some of the theoretical issues in greater depth: Chapter 4 examines the role of

generalized action values and shows how they may be defined as the “true,” steady-

state values which characterize a particular representation. Chapter 5 discusses the

state compatibility criteria in more detail: it gives examples of what can go wrong when

the compatibility criteria are violated, and it proves that for partition representations,

separating incompatible states guarantees ε-adequacy of the representation.

3.6 Feature Extraction

The criteria developed in this chapter characterize representations that exhibit high

cognitive economy. This is the “what” of representation; the process of feature extrac-

tion is the “how.”

The feature-extraction problem is both heuristic and difficult. Learning the repre-

sentation on-line requires the agent to learn the action values for its categories while it

is reorganizing those categories to better describe its world. This problem combines the

difficulties of action-value learning, state compatibility assessment, and data clustering,

in order to group states into categories which best present the relevant aspects of the

agent’s world. Each of these components is a difficult problem by itself. In the gen-

eral case, a good algorithm for on-line feature extraction must be able to propose trial
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distinctions between states, test them for relevance in the task, and possibly discard

them. Chapter 6 presents an algorithm which implements the criteria developed here,

and which proved successful in two reinforcement learning tasks.

3.7 Summary

Wisdom consists in knowing which details matter, and when we may safely ignore them.

To make wise choices, we must look to the requirements of the task, and categorize the

elements of our world in ways which allow us to make sound decisions.

This chapter has reviewed the principle of cognitive economy, and has formalized

it into objective criteria for representational adequacy and state compatibility. These

characterize necessary distinctions in terms of generalized action values, and are there-

fore readily implemented in on-line algorithms for reinforcement learning tasks. The

criteria are principled because they are tied to the requirements of an agent learning

to choose actions which maximize its expected reward in its task.
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Chapter 4

Action Values for Generalized

States

Make everything as simple as possible, but not simpler.

—Albert Einstein

4.1 Introduction

The previous chapter formalized the principle of cognitive economy in terms of con-

verged action values—the steady-state values which describe the agent’s true expecta-

tion of reward, given a particular representation for its task. Although that chapter

made use of action values for generalized states, it deferred their definition to this

chapter.

For a discrete representation, action values are defined for individual state-action

pairs; they estimate the agent’s future experience of reinforcements as it proceeds from a

particular state. This chapter extends the idea of action value by defining a generalized

action value for the set of states recognized by a particular feature detector. To do this,

the chapter considers a simple gridworld task with different representations: the discrete

representation, a partition representation, and finally, representations with overlapping

feature detectors. There are several ways to generalize the idea of action value to groups
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of states; the chapter presents two methods of defining these values, each based on a

different set of assumptions about the problem. The generalized action values enable

us to see how the state generalization given by the agent’s feature detectors distorts

the agent’s perception of the world by altering the apparent values of its actions in the

task.

4.1.1 Action values depend on the agent’s representation

If the agent has a discrete representation of its world, it distinguishes each combination

of details as a unique state, and maintains separate action values for each of these

states. If, instead, the agent’s representation of the world generalizes over states, its

action values may be different from the action values for the individual states. Thus

the agent’s perceived world may be one in which its action values and its optimal policy

differ from that of the real world. To understand how this happens, we must understand

how state generalization affects the agent’s action values.

A simple gridworld task will motivate our discussion of state generalization. First,

we will derive the usual state-action values for a discrete representation of the grid.

Then we will extend the analysis to include region-action values for a partition repre-

sentation of the grid. In order to further extend the analysis to representational schemes

with overlapping features, we will need to make some additional assumptions. We will

examine two approaches to extending the analysis in order to produce a definition of

generalized action values which covers all these representational schemes.
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4.2 Example: State-Action Values for a Discrete

Representation

Consider again the two-action gridworld task, where the grid has four cells on a side,

the starting state is in the lower left corner at (1, 1), the goal state is in the upper

right corner at (4, 4), and the allowable actions are up and right. Figure 21a shows this

gridworld with a discrete representation of the states. Since we cannot move down or
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     representation 

(b) Partition 
     representation 

(c) Coarse-coded 
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Figure 21: Three representations of the 4× 4 gridworld

to the left, we cannot back-track or cycle between states. This makes the action values

easy to calculate in the case of a discrete representation. The following discussion

will use the notation Q(s, a) for the action values, without an index for the time; the

reason is that we are determining the final, stable set of action values. We can calculate

the action values for an optimal policy as follows. First, we observe that moving up

from the top row or right from the right edge results in a reward of −1, indicating

failure. Moving right from cell (3, 4) or up from (4, 3) will result in the goal state and a

reward of 1. All other actions simply move us one step closer to the end of an episode,
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without presenting any immediate reward. Therefore, the value for each of these non-

terminal actions is simply the final reward for the episode (which is 1 under an optimal

policy), discounted according to the number of steps needed to reach the goal. Thus

Q((2, 4), right) = Q((3, 3), right) = Q((3, 3), up) = Q((4, 2), up) = γ, because each of

these actions sets the stage for us to move to the goal state in the next step. For the

states which occur earlier, we will have Q((x, y), ai) = γk−1, where k is the number of

actions required to reach the goal from that state. Setting the discount factor γ = 0.9,

the values for the action up are given by Table 3 and the values for the action right are

given by Table 4.

−1 −1 −1 —
0.729 0.810 0.900 1
0.656 0.729 0.810 0.900
0.590 0.656 0.729 0.810

Table 3: Action values for up—discrete state representation

0.810 0.900 1 —
0.729 0.810 0.900 −1
0.656 0.729 0.810 −1
0.590 0.656 0.729 −1

Table 4: Action values for right—discrete state representation

So we have computed the action values, which represent the expectation of reward

for individual states. Next, we will consider a coarse partitioning of the state-space and

see how this changes the action values. Instead of considering the values Q(s, a) for

individual states s, we will calculate the expected reward for regions of states, since our

new representation will not allow us to store distinct action values for the states within

a partitioned region. We will find that the expected reward depends on our definition

of the observed values, < st, ak > . To avoid confusion, we will write υπ
0 (Si, a) for the
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expected reward if the agent takes action a from region Si ⊆ S and then proceeds

according to the policy π, with the subscript 0 indicating the one-step assumption

regarding the observed values, < st, ak > . (Recall from Chapter 3 that this means

looking ahead one step, to the values of the next state—rather than looking ahead all

the way to the end of a task episode). We will write υπ
1 (Si, a) for the expected reward

under the whole-path assumption regarding observed values. Thus υ0 corresponds to

TD(0); υ1 corresponds to TD(1), which equates the value with the whole-path return.

Before considering an actual example, let us first work out the theory.

4.3 Region-Action Values

Assume that the state-space is partitioned into a set of disjoint regions, Si, which cover

the space:
⋃

Si = S and Si ∩ Sj = ∅, for i 6= j. For the moment, let us ignore the

distinction between υ0 and υ1 and define the region-action value function according to

υπ(Si, a) = Eπ{< st, a >}

This means that the action value for the region Si is the expected value of the obser-

vations for states st ∈ Si, assuming the sampling policy π. Although algorithms like

Q-learning may learn through off-policy learning, in which the sampling policy can be

different from the policy we are evaluating, we will defer consideration of off-policy

learning to the next section.

Since the representation cannot distinguish values for individual states in Si, we

express the expected return in terms of the conditional probabilities of the states s ∈ Si :

υπ(Si, a) =
∑

s

Pr{s|Si}υ
π(s, a) (23)
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From our previous analysis, we know that υπ(s, a) is the expectation of the immediate

reward for taking action a from s, plus the value of the following state:

υπ(s, a) =
∑

s′
Pa

ss′ (R
a
ss′ + γV π(s′)) (24)

As in Chapter 2, Pa
ss′ represents the probability of arriving in state s′ as the result of

taking action a from state s, and Ra
ss′ is the expectation of immediate reward for that

transition.

The one-step and whole-path approaches differ in their estimate of the value of the

remainder of the episode, V π(s′). Under the whole-path assumption, this value is just

the expectation, under the policy π, of the return from state s′ = st+1 :

V π
1 (s′) = Eπ{Rt+1}

(With off-policy learning, this expression becomes more complicated because we need

to weight the returns by their relative probabilities under the evaluation policy and the

sampling policy. Sutton and Barto (1998, pp. 124-129) discuss this in detail).

Under the one-step look-ahead assumption, we must define V π(s′) in terms of our

system’s values at time t + 1. Therefore

V π
0 (s′) =

∑

a′

π(Ss′, a
′)υπ

0 (Ss′, a
′)

where Ss′ is the partition region which covers state s′. Substituting these state values

back into Equation 24 yields the following pair of equations:

υπ
1 (s, a) =

∑

s′
Pa

ss′ (R
a
ss′ + γEπ{Rt+1}) (25)

υπ
0 (s, a) =

∑

s′
Pa

ss′

(

Ra
ss′ + γ

∑

a′

π(Ss′, a
′)υπ

0 (Ss′, a
′)

)

(26)

Thus we can find the values for each state-action pair (s, a) either by means of the

actual returns under a particular policy, or by solving a system of equations involving
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the one-step look-ahead estimates. Together with Equation 23, this gives us a set of

action values for the partitioned regions.

We can make some general observations about how the representation affects the

action values, based on Equations 25 and 26. Under the whole-path approach, the

action values υπ
1 (s, a) will agree with those of a discrete representation, (or any other

representation, for that matter) as long as we use the same policy, π. The one-step ap-

proach will usually differ from the discrete representation on the action values υπ
0 (s, a),

because it defines υπ
0 (s, a) in terms of aggregate values υπ

0 (Sj, a), instead of directly

in terms of the actual rewards that the agent will experience. With either approach,

the region-action values υπ(Si, a) will usually differ from the corresponding values for

a discrete representation because of the way Equation 23 averages the values over the

states s ∈ Si.

Note that our action values are defined in terms of a particular policy, because

the policy determines our path and the resulting reward after the first action. It is

important to remember that our choice of representation determines which policies are

valid. For a policy to be valid, it must not assign different actions to states which

are grouped together in the same region. Hence these equations for the action values

only make sense if our policy, π, does not discriminate between states which lie in the

same region, but assigns them the same set of action probabilities. Essentially, we have

collapsed each region into a generalized state, which has a single value for each action

and a single policy.

A second reason why we must specify the policy is that the system dynamics depend

on how we sample the states, if we have state generalization. The expected value

of taking action a in region Si depends on which state in Si is our starting point.
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With state generalization, changing the policy, π, changes the conditional probabilities

Pr{s|Si}, and thus changes υπ(Si, a) (Equation 23).

Normally we will want to know the action values for an optimal policy—the optimal

action values—but we must bear in mind that the best values under a particular repre-

sentation could be worse than the optimal action values under a discrete representation.

One reason is that when we group states together into regions, we end up averaging

their action values, possibly “watering down” the optimal values. A second reason is

that the policy which is optimal under the discrete representation may be invalid for

the particular representation under investigation. In that case the best policy which

our representation can support may lead to smaller rewards than we could achieve with

a discrete representation.

Let π∗ denote an optimal policy for our current representation, and let υ∗ denote

the expected reward function under π∗. Because π∗ is optimal, it only takes non-zero

values for actions a′ which maximize υ∗(Si, a
′). Therefore, we may simplify Equation 26

for the one-step values:

υ∗

0(s, a) =
∑

s′
Pa

ss′

(

Ra
ss′ + γ max

a′

υ∗

0(Ss′ , a
′)
)

(27)

If we substitute this expression for υ∗
0(s, a) in Equation 23, the result is a generalized

Bellman optimality equation for υ∗
0 :

υ∗

0(Si, a) =
∑

s

Pr{s|Si}
∑

s′
Pa

ss′

(

Ra
ss′ + γ max

a′

υ∗

0(Ss′, a
′)
)

(28)

The Bellman equation is a way of writing the constraints which must hold between the

action values at times t and t + 1 if we accept the one-step assumption.
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4.3.1 Example: Region-action values for a partition represen-

tation

To illustrate these ideas, suppose we have the partition representation of the gridworld

given by Figure 21b, and we want to calculate the action values under an optimal

policy. We will simplify matters for this example by choosing a deterministic, optimal

policy. In this representation, we have three detector regions: Sf1
covers the top row

except for the goal state, Sf3
covers the right edge, and Sf2

covers the interior states.

In the top row, moving up is fatal; therefore the optimal policy action in Sf1
is right.

Since the action right is fatal in Sf3
the optimal action for Sf3

is up. The policy for

the interior does not matter, so we may arbitrarily choose the action for Sf2
to be

up. Thus we have an optimal policy, resulting in the following path through the state

space: (1, 1), (1, 2), (1, 3), (1, 4), (2, 4), (3, 4), (4, 4), with a reward of 1 on the last step.

(See Figure 22).

s 

G 

Figure 22: An optimal path through the partitioned gridworld



130

Calculating υπ
1 — whole-path assumption

If we make the assumption that the values depend on the return for the whole path, we

look at the states s ∈ Si, calculate the action values for (s, a) according to Equation 25,

and substitute them in Equation 23 to arrive at υ∗
1(Si, a) for each of the three regions

Si. We can simplify the application of Equation 25 by noting that for each allowable

state transition, Pa
ss′ ≡ 1, since the policy is deterministic. Since the reward Ra

ss′ = 0

except for the last transition, where the reward is 1, we find that υ∗
1(s, a) = γk−1, where

k is the number of actions needed to reach the goal from s. These are the same values

of υ∗(s, a) that we calculated for the discrete representation, shown in Tables 3 and 4.

Consider detector f1, which covers the top row (except for the goal state). Here

υ∗
1(Sf1

, up) = −1, since moving up from the top row is always fatal. For the action

right, we plug the values υ∗
1(s, a) into Equation 23, taking Pr{s|Si} = 1

3
, since we visit

each of the three states in Sf1
with the same frequency under our policy. Thus

υ∗
1(Sf1

, right) =
1

3
(υ∗

1((1, 4), right) + υ∗
1((2, 4), right) + υ∗

1((3, 4), right))

=
1

3
(γ2 + γ + 1)

.
= 0.903

Detector f2 will only be active for states (1, 1), (1, 2) and (1, 3) under our policy.

Therefore,

υ∗

1(Sf2
, up) =

1

3
(υ∗

1((1, 1), up) + υ∗

1((1, 2), up) + υ∗

1((1, 3), up))

=
1

3
(γ5 + γ4 + γ3)

.
= 0.659

To calculate υ∗
1(Sf2

, right), note that if we move right from any of the cells covered by

Sf2
, we are one step closer to the goal, just as if we had moved up. Hence the expected
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return, Eπ{Rt+1}, is the same whether we moved up or right; therefore, υ∗
1(Sf2

, right) =

υ∗
1(Sf2

, up)
.
= 0.659.

Finally, consider detector f3, which covers the right edge of the grid. Equation 25

results in state-action values υ∗
1(s, a) which mirror those of the top row, except that

the actions are reversed. (From the right edge, right is fatal, but up leads to the goal).

But Equation 23 requires Pr{s|Sf3
}, even though the region Sf3

is not visited under

our policy. Therefore, we may wish to define this conditional probability to be zero, in

which case we get zeros for the values of Sf3
If, instead, we take the probability of the

states as equally likely (in the non-event of visiting Sf3
), we find that

υ∗

1(Sf3
, up) =

1

3
(υ∗

1((4, 1), up) + υ∗

1((4, 2), up) + υ∗

1((4, 3), up))

=
1

3
(γ2 + γ + 1)

.
= 0.903

and υ∗
1(Sf3

, right) = −1. Tables 5 and Table 6 summarize the action values for our

partitioned representation, under the whole-path assumption regarding returns.

−1 —

0.659 0.903

Table 5: Whole path values for up—partition representation

0.903 —

0.659 −1

Table 6: Whole path values for right—partition representation

Note that the new action values differ from those of the discrete representation,

even though the values υ∗
1(s, a) for individual states agree with those of the discrete
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representation. Under the whole-path assumption, the representation does not change

the rewards which the agent experiences, but it does change the agent’s expectation of

reward because of the way the action values are averaged over the states in a region

(Equation 23).

Calculating υ∗
0 — one-step assumption

If we make the assumption that action values are given by a one-step look-ahead, we

can proceed as follows. First, consider detector f1. Since moving up from the top row

is fatal, as we have already observed, υ∗
0(Sf1

, up) = −1. To find the value of moving

right in the top row, we must solve Equations 23 and 27 for these states. Since the top

detector covers three states, and they are visited with equal frequency, Equation 23

yields

υ∗

0(Sf1
, right) =

1

3
(υ∗

0((1, 4), right) + υ∗

0((2, 4), right) + υ∗

0((3, 4), right)) (29)

To apply Equation 27 to the states in Sf1
, recall that Pa

ss′ ≡ 1, since the task is determin-

istic, and Ra
ss′ = 0 except for the last transition, where it equals 1. Since moving right

is preferable to moving up for any of the states in Sf1
, we may replace maxa′ υ∗

0(Ss′, a
′)

with υ∗
0(Sf1

, right) in Equation 27 (except, of course, for the last transition, which takes

us out of Sf1
and leaves us in the absorbing goal state, G). Therefore the values υ∗

0(s, a)

we need to substitute in Equation 29 are as follows:

υ∗

0((1, 4), right) = 0 + γυ∗

0(Sf1
, right)

υ∗

0((2, 4), right) = 0 + γυ∗

0(Sf1
, right)

υ∗

0((3, 4), right) = 1
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The solution is

υ∗

0(Sf1
, right) =

1

3
(2γυ∗

0(Sf1
, right) + 1)

resulting in

υ∗

0(Sf1
, right) =

1

3− 2γ
.
= 0.833

We compute the values for the interior detector in the same way. When we calculate

the one-step look-ahead, we will need to know which actions yield the maximum values

for Sf1
and Sf2

. We have already seen that the best action for the top row is right. We

will find that the best action for Sf2
is up, by the following reasoning. The representation

groups the states in the top row into a single generalized state. If we move right from

a cell on the left edge of the grid and then resume our policy, we incur an additional

discount factor for that step, and we enter the top row at a point which is one cell closer

to the goal. But the look-ahead value for the top row is the same, no matter what our

entry point; we see maxa υ∗
0(Sf1

, a) = υ∗
0(Sf1

, right)
.
= 0.833. Therefore, moving right

from (1, 1), (1, 2), or (1, 3) will appear to be a wasted move, resulting in a smaller

expected reward than immediately moving up.

To find υ∗
0(Sf2

, up) we solve the following set of equations:

υ∗

0(Sf2
, up) =

1

3
(υ∗

0((1, 1), up) + υ∗

0((1, 2), up) + υ∗

0((1, 3), up))

υ∗

0((1, 1), up) = 0 + γυ∗

0(Sf2
, up)

υ∗

0((1, 2), up) = 0 + γυ∗

0(Sf2
, up)

υ∗

0((1, 3), up) = 0 + γυ∗

0(Sf1
, right)

Thus we find that

υ∗

0(Sf2
, up) =

1

3
(2γυ∗

0(Sf2
, up) + γυ∗

0(Sf1
, right))
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Collecting the terms for υ∗
0(Sf2

, up),

υ∗
0(Sf2

, up) =
γυ∗

0(Sf1
, right)

3− 2γ

Applying our previous result, this yields

υ∗

0(Sf2
, up) =

γ( 1
3−2γ

)

3− 2γ
= 0.625

By our previous reasoning, υ∗
0(Sf2

, right) is simply the value for moving up, but dis-

counted once for the “wasted” step. Thus

υ∗

0(Sf2
, right) = γυ∗

0(Sf2
, up)

.
= 0.563

Finally, we note that the values for Sf3
would theoretically be the same as those for Sf1

,

but reversed. Tables 7 and 8 summarize the results for our partitioned representation

under the one-step assumption.

−1 —

0.625 0.833

Table 7: One-step values for up—partition representation

0.833 —

0.563 −1

Table 8: One-step values for right—partition representation

Note that the one-step action values are different from the values we computed

under the whole-path assumption, and that the action values for up and right are no

longer equal in the interior. Since the Bellman equations are based on the one-step look-

ahead assumption, this example shows that the whole-path values will not necessarily
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satisfy the Bellman equations under state generalization. Thus the use of Monte Carlo

methods with value-function approximation will usually violate the Bellman equations.

4.4 Generalized Action Values

We are extending the definition of action value to representations which generalize

over states. We call these values generalized action values. In the previous example,

our representation was a partition, which divided the state-space into non-overlapping

regions. At any given time, a single detector was active and unambiguously indicated

which region contained the current state. Therefore, we could apply our knowledge of

the individual states in the active region (their probabilities and their expected returns)

to compute the action values.

Unfortunately, this approach breaks down in the general case, where the system

state is described by a pattern of activity across multiple feature detectors, and the

detectors may be continuous-valued functions. The equations we have developed, be-

ginning with Equation 23, do not account for the influence of multiple detectors in our

assessment of the current state. Yet it is the collective activity of the detectors which

indicates the current state, and in our system model, determines the current value esti-

mate, Qπ(s, a). Therefore, we should not assume that there is a single region, Ss′ which

is active after the transition from state s to state s′ in Equation 26. We must also

extend the analysis to consider the level of activation of the detectors; so far we have

simply added in the values for the states covered by the active region without allowing

for the possibility that the detector may respond more strongly to some states than

others.

It is difficult to proceed without invoking some additional assumptions. I will present
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two methods of defining generalized action values, each based on a different set of as-

sumptions about the problem. The first method makes assumptions about the feature

detectors, allowing us again to calculate the probabilities of individual states. The sec-

ond method relates the action values to the assumptions inherent in a minimization of

the system error. In both cases, we are simply defining what we mean by an action value

in the general case, so that we can go on to examine how state generalization affects

these values, and how the resulting changes in the action values affect the cognitive

economy of the representation.

4.4.1 Method 1: Exploit assumptions of soft state aggregation

Suppose that each detector is associated with a particular cluster of states, and that the

output of the detector represents the probability that the current state belongs to that

cluster. That is, for a detector fi associated with a cluster of states Si, if the current

state is s then fi(s) = Pr{Si|s}. If we allow these probabilities to be between 0 and

1, we have soft clustering, in which there is still a single active region, but its identity

is only known stochastically. Singh, Jaakkola and Jordan (1995) take this approach in

their paper on soft state aggregation.

For the one-step approach, we proceed as follows. Making use of Equation 23 for

υπ(Si, a), we have

υπ
0 (Si, a) =

∑

s

Pr{s|Si}υ
π
0 (s, a) (30)

This equation requires Pr{s|Si}. Fortunately, we can use Bayes’ Rule to define this

conditional probability in terms of the detector values fi(s) = Pr{Si|s} and the steady-

state probabilities of states s′ under our policy π (which we will write as Pπ(s′)).
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Therefore

Pr{s|Si} =
fi(s)Pπ(s)

∑

s′ fi(s′)Pπ(s′)
(31)

Then we modify Equation 26 by adding a summation over the detector regions which

are active after the action is taken, instead of simply assuming that some region Ss′ is

the only active region:

υπ
0 (s, a) =

∑

s′
Pa

ss′



Ra
ss′ + γ

∑

j

fj(s
′)
∑

a′

τ(Sj, a
′)υπ

0 (Sj, a
′)



 (32)

This equation calculates the reward for a policy τ, which may be different from π, the

sampling policy. We usually want to know the values for an optimal policy; in that

case, the equation becomes

υπ
0 (s, a) =

∑

s′
Pa

ss′



Ra
ss′ + γ

∑

j

fj(s
′) max

a′

υπ
0 (Sj, a

′)



 (33)

This is the result given by Singh, Jaakkola and Jordan, but in different notation. Note

that these results are consistent with the earlier formulas we derived for the case of a

partition. In particular, if our representation is a partition, Equation 31 then becomes

Pr{s|Si} =
Pπ(s)

∑

s′∈Si
Pπ(s′)

because fi(s) = 1 for s ∈ Si, but is zero for any other states. Equation 33 is equivalent

to Equation 27 in the case of a partition, because fj(s
′) > 0 only for a single region,

the one we called Ss′ in the earlier equations.

4.4.2 Method 2: Exploit assumptions of error minimization

In a discrete-state representation, each action is represented by a separate action value

for each state. But in a representation which generalizes over states, the number of

parameters available for storing those action values may be much smaller than the
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number of states. Therefore, each action value will represent the expected contributions

of multiple states, making it a compromise between the different values which would

hold for the individual states. Thus any set of generalized action values will be in error

for some of the states. This means that there is no one “true” set of action values under

state generalization, but only better and worse compromises. We want to define the

values so that the combined effect of the errors is minimal. But what does this mean?

Possible error functions

In order to minimize the errors, we have to decide which errors matter most, and how

to weight them in order to come up with a function for the combined error, which we

can then minimize. There are many ways of doing this. For example, we could select a

representative state for each region; we might choose to only count the errors for these

prototype states, or we might weight the error for each state by the distance of that

state from the prototype for its region. Or we could choose to weight the errors by

some other assessment of the relevance of particular states in our task, such as their

frequency.

Since we have a separate set of parameters for each action ak, we may proceed

by minimizing the error separately for each action. Let Err(k) represent the error for

action ak. The normal way of defining such an error function is to sum the squared

errors in action value over the set of states. This requires us to define a target for

the desired values of the parameters. We will take υ∗
1(s, ak) as the target for wik. By

making the whole-path assumption, we get the actual value the agent would experience,

not the apparent value, which could be distorted by the representation’s generalization

of future states. Thus the whole-path assumption allows us to express the theoretical
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action values for any representation in terms of the values the agent would experience

under a discrete representation, enabling us to see how the representation has affected

the action values. Note that we could also use υπ
0 (s, ak) if we wanted to assume the

one-step definition of observed values, as in Q-learning. Our target value represents

the expectation of the agent’s return for taking action ak from state s and following an

optimal policy thereafter.

If we regard the parameter wik as the expected return for action ak from the states

which are detected by the associated detector, fi, then we might sum the errors over

states as follows:

Err(k) =
∑

i

∑

s

(υ∗

1(s, ak)− wik)
2fi(s) (34)

Notice that Equation 34 sums the errors “democratically,” giving equal weight to

each state. If we decide that our error equation should give more emphasis to states

which occur more frequently, we could include the probability of the state under our

sampling policy, π :

Err(k) =
∑

i

∑

s

Pπ(s)(υ∗

1(s, ak)− wik)
2fi(s) (35)

Equations 34 and 35 only compare the value of wik against the expected returns

for the set Sfi
, since fi(s) = 0 everywhere else. In essence, these equations sum the

“regional errors” of the action values. If we care most about the total system error,

we might define the error as the difference between the true return for (s, ak) and

our system estimate, Q(s, ak) =
∑

i wikfi(s). This can take the form of the familiar

mean-squared error equation:

Err(k) =
∑

s

Pπ(s)(υ∗

1(s, ak)−Q(s, ak))
2 (36)

Thus there are many ways of defining the error in the action values. We choose an
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error function according to our prior assumptions about which errors matter most. If

our approach is to update the system parameters according to a gradient-descent in

the error, our choice of error function will also determine which update rule we use,

and therefore, how the action values are learned. The point to see here is that the

assumptions which lead us to a particular error equation also indicate the way the

action values must be set in order to make the best compromises in the action values.

Thus the choice of learning algorithm depends on the same assumptions.

Finding weights which minimize the error

Therefore, we may define generalized action values by carefully choosing an error func-

tion, and then finding the weight parameters which minimize the error. Let ŵk denote

the vector of weight parameters which minimize the error for the action ak, and let ŵik

represent the corresponding weight on the detector fi. Then the apparent action values

under a particular representation are given by Q(s, ak) =
∑

i ŵikfi(s). Comparing these

values with the discrete-state values υ∗
1(s, ak) will indicate how the representation has

changed the action values.

Suppose our error is defined by the “regional errors” function of Equation 35. Then

the derivative of the error with respect to the weight wik is

∂Err(k)

∂wik
= β

∑

s

Pπ(s) (υ∗

1(s, ak)− wik) fi(s) (37)

By setting the derivatives to zero, we find that the weights which represent the best

compromise in the action values are given by

∑

s

Pπ(s)υ∗

1(s, ak)fi(s) =
∑

s′
Pπ(s′)wikfi(s

′)
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and, taking wik outside the sum,

ŵik =

∑

s Pπ(s)fi(s)υ
∗
1(s, ak)

∑

s′ Pπ(s′)fi(s′)
(38)

Thus ŵik is a weighted average of the expected rewards, υ∗
1(s, ak), for states s ∈ Sfi

. It

is interesting to note that in the case of a partition, the weight on υ∗
1(s, ak) becomes

Pπ(s)
∑

s′∈Si
Pπ(s′)

for s ∈ Sfi
, and 0 otherwise. Therefore, in the case of a partition, our “regional errors”

function yields the following result:

ŵik =
∑

s

Pr{s|Sfi
}υ∗

1(s, ak) (39)

This agrees with the result given by our earlier analysis in Equation 23.

Now suppose our error is defined by the “system error” approach of Equation 36. To

simplify the notation, let us express the derivative by vector notation, with bold-faced

letters representing column vectors, and the transpose of a vector w written wt. Then

Q(s, ak) =
∑

i

wikfi(s) = wt
kf(s)

and the derivative of the error with respect to wk then becomes

∂Err(k)

∂wk
= β

∑

s

Pπ(s)
(

υ∗
1(s, ak)−wt

kf(s)
)

f(s) (40)

Setting this derivative to zero, we have

∑

s

Pπ(s)υ∗
1(s, ak)f(s) =

∑

s′
Pπ(s′)

(

wt
kf(s

′)
)

f(s′)

We know from linear algebra that whenever we have two vectors x and y,

(

xty
)

y =
(

yytx
)

=
(

yyt
)

x
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Therefore,

∑

s

Pπ(s)υ∗

1(s, ak)f(s) =
∑

s′
Pπ(s′)

(

f(s′)f t(s′)
)

wk

=

(

∑

s′
Pπ(s′)f(s′)f t(s′)

)

wk,

since wk does not depend on s′. Thus

ŵk =

(

∑

s′
Pπ(s′)f(s′)f t(s′)

)−1
∑

s

Pπ(s)υ∗

1(s, ak)f(s) (41)

We should verify that this definition of ŵk is consistent with our previous results for

the special case of a partition, as we have already demonstrated for the “regional errors”

function. In the case of a partition, the matrix (
∑

s′ Pπ(s′)f(s′)f t(s′))
−1

of Equation 41

is a diagonal matrix which we can write as

M−1 = (mij)
−1 =













m11 · · · 0

...
. . .

...

0 · · · mnn













−1

=













1/m11 · · · 0

...
. . .

...

0 · · · 1/mnn













where mij =
∑

s Pπ(s)fi(s)fj(s). The matrix is diagonal because a partition never has

more than one active region at any time, so that fi(s)fj(s) = 0 unless i = j. Substituting

this result into Equation 41, we have

ŵk = (. . . ,

∑

s Pπ(s)υ∗
1(s, ak)fi(s)

mii

, . . .)

resulting in

ŵik =

∑

s Pπ(s)fi(s)υ
∗
1(s, ak)

∑

s′ Pπ(s′)f 2
i (s′)

Since fi(s) only takes values 0 or 1 in a partition, this equation is equivalent to Equa-

tion 38 for the “regional errors” function. As we have seen, this equation yields the

same results as Equations 39 and 23 in the case of a partition. Therefore, in the case
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of the partitioned representation of Figure 21b, we would again arrive at the values

summarized in Tables 5 and 6.

The “regional error” and “system error” functions (Equations 35 and 36, respec-

tively) are just two examples out of many possible functions we could choose. This

choice, and the choice between the error minimization and soft state aggregation ap-

proaches, determine the meaning of the generalized action values, {wik}.

4.4.3 Example: Generalized action values for a coarse coded

representation

For either Method 1 or Method 2, we can calculate the generalized action values ŵik =

υπ(Sfi
, ak)) and then use them to calculate the action-value function, Q(s, ak) = ŵkf .

We will do this now for a coarse-coded representation of the gridworld. The resulting

action-value function will allow us to see how state generalization has modified the

apparent action values in the task.

Suppose that our representation is made up of two Gaussian-kernel feature detectors,

as in Figure 21c. We will define the kernel functions and normalized detector functions

as follows:

gi(s) = e−(s−ci)2/0.1

fi(s) =
gi(s)

g1(s) + g2(s)

where c1 = (2.0, 3.0) and c2 = (3.0, 2.0). Detector f1 claims the entire top-left corner of

the grid, and f2 dominates the other half, the bottom-right corner.

We will assume that the sampling policy is random, so that we are equally likely

to choose action up or right from any state. The policy chosen in the earlier examples

(moving up the left edge of the grid and then moving right along the top edge) turns out
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to be invalid for this representation. The reason is that neither detector can distinguish

the top row from the left edge, since the detectors’ centers lie on the diagonal which

separates the bottom-left from the top-right halves of the grid. The random policy has

another advantage: by allowing us to sample all states, it gives us a comprehensive

picture of the action values in this task.

Method 1: Soft state aggregation

With state generalization, the action values depend on the sampling policy. Table 9

gives the state probabilities for a random sampling policy. Given the detector func-

0.023 0.045 0.057 0.000
0.045 0.068 0.068 0.057
0.091 0.091 0.068 0.045
0.182 0.091 0.045 0.023

Table 9: Probability of state occurrence under a random policy

tions and the state probabilities, we first calculate the conditional probabilities Pr{s|Si}

according to Equation 31. Then Equations 30 and 33 allow us to write a system of equa-

tions expressing the relationships between the action values for the regions (υπ
0 (Si, a))

and for the individual states (υπ
0 (s, a)). Solving this system for the generalized action

values (ŵij = υπ
0 (Si, aj) here) gives the values which correspond to the state clusters;

plugging these values into our system model Q(s, ak) = ŵkf then allows us to see how

the action values have changed from the true values (which are seen under a discrete

representation).

The generalized action values are given by Table 10; Figure 23 shows the resulting

function Q(s, right) and Figure 24 shows the decision surface Q(s, right) − Q(s, up).

The function Q(s, up) (not shown) is the mirror image of Q(s, right), reflected in the
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Figure 23: Q(s, right) under soft-state aggregation

diagonal line x = y, as expected.

Cluster ŵ(Si, up) ŵ(Si, right)
S1 0.129213 0.561798
S2 0.561798 0.129213

Table 10: Generalized action values under soft-state aggregation

Method 2: Minimizing “regional errors”

Instead of solving a system of equations, we calculate the generalized action values

directly in terms of the true values for individual states: the υ∗
1(s, ak), which are all

powers of the discount parameter, γ = 0.9, and are summarized below in Table 11 and

Table 12. Table 13 summarizes the generalized action values given by this method.

Figure 25 shows the function Q(s, right) for this method, and Figure 26 shows the
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Figure 24: Q(s, right)−Q(s, up) under soft-state aggregation
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0.81 0.9 1.0 0.0
0.729 0.81 0.9 −1.0
0.6561 0.729 0.81 −1.0
0.59049 0.6561 0.729 −1.0

Table 11: Whole-path action values, υ∗
1(s, right)

−1.0 −1.0 −1.0 0.0
0.729 0.81 0.9 1.0
0.6561 0.729 0.81 0.9
0.59049 0.6561 0.729 0.81

Table 12: Whole-path action values, υ∗
1(s, up)

decision surface Q(s, right)− Q(s, up). The function Q(s, up) (not shown) is again the

mirror image of Q(s, right).

4.5 The Convex Generalization Property

In both examples, the generalized action values for a detector fell within the range of

the action values for the individual states. We might wonder whether this will always

be true. If we interpret the detectors as indicators of “generalized states,” we might

hope that their generalized action values can be expressed as weighted sums of the

state-action values. The following criterion articulates this idea more precisely.

Definition 4.1 (Convex Generalization Property (CGP)) Detector fi is asso-

ciated with generalized action values ŵij. The Convex Generalization Property holds

Cluster ŵ(Si, up) ŵ(Si, right)
S1 0.281016 0.763289
S2 0.763289 0.281016

Table 13: Generalized action values under minimization of “regional errors”
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Figure 25: Q(s, right) under minimization of “regional errors”
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Figure 26: Q(s, right)−Q(s, up) under minimization of “regional errors”
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if

ŵij =
∑

s:fi(s)>0

α(s)υ(s, aj) (42)

where υ(s, aj) is the true value of action aj from state s under a discrete representation,

and the coefficients, α(s), obey the following conditions:

α(s) ≥ 0, for s : fi(s) > 0

∑

s:fi(s)>0

α(s) = 1

Furthermore, the coefficients, α(s), do not depend on the action, aj, but are the same

for all j.

CGP holds for both soft state aggregation and “regional errors” minimization, but not

for “global errors” minimization. For soft state aggregation, Equation 30 expresses

the generalized action value ŵij = υπ
0 (Si, aj) as a weighted sum of state-action values

υπ
0 (s, aj). In this case, the coefficient α(s) = Pr{s|Si}. Since probabilities are always

non-negative, we know that α(s) ≥ 0. Furthermore,

∑

s:fi(s)>0

α(s) =
∑

s

α(s)

because Pr{s|Si} = 0 when fi(s) = 0. And by Equation 31 we know that

∑

s

α(s) =

∑

s fi(s)Pπ(s)
∑

s′ fi(s′)Pπ(s′)
= 1

Finally, note that the coefficient α(s) has no dependence on the action, since Pr{s|Si} is

the same, no matter which action aj is considered in Equation 30. Thus the contribution

of υπ(s, a) depends purely on the state clustering and the sampling policy.

In the case of regional errors minimization, Equation 38 expresses ŵik as a linear

combination of the terms υ∗
1(s, ak), with coefficients

α(s) =
Pπ(s)fi(s)

∑

s′ Pπ(s′)fi(s′)
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Since the probabilities Pπ(s) must be non-negative, and we know fi(s) ≥ 0 by definition,

then α(s) ≥ 0. Also note that

∑

s:fi(s)>0

α(s) =
∑

s:fi(s)>0

Pπ(s)fi(s)
∑

s′ Pπ(s′)fi(s′)
=

∑

s Pπ(s)fi(s)
∑

s′ Pπ(s′)fi(s′)
= 1

And the coefficients α(s) again have no dependence on the actions or action values.

Thus CGP holds for this approach.

But what of the global error minimization approach? Equation 41 expresses the

vector of generalized action values, ŵk, as a linear combination of the υ∗
1(s, ak) but

the coefficients α(s) may sometimes be negative because they depend on the inverse

matrix M−1. If CGP holds, then ŵij should be a convex combination of the action

values for individual states, and ŵij should be bounded by those values. (The appendix

to Chapter 5 discusses properties of convex combinations in more detail). But the

following counter-example shows that ŵij can be outside the range of the υ∗
1(s, ak), if

we take the global error minimization approach.

In this example, the representation is made up of three Gaussian-kernel detectors:

one broad detector, centered in the grid, and two narrow detectors placed in the middle

of the top row and in the middle of the right column. Figure 27 shows a superposition

of the three detectors. In this demonstration we also change the reward function so

that falling off the top or right edge of the grid is now given a small, positive reward

of 0.1. Entering state (4, 4) results in a reward of 1.0, as before. We calculate the

action values by the global error minimization method; the decision surface Q(s, right)−

Q(s, up) is shown in Figure 28. Although it is hard to see, the value for ((1, 4), right)−

((1, 4), up) = 0.000000006, so that the preferred policy in (1, 4) is to move right. Thus

the representation “works” for solving the task; but the generalized action values are

outside the range occupied by the action values for the individual states, as shown by
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Figure 27: Superposition of the detectors for the counter-example

Table 14. The rewards given in the task are either 0.1 or 1.0—but the generalized

action values are sometimes greater than 1.8 or less than −1.9. This shows that CGP

does not always hold under global error minimization.

Cluster ŵ(Si, up) ŵ(Si, right)
S1 −1.97172 1.87002
S2 1.87002 −1.97172
S3 0.693563 0.693563

Table 14: Generalized action values under minimization of “global errors”
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Figure 28: Q(s, right)−Q(s, up) under minimization of “global errors”
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4.6 Effects of Representation on Action Values

How we choose to define generalized action values depends on our purpose in doing

so. Soft state aggregation describes the behavior of the Q-learning algorithm, and was

used by Singh, Jaakkola and Jordan (1995) to describe the convergence of Q-learning

under state generalization. This approach assumes the one-step look-ahead definition of

expected reward, and makes the assumption that each detector computes a probability

that the current state belongs to the corresponding cluster.

The error minimization approach allows more flexibility in defining the meaning

of generalized action values, because the error function allows us to determine which

errors are most important, how they should be weighted, and far we look ahead for

the action values of individual states. Under this approach we are free to interpret the

activation of multiple feature detectors as features which are certain but fuzzy—and

therefore, true to different degrees.

The Convex Generalization Property describes a common intuition that the action

values of a generalized state ought to derive from the values of the individual states that

it covers. Both the soft state aggregation approach and the minimization of “regional”

errors satisfy CGP. This property will be a useful tool in the next chapter.

The generalized action values enable us to see how state generalization modifies the

apparent value of the agent’s actions in the task. By defining the theoretical values for

ŵij, we can discuss the effect of representation apart from consideration of the actual

learning algorithm in use, or the conditions required for convergence of the weights.

Previous sections calculated the generalized action values according to several different

schemes. To evaluate these results, we should compare them with the true action values

under a discrete representation. Tables 11 and 12 gave the true values for the discrete
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Figure 29: Q(s, right) for the discrete representation

representation; Figure 29 plots these values for the action right, and Figure 30 shows

the resulting decision surface Q(s, right)−Q(s, up).

Comparing these plots with the earlier plots, we see that state generalization has

distorted the decision surface, although not enough to prevent the agent from succeeding

in the task. The generalized states represent the task with only two sets of action values,

instead of 16 for the discrete representation. Such simplification can make a task much

easier to learn, as long as the representation preserves the information relevant to the

task.

Another observation we might make is that the decision surfaces produced by dif-

ferent representations vary in effectiveness. For example, the decision surface for the

discrete representation (Figure 30) has a larger range between its extreme values than
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Figure 30: Q(s, right)−Q(s, up) for the discrete representation
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the decision surfaces for the other representations, making the relative advantage of one

action over another easier to learn. Whether this apparent increase in feature impor-

tance outweighs the added complexity of the representation depends on the task. These

two aspects of cognitive economy are in constant tension, so that feature importance

is not the only consideration; however, there are some state distinctions which must be

made by the representation if the task is to remain learnable. The next chapter shows

how separating incompatible states preserves the learnability of the task.

4.7 Summary

This chapter extended the idea of action value to the definition of action values for

generalized states. The chapter presented definitions of generalized action values based

on two different sets of assumptions. These definitions show how state generalization

results in compromises in the action values—in essence, how the way we classify the

world changes the nature of the tasks we face.
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Chapter 5

State Compatibility and

Representational Adequacy

The aim of a model is, of course, precisely not to reproduce reality in all

its complexity. It is rather to capture in a vivid, often formal, way what

is essential to understanding some aspect of its structure or behavior. The

word “essential” as used in the above sentence is enormously significant,

not to say problematical. It implies, first of all, purpose. [. . . ] We select,

for inclusion in our model, those features of reality that we consider to be

essential to our purpose.

—Joseph Weizenbaum

5.1 Introduction

This chapter is devoted to a theorem which proves that the state compatibility criteria

developed in Chapter 3 lead to representations that allow the agent to learn to make

sound decisions in its task. In other words, if each pair of incompatible states is

separated in the representation, the representation will be ε-adequate. Although the

on-line aspects of the task make determination of necessary and sufficient conditions

for learnability especially difficult, we can show that the state compatibility criteria are
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sufficient conditions for the adequacy of the representation, which is our standard for

the learnability of the task.

Although the applicability of the proof is limited to systems which represent incom-

patible states orthogonally (as partitions do), this result adds support to the claim that

these criteria reflect some essential characteristics of important features, and provide a

solid foundation for future implementations of on-line learning systems.

5.1.1 Summary of notation

To prove the theorem, we must take care to distinguish properties of our current state,

s, from those of the generalized state which contains s. The functions Q, V, and prefε

describe the values and policy for the generalized state, while their one-step look-

ahead counterparts (Q1, V 1, and pref1ε) describe the action values and policy of the

individual state, s. These functions were developed in Chapter 3, but for convenience,

this section restates their definitions, as well as the criteria for ε-adequacy and state

compatibility.

We also need to be able to refer to the action which appears best from state s, and

the action which appears best for the generalized state. After summarizing previous

definitions, the section defines these two concepts of the best action.

In this chapter, I will write ŵij to refer to the true, steady-state version of the

generalized action value wij, after the analysis in Chapter 4.

Definition 5.1 (Q(s, a)) We define the action value function Q in terms of the gen-

eralized action values and feature detectors:

Q(s, ak) =
∑

i

ŵikfi(s)
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Definition 5.2 (V (s)) We define the state value function V in terms of the action

values for the generalized state:

V (s) = max
k

Q(s, ak)

Definition 5.3 (prefε(s)) Let s be a state, and let ai ∈ A(s) be an action available to

the agent from state s. Then we define

prefε(s) = {a ∈ A(s) : Q(s, a) ≥ max
i

Q(s, ai)− ε}

Thus prefε(s) is the set of “best actions” for the agent at s, according to the generalized

state.

Definition 5.4 (Q1(s, a)) We define the function Q1 for the value of an action, based

on the expected discounted future reward seen one step in the future. Let s be the state

seen by the agent at time t, and s′ a possible resulting state at time t + 1. We define

Q1(s, a) =
∑

s′
Pa

ss′[R
a
ss′ + γV (s′)]

where

V (s′) = max
j

Q(s′, aj) = max
j

∑

i

ŵijfi(s
′)

Definition 5.5 (V 1(s)) Let s be a state, and ai ∈ A(s) an action available to the

agent from state s. Then we define

V 1(s) = max
i

Q1(s, ai)

Thus V 1(s) represents the expected value of state s, based on a one-step look-ahead

from s.
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Definition 5.6 (pref1ε(s)) Let s be a state, and let ai ∈ A(s) be an action available

to the agent from state s. Then we define

pref1ε(s) = {a ∈ A(s) : Q1(s, a) ≥ max
i

Q1(s, ai)− ε}

Thus pref1ε(s) is the set of “best actions” for the agent at s, according to a one-step

look-ahead.

Definition 5.7 (ε-adequacy) Let δ be given, and assume that when the agent’s cur-

rent state is st it always selects an action from prefδ(st). We will say that a represen-

tation of the state-space is an ε-adequate representation for δ ≤ ε, if for every state

st ∈ S reachable by the agent, the following two properties hold:

|V 1(st)− V (st)| ≤ ε

prefδ(st) ⊆ pref1ε(st)

Definition 5.8 (State compatibility) Let s1 and s2 be states in S. Let δ be given,

and assume that the agent always selects an action from prefδ(st). Also assume that our

goal is to produce an ε-adequate representation, where ε ≥ δ.

We will say that s1 and s2 are compatible in case the following three conditions

hold:

pref1ε(s1) = pref1ε(s2) (43)

|V 1(s1)− V 1(s2)| ≤ δ (44)

and

pref1δ(s1) = pref1δ(s2) if δ ≤ ε/2 (45)

pref10(s1) = pref10(s2) otherwise (46)
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Definition 5.9 (Best action at individual state) Let a∗(s) denote the action that

is best according to a one-step look-ahead for the state s :

a∗(s) = arg max
a

Q1(s, a)

Definition 5.10 (Best action for generalized state) Let â denote the apparent

best action at s, according to the generalized action values:

â = arg max
a

Q(s, a)

Note that since â depends only on the values for the generalized state, it is the same

for every member of that generalized state. If we choose any two states s1 and s2 in the

same generalized state, we may find that a∗(s1) 6= a∗(s2), but the generalized action

values still produce â as the apparent best action for both. When â 6= a∗(s), this means

that state generalization has resulted in compromises in the action values, so that â,

the action which appears best for the generalized state, is not the best action for the

state s, according to a one-step look-ahead.

Although â is technically a function of s, I will refer to it simply as â. Since the

following analysis will always consider a single generalized state at a time, we will know

which â is meant, and this notation will reinforce the difference between a∗(s), which

is specific to s, and â, which is common to all states grouped with s.

5.1.2 Examples of what can go wrong

The examples which follow illustrate what can go wrong when the compatibility rules

are violated. For simplicity, assume that each example presents a set of states from

the same region in a partition representation; assume also that the states have equal
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probability of occurrence, so that the action values Q(s, aj) may be found by simply

averaging the Q1(si, aj) values for the individual states.

In general, a∗(si) could be a different action for each si. Thus â, which appears

best for the generalized state, may not be best for all the states in this grouping—or

even for any the states. If the values of the actions vary widely from state to state, â

may be a poor enough choice for some states that the representation is not ε-adequate.

That is why we need the assumption regarding the consistency of the top action values

(Equations 45 and 46). Table 15 shows a system of three states which satisfies the first

two compatibility rules, but not the third. In this example, δ ≤ ε/2, but there is no

ai Q1(s1, ai) Q1(s2, ai) Q1(s3, ai) Q(s, ai)
a1 1.00 0.80 0.80 0.86
a2 0.80 1.00 0.80 0.86
a3 0.80 0.80 1.00 0.86
a4 0.79 0.79 0.79 0.79

V 1(sj) 1.00 1.00 1.00 V (s) = 0.86
pref1ε(sj) {a1, a2, a3} {a1, a2, a3} {a1, a2, a3}

Table 15: Inconsistency of action rankings may prevent ε-adequacy (δ = 0.08, ε = 0.2).
Here prefδ(s) = {a1, a2, a3, a4}

action whose value is always within δ of the best action value for each state. In other

words, for any action ai there is a state s such that Q1(s, a∗(s))−Q1(s, ai) > δ. Even

though the state values are compatible (in fact, they are identical), and the pref1ε(sj)

are the same for each state, the action a4 appears in prefδ(s) but not in pref1ε(sj),

violating the conditions for ε-adequacy. Thus the agent could select an action which

appears optimal, and incur an incremental regret greater than ε.

Even if the top actions are consistent according to Equation 45, the representation

might not be ε-adequate for ε/2 < δ ≤ ε. For example, consider the system shown in

Table 16. In this example, the first two compatibility rules are satisfied, since s1 and
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ai Q1(s1, ai) Q1(s2, ai) Q(s, ai)
a1 1.00 0.85 0.925
a2 0.85 1.00 0.925
a3 0.79 0.79 0.79

V 1(sj) 1.00 1.00 V (s) = 0.925
pref1ε(sj) {a1, a2} {a1, a2} prefδ(s) = {a1, a2, a3}

Table 16: Inadequate representation for δ > ε/2 (δ = 0.15, ε = 0.2.)

s2 share the same state values and pref1ε sets. The less rigorous form of the third rule

is also satisfied (Equation 45), since pref1δ(s1) = pref1δ(s2) = {a1, a2}. But action a3

appears in prefδ(s) and not in pref1ε(s1) or pref1ε(s2); hence the agent might be led to

select a3 as its action, and incur an incremental regret greater than ε. This example

shows that ε-adequacy requires a stronger condition than Equation 45 when δ > ε/2.

For large δ, Equation 46 makes sure that all the states in the group agree as to the best

action.

We might be tempted to allow a larger tolerance for the compatibility of state values

in Equation 44, perhaps allowing the V 1 values of two compatible states to be ε apart.

But then we will no longer be able to guarantee ε-adequacy. This is shown by the

system in Table 17, which satisfies the compatibility rules, except that the V 1 values

of different states are ε apart, instead of being within the tolerance δ. In this example,

ai — Q1(sj, ai) — Q(s, ai)
a1 1.00 0.70 0.80 0.70 0.80 0.70 0.783
a2 0.90 0.80 0.70 0.80 0.70 0.80 0.783
a3 0.40 0.40 0.40 0.40 0.40 0.40 0.40

V 1(sj) 1.00 0.80 0.80 0.80 0.80 0.80 V (s) = 0.783

Table 17: State value incompatibilities. (δ = 0.1, ε = 0.2)

the pref1 sets are identical for all the states, whether the tolerance used is δ or ε. The
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state values are all within ε = 0.2. But

V 1(s1)− V (s1) = 1.0− 0.783 > 0.2 = ε

Hence the representation is not ε-adequate.

The compatibility conditions include two rules involving the compatibility of pref1

sets, but with different tolerances. We have seen (Table 15) that a region of states

which meets the first of these rules (Equation 43) but not the second (Equation 45

or 46) may fail to be ε-adequate. We might wonder if meeting the second rule could

allow us to drop the requirement of meeting the first rule. But the example in Table 18

shows that the representation can still fail to be ε-adequate when Equation 45 is met

but Equation 43 is not.

ai Q1(s1, ai) Q1(s2, ai) Q1(s3, ai) Q(s, ai)
a1 1.00 0.80 0.80 0.86
a2 0.90 0.90 0.80 0.86
a3 0.90 0.80 0.90 0.86
a4 0.79 0.79 0.79 0.79

V 1(sj) 1.00 0.90 0.90 V (s) = 0.86
pref1ε(sj) {a1, a2, a3} {a1, a2, a3, a4} {a1, a2, a3, a4}

Table 18: Inadequate representation where Equation 43 is not met (δ = 0.1, ε = 0.2).
Here prefδ(s) = {a1, a2, a3, a4} 6⊆ {a1, a2, a3} = pref1ε(s1).

In this case, prefδ(s1) 6⊆ pref1ε(s1). This violates the ε-adequacy criteria; as a result,

action a4 appears to be a sound choice in state s1, even though it incurs an incremental

regret greater than ε.
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5.2 Sufficient conditions for ε-adequacy

5.2.1 Generalization of state separation

The reason we need criteria for state-compatibility is to decide when the representa-

tion must separate states, in order to prevent the generalization of action values over

dissimilar states. But what does it mean to separate two states? In a partition repre-

sentation, two states are separated if they lie in different partition regions. In this case,

the values of one region are completely separate from those of every other region; thus

two states either lie in different regions with distinct sets of action values, or else they

share the same action values because they are, in effect, aliases for the same partition

region. In contrast, the general case allows a state to be represented by a pattern of

activation over a set of feature detectors, instead of by the single detector for a unique

state-space region which covers that state.

Suppose we have two states, s1 and s2. If some detector fi is active for both states,

then the generalized action values ŵij for fi contribute to both Q(s1, aj) and Q(s2, aj).

This means that experiences with s1 and s2 both affect the generalized action values

ŵij; therefore, both states affect the action values of the other. Generalization over

incompatible states may sometimes be benign, depending on the number of states

sharing values, their relative frequencies of occurrence, and whether their differences

tend to balance and cancel each other. For example, if most of the feature detectors

which are active for s1 are inactive for s2, the interaction between them might not

matter. Or if the cross-talk between updates for different states tends to cancel because

the errors for individual states appear to be random, that cross-talk might not be a

problem. Or if the states which result in cross-talk to the action-value updates for
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s1 occur only infrequently, this interaction might not compromise the accuracy of s1’s

action values in any significant way.

So if our analysis allows for interaction and cross-talk between incompatible states,

then all these factors will have a bearing on our separation criteria. How completely the

states need to be separated in the feature space will depend on the trade-offs between

state frequencies, the magnitude of the differences in action values, the number and

strength of detectors which overlap, and the distribution of the cross-talk errors for

individual states. This is beyond the scope of our current discussion. For the purpose

of completing the analysis in this chapter, I will simply define separated states to be

states which have orthogonal representations in feature space. Therefore, there will be

no interaction or dependence between the action values of separated states.

Definition 5.11 (State separation) Given two states, s1 and s2, we will say that s1

and s2 are separated in case f(s1)f(s2) = 0.

This definition is a generalization of the partition case, where each state excites a single

detector, and separated states lie in different partition regions. To see this, suppose

that s1 and s2 are states which are separated by a partition representation. Let fs1
be

the detector which responds to s1, and fs2
the detector which responds to s2. Then

fi(s1) =















1 if fi = fs1

0 otherwise

and

fi(s2) =















1 if fi = fs2

0 otherwise

Since fs1
6= fs2

, we have fi(s1)fi(s2) = 0, ∀i and f(s1)f(s2) = 0.
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Notice that for the partition representation, a detector cannot be active for both of

a pair of separated states. This fact will also hold for the general case, as shown in the

following lemma.

Lemma 5.1 If s1 and s2 are separated,

fi(s1)fi(s2) = 0, ∀i

Proof: The feature detectors always take non-negative values, by the definition of f.

Therefore, fi(s) ≥ 0, ∀i, s, and fi(s1)fi(s2) ≥ 0. By the separation of s1 and s2, we know

that f(s1)f(s2) =
∑

i fi(s1)fi(s2) = 0. Therefore, we must have fi(s1)fi(s2) = 0, ∀i.

Corollary 5.1 If s1 and s2 are separated, and fi(s1) > 0, then

fi(s2) = 0 (47)

5.2.2 Common assumptions

The theorem to follow will show that if the representation always separates incompatible

states, it must be ε-adequate. In order to prove this, it makes several assumptions about

the task and representation, as well as an assumption about what to do with the portion

of the episode beyond the current state. The proof will also draw upon some of the

properties of convex combinations, which are summarized at the end of this chapter.

Definition 5.12 (Common Assumptions) The following assumptions are common

to the lemmas and the theorem which follow:

• S is finite
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• The Convex Generalization Property (see below) holds for our definition of gen-

eralized action values ŵij, with a set of coordinates which is independent of the

action aj

• The vector of feature detectors is normalized:

∑

i

fi(s) = 1, ∀s

• The current one-step state-action values are equivalent to the true values:

Q1(s, aj) = υπ
0 (s, aj)

Before moving on, let us examine each of these assumptions in more detail.

Finite state-space The arguments in the proofs will involve summations over states.

In order to avoid complications resulting from infinite sums, I make the assump-

tion that the state-space either has a finite number of states or that we may

replace it with a finite state-space of suitable resolution. If the state-space is

infinite we assume that a sufficiently-detailed but finite partitioning of the space

exists and provides an adequate representation for the task. (If such a partition-

ing does not exist, then there are an infinite number of distinctions which must be

learned in order to solve the task—but such tasks are ruled out by our assump-

tion that the task is learnable). Therefore, we may assume that there are only a

finite number of states si ∈ S, although some of these ‘states’ may actually cover

multiple states from the original representation. Starting with this basic set of

states, the purpose of the proof is to show that representations may safely ignore

distinctions between compatible states, without compromising the learnability of

the task. Thus the representation remains ε-adequate.
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Convex Generalization Property Assume that the Convex Generalization Prop-

erty (CGP) holds for the generalized action values. This means that the gener-

alized action values for a set of states (for example, the set of states recognized

by a given feature detector) are a special kind of weighted sum of action values

for the individual states in the set. As shown in Chapter 4, this property holds

for the definitions of generalized action value which interest us most, including

“soft state aggregation” (Singh, Jaakkola and Jordan, 1995), as well as my “local

minima” definition.

For convenience, we restate the pertinent results for CGP here. Detector fi is

associated with generalized action values ŵij, where

ŵij =
∑

s:fi(s)>0

α(s)υπ(s, aj) (48)

and the coefficients, α(s), obey the following conditions:

α(s) ≥ 0, for s : fi(s) > 0

∑

s:fi(s)>0

α(s) = 1

Furthermore, the coefficients, α(s), do not depend on the action, aj, but are the

same for all j, as shown in Chapter 4.

Normalization of feature vectors Assume that the sum of the active detectors is

unity:

∑

i

fi(s) = 1

This is a generalization of discrete Q-learning, (where a single state is active),

or learning with partition representations, in which a single detector has value

1 and the others are zero. In “soft state aggregation,” Singh, et. al. made this
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assumption, because they wished to regard the output of the feature detectors

as probabilities that the current state was an example of each cluster-category;

thus the detector outputs would need to sum to unity for these values to actually

be probabilities. Besides making the proof easier, in practice, the normalization

assumption tends to make the system more well-behaved.

Quality of look-ahead values For the purpose of this proof, assume that the one-

step look-ahead values are the true action values:

Q1(s, aj) = υπ
0 (s, aj)

where π is a policy which results from selecting actions from prefδ(s) for the

remainder of the episode.

In Chapter 4 we saw that we have several candidates for the “true” action values

for a particular representation. The υπ
0 (s, aj) represent the expected sum of the

reward for taking action aj from s and the discounted value of the resulting state.

This is a traditional one-step look-ahead. In contrast, the υπ
1 (s, aj) represent the

reward under the “whole-path” assumption—a Monte Carlo return for the rest of

the episode. In Chapter 4, the whole-path returns had the advantage of allowing

us to see exactly how the representation affected the action values and policy for

the task; but in this chapter, the one-step assumption is more appropriate, since

we want to validate a set of criteria which may be used in feature extraction

algorithms which can only see the next step ahead in the episode. Therefore, in

the lemmas and theorem to follow, we will take υπ(s, aj) to mean υπ
0 (s, aj).

This assumption allows us to ignore the rest of the episode and focus on the

incremental regret at the current state. The theorem will show that, according
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to this definition of action value, separating incompatible states will result in an

ε-adequate representation. But the proof will not necessarily extend to the case

where the true values are considered to be those of a Monte Carlo return.

In order for the representation to be ε-adequate, it must be ε-adequate at each

point in the episode, from the terminal states all the way back to the initial

state. If this is the case, then the policy π describes the behavior of an agent

which makes sound—although not necessarily optimal—decisions throughout the

remainder of the episode.

Lemmas 5.2 and 5.3 relate the action values for the generalized state to the values

for individual states. These results will be the foundation for proving the theorem.

Lemma 5.2 Assume the Common Assumptions of Definition 5.12. Also assume that

the representation separates any pair of incompatible states. Let s ∈ S and ak ∈ A.

And let us write Ss for the set of states which are compatible (by Definition 5.8) with

our chosen state, s. Then there exist coefficients cs′ which allow us to write Q(s, ak) as

a convex combination of action values for the states s′ which are compatible with s, as

follows:

Q(s, ak) =
∑

s′∈Ss

cs′ Q1(s′, ak), (49)

cs′ ≥ 0,
∑

s′∈Ss

cs′ = 1 (50)

Proof: Let s ∈ S. According to our system model,

Q(s, ak) =
∑

i

ŵikfi(s) (51)
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By assumption, the fi are normalized and non-negative. Thus

∑

i

fi(s) = 1, ∀s ∈ S

fi(s) ≥ 0, ∀i, s

Hence Q(s, ak) is a convex combination of generalized action values ŵik. Notice that

if fj(s) = 0, the term ŵjkfj(s) makes no contribution to Q(s, ak) in Equation 51.

Therefore, we may write

Q(s, ak) =
∑

i:fi(s)>0

ŵikfi(s) (52)

∑

i:fi(s)>0

fi(s) = 1

Hence Q(s, ak) is a convex combination of the subset of {ŵik} for which fi(s) > 0.

Recall that Sfi
is the recognition set for detector fi and is defined by

Sfi
= {s′ ∈ S : fi(s

′) > 0}

By the Convex Generalization Property (Equation 48), we may write the generalized

action value ŵik as a convex combination of the true action values for states s′ ∈ Sfi
:

ŵik =
∑

s′∈Sfi

αs′ υ
π(s′, ak) (53)

where the coefficients αs′ do not depend on action ak, as established in Chapter 4.

Note that Sfi
is a pure set, meaning that its members are all mutually compatible

states. If not, we could choose s1, s2 ∈ Sfi
such that s1 and s2 are not compatible.

Because both states are in Sfi
we have fi(s1) > 0 and fi(s2) > 0. But if these states are

incompatible, they are separated by the representation, by hypothesis. Since we know

fi(s1) > 0, we must have fi(s2) = 0, by Corollary 5.1—a contradiction. Thus every

pair of states from Sfi
must be compatible.
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Now if fi(s) > 0, then s ∈ Sfi
. Since Sfi

is a pure set, fi(s) > 0 thus implies that

all the members of Sfi
are compatible with our chosen state, s. Therefore

fi(s) > 0⇒ Sfi
⊆ Ss (54)

We have already established (Equation 52) that Q(s, ak) is a convex combination of

terms ŵik for which fi(s) > 0 . Furthermore, Equations 53 and 54 show that fi(s) > 0

implies that ŵik is a convex combination of terms υπ(s′, ak) for states s′ ∈ Ss. Since a

convex combination of a convex combination of terms is itself a convex combination of

those terms (Lemma 5.5), we have established that Q(s, ak) is a convex combination

of terms υπ(s′, ak) for states s′ which are compatible with s. By our assumption re-

garding look-ahead values, we may substitute Q1(s′, ak) for υπ(s′, ak). Thus there exist

coefficients cs′ ≥ 0 such that

∑

s′∈Ss

cs′ = 1

and

Q(s, ak) =
∑

s′∈Ss

cs′ Q1(s′, ak)

Lemma 5.3 Assume the Common Assumptions of Definition 5.12. Also assume that

the representation separates any pair of incompatible states. Let s ∈ S and aj, ak ∈ A.

Then we may write Q(s, aj) − Q(s, ak) in terms of action values of states which are

compatible with s, as follows:

Q(s, aj)−Q(s, ak) =
∑

s′∈Ss

cs′(Q1(s′, aj)−Q1(s′, ak)) (55)

Proof: This result is a corollary of Lemma 5.2. Notice that the coefficients cs′ in

Equation 49 do not depend on ak, since the coefficients in Equation 51 and Equation 53
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have no dependence on the action chosen. Thus we may use the same coefficients to

write Q(s, aj) as a convex combination:

Q(s, aj) =
∑

s′∈Ss

cs′ Q1(s′, aj)

Thus

Q(s, aj)−Q(s, ak) =
∑

s′∈Ss

cs′ Q1(s′, aj)−
∑

s′∈Ss

cs′ Q1(s′, ak)

=
∑

s′∈Ss

cs′(Q1(s′, aj)−Q1(s′, ak))

We now have the tools to prove the following theorem, which asserts that the com-

patibility criteria given in Definition 5.8 are sufficient conditions for ε-adequacy.

Theorem 5.1 (State compatibility guarantees ε-adequacy)

Assume that the state-space is finite, the Convex Generalization Property holds for our

definition of generalized action values ŵij, the feature vectors f(s) are normalized so

that
∑

i fi(s) = 1, ∀i, s, and that the one-step look-ahead values at the current state are

equivalent to the true action values: Q1(s, aj) = υπ
0 (s, aj). Suppose that the representa-

tion separates every pair of incompatible states. Then the representation is ε-adequate.

5.2.3 Proof of the theorem

Case 1: δ ≤ ε/2

The first step is to establish that for any state s ∈ S, |V 1(s) − V (s)| ≤ ε. Since the

preceding two Lemmas link Q(s, aj) with the Q1 values for compatible states (s′ ∈ Ss),

we will focus on Ss. Let smax be the state with largest Q1 value in Ss, and let Q1max

be that value. Thus

Q1max = V 1(smax) = max
s′∈Ss

V 1(s′) = max
s′∈Ss

max
ai

Q1(s′, ai)
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By compatibility of values (Equation 44), we know that

|V 1(smax)− V 1(s′)| ≤ δ, ∀s′ ∈ Ss

Since V 1(smax) = Q1max and V 1(s′) = Q1(s′, a∗(s′)), this is

|Q1max −Q1(s′, a∗(s′))| ≤ δ, ∀s′ ∈ Ss

Thus

Q1max −Q1(s′, a∗(s′)) ≤ δ, ∀s′ ∈ Ss (56)

By compatibility we also know (Equation 45) that there is an action which is close to

the best choice for every state in Ss :

∃ac : ac ∈ pref1δ(s
′), ∀s′ ∈ Ss

Thus, by the definition of pref1δ(s
′),

Q1(s′, a∗(s′))−Q1(s′, ac) ≤ δ, ∀s′ ∈ Ss

Combined with Equation 56, this yields

Q1max −Q1(s′, ac) ≤ δ + δ ≤ ε, ∀s′ ∈ Ss

or

Q1(s′, ac) ≥ Q1max − ε, ∀s′ ∈ Ss (57)

By Lemma 5.2 we may write Q(s, ac) as a convex combination of terms Q1(s′, ac) :

Q(s, ac) =
∑

s′∈Ss

cs′Q1(s′, ac)

Therefore, by applying Equation 57, we have

Q(s, ac) =
∑

s′∈Ss

cs′Q1(s′, ac) ≥
∑

s′∈Ss

cs′(Q1max − ε) = Q1max − ε
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By the definition of â, we have Q(s, â) ≥ Q(s, ac). Therefore

Q(s, â) ≥ Q1max − ε (58)

But by Lemma 5.2

Q(s, â) =
∑

s′∈Ss

cs′Q1(s′, â)

By the definition of Q1max, Q1(s′, â) ≤ Q1max. Therefore,

Q(s, â) =
∑

s′∈Ss

cs′Q1(s′, â) ≤
∑

s′∈Ss

cs′Q1max = Q1max

and we have Q(s, â) ≤ Q1max. Combining this result with Equation 58 yields

V (s) = Q(s, â) ∈ [Q1max − ε, Q1max] (59)

Now consider V 1(s). By compatibility of values (Equation 44)

|V 1(smax)− V 1(s)| ≤ δ

Since V 1(smax) = Q1max, this means that Q1max − V 1(s) ≤ δ < ε. Therefore

V 1(s) ∈ [Q1max − ε, Q1max] (60)

Since both V (s) and V 1(s) are contained by [Q1max− ε, Q1max], (Equations 59 and 60,

respectively) we know (by Lemma 5.6) that

|V 1(s)− V (s)| ≤ Q1max − (Q1max − ε) = ε

Thus we have proved the first half of the ε-adequacy criterion for the case when δ ≤ ε/2.

Now let us establish the second part of the ε-adequacy criterion at s : that prefδ(s) ⊆

pref1ε(s). We will suppose that ak ∈ prefδ(s), but ak 6∈ pref1ε(s), and show that this
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results in a contradiction. By compatibility (Equation 43) we know that pref1ε(s
′) =

pref1ε(s), ∀s
′ ∈ Ss. Therefore

ak /∈ pref1ε(s
′), ∀s′ ∈ Ss

Hence, by the definition of the preference sets, we have

Q1(s′, a∗(s′))−Q1(s′, ak) > ε, ∀s′ ∈ Ss (61)

By our compatibility assumptions (Equation 45), we know that there is an action, call

it ac, whose one-step look-ahead value is within δ of the top value for each compatible

state:

ac ∈ pref1δ(s
′), ∀s′ ∈ Ss

Thus

Q1(s′, a∗(s′))−Q1(s′, ac) ≤ δ, ∀s′ ∈ Ss

and, rearranging the terms,

Q1(s′, ac) + δ ≥ Q1(s′, a∗(s′)), ∀s′ ∈ Ss

Combining this result with Equation 61, we have

Q1(s′, ac) + δ −Q1(s′, ak) ≥ Q1(s′, a∗(s′))−Q1(s′, ak) > ε, ∀s′ ∈ Ss

Because δ ≤ ε/2 by assumption, ε− δ ≥ δ. Thus

Q1(s′, ac)−Q1(s′, ak) > δ, ∀s′ ∈ Ss

Applying Lemma 5.3 we have

Q(s, ac)−Q(s, ak) =
∑

s′∈Ss

cs′(Q1(s′, ac)−Q1(s′, ak)) >
∑

s′∈Ss

cs′(δ) = δ
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Hence

Q(s, ac)−Q(s, ak) > δ

and, by the definition of â,

Q(s, â)−Q(s, ak) ≥ Q(s, ac)−Q(s, ak) > δ

But this contradicts our assumption that ak ∈ prefδ(s). Therefore our supposition that

ak /∈ pref1ε must be false, and we have proved that

prefδ(s) ⊆ pref1ε(s)

This completes the proof of the theorem for the case where δ ≤ ε/2.

Case 2: ε/2 < δ ≤ ε

For the case where δ > ε/2 our compatibility criteria require that the same actions lead

to maximum reward for all states in Ss (Equation 46). Thus

pref10(s) = pref10(s
′) = {a : Q1(s′, a) = Q1(s′, a∗(s′))}, ∀s′ ∈ Ss

Consequently, â ∈ pref10(s
′), ∀s′ ∈ Ss. If not, we would have â /∈ pref10(s) and we could

choose some other action, aj ∈ pref10(s). Because all the states share the same pref10

set, aj would be in this set for each of the states, and â would not be in this set for any

state. Thus

Q1(s′, aj) > Q1(s′, â), ∀s′ ∈ Ss (62)

Then, by Lemma 5.3, we could write

Q(s, aj)−Q(s, â) =
∑

s′∈Ss

cs′(Q1(s′, aj)−Q1(s, â))
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and, applying Equation 62, we have

Q(s, aj)−Q(s, â) > 0

But this contradicts the definition of â. Thus, for any s′ ∈ Ss,

â ∈ pref10(s
′)

and

Q1(s′, â) = Q1(s′, a∗(s′)) (63)

Let us establish the fact that |V 1(s)− V (s)| ≤ ε. By Lemma 5.2

V (s) = Q(s, â) =
∑

s′∈Ss

cs′Q1(s′, â)

As we have seen (Equation 63),

Q1(s′, â) = Q1(s′, a∗(s′)) = V 1(s′)

Thus

V (s) =
∑

s′∈Ss

cs′V 1(s′)

This means that V (s) is a convex combination of the terms V 1(s′) for compatible states

s′. V 1(s) is trivially a convex combination of the same terms V 1(s′). Therefore, their

difference can be no greater than the difference between the maximum and minimum

of those terms (Lemma 5.7). Thus

|V 1(s)− V (s)| ≤ V 1max − V 1min

where V 1min = mins′∈Ss
V 1(s′) and V 1max = maxs′∈Ss

V 1(s′). Since we know, by the

compatibility of values for s′ ∈ Ss (Equation 44),

V 1max − V 1min ≤ δ ≤ ε
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we have proved that

|V 1(s)− V (s)| ≤ ε

Finally, we need to show that prefδ(s) ⊆ pref1ε(s). First, note that

â ∈ pref1ε(s)

according to Equation 63. Now consider any other action, say, ak, for which

ak ∈ prefδ(s)

This implies

Q(s, â)−Q(s, ak) ≤ δ (64)

By Lemma 5.3 we may write

Q(s, â)−Q(s, ak) =
∑

s′∈Ss

cs′(Q1(s′, â)−Q1(s′, ak))

But if ak /∈ pref1ε(s) then ak /∈ pref1ε(s
′), ∀s′ ∈ Ss (Equation 43), and

Q1(s′, a∗(s′))−Q1(s′, ak) > ε, ∀s′ ∈ Ss

Since Q1(s′, â) = Q1(s′, a∗(s′)) (Equation 63), we can rewrite this as

Q1(s′, â)−Q1(s′, ak) > ε, ∀s′ ∈ Ss

Therefore

Q(s, â)−Q(s, ak) =
∑

s′∈Ss

cs′(Q1(s′, â)−Q1(s′, ak)) >
∑

s′∈Ss

cs′(ε) = ε ≥ δ

or

Q(s, â)−Q(s, ak) > δ
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contradicting Equation 64. Therefore our supposition that ak 6∈ pref1ε(s) is false, and

we have established that

prefδ(s) ⊆ pref1ε(s)

This completes the proof.

Making the assumption that the same action is best in any of the compatible states

(Equation 46) makes the proof much easier. But this assumption may be difficult to

guarantee in real-world systems, for which small amounts of noise could change the

balance between the values of actions which appear nearly optimal. For this reason,

the result for δ ≤ ε/2 is likely to be more useful.

5.3 Discussion

5.3.1 Necessary and sufficient conditions

McCallum (1995) develops a candidate set of criteria for state compatibility. He remarks

that it would be very interesting to be able to show that these criteria are necessary

and sufficient conditions for learning the task, but that he knows of no such proof. As

we will see, necessary conditions are difficult to state for the general case. McCallum’s

criteria ensured that the action values all obeyed the Markov property, but we have

seen that this is not necessary for making sound decisions, since some action values

play no role in determining either the value of the state or its preferred action set. In

addition, McCallum’s criteria are difficult to fit to our general system model because

they require separate monitoring of the action values for each path into a state—whereas

this dissertation assumes that the paths are not stored explicitly, and that action values
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Figure 31: A value distinction which may or may not be necessary, depending on the
values of rzx and rzy

are computed from the generalized action values, ŵij.

Figure 31 illustrates some of the difficulties involved in trying to specify necessary

conditions for learning the task. It depicts a situation where there is a value difference

between two states, but where this difference might not matter, depending on the

immediate rewards given for the actions which lead to those states.

The states x and y have the same preferred policy, so that we might be tempted to

group them together. Note that if learning were not a requirement for our agent, this

would be perfectly acceptable, since we would only need to categorize the states by

their required actions, π∗(s). In that case we could just define the correct action at z,

so that the agent chooses the correct path. But learning a correct policy requires more
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information. If the immediate returns rzx and rzy are equal, the agent needs to know

that y is a much more desirable destination than x, if it is to learn the best response

at z. This requires that the agent be able to distinguish x and y.

But the difference in expected reward between z → x and z → y depends partly

on the immediate rewards, rzx and rzy. These immediate rewards could possibly cancel

the differences in expected value of x and y. What this means is that, in the worst case,

we cannot verify that the distinction between x and y is necessary without knowing

the rewards for all the paths leading to x and y. This is why McCallum’s criteria

require the rewards to be monitored separately for each path leading to the region

which includes x and y. In the case of our general system model, this information is

not available, because the states are only seen as patterns of activation across a group

of feature detectors, and we have no way of storing separate reward values for these

paths. Even if the representation is a partition, so that there is only a single active

detector, we have no way of even knowing when we have seen all possible paths leading

to the region containing x and y. Therefore, we are unable to determine whether the

value distinction is necessary in the general case. For now, we will be content to simply

make value distinctions between states without worrying about whether they are really

necessary. This may cause the agent to make a few extra distinctions, but will not cause

it to lose any reward. The number of extra distinctions is minimized by the fact that

the value of a state does not depend on all the action values (as the Markov property

does), but only on the expected returns for the preferred actions from that state.

In this chapter, we proved that our low-level state compatibility criteria are sufficient

conditions for meeting the ε-adequate representation criterion, which is our definition

of what it means to have learned the task.
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5.3.2 The case for partition representations

Detectors which generalize over incompatible states may obscure information needed

for the agent to make sound decisions. Chapter 3 showed that even if the agent is

able to learn to make sound decisions, generalizing over mixed sets tends to lower the

importance of the resulting detectors. In order to maximize feature importance, each

detector fi should cover a pure set of states, so that all the states in Sfi
are compatible.

One way of accomplishing this is to require a strict separation between incompatible

states—like the separation between different regions of states in a partition.

Although strict separation made the analysis much easier, this is a strong require-

ment. I would like to see this requirement relaxed in future work, and the analysis

carried out for the case where multiple, continuous-valued detectors may be active at

any state. In the present version, each of the detectors which is active for s ends up

being compatible with s—and therefore, with the other detectors for s. In this scenario,

we could just use a single detector for this group of states.

If feature detectors are allowed to generalize (to some extent) over incompatible

states, the representation may reap some of the advantages of coarse coding (Hinton,

1984), whereby a small number of detectors can represent a large number of different

objects with great robustness. The values for a particular state will be a weighted

sum of the contributions from different detectors, and the errors in these contributions

will often cancel out. Coarse-coding thus trades detector importance for robustness to

representational error by the detectors.

One way to manage this trade-off is to begin with a coarse-coded representation,

and to tune the detectors so that their recognition sets become more pure as the agent

learns. After sufficient experience, each detector would respond to a class of states



186

which are all compatible. In this way, the agent may be less sensitive to errors in

its original representation, but may come to find features which each describe a set

of states which are “similar” with respect to the task. It may still be true that a

given class of states will come to be represented by a group of compatible detectors.

This result could look like a partitioned representation, although one in which each

partition region is represented by a set of compatible detectors—like having a single

active detector fi, where fi is composed of several different parts. But there would

again be a strict separation between detectors which represent incompatible states.

Note that, in principle, there is always an adequate partition representation for the

task, since the discrete representation is always ε-adequate. If there are any irrelevant

distinctions in the discrete representation, removing them results in a reduced par-

tition representation which is still ε-adequate, but with improved cognitive economy.

Therefore, we know that there exists an ε-adequate partition representation somewhere

between the extremes of the discrete representation and the representation which makes

no distinctions at all. We may conjecture that one of the purposes of feature extraction

by intelligent agents is to provide a re-coding of the raw features given to the agent,

in order to produce a representation with more cognitive economy. Most often this

re-coding will result in a more localist representation for the particular task at hand.

After all, if the representation contained a single feature detector which was uniquely

active for each required action of the task, the task would be trivial!

The state compatibility criteria allow us to restrict the sharing of action values to

states which are compatible, in order to avoid the harmful effects of state generalization

over incompatible states. These low-level criteria provide a domain-independent way of

determining relevant classifications, distinctions and features, according to the agent’s
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on-line observations of the results of its actions.



188

5.4 Appendix: Some Helpful Properties of Convex

Combinations

Definition 5.13 (Convex combinations) Let y be a convex combination of terms

x1, . . . , xn. Then there exist coefficients ai such that:

y =
∑

i

aixi

where

∑

i

ai = 1 and ai ≥ 0, ∀i

Lemma 5.4 Let y be a convex combination of terms x1, . . . , xn. Then y is bounded by

xmin = mini{xi} and xmax = maxi{xi}. That is,

y ∈ [xmin, xmax] (65)

Proof: We know that

xmin ≤ xi ≤ xmax

Since y is a convex combination of the xi, there exist coefficients ai which allow us to

express y as the sum
∑

i aixi, where
∑

i ai = 1, according to the definition of convex

combinations.

∑

i

aixmin ≤
∑

i

aixi ≤
∑

i

aixmax

Thus

xmin

∑

i

ai ≤ y ≤ xmax

∑

i

ai

and

xmin ≤ y ≤ xmax
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Lemma 5.5 If z is a convex combination of terms y1, . . . , yn and each yi is itself a

convex combination of terms x1, . . . , xm, then z is a convex combination of the terms

x1, . . . , xm.

Proof: Since z is a convex combination,

∃ai ≥ 0 : z =
∑

i

aiyi and
∑

i

ai = 1

Because yi is a convex combination of the xj,

∃bi
j ≥ 0 : yi =

∑

j

bi
jxj and

∑

j

bi
j = 1

Thus

z =
∑

i

ai

∑

j

bi
jxj =

∑

i

∑

j

aib
i
jxj =

∑

j

∑

i

aib
i
jxj =

∑

j

xj

∑

i

aib
i
j

Therefore

z =
∑

j

cjxj for cj =
∑

i

aib
i
j

Since cj is the sum of products of non-negative coefficients, cj ≥ 0. In addition,

∑

j

cj =
∑

j

∑

i

aib
i
j =

∑

i

∑

j

aib
i
j =

∑

i

ai

∑

j

bi
j =

∑

i

ai = 1

Therefore, z is a convex combination of the xj.

The next lemma shows that if two numbers both lie within a particular segment of

the real line, then the difference of those numbers cannot be greater than the length of

that segment.

Lemma 5.6 Let y ∈ [xmin, xmax] and z ∈ [xmin, xmax]. Then

|y − z| ≤ xmax − xmin
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Proof: We know that

xmin ≤ y ≤ xmax

and

xmin ≤ z ≤ xmax

Let u1 = min{y, z}, and u2 = max{y, z}. Then

|y − z| = u2 − u1 ≤ xmax − u1 ≤ xmax − xmin

Lemma 5.7 If y and z are both convex combinations of terms x1, . . . , xn then

|y − z| ≤ xmax − xmin

Proof: Because y and z are both convex combinations of the xi, we know by Lemma 5.4

that y ∈ [xmin, xmax] and z ∈ [xmin, xmax]. Therefore, we may apply Lemma 5.6.
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Chapter 6

Case Studies in On-Line Feature

Extraction

Simplicity is difficult, not easy. Beauty is simple. All unnecessary elements

are removed, only essence remains.

—Alan Hovhaness

6.1 Introduction

The previous chapters developed a framework for understanding the role of represen-

tation in reinforcement learning. They showed how the idea of cognitive economy may

be expressed in terms of objective criteria based on the action values in a task. This

chapter demonstrates how such criteria may be implemented and applied by a system

which constructs its representation as it goes about learning the task. The two tasks

considered are the puck-on-a-hill task, and the pole-balancing task.

Chapter 3 worked out criteria for representational adequacy (the

ε-adequacy criterion) and state compatibility. This chapter makes a straight-forward

application of these ideas to the case where the agent’s representation is a partition

of the state-space. The ε-adequacy criterion provides a basis for deciding whether the

representation is adequate to properly classify the current state-action-reinforcement



192

experience. The state compatibility criteria provide the agent with a test for deter-

mining when it is safe to group two states together in the same region. When the

adequacy test indicates a “surprising” state, the agent takes this result as a cue to look

more carefully at that part of the task; it uses the compatibility test to compare the

surprising state with some representative state for that region, in order to determine

whether the region should be split.

6.1.1 Making Relevant Distinctions

The system described here attempts to group states together unless they must be sepa-

rated in order to make distinctions which are necessary in the task: policy distinctions

and value distinctions. Although it makes distinctions which prove important in the

task, this is a different approach than the one taken in my earlier work on importance-

based feature extraction (Finton and Hu, 1994 and 1995). That work monitored the

importance of the features and tuned feature detectors in ways which increased a mea-

sure of importance. Instead of attempting to increase feature importance directly, the

current work attempts to indirectly increase the importance of feature detectors by

preventing action values from being generalized over incompatible states. Another dif-

ference is that the earlier studies tuned a fixed number of detectors, while the system

presented here generates new feature detectors as needed.

This is a unique approach to finding relevant distinctions, in that it ignores errors

in action values unless they make a difference in either the agent’s policy or the overall

value of a state. While this approach could be used to construct a comprehensive map

of the state-space, it would only do so if the task’s reinforcements made the higher

level of detail relevant. Even in that case, other methods of feature extraction might
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be preferable (for example: Kohonen’s Self-Organizing Map, 1990; McCallum’s U-Tree,

1995), since this approach is based on the assumption that not all of the details are

relevant to the agent, so that it is possible to find adequate representations with greater

cognitive economy than that given by a complete state-space mapping.

The price we pay for increased cognitive economy is the need for additional informa-

tion while constructing the representation. To make state compatibility assessments,

we need action value profiles for the states in question, providing estimates of the com-

plete set of action values, instead of just the value of a single action. We need complete

profiles because leaving out one of the actions might cause us to get the wrong policy

for a state, or give a bad estimate of the state’s value if the left-out action happened

to be the best one. The current system handles this by a form of active learning, in

which the agent may choose the starting states of its experiments as well as the actions

taken. Although this is a straight-forward application of the ideas, the same benefits

could be realized by other means than active learning, as discussed later in the chapter.

As long as the agent has access to action value profiles for its states, it can make the

needed compatibility assessments.

These compatibility assessments compare the action value profile of the current

“surprising” state with that of a representative state from the same state-space cate-

gory. If the two profiles are sufficiently different, the states are incompatible. What

is novel about this approach is that the two profiles can differ greatly on one or more

of the action values without the states being considered incompatible, as long as that

difference does not affect the policies or the maximum values obtainable from those

states. This test is based on the assumption that cognitive economy has to do with

representing the world only well enough for the agent to always choose the correct
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action. Accurate action values help, but are not an end in themselves.

6.1.2 Methodology

If this cognitive economy approach allows us to distinguish relevant features, it should

lead to algorithms which can automatically construct high quality representations for

the agent’s task. One test of this approach is simply to evaluate the performance of

a system which uses these ideas to construct its representation for the task as it goes

about learning the task. Although this technique is often seen in the literature, good

performance in the task does not necessarily indicate a high quality representation;

evaluating a representation is different from simply evaluating performance.

Several other criteria may help evaluate the quality of the representation. If the

representation contains a small number of features, that may be taken as evidence of

cognitive economy, provided that those features allow the agent to make the necessary

distinctions in its task. If the representation is reusable by other agents which learn

the task, that is evidence that it captures important features of the task, rather than

artifacts of a particular training regimen. If the representation allows good performance

from a variety of starting points, that may indicate a high level of quality throughout

the relevant parts of the state-space. Therefore, our evaluation methodology should test

the representation independently of the system which produced it, and should exercise

the representation over a significant portion of the state-space. Our quality assessment

will be based on the number of features and the effectiveness of the representation in

the task.

The effectiveness of the representation may be shown most effectively by a learning
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curve plotting the performance of a test system using that representation; the perfor-

mance is plotted as a function of training time for learning the action values. Learning

curves are especially useful for evaluating representations, since a single measurement of

either learning speed or performance is likely to favor either small representations, which

tend to learn quickly, or larger representations, which often allow a higher standard of

performance to be learned. In addition, learning curves show whether a representation

reliably supports good performance, or only results in occasional successes. If a learn-

ing curve is produced, it should be averaged from multiple experimental runs, in order

to minimize system initialization effects.

The experiments reported here consisted of two stages: a representation generation

stage and a representation testing stage. In the generation stage, a learning system

applies an algorithm based on cognitive economy to construct a representation for

the task it is learning. The output of this stage is the specification of a new state-

space representation for the task. If the algorithm is successful, it will not only learn

to perform well in the task, but it will produce a representation which captures the

important features of the problem, in a form reusable by agents that do not learn the

representation.

In the testing stage, we take a reinforcement learning system with a fixed represen-

tation, and replace that representation with the new one produced by the system in

stage one. We keep that representation frozen and run a battery of tests on this system

to measure its performance. Since the tester is separate from the agent which produced

the representation, it is able to evaluate different representations fairly. Although the

tester does not modify the representation it tests, it must still learn the action values

for the task, which is why it improves with training.
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To produce learning curves, the tester generates a series of performance scores, with

each score based on the performance of the system in a batch of trials with learning

turned off. By alternating periods of training with performance measurements, the

tester generates a plot of performance versus training time. These plots allow us to

compare the quality of different representations.

The number of learning trials between measurements depends on the lengths of

the trials. The system will not stop a running trial, since the tasks studied here have

reinforcement only at the ends of trials. The system interrupts its training with a

testing session when it reaches either of a preset number of learning steps or a preset

number of learning trials. The two-part test ensures that the system generates enough

data points both early (when trials are short, so the number of trials dominates) or

late (when trials are long, and the number of learning steps dominates) in the series.

Training and testing continue until the agent has trained for a specified minimum

number of steps. The system produces a final, averaged plot of performance versus

training time by averaging a series of learning curves generated by this protocol, each

curve resulting from a different random number initialization.

The tasks presented in this chapter—puck-on-a-hill and pole-balancing—have of-

ten served as reinforcement learning benchmarks in the literature. Examples include

Michie and Chambers (1968), Barto, Sutton, and Anderson (1983), Sutton (1984), An-

derson (1986), Finton and Hu (1994), Yendo Hu (1996), Hu and Fellman (1996), and

Likas (2001). Some of these studies produced results in the form of learning curves,

and some initialized trials at randomly-chosen starting points instead of always start-

ing at the equilibrium point; but the method introduced here for evaluating learned
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representations in a separate system appears to be unique. This method allows differ-

ent representations to be compared separately from other aspects of the reinforcement

learning problem.

The random starting states were chosen as follows. For each task, an earlier se-

ries of experiments yielded a set of extreme values for the state-space coordinates; the

tester’s training trials were initialized with values from the central third of this ob-

served state-space, and its test trials were initialized to points from a slightly smaller

zone—the central quarter of the space. Initializing trials to random states ensures that

the representation is tested over a significant portion of the space, providing a more

meaningful indication of the quality of the representation.

6.2 An Algorithm for On-Line Feature Extraction

This section describes the learning system used in the first phase of the experiments.

The system is built upon a nearest-neighbor representation of the state-space, which

divides the space into a series of partition regions. These regions are built out of the

Voronoi regions (set of points closest to a particular point in the space) about each of a

series of prototype states given to the representation. Some regions consist of a single

prototype and its Voronoi region, while others are compound regions consisting of a

set of merged Voronoi regions. The compound regions are represented by a primary

prototype state; this state is taken as the representative state for any of the states

which fall in that region, even though some other state may be their nearest-neighbor

prototype. If the state to be classified lies within a simple, un-merged region, its

primary prototype will be the nearest-neighbor.
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The system learns action values by a combination of Q-learning and an active strat-

egy by which it examines “surprising” states at the ends of its trials. When the system’s

current action leads to unexpected results, it pushes the current state on a replacing-

stack data structure. At the ends of trials, the system conducts mini-trials from the

states on its stack. These investigations produce action-value profiles which the sys-

tem uses to update its action values, and also to determine whether the representation

adequately represents these surprising states. If these states are not compatible with

their current classifications, the system splits the state-space region by creating a new

region for the surprising state. The compatibility test compares the action-value profile

for the surprising state with the profile for its primary prototype state in the repre-

sentation. Region splitting is accomplished by simply adding the surprising state as a

new prototype; it then becomes the primary prototype of a new Voronoi region in the

space.

6.2.1 Top Level of the Algorithm

The top level of the algorithm is given in Figure 32. It outlines the function get action,

which takes parameters for the current state, the current reinforcement (rt), and a flag

indicating whether the current state is a terminal state.
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Given: current state, current reinforcement, terminal state flag

k = region for current state
j = region for the previous state
a = index of the last action
if terminal state or reliable source(k)
then update Q(j, a):

if terminal state
Qnew ← rt

else
Qnew ← rt + γ maxi Q(k, i)

Q(j, a)← (1− α)Q(j, a) + αQnew
Updates(j, a)← Updates(j, a) + 1

if this experience was surprising
or j has never been investigated
or a weighted coin flip returns heads

then push (previous state, region j) on the stack
for later investigation

if terminal state
call process stack() to investigate surprising states

else
select next action based on current policy and Q(k)

Figure 32: Top level of the algorithm.
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During the trials, the weight updates are those of Q-learning, except that no update

is done when the current experience is not considered reliable. For the feature extraction

ideas to have a chance to succeed, the system must produce accurate action-value

profiles. The function

reliable source() determines whether the system has had enough experience with

the state in question to trust its action values as reliable for backing up to other states.

To do this, reliable source() consults Updates(j, a), which is incremented whenever

Q(j, a) is updated. A state is considered a reliable source for backing up values if one

or more of its actions has been updated at least MIN UPDATES times. The standards are

higher for feature extraction decisions: the function reliable prototype() demands

that every action value have been updated MIN UPDATES times, instead of just one

action. Reinforcement from terminal states is always considered reliable.

The looser reliability criterion for value updates allows the values to begin to be

updated as soon as the agent experiences reinforcements. If we demanded the stronger

criterion for the initial backups, cyclic tasks such as the pole and puck tasks would ex-

perience deadlock conditions which would prevent some states from ever being updated

at all. The looser criterion still allows the system to avoid some of the bogus value up-

dates it would otherwise make early in the run, when the action values are not grounded

in the task reinforcements. The value of MIN UPDATES used in these experiments was 3.

6.2.2 Recognizing Surprising States

The function surprising() focuses attention on parts of the state-space which appear

to be inadequately learned or categorized. It flags a state-action pair as “surprising”

if it appears to violate the ε-adequacy criterion developed in Chapter 3. Given the
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outcome of an action—its immediate reward and the value of the resulting state—

surprising() determines whether the outcome is sufficiently surprising to call into

doubt the system’s estimate of the value of the state or the preferred policy at that

state.

The ε-adequacy criterion compares the action-value profile of a region with the

profile obtained for a particular state in that region. Unfortunately, the agent’s current

experience only provides the current result for a single action, instead of the complete

profile for a state. Therefore, surprising() compromises by simply checking to see if

updating the value for the observed action appears to change the region’s value or its

policy. If so, surprising() flags this state as worthy of further investigation.

The key ideas are these: (1) Each state has a set of preferred actions, and bad state

generalization can cause the agent to select the wrong actions if the action values for

the region do not reflect the correct policy for one of the states in that region. We may

tolerate sloppy generalization that limits the number of good actions we take from a

particular state, but we cannot allow the kind of bad state generalization that causes

us to choose poor actions. (2) If one of the states results in a much better (or worse)

outcome than the rest of its region, the agent may look at the values averaged over

the region and be misled whenever it happens to be in that particular state. Figure 33

outlines the criterion computed by surprising().

This criterion flags a state if the observed information indicates that this state ought

to be distinguished from its region on the basis of either its overall value or its policy.

The value distinction can be seen by comparing the old value (for the region) with the

new value (modified by information observed for this particular state). The criterion

makes an action distinction if the current policy for the region (given by pref δ) contains
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surprising():

Given: previous region (j), previous action (a)
resulting region (k), resulting reinforcement (r)
terminal state flag

V ← maximum action value for region j
prefδ ← set of preferred actions for region j

(these have action values within δ of V )

Compute new action values:
if terminal state

Qnew(a)← r
else

Qnew(a)← r + γ (greatest action value from region k)
For actions i 6= a, the new values are the same as the old ones:

Qnew(i)← Q(j, i)

V 1← maximum action value, using Qnew

pref1ε ← set of preferred actions, using Qnew

(these have action values within ε of V 1)

Flag this state if:
|V 1− V | > ε

or
Some actions in prefδ are not in pref1ε

Figure 33: Selecting “surprising” states for further investigation.

actions which appear to be bad ones for this particular state (because they are not in

pref1ε). The tolerance δ describes how close a value has to be to the optimal value in

order for the agent to select that action under a greedy policy. The tolerance ε describes

the maximum amount of error (called incremental regret in Chapter 3) we are willing

to accept for any single action.
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6.2.3 Investigating Surprising States

After every trial, the system calls process stack() to investigate states which it found

“surprising.” Because the stack is a last-in-first-out data structure, this causes the

system to explore states which occur at the ends of episodes before it explores earlier

states. In a non-cyclic task, this property allows the system to focus on the frontier

of learned states, where the action values have been grounded in the reinforcement

given by the environment. Actions leading to terminal states are learned first, then

the action values of states one step earlier. As the system learns about states near

the ends of trials, they stop being surprising, and the system focuses its attention on

states which precede those states. In this way, the action values are learned from the

end states backwards to the beginning states, but without all the action-value backups

from internal states whose values have not yet been learned.

Because the stack is implemented as a replacing-stack, pushing any item causes the

stack to remove any previous instances of that item before adding the new item. To

enable the system to cope with continuous state-spaces, in which the same exact state

might never be repeated, the stack regards states from the same region as “the same.”

Therefore pushing a state removes any other states having the same region from the

stack. This ensures that the stack size does not grow without bound: the number of

items on the stack is limited by the number of state-space regions in the representation,

and a particular region will not be explored more than once for any session. These are

desirable qualities for cyclic tasks like those presented in this chapter, because a single

region might otherwise fill the stack with states seen during repeated passes through

the region.

The system investigates a state by conducting mini-trials for each possible action
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from that state. These trials only last long enough for the agent’s state to enter another

region or for it to reach a terminal state. In the case of an action which leads back to

the same region, the investigation times out after a certain number of steps. If a single

action takes the agent out of the region, the mini-trial stops after one action.

Feature extraction is not performed after every trial. If this investigation is not

one in which the system will perform feature extraction, the system applies the results

of its investigation by updating action values according to the new profile. Like the

Q-learning updates done in the top level of the algorithm, these updates only back up

values when the resulting states (from the investigations, in this case) are determined

to be reliable. Unlike those updates, the learning rate for the active updates decreases

with the number of times the action value has been updated, until it hits a specified

minimum value. Figure 34 summarizes the active investigation scheme.
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process stack():
while not empty( replacing stack )

s← pop( replacing stack )
j ← region for s
if feature extraction waiting interval has passed

update representation(s, j)
else

get profile and reliabilities from investigate(s)
for each action a

if reliabilities(a) = yes
increment Updates(j, a)
update Q(j, a) according to profile(a), and

learning rate alpha(j, a)

investigate(s):
for each action a

start a mini-trial at s
keep executing action a until: region exit

or terminal state
or time-out

s′ ← resulting state from mini-trial
profile(a)← resulting value from mini-trial
reliabilities(a)← reliable source(s′)

alpha(j, a):
if Updates(j, a) ≤ ENOUGH SAMPLES

return 1.0/Updates(j, a)
else

return 1.0/ENOUGH SAMPLES

Figure 34: Strategy for Active Investigations of Surprising States.
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6.2.4 Adding and Merging State-Space Regions

When the system performs investigations on its stack of surprising states, it only per-

forms feature extraction at certain intervals, when the trial number is a multiple of the

preset value FE INTERVAL. This allows the action values time to settle between changes

in the representation. Figure 34 has already shown the basic strategy for the case when

feature extraction is not done. When feature extraction is done, the system begins by

finding the nearest-neighbor prototype for the current state. If the nearest-neighbor

is not the primary prototype for the region, the system may need to test the current

state’s compatibility with both the primary prototype and the nearest-neighbor proto-

type. When necessary, the system creates new regions by adding new prototypes, each

one defining a new Voronoi region of the state-space. Regions may be merged, resulting

in a compound region whose primary prototype is the prototype with lowest index.

If the current information is not reliable or the current state is compatible with its

primary prototype, the representation is left alone and the system updates the current

region’s values normally, according to the new profiles for the state and its primary

prototype.

If reliable information says that the current state is not compatible with its primary

prototype, the system needs to find a new category for the current state. This usually

leads to a decision to add the current state as a new prototype. The exception occurs

when the region has a nearest-neighbor prototype which is itself incompatible with the

primary prototype; in this case, the system detaches the nearest-neighbor prototype

from the primary prototype, and makes it the primary prototype of its own region. If

it does so and the current state is compatible with the nearest-neighbor prototype, the

system can avoid adding the current state as another new prototype.
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After any necessary changes are made to the representation, the system makes

use of its new profile information to update values for the appropriate regions. As a

final step, the system executes a state consolidation procedure, although it only does so

once for every CONSOLIDATE TRIGGER executions of its feature extraction routine. When

consolidating states, the system looks at every pair of primary prototypes (j, k). If the

information passes the test of reliable prototype and the two states are compatible,

the system merges them. Figure 35 summarizes the feature extraction system.
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update representation(s, j):

Given: s = current state
j = current region
(trial number is a multiple of FE INTERVAL)

sp ← primary prototype for s
sp2 ← nearest-neighbor prototype for s, if it exists
get profiles and reliabilities for s and sp from investigate()

update values for j by the profile for sp

if should split(s, sp) = no or reliable prototype(j) = no
update values for j by the profile for s

else
reduce reliability info for j, because it will be split
get profile and reliabilities for sp2, if it exists
add s as a new prototype, unless should split(sp, sp2)

and should split(s, sp2) = no
if should split(sp, sp2)

detach sp2 from sp

if we did not add s as a prototype
update detached region with profile for s

if consolidate waiting interval has passed
consolidate compatible states

should split(s1, s2) :

if all actions are reliable from s1,
all actions are reliable from s2,
compatible(s1, s2) = no

then
return yes

else
return no

Figure 35: Feature Extraction Algorithm.
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compatible(s1, s2):

Given: profile1 for state s1

profile2 for state s2

ε = maximum error tolerance for wrong choices

pref10(s)← set of best actions for state s
pref1ε(s)← set of actions within ε of best for s
V 1(s)← action value for best action from s

if |V 1(s1)− V 1(s2)| > ε
or pref10(s1) 6= pref10(s2)
or pref1ε(s1) 6= pref1ε(s2)

then
return no

else
return yes

Figure 36: Judging the Compatibility of Two States.

Figure 36 outlines the state compatibility test, which is based on the criteria devel-

oped in Chapter 3, taking δ = ε (which is allowed by the criteria, and seems to result

in fewer irrelevant states being generated). The test determines whether two states

should be members of the same state-space region, so that we can always distinguish

states which either require different action policies (a policy distinction) or which lead

to significantly different outcomes (a value distinction). Policy distinctions enable the

agent to choose actions wisely at this point in the task, since it would choose bad ac-

tions if it could not distinguish states requiring different policies. Value distinctions

allow the agent to choose good actions from earlier states; for example, if the current

state is especially good, the agent needs to distinguish it from other states if it is to be

able to learn to reach this state from an earlier one.
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6.2.5 Further Considerations

The system presented here is a first application of the ideas worked out in previous

chapters, and it makes several assumptions which do not hold for all reinforcement

learning tasks. First, the active system explores its state-space at the ends of trials,

which presupposes that the agent’s task is episodic. But we can often make a task

episodic by choosing certain states as terminal states. A more serious limitation is that

some real-world tasks cannot allow the controller to reset the system state at will (al-

though this is no problem for any task which is solved through simulation). As discussed

below, active investigations are only one way of gaining state profiles. The system also

depends on the task not being too stochastic. Otherwise, a “surprising” criterion would

need to be more sophisticated than the one presented here, taking into account trends

and averages over very many instances. The decreasing learning rate used in the ac-

tive investigations helps somewhat, since the learning rate 1/Updates(j, a) causes the

updated value to be the average of all the instances seen. This is important when the

state-space regions are too coarse, since the action values may appear stochastic even

in a deterministic task, simply because they really belong to different kinds of states

which get updated together.

I chose a nearest-neighbor partitioning of the state-space for several reasons: it

allows the system to easily adapt its partitioning to regions with irregular shapes,

the system may split regions by simply adding new prototype states, and when we

need a representative state for a region in order to make a compatibility assessment,

the prototype state is at the geometric center of its region in the state-space. One

drawback is the difficulty of deciding which regions are neighbors when consolidating

regions; the current system merges any two compatible regions without considering
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whether they are neighbors. Also, although the present implementation seems quite

efficient, the nearest-neighbor scheme requires a more sophisticated implementation to

scale to large tasks.

The active strategy was a natural choice for a method of grabbing the action-value

profile for a state, since we need the values of all the actions. The main reason for

getting all the values at once is that the values are changing as the agent is learning the

task. Even if two actions lead to the same resulting state, the agent might mistakenly

believe them to have different values if the values were computed at different times.

It is important to point out that the active system is still technically a form of Q-

learning, since Q-learning does not specify how the value backups must be distributed

among different state-action pairs—only that they continue to be sampled. By pushing

randomly-chosen states onto the stack, the current system ensures that values continue

to be sampled.

There are also non-active strategies for implementing these ideas. One alternative

is to adopt a more stringent test for surprising states (using reliable prototype()

instead of reliable source()); then immediately add any state thus selected as a new

prototype for a region, instead of first exploring states through active investigations. In

the end, one can only decide to split regions by first making tentative splits and explor-

ing their effectiveness. The current system does this when it assesses the compatibility

of a state with its primary prototype, since it is making a hypothetical separation be-

tween those two states in order to see if the region should be split. Splitting on the

basis of the surprising test makes a less tentative initial separation of the states, but the

algorithm’s state consolidation procedure could prevent the system from accumulating

unneeded regions.
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Another promising approach is for the agent to save every state transition it experi-

ences as an (s, a, r, s′) tuple which is stored with the nearest-neighbor prototype state.

These could be reorganized as regions are merged or detached, and the tuples could

be reassigned when new prototypes are added. In this way, the agent would construct

an increasingly accurate model of its world, and the agent could perform investigations

by querying this model instead of by requesting that the environment reset the system

state for actual trials in the world. This would also remove the episodic task limita-

tion, since the agent could conduct investigations internally, whenever it wished. This

approach has much in common with Moore and Atkeson’s (1993) Prioritized Sweeping

algorithm, which uses a priority queue to select states for re-examination: states whose

values have significantly changed, as well as states which are predicted to lead to them.

The replacing-stack performs a similar function by giving priority to states which are

surprising, in order of recency. The states leading to those states are often the next

states to be considered surprising, leading them to be investigated as well—unless the

change in values did not make a value or policy distinction. The other difference, of

course, is that Moore and Atkeson’s system assumed a fixed representation, while this

projected system would perform feature extraction.

One of my design goals in developing the active system was to provide accurate

action values to the feature extraction routines. The active algorithm allows the system

to focus on the frontier of states whose values are being changed because of the agent’s

current interaction with the world, or because they lead to states whose values are

changing. The test for surprising states allows the agent to select training examples

which are likely to be informative. The functions which prevent backups from states

with low experience have the same aim of safeguarding the integrity of the values being
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used to guide feature extraction.

Even so, I found that adding a Q-learning update to the top level of the algorithm

improved the performance of the active system, as did allowing values to settle for a

number of trials between calls to the feature extraction routines. I believe that the

reason these helped was that when the representation is modified, the action values

need to be revised to reflect the changes. This takes time. The top-level update results

in many more backups to the values between the active investigations, and this seems

to smooth out some of the errors in the values.

6.3 Initial Tests

Initial tests included a simple gridworld task like the one discussed in Chapter 1. The

purpose of these tests was to verify that the system could find reasonable representations

for a simple task. As expected, the system found good representations for the task,

whether it started from scratch or was given a representation to refine. The system was

able to consolidate irrelevant detectors in the supplied representation, and was able to

complete the representation so that the task could be solved.

Other tests included fixed-representation experiments with the pole balancing task,

designed to test the ability of the active system to learn action values. Three differ-

ent controllers were tuned and tested: a Q-learning controller (with enhancements to

prevent backups of “unreliable” information), a Monte Carlo controller, and the active

controller (without the addition of Q-learning updates during trials). Each controller

used the same 162-box representation found in (Barto, Sutton, and Anderson, 1983).

Testing consisted of evaluating each controller on 10 sets of trials, each set having a
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different random number seed. (The controllers select actions randomly when the val-

ues are very close). Each set continued until the system met the success criterion or

10,000 trials were run. The success criterion was that of Likas (2001): in each trial, the

system state was initialized to random points in the state-space; when a trial lasted for

at least 120,000 steps, the system was reset for a trial starting at the equilibrium point

with learning turned off. If this second trial also reached 120,000 steps of balancing, the

run was determined to be successful. Given 10 sets of trials, Monte Carlo succeeded in

eight of the 10, and the enhanced Q-learning and active controllers succeeded in nine of

the 10 sets. This is evidence that the active system was able to learn the action values,

which are the basis for state-compatibility assessments.

6.4 Case Study: Puck-On-A-Hill Task

In the puck-on-a-hill task (Yendo Hu, 1996), the agent controls a puck which it must

learn to push to the left or the right in order to maintain its position on the top of a hill.

The agent’s only reinforcement comes when it falls too far down the hill on either side

and hits the containing wall. When that happens, the agent is given a reinforcement

of −1, and the episode ends. Figure 37 illustrates the task. This task is similar to the

pole-balancing task described in the next section, but with a two dimensional state-

space having components for position and velocity only. Positive x represents a position

on the right, while positive θ represents a position on the left. Positive f pushes the

puck toward the right. The equations of motion are as follows:

x(t + 1) = x(t) + ∆v(t)

v(t + 1) = v(t) + ∆
(f(t)−mg sin θ(t)) cos θ(t)

m
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-2.4 m 2.4 m 

g 

 -f   

 f   

State x, position of puck (meters)
v, velocity of puck (meters / second)

Control f , force on puck (Newtons)

Constraints −2.4 < x < 2.4
f = ±3.0

Equation of hill y = −βx2

Parameters β = 0.3
g = 9.8 m / s2, gravitational acceleration
m = 1.0 kg, mass of puck
∆ = 0.02 s, sampling interval

Figure 37: The puck-on-a-hill task: balance the puck on the hill to avoid negative
reinforcement from hitting the wall.
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θ(t) = arctan(−2βx(t))

6.4.1 Analysis

The puck’s acceleration is determined by its thrusters and the downward pull of gravity.

Near the center of the hill, the thrusters dominate the force of gravity, and the puck can

push itself back to the crest of the hill as long as its prior velocity is not too large. Away

from the center, the hill’s slope becomes increasingly steep, so that gravity overwhelms

the contribution of the puck’s thrusters. Therefore, once the puck has fallen too far

down the hill, it loses the ability to climb back up, and fails shortly after.

Just where this “point of no return” lies depends on the puck’s velocity. From the

equations of motion, we see that the acceleration on the puck is zero when

f(t) = mg sin θ(t)

For positive θ (the left side of the hill) this occurs at x
.
= −0.54; for negative θ, the

acceleration is zero for x
.
= 0.54. If the puck is placed farther than 0.54 meters from the

center of the hill and has zero velocity, it will never be able to push back up the hill.

If the puck is already moving up the hill, it may be able to coast back into the central

region where its thrusters can overcome the pull of gravity. Therefore, the “point of

no return” lies farther down the hill when the puck has a higher initial velocity toward

the center.

The agent must keep the puck within the region where its thrusters are effective

in controlling the puck. We will call these states controllable states, and we will call

the states which are past a “point-of-no-return” doomed states. Figure 38 shows the

controllable states, which form a band which falls roughly diagonally through the middle

of the state-space. This figure was produced by running puck experiments at each point
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Figure 38: Controllable states: states outside this band result in failure.

of a very fine grid. (Resolution was 0.01 in both x and v). Doomed states are those

from which the puck can not avoid falling to one side or the other: it either falls back

down the left side of the hill while continually pushing to the right, or falls to the right

while continually pushing to the left. The remaining states are the controllable states,

from which the puck can avoid falling to either side.

In order to determine an optimal policy for the task, we need to determine when the

puck must be pushed to the right, and when it must be pushed to the left. If pushing

right from a controllable state sc results in a doomed state, then we may classify sc as

a “must-push-left” state. Similarly, if pushing left results in a doomed state, we may

classify sc as a “must-push-right” state. If both left and right lead to other controllable
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Figure 39: An ideal representation: must-push-left states (top curve) and must-push-
right states (bottom curve) are separated by the diagonal line.

states, we may classify sc as a “don’t care” state. The critical states are the must-push-

right and must-push-left states, where the agent’s next action determines whether it

succeeds in the task. These states are on the edges of the controllable zone; the states

in the middle of the controllable zone are don’t-care states because neither action will

push the puck past the boundary of the zone. Figure 39 shows the critical states: the

must-push-left states make up the top curve, and the must-push-right states make up

the bottom curve. These plots were determined by testing each controllable state found

in the earlier simulation, evaluating the controllability of the states which result after

a single push to the left or right.

This analysis shows that the optimal policy is not to simply push toward the center
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of the hill. For example, if the puck has sufficient velocity to the right, it should

push to the left, even if it is already on the left side of the hill. If the velocity is too

high, the puck will reach the other side of the hill, but it will not have enough time

to slow down and avoid hitting the wall on that side (failure). The optimal policy is

to push to the left in the must-push-left states (the top curve in Figure 39), and to

push to the right in the must-push-right states (the bottom curve). Any representation

which separates these two classes of states will be adequate for the task. In Figure 39,

the diagonal line cleanly separates the must-push-right states from the must-push-left

states. Therefore, the representation which simply splits the state-space by this line

(having equation v = −1.7615x) is ideal for the task, because it makes the necessary

distinctions and has minimal size (only two categories). This simple diagonal-split

representation provides a benchmark against which we may evaluate the effectiveness

of representations constructed by the learning system.

6.4.2 Results

The results compare the performance of a test system under different state-space rep-

resentations. Each representation was tested by inserting it into the test system and

generating a series of 10 learning curves, which were then averaged. The learning

curves plot performance against the number of training steps experienced by the test

system. Each performance score is the median trial length for a batch of 50 trials con-

ducted with learning turned off. The test trials were stopped if they reached 5,000,000

steps. After 50,000 steps of training, the diagonal-split representation and the learned

representation both attained averaged performance scores of 5,000,000 steps.
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Figure 40: Representation constructed automatically, from scratch (24 categories).

Generated representations

Starting from scratch, the system generated a representation consisting of 24 prototype

states, shown in Figure 40.

In another experiment, the system was seeded with a representation consisting of

the two (x, v)-space points (0.2680, 0.6200) and (-0.2680, -0.6200). These points are

on either side of the controllable zone; although the line connecting them is not quite

perpendicular to the diagonal split of the ideal representation described earlier, these

two points were thought to be sufficient to distinguish must-push-left points from must-

push-right points. The objective of this second experiment was to verify that the state

compatibility criteria do not lead to the generation of unnecessary states. This was

confirmed by the resulting representation, which simply added two states at the usual
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Figure 41: Representation constructed from a good seed representation.

failure points of the task. Figure 41 shows the representation. The learning process

which produced it required 207 trials, with the last trial continuing for over 100 million

steps.

Control representations

The results compare the performance of the 24-category generated representation with

the performance of four other representations: the diagonal-split representation de-

scribed above, a 10×10 grid partitioning, a representation inspired by Andrew Moore’s

(1991) Variable Resolution Dynamic Programming, and a representation designed to

maintain controllability (Yendo Hu, 1996).

Variable Resolution Dynamic Programming (VRDP) produces a partitioning of the
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state-space with the highest resolution at states visited during experimental trials.

Away from these experimental trajectories, resolution falls off gradually according to

a constraint on neighboring regions. In Moore’s work, the experimental trials were

“mental practice sessions” conducted according to an internal model being learned by

the agent. For the studies reported here, the representation was constructed from

two trials using the puck task environment: an initial trial in which the agent always

pushed to the right, and a successful trial in which the agent succeeded in keeping the

puck in the center of the hill for over 100,000 steps. (The successful trial was taken

from a system with the uniform 10 × 10 partitioning of the space). Because VRDP

initializes the representation to a single box, the initial trial consisted of selecting the

same action repeatedly (since the policy for all states is the policy of that single box).

When the representation was fine enough to allow good performance, mental practice

sessions would focus on the states seen in the successful trial. Therefore, VRDP would

be likely to visit the same points in mental practice sessions which were visited in

the two experimental trials—and most likely, additional points as the representation

was being learned and performance was still improving. Therefore, this representation

is probably an idealized version of the application of VRDP to the puck task. As

in (Moore, 1991), the highest resolution of each state-space coordinate was found by

performing six binary splits of that coordinate. Taking the state-space dimensions to be

[−2.4, 2.4]× [−5.5, 5.5], this resulted in the smallest distinctions being ∆x = 4.8/64 =

0.075 and ∆v = 11.0/64 = 0.171875. Figure 42 illustrates the resulting representation.

Unfortunately, this representation performed poorly, attaining a maximum aver-

aged performance score of 2215 steps. (Both the diagonal-split representation and the

generated representation achieved averaged scores of 5,000,000 steps). One reason for
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Figure 42: A representation inspired by Variable Resolution Dynamic Programming.

this poor performance may be that the partitioning is very fine along the path from

the origin to the failure point of the first trial. As a result, reinforcement from a failure

must pass through a very long series of intermediate boxes before it reaches the critical

states where the agent can actually control the puck. To test this explanation, I made

a second VRDP-inspired representation, shown in Figure 43. Although this represen-

tation does not entirely observe the constraint on neighboring regions, it removes most

of the boxes resulting from the initial failed trial. Since this representation performed

much better than the original, it replaces the original VRDP representation in the

comparison plots which follow.

The other representation, shown in Figure 44, was produced by Yendo Hu (1996).

This representation quantizes the space according to the puck’s sensitivity to control
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Figure 43: Enhanced VRDP representation.
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Figure 44: Representation designed to limit the loss of controllability (from Yendo Hu,
1996).

actions. To do this, Hu defined a measure of the loss of controllability: the amount

of divergence between trajectories resulting from alternative actions. The partitioning

was designed to keep this loss of controllability below a pre-set tolerance. This repre-

sentation was constructed under the assumption that trials always start at (0, 0). Since

the test system starts trials from randomly-chosen starting points, Hu’s representation

may be at a disadvantage here. This representation was part of an Adaptive Heuristic

Critic system (Barto, Sutton, and Anderson, 1983) which learned to balance the puck

for over 10,000 steps, after an average of 13 trials and 2000 training steps.
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Learning curves

Figure 45 plots the performance for the original VRDP representation (top curve) and

Yendo Hu’s controllability quantization (bottom curve). Note that the performance

scores are all under 2500. Figure 46 shows the averaged curves for the remaining repre-

sentations. From the top, these are the diagonal-split representation, the representation

generated by the learning system, the uniform 10× 10 grid, and the enhanced VRDP

representation.

The poor performance of the original VRDP representation illustrates an important

point: visited states are not necessarily important states. In this task, the important

areas of the space are those where the agent’s decision makes a critical difference in

performing the task.

The cognitive economy approach resulted in a system which was able to automati-

cally construct a good representation from scratch. The representation it constructed

had a small number of categories (24), and proved effective in the task. When given an

effective seed representation, the system made minimal additions, indicating an ability

to discern relevant distinctions.

6.5 Case Study: Pole Balancing Task

The pole balancing task involves a wheeled cart on a track, with a pole hinged to the

top of the cart, as shown in Figure 47. At each step, the controller must decide whether

the cart should apply a fixed force to the left or to the right, in order to keep the pole

balanced vertically.

The equations of motion are as follows, with angles in radians. These may also be
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Figure 45: Averaged performance curves for the original VRDP representation and
Yendo Hu’s controllability quantization.
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Figure 46: Averaged performance curves for the four best representations.
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x 

θ 

State x, position of cart (meters from center of track)
ẋ, velocity of cart (meters / second)
θ, angle of pole from vertical

θ̇, angular velocity of pole

Control f , force on cart (Newtons)

Constraints −2.4 < x < 2.4
−12◦ < θ < 12◦

f = ±10.0

Parameters g = 9.8 m / s2, gravitational acceleration
m = 1.1 kg, combined mass of cart and pole
mp = 0.1 kg, mass of pole
l = 0.5 m, distance from pivot to pole’s center of mass
∆ = 0.02 s, sampling interval

Figure 47: The cart-pole apparatus. The task is to balance the pole by pushing the
cart to either the left or the right in each control interval.
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found in Anderson and Miller’s (1990) collection of “Challenging Control Problems.”

θ(t + 1) = θ(t) + ∆θ̇(t)

θ̇(t + 1) = θ̇(t) + ∆θ̈(t)

θ̈(t) =
mg sin θ(t)− cos θ(t)

(

f(t) + mp l (θ̇(t))2 sin θ(t)
)

(4/3)m l −mp l cos2 θ(t)

x(t + 1) = x(t) + ∆ẋ(t)

ẋ(t + 1) = ẋ(t) + ∆
f(t) + mp l

(

(θ̇(t))2 sin θ(t)− θ̈(t) cos θ(t)
)

m

Note that positive x values are toward the right, positive θ indicates that the pole is

falling toward the right, and positive f pushes the cart toward the right. Failure occurs

when the pole falls too far to either the left or the right (|θ| ≥ 12 degrees), or when

the cart falls off the track (|x| ≥ 2.4). Upon failure, the current trial ends and the

environment sends the system a reinforcement signal r(t) = −1. Otherwise, the system

sees no reinforcement from the environment.

6.5.1 Analysis

In the puck-on-a-hill task the obstacle to balancing the puck is the force of gravity,

which increases as the puck falls farther from the center. Beyond a fairly narrow

central region, gravity overpowers the puck’s thrusters, making balancing impossible.

The situation is different for the pole balancing task. Here the cart’s thrust is always

sufficient to dominate the longitudinal force given by the fall of the pole. We can see

this by plotting the values of θ̈ for θ and θ̇ within the ranges seen in the task. Figure 48

plots the values of θ̈ for θ ∈ [−12◦, 12◦], θ̇ ∈ [−190◦, 190◦], and positive thrust f. For

f = 10, θ̈ ∈ [−17.38,−11.16]. For f = −10, θ̈ ∈ [11.16, 17.38]. Notice that the force on
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Figure 48: Angular acceleration for the pole, f = 10.0.
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Figure 49: Acceleration of the cart, for f = −10.0 and θ̈ = 17.38.

the pole does not depend on the position or speed of the cart.

Likewise, the force on the cart itself is mainly determined by the cart’s own thrusters.

Figure 49 shows the lowest values of ẍ, which are obtained when f = −10 and θ̈ assumes

its highest value of 17.38. Figure 50 has the same shape, and shows the highest values

of ẍ, achieved for f = 10 and θ̈ = −17.38. Note that θ̈ and its contribution to ẍ have

opposite signs, because when the pole falls to one side it accelerates the cart in the

opposite direction. These acceleration plots show that pushing the cart to the right

always accelerates the cart to the right, and the pole to the left. Pushing to the left

always accelerates the cart to the left and the pole to the right. Unlike the puck task,

the agent can always change the direction of either the cart’s movement or the pole’s

falling. The task is difficult because combining the two sub-tasks—balancing the pole
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Figure 50: Acceleration of the cart, for f = 10.0 and θ̈ = −17.38.
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and centering the cart—sometimes requires the agent to satisfy conflicting goals.

If balancing the pole and centering the cart require opposite actions, the agent may

be unable to bring the system back to equilibrium. In addition, the interaction of cart

and pole can result in the need to take what seems to be the “wrong” action for either

one taken separately. For an example of this interaction, suppose that the system

begins at state (x, ẋ, θ, θ̇) = (0, 0, 0, 0) and executes a series of n right pushes, the pole

will begin falling to the left. To re-balance the pole requires more than n left pushes

because of the pole’s momentum, acquired during the fall, and the force of gravity

which must be overcome during the recovery. Balance is restored, but with the side-

effect of accelerating the cart to the left. This strategy allows the agent to center the

cart, by first pushing it in the “wrong” direction. The need for such counter-intuitive

strategies is strongest at the extreme values of the state-space, where the pole is falling

and the cart is running out of track. Here all the wrong decisions made earlier in the

trial finally have their payoff. Since the actions which set up this chain of events may

have been at the beginning of a very long trial, finding and correcting the faulty actions

can be very difficult.

The task is easiest to solve when started from states far from the edges of the track.

Geva and Sitte (1993) have shown that in states near the equilibrium point, a single

linear decision rule suffices to keep the system balanced: push right if 0.05 x + 0.1 ẋ +

0.94 θ + 0.33 θ̈ > 0.0. For the case when the cart is close to the center of the track

and moving slowly, this represents the half-plane above the falling line θ̈ = −2.85 θ in

(θ, θ̈)-space. The strategy is the obvious one: push to the right when the pole has fallen

or is falling to the right; otherwise, push left.
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6.5.2 Results

The pole task appears to be much more difficult than the puck task, and the ideal state

generalization is not obvious. The objectives of this study were to verify that feature

extraction based on cognitive economy could solve more complex tasks than the puck

task. The specific goals were to generate the representation automatically, achieving a

high standard of performance and a small number of feature detectors.

The learning system generated its representation from scratch, producing a set of 26

feature detectors which allowed it to balance the pole for over 100 million steps, after

6000 trials. The majority of the detector regions included a single nearest-neighbor

prototype, although some regions held as many as 13 prototype points which had been

merged.

This representation was then compared with the 162-box representation used in

Barto, Sutton, and Anderson (1983) and other studies. The 162-box representation was

not learned on-line, but was hand-designed for studies of the effectiveness of various

algorithms for learning action values. It appears to be the result of thoughtful con-

sideration of the task dynamics; for example, it devotes particular attention to small

changes in the pole angle about the equilibrium point. Both the 162-box representation

and the generated representation were inserted into a test system which then learned

the task in a series of experiments. Each experiment consisted of 20,000 trials, with the

length of the best trial recorded as a performance score. Ten such experiments were

run for each of the two representations; the average of the ten performance scores was

taken as the resulting performance measurement for that representation. The averaged

score for the generated representation was 3,054,117 steps, and the score for the 162-box

representation was 4,224,068 steps. The test system employed the enhanced Q-learning
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algorithm described earlier, with trials beginning from randomly-chosen starting points.

Since ∆t = 0.02 seconds, every 100,000 steps represents about 33 minutes of real-world

balancing time.

These numbers compare favorably with typical results from the literature: Anderson

(1986) achieved average trial lengths of about 28,000 steps with a two-layer back-

propagation neural network having 70 weights; Barto, Sutton, and Anderson (1983)

achieved average trial lengths of nearly 80,000 steps with the Adaptive Heuristic Critic

algorithm and the 162-box representation; Hu and Fellman (1996) achieved close to

200,000 step average trial lengths with a representation having 105 boxes; Munos and

Moore (1999) solved a related cart-pole task (minimum time to a specified goal region),

but with 40,000 to 80,000 boxes in the representation.

The more significant finding was that the generated representation supported per-

formance at a level comparable to a representation which had been hand-designed for

the task.

6.6 Discussion

The purpose of these experiments was to verify the soundness of the ideas developed

in earlier chapters. The results indicate that the ideas are successful and useful. The

system presented in this chapter was able to learn better representations for the puck

task than those used by others, and it learned a representation for the pole task which

was comparable to one which had been hand-designed for the task. Furthermore, the

generated representations were smaller, and they were generated from scratch. This

success supports the conclusion that cognitive economy can be successfully applied to

reinforcement learning, leading to the automatic generation of effective representations.
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In particular, this chapter demonstrated the usefulness of selecting relevant training

examples by the criterion for surprising states (representational adequacy), as well as

splitting and merging regions according to state compatibility. These criteria allow the

system to focus on the distinctions that are relevant to the task at hand. Developing

representations which focus on relevant distinctions is one of the abilities needed by

reinforcement learning systems which learn complex tasks in unknown domains. This

chapter is a first step in the application of these ideas.

6.7 Future Work

The system studied in this chapter serves as a starting point for further research. Be-

sides further tuning and balancing of the components of the system, several alternative

implementations show promise as ways of extending these ideas to a wider range of

tasks: using the test for surprising states as a trigger for state splitting, and the pro-

posed idea for constructing an internal model which the agent can query in place of the

active investigations. In addition, the active investigation algorithm should be studied

as a possible way of learning certain tasks more efficiently than traditional methods.

The feature extraction ideas which were tested here may shed light on new ways

of constructing representations in systems which are entirely policy-based, or which

lift the restriction that the representation be a partition. These extensions require

additional development of the underlying theory, but will allow application to many

important tasks.
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Chapter 7

Conclusion

This dissertation examined the role of representation in reinforcement learning: it

demonstrated how the principle of cognitive economy may be formulated in terms

of action values, and how the resulting criteria can be implemented successfully to

achieve on-line construction of new representations. Although other formulations are

possible, the analysis presented here showed that these criteria are not ad-hoc, but es-

tablish a well-defined standard of learnability. Similarly, although the case studies are

only a starting point for the implementation of these criteria, they show that cognitive

economy may be successfully applied to reinforcement learning problems.

Representation is fundamental to cognition and remains an important open problem.

Agents learning large and complex tasks require efficient representations, characterized

by high cognitive economy: such representations allow the agent to make necessary

distinctions, but avoid presenting the agent with distinctions which do not matter in

its task. Chapter 3 formalized the principle of cognitive economy, and developed a

framework for defining important features and necessary distinctions. That framework

ties the adequacy of a representation to the agent’s ability to choose actions which

result in low incremental regret—a formalization of the requirement of making “sound

decisions” in the task. Chapter 4 continued the analysis by defining the true action

values in a task—the generalized action values—and showed how these values depend
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on the representation. Building on this result, Chapter 5 proved that partition repre-

sentations which separate incompatible states meet the ε-adequacy standard and thus

allow the agent to learn to make sound decisions in the task. The case studies of Chap-

ter 6 present an algorithm for on-line feature extraction which successfully applied

these criteria to automate the construction of effective representations for a difficult

reinforcement learning problem.

7.1 Contributions

This dissertation introduced a new conceptual framework for exploring the role of rep-

resentation. The key concepts include the following: generalized action values, action

preference sets, feature importance, pure and mixed sets of states, sound decisions, pol-

icy and value distinctions, incremental regret, state compatibility, and representational

adequacy. The key ideas are these:

• The representation changes the nature of the task by the way that it generalizes

action values over states. Without any state generalization, tasks in continuous

worlds are simply infeasible. State generalization reduces the amount of experi-

ence needed to learn the task by sharing the learning among groups of states. In

this way, state generalization controls which states are treated as “the same kind

of thing.” We want to group together states which are “the same” with respect

to the agent’s task, but still allow the agent to distinguish states which require

different policies or which lead to significantly different outcomes.

• Some distinctions between states are irrelevant to the agent’s decisions, even
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though they would be necessary to accurately predict all the action values. Cog-

nitive economy leads us to filter out these irrelevant distinctions, unlike previous

approaches.

• Feature importance is tied to the ability of a feature to make a state-space dis-

tinction which matters to the agent in its task. We can define importance in

terms of generalized action values.

• A representation which generalizes over incompatible states is inadequate for

the task. We can define compatibility criteria so that the loss incurred by any

failure to distinguish states is always less than a given tolerance—our standard

for learnability.

• Function approximation for reinforcement learning needs to take state compati-

bility into account, including differences in preferred policy between states. This

is necessary in order to respond to action value errors which are important, while

ignoring benign errors which do not matter in the task.

Learning the representation along with the task is especially challenging. It requires

effective criteria for selecting relevant states for consideration, and for determining when

states may be considered similar in the context of the task. The dissertation presented

an algorithm built on the new framework, and demonstrated that it is able to learn

effective representations at the same time it is learning how to behave in the world.

This algorithm is a starting point for future work which applies cognitive economy to

reinforcement learning.
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7.2 Future work

This work suggests several areas for the continued development of our understanding of

representation and its role in on-line learning. In this dissertation, I have often chosen

to define the general principles in straight-forward ways which permitted the clearest

exposition of the concepts and allowed me to prove some important properties for the

type of system I wanted to build. The most important topic for future work might be

the extension of the criteria for representational adequacy and state compatibility to

the case where the representation is not a partition. In particular, the ideas might be

extended to the case where different feature detectors apply to different actions in the

task. This extension would allow application of the ideas to more tasks.

Another interesting area for extension is Chapter 5’s proof that state compatibility

leads to representational adequacy. This proof gave sufficient conditions for partition

representations; it would be very interesting to see it extended to coarse-coded repre-

sentations, and it would be very interesting to see a result for necessary and sufficient

conditions.

The idea of feature importance appears to be related to beneficial state generaliza-

tion, over pure sets. This should be explored in more depth, along with the development

of more sophisticated definitions of feature importance.

The implementation of Chapter 6 can be the basis for future applications and ex-

periments. First, the active learning algorithm is interesting in its own right, as a

system which may solve some tasks more efficiently than traditional methods; it selects

as training data states which are on the frontier of that portion of the task which has

already been learned.

Non-active implementations could extend the applicability of the cognitive economy
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approach to a wider variety of tasks. Chapter 6 presented two promising non-active

schemes: simply adding a new prototype state when the current experience is suffi-

ciently surprising (and merging states which later prove compatible), and saving all the

agent’s experiences into categories for the current regions, and using them to construct

an internal model for queries about state compatibility.

It will help to apply these ideas to additional tasks of greater complexity. Producing

working systems requires the achievement of a balance and synergy between their parts.

In this case, there needs to be a balance between learning the action values and learning

the representation, between the top-level Q-learning which smooths out the values and

the active investigations, between splitting regions and consolidating them, and between

increasing the accuracy of the regions’ boundaries and producing small, economical

representations. These are practical issues which are best studied experimentally.

This work could also lead to research in the field of cognitive psychology, since it

makes claims regarding the fitness of different kinds of representations for particular

tasks. Because experts appear to develop representations which show high cognitive

economy, it would be interesting to apply the ideas of this dissertation to evaluate

expert representations, the effect of representation on human performance, and the

potential for finding better representations for the tasks people face. The study of

reinforcement learning systems has allowed me to state these ideas objectively and

to analyze them mathematically. But human cognition appears to work according to

similar principles of cognitive economy, since our pre-conscious awareness appears to

be filtered by categorization (Harnad, 1987; Berlin and Kay, 1969), and our conscious

decisions appear to depend on simplifying generalizations (Simon, 1957). If we would

draw conclusions about intelligent action in general, we need experiments and analysis
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with both natural and artificial subjects.
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Afterword

Our acceptance of an ontology is, I think, similar in principle to our ac-

ceptance of a scientific theory, say a system of physics; we adopt, at least

insofar as we are reasonable, the simplest conceptual scheme into which the

disordered fragments of raw experience can be fitted and arranged.

—Willard V. O. Quine

Thus the order and regularity in the appearances, which we entitle nature,

we ourselves introduce.

—Immanuel Kant

Representation and feature extraction are fundamental to intelligence. The ideas

we have been considering in a very tightly-constrained model underlie most of human

cognition. Therefore, it is important to consider the place of this discussion in the

big picture. Early in life, we learn to categorize our perceptions in order to interact

successfully with our world. For example, we become sensitized to the speech sounds

which occur in our native tongue, and to the visual stimuli of our parents’ faces. As we

grow, we learn “what to look for” in order to perform various tasks, learning which data

are relevant to our needs. We learn to categorize the world according to our goals, and

this categorization reduces the complexity of our world to manageable levels, enabling

us to act intelligently. But since this categorization filters our view of the world, it

removes us from reality itself.

In Zen and the Art of Motorcycle Maintenance, Robert Pirsig describes this cate-

gorization as the action of a knife which we use to slice reality:
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The application of this knife, the division of the world into parts and the

building of this structure, is something everybody does. All the time we are

aware of millions of things around us—these changing shapes, these burning

hills, the sound of the engine, the feel of the throttle, each rock and weed

and fence post and piece of debris beside the road—aware of these things

but not really conscious of them unless there is something unusual or unless

they reflect something we are predisposed to see. We could not possibly

be conscious of these things and remember all of them because our mind

would be so full of useless details we would be unable to think. From all

this awareness we must select, and what we select and call consciousness is

never the same as the awareness because the process of selection mutates it.

We take a handful of sand from the endless landscape of awareness around

us and call that handful of sand the world.

Once we have the handful of sand, the world of which we are conscious,

a process of discrimination goes to work on it. This is the knife. We divide

the sand into parts. This and that. Here and there. Black and white. Now

and then. The discrimination is the division of the conscious universe into

parts.

He goes on to describe how each “grain of sand” is unique, and we can sort them into

piles on the basis of all kinds of different properties. And the properties we choose for

this sorting depend on the analogs we have acquired from our experience, and from the

collective experience passed on to us through human society.

The Zen approach to categorization is to refuse to separate the sand into piles, since
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doing so inevitably removes us from Reality. For then we no longer see the world—

only the categories. As a result, the world we interact with is an artificial construct,

designed according to our needs and concerns. But, to a large extent, we cannot help

it—we cannot survive without doing so. Most of our education and growth concerns

our ability to categorize, and to discern the connections between categories. If these

categories are poorly chosen, we make mistakes, or else we work much harder than

necessary to make correct decisions. Therefore, we must be prepared to throw away

our categories and to re-categorize experience when our representation proves to be

inadequate.

If I claim that reward-maximization and cognitive economy govern human decision-

making, I must be quick to point out that these are only part of the picture. My model

is based on the rewards experienced by an agent as the result of its actions, but says

nothing at all about the source of those rewards, or how they are determined. The

rewards appear to encapsulate everything that is involved in being human. Having

bodies, we experience rewards from sensations such as pleasure and pain, and find that

our actions are constrained by the limitations of our bodies. Living in families and

societies, we experience other types of rewards based on social interaction. Religious

faith allows for a transcendent source of reward and value. Clearly, the desirability

of various experiences and states depends on a complex web of environmental, social,

cultural and spiritual stimuli and rewards. All of this is outside my model of information

processing—and possibly beyond formal description. This dissertation has studied some

of the central issues of cognition, but only in a very limited model. It is a beginning,

but the kind of categorization which we take for granted as human beings going about

our normal lives will probably always be seen as art.
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