
Software Pipelining:
An Effective Scheduling Technique for VLIW Machines

Monica Lam

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

This paper shows that software pipelining is an effective
and viable scheduling technique for VLIW processors. In
software pipelining, iterations of a loop in the source program
are continuously initiated at constant intervals, before the
preceding iterations complete. The advantage of software
pipelining is that optimal performance can be achieved with
compact object code.

This paper extends previous results of software pipelining
in two ways: First, this paper shows that by using an im-
proved algorithm, near-optimal performance can be obtained
without specialized hardware. Second, we propose a
hierarchical reduction scheme whereby entire control con-
structs are reduced to an object similar to an operation in a
basic block. With this scheme, all innermost loops, including
those containing conditional statements, can be software
pipelined. It also diminishes the start-up cost of loops with
small number of iterations. Hierarchical reduction comple-
ments the software pipelining technique, permitting a consis-
tent performance improvement be obtained.

The techniques proposed have been validated by an im-
plementation of a compiler for Warp, a systolic array consist-
ing of 10 VLIW processors. This compiler has been used for
developing a large number of applications in the areas of
image, signal and scientific processing.

The research was supported in part by Defense Advanced
Research projects Agency (DOD) monitored by the Space and
Naval Warfare Systems Command under Contract
NOOO39-87-C-0251, and in part by the Office of’ Naval
Research under Contracts NOOO14-87-K-0385 and
NO001 4-87-K-0533.
PermissIon to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the pubhcauon and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee and/

or specltic permission.

o 1988 ACM O-8979 l-269- l/88/0006/03 I 8 $1.50

)”

Language Design and lmplementatlon
Atlanta, Georgia, June 22-24, 1988

1. Introduction

A VLIW (very long instruction word) machine [5, 111, is
simiiar to a horizontally microcoded machine in that the data
path consists of multiple, possibly pipelined, functional units,
each of which can be independently controlled through dedi-
cated fields in a “very long” instruction. The distinctive
feature of VLIW architectures is that these long instructions
are the machine instructions. There is no additional layer of
interpretation in which machine instructions are expanded
into micro-instructions. While complex resource or field con-
flicts often exist between functionally independent operations
in a horizontal microcode engine, a VLIW machine generally
has an orthogonal instruction set snd a higher degree of paral-
lelism. The key to generating efficient code for the VLIW
machine is global code compaction. that is, the compaction of
code across basic blocks [121. In fact, the VLIW architecture
is developed from the study of the global code compaction
technique, trace scheduling [lo].

The thesis of this paper is that software
pipelining [24,25,30] is a viable alternative technique for
scheduling VLIW processors. In software pipelining, itera-
tions of a loop in a source program are continuously initiated
at constant intervals without having to wait for preceding
iterations to complete. That is, multiple iterations, in different
stages of their computations, are in progress simultaneously.
The steady state of this pipeline constitutes the loop body of

the object code. The advantage of software pipelining is that
optimal performance can be achieved with compact object

code.

A drawback of software pipelining is its complexity; the
problem of finding an optimal schedule is NP-complete.
(This can be shown by transforming the problem of resource
constrained scheduling problem [141 to the software pipelin-

ing problem). There have been two approaches in response to
the complexity of this problem: (1) change the architecture,
and thus the characteristics of the constraints, so that the
problem becomes tractable, and (2) use heuristics. The first
approach is used in the polycyclic [25] and Cydrome’s Cydra

318

architecture; a specialized crossbar is used to make optimizing
loops without data dependencies between iterations tractable.
However, this hardware feature is expensive; and, when inter-
iteration dependency is present in a loop, exhaustive search on
the strongly connected components of the data flow graph is
still necessary[16]. The second approach is used in the
FPS-164 compiler [30]. Software pipelining is applied to a
restricted set of loops, namely those containing a single
Fortran statement. In other words, at most one inter-iteration
data dependency relationship can be present in the flow graph.
The results were that near-optimal results can be obtained
cheaply without the specialized hardware.

This paper shows that software pipelining is a practical,
efficient, and general technique for scheduling the parallelism
in a VLIW machine. We have extended previous results of
software pipelining in two ways. First, we show that near-
optimal results can often be obtained for loops containing
both intra- and inter-iteration data dependency, using software
heuristics. We have improved the scheduling heuristics and
introduced a new optimization called modulo variable expan-
sion. The latter implements part of the functionality of the
specialized hardware proposed in the polycyclic machine,
thus allowing us to achieve similar performance.

Second, this paper proposes a hierarchical reduction

scheme whereby entire control constructs are reduced to an
object similar to an operation in a basic block. Scheduling
techniques previously defined for basic blocks can be applied
across basic blocks. The significance of hierarchical reduc-
tion is threefold: Fist, conditional statements no longer con-
stitute a barrier to code motion, code in innermost loops
containing conditional statements can be compacted Second,
and more importantly, software pipelining can be applied to
arbitrarily complex loops, including those containing con-
ditional statements. Third, hierarchical reduction dihes
the penalty of short loops: scalar code can be scheduled with
the prolog and epilog of a pipelined loop. We can even
software pipeline the second level loop as well. The overall
result is that a consistent speed up is obtained whenever
parallelism is available across loop iterations.

Software pipelining, as addressed here, is the problem of
scheduling the operations within an iteration, such that the
iterations can be pipelined to yield optimal throughput,
Software pipelining has also been studied under different con-
texts. The software pipelining algorithms proposed by Su et
al. [27.28], and Aiken and Nicolau [l], assume that the
schedules for the iterations are given and cannot be changed.
Ebcioglu proposed a software pipelining algorithm to
generate code for a hypothetical machine with infinitely many
hardware resouruzs [7]. Lastly, Weiss and Smith compared
the results of using loop unrolling and software pipelining to
generate scalar code for the Cray-1s architecture [31].

However, their software pipeliig algorithm only overlaps
the computation from at most two iterations. The unfavorable
results obtained for software pipelining can be attributed to
the particular algorithm rather than the software pipelining
approach.

The techniques described in this paper have been validated
by the implementation of a compiler for the Warp machine.
Warp [4] is a high-performance, programmable systolic array
developed by Carnegie Mellon and General Electric, our in-
dustrial partner. The Warp array is a linear array of VLIW
processors, each capable of a peak computation rate of 10
million floating-point operations per second (10 MFLGPS).
A Warp array typically consists of ten processors, or cells,
and thus has an aggregate bandwidth of 100 MFLGPS.

Each Warp cell has its own sequencer and program
memory. Its data path consists of a floating-point multiplier,
a floating-point adder, an integer ALU, three register files
(one for each arithmetic unit), a 512-word queue for each of
the two inter-cell data communication channels, and a 32
Kword data memory. All these components are connected
through a crossbar, and can be programmed to operate con-
cturently via wide instructions of over 200 bits. The mul-
tiplier and adder are both 5-stage pipelined together with the
2 cycle &lay through the register file, multiplications and
additions take 7 cycles to complete.

The machine is programmed using a language called W2.
In W2, conventional Pascal-like control constructs are used to
specie the cell programs, and asynchronous computation
primitives are used to specify inter-cell communication. The
Warp machine and the W2 compiler have been used exten-
sively for about two years, in many applications such as
low-level vision for robot vehicle navigation, image and sig-
nal processing, and scientific computing [2,3]. Gur previous
papers presented an overview of the compiler and described
an array level optimization that supports efficient fme-grain
parallelism among cells [15.201. This paper describes the
scheduling techniques used to generate code for the parallel
and pipelined functional units in each cell.

This paper consists of three parts: Part I describes the
software pipelining algorithm for loops containing straight-
line loop bodies, focusing on the extensions and improve-
ments. Part II describes the hierarchical reduction approach,
and shows how software pipelining can be applied to all
loops. Part III contains an evaluation and a comparison with
the trace scheduling technique.

319

2. Simple loops

The concept of software pipelining can be illustrated by the

following example: Suppose we wish to add a constant to a

vector of data. Assuming that the addition is one-stage

pipelined, the most compact sequence of instructions for a

single iteration is:

1 Read
2 Add
3
4 Write

Different iterations can proceed in parallel to take advantage

of the parallelism in the data path. In this example, an

iteration can be initiated every cycle, and this optimal

throughput can be obtained with the following piece of code:

1 Raad
2 Add Ftead
3 Add Read
4 L:Write Add Read CJumpL
5 Write Add
6
7 Writr

Instructions 1 to 3 are called the prolog: a new iteration is

initiated every instruction cycle and execute concurrently with

all previously initiated iterations. The steady state is reached

in cycle 4. and this state is repeated until all iterations have

been initiated. In the steady state, four iterations are in

progress at the same time, with one iteration starting up and

one fishing off every cycle. me operation CJump L

branches back to label L unless all iterations have been

initiated.) On leaving the steady state, the iterations currently

in progress are completed in the epilog, instmctions 5 through

7. The software pipelined loop in this example executes at the

optimal throughput rate of one iteration per instruction cycle,

which is four times the speed of the original program. The

potential gain of the technique is even greater for data paths

with higher degrees of pipelining and parallelism. In the case

of the Warp cell, software pipelining speeds up this loop by

nine times.

2.1. Problem statement
Software pipelining is unique in that pipeline stages in the

functional units of the data path are not emptied at iteration

boundaries; the pipelines are filled and drained only on enter-

ing and exiting the loop. The significance is that optimal

throughput is possible with this approach.

The objective of software pipelining is to minimize the

interval at which iterations are initiated, the initiation
itierval[25] determines the throughput for the loop. The

basic units of scheduling are minimally indivisible sequences

of micro-instructions. h the example above, since the result

of the addition must be written precisely two cycles after the

computation is initiated, the add and the write operations me

grouped as one indivisible sequence. While the sequence is

indivisible, it can overlap with the execution of other se-

quences. The minimally indivisible sequence-s that make up

the computation of an iteration are modeled as nodes in a

graph. Data dependencies between these sequences are

mapped onto precedence constraints between the correspond-

ing nodes; associated with each node is a resource reservation

table indicating the resources used in each time step of the

sequence. To ensure a compact steady state, two more con-
straints are imposed: the initiation interval between all con-

secutive iterations must be the same, and the schedule for

each individual iteration must be identical. In other words,

the problem is to schedule the operations within an iteration,

such that the same schedule can be pipelined with the

shortest, constant initiation interval.

The scheduling constraints in software pipelining are

defined in terms of the initiation interval:

1. Resource cmstrainls. Kf iterations in a software
pipelined loop are initiated every sth cycle, then every
s th inshuction in the schedule of an iteration is executed
simultaneously, one born a different iteration. The total
resource requirement of every sth instructions thus can-
not exceed the available resources. A modulo resource
reservation table can be used to represent the resource
usage of the steady state by mapping the resource usage
of time t to that of time tmods in the modulo resource
reservation table.

2. Precedence constraints. Consider the following ex-
ample:

FOR i := 1 !PO 100 DO
BEGIN

a := a + 1.0;
END

The value of a must first be accessed before the store
operation, and the store operation must complete before
the data is accessed in the second iteration. We model
the dependency relationship by giving each edge in the
graph two attributes: a minimum iteration difference and
a delay. When we say that the minimum iteration dif-
ference on an edge (u,v) is p and the delay is d, that
means node v must execute d cycles after node Y from
the p th previous iteration. Let (T : V 3 N bc the schedule
function of a node, then

Q(V)-((T(U)-sp)Zd, or o(vh(u)Zd-pp,

where s is the initiation interval. Since a node cannot
depend on a value from a future iteration, the minimum
iteration difference is always nonnegative. The iteration
difference for an intra-iteration dependency is 0, mean-
ing that the node v must follow node u in the same
iteration. As illustrated by the example, inter-iteration
data dependencies may introduce cycles into the
precedence constraint graph.

320

2.2. Scheduling algorithm
The definition of scheduling constraints in terms of the

initiation interval makes fmding an approximate solution to
this NP-complete problem difficult. Since computing the
minimum initiation interval is NP-complete, an approach is to
first schedule the code using heuristics, then determine the
initiation interval permitted by the schedule. However, since
the scheduling constraints are defined in terms of the initia-
tion interval, if the initiation interval is not known at schedul-
ing time, the schedule Produced is unliiely to permit a good
initiation interval.

To resolve this circularity, the FPS compiler uses an itera-
tive approach [30]: first establish a lower and an upper bound
on the initiation interval, then use binary search to find the
smallest initiation interval for which a schedule can be found.
(The length of a locally compacted iteration can serve as an
upper bound, the calculation of a lower bound is described
below). We also use an iterative approach, but we use a linear
search instead. The rationale is as follows: Although the
probability that a schedule can be found generally increases
with the value of the initiation interval, schedulabiity is not
monotonic [21]. Especially since empirical results show that
in the case of Warp, a schedule meeting the lower bound can
often be found, sequential search is preferred.

2.2.1. Scheduling acyclic graphs
The algorithm we use to schedule acyclic graphs for .a

target initiation interval is the same as that used in the FPS
compiler, which itself is derived from the list scheduling
algorithm used in basic block scheduling [9]. List scheduling
is a non-backtracking algorithm, nodes are scheduled in a
topological ordering, and are placed in the earliest possible
time slot that satisfies all scheduling constraints with the
partial schedule constructed so far. The software pipelining
algorithm differs from list scheduling in that the modulo
resource reservation table is used in determining if there is a
resource conflict. Also, by the definition of module resource
usage, if we cannot schedule a node in s consecutive time
slots due to resource conflicts, it will not fit in any slot with
the current schedule. When this happens, the attempt to fiid a
schedule for the given initiation interval is aborted and the
scheduling process is repeated with a greater interval value.

2.2.2. Scheduling cyclic graphs
In adapting the scheduling algorithm for acyclic graphs to

cyclic graphs, we face the following difficulties: a topological
sort of the nodes does not exist in a cyclic graph; precedence
constraints with nodes already scheduled cannot be satisfied
by examining only those edges incident on those nodes; and
the maximum height of a node, used as the priority function in
list scheduling, is ill-defined. Experimentation with different
schemes helped identify two desirable properties that a non-
backtracking algorithm should have:

1. Partial schedules constructed at each point of the
scheduling process should not violate any of the
precedence constraints in the graph. In other words,
were there no resource conflicts with the remaining
nodes, each partial schedule should be a partial solution.

A lower bound on the initiation interval can be calculated
from the scheduling constraints as follows:

1. Resource constraints. If an iteration is initiated every s
cycles, then the total number of resource units available
in s cycles must at least cover the resource requirement
of one iteration. Therefore, the bound on the initiation
interval due to resource considerations is the maximum
ratio between the total number of times each resource is
used and the number of available units per instruction.

2. Precedence constraints. Cycles in precedence con-
straints impose delays between operations from different
iterations that are represented by the same node in the
graph. The initiation interval must be large enough for
such delays to be observed. We define the delay and
minimum iteration difference of a path to be the sum of
the minimum delays and minimum iteration differences
of the edges in the path, respectively. Let s be the
initiation interval, and c be a cycle in the graph. Since

o(v)-cr(u)Ld(e)-sp(e)

we get:

d (c) - sp (c) I 0.

We note that if p (c)=0, then d(c) is necessarily less than
0 by the definition of a legal computation. Therefore, the
bound on the initiation interval due to precedence con-
siderations is

rd (c) 1
maxcp(c) ’

V cycle c whosep (c) # 0.

2. The heuristics must be sensitive to the initiation interval.
An increased initiation interval value relaxes the
scheduling constraints, and the scheduling algorithm
must take advantage of this opportunity. It would be
futile if the scheduling algorithm simply retries the same
schedule that failed.

These properties are exhibited by the heuristics in the
scheduling algorithm for acyclic graphs. A scheduling algo-
ritlun for cyclic graphs that satisfies these properties is
presented below.

The following preprocessing step is fust performed: find
the strongly con&ted components in the graph [29]. and
compute the closure of the precedence constraints in each
COnneCted component by solving the all-points longest path
Problem for each component [6,13]. This information is used
in the iterative scheduling step. To avoid the cost of recom-
puting this information for each value of the initiation inter-
val, we compute this information only once in the preprocess-
ing step, using a symbolic value to stand for the initiation
interval 2211.

321

As in the case of acyclic graphs, the main scheduling step is
iterative. For each target initiation interval, the connected
components are first scheduled individually, The original
graph is then reduced by representing each connected com-
ponent as a single vertex: the resource usage of the vertex
represents the aggregate resource usage of its components.
and edges connecting nodes from different connected com-
ponents are represented by edges between the corresponding
vertices. This reduced graph is acyclic, and the acyclic graph
scheduling algorithm can then be applied.

The scheduling algorithm for connected components also
follows the framework of list scheduling. The nodes in a
connected component are scheduled in a topological ordering
by considering only the intra-iteration edges in the graph. By
the definition of a connected component, assigning a schedule
to a no& limits the schedule of all other nodes in the com-
ponent, both from below and above. We define the
precedence constrained range of a node for a given partial
schedule as the legal time range in which the node can be
scheduled, without violating the precedence constraints of the
graph. As each node is scheduled, we use the precomputed
longest path information to update the precedence constrained
range of each remaining node, substituting the symbolic in-
itiation interval value with the actual value. A node is
scheduled in the earliest possible time slot within its con-
strained range. If a no& cannot be scheduled within the
precedence constrained range, the scheduling attempt is con-
sidered unsuccessful. This algorithm possesses the first
property described above: precedence constraints are
satisfied by all partial schedules.

As nodes are scheduled in a topological ordering of the
intra-iteration edges, the precedence constrained range of a
node is bounded from above only by inter-iteration edges. As
the initiation interval increases, so does the upper bound of
the range in which a node is scheduled. Together with the
strategy of scheduling a node as early as possible, the range in
which a node can be scheduled increases as the initiation
interval increases, and so does the likelihood of success. The
scheduling problem approaches that of an acyclic graph as the
value of the initiation interval increases. Therefore, the ap-
proach also satisfies the second property: the algorithm takes
advantage of increased initiation interval values.

2.3. Modulo variable expansion
The i&a of modulo variable expansion can be illustrated by

the following code fragment, where a value is written into a
register and used two cycles later:

Def(Rl)
OP
use (Rl)

If the same register is used by all iterations, then the write
operation of an iteration cannot execute before the read opera-

tion in the preceding iteration. Therefore, the optimal
throughput is limited to one iteration every two cycles. This
code can be sped up by using different registers in alternating
iterations:

Def (Rl)
OP Def (R2)

L : u*r (Rl) op Def (Rl)
Uae(R2) op Def(R2) CJ'ump L

Ues(R1) op
Use (R2)

We call this optimization of allocating multiple registers to
a variable in the loop module variable eqansion. This op
timization is a variation of the variable expansion technique
used in vectorizing compilers [18]. The variable expansion
transformation identifies those variables that are redefmed at
the beginning of every iteration of a loop, and expands the
variable into a higher dimension variable, so that each itera-
tion can refer to a different location. Consequently, the use of
the variable in different iterations is thus independent, and the
loop can be vector&d. Modulo variable expansion takes
advantage of the flexibility of VLJW machines in scalar com-
putation, and reduces the number of locations allocated to a
variable by reusing the same location in non-overlapping
iterations. The small set of values can even reside in register
files, cutting down on both the memory traffic and the latency
of the computation.

Without modulo variable expansion, the length of the
steady state of a pipelined loop is simply the initiation inter-
val. #en modulo variable expansion is applied, code se-
quences for consecutive iterations differ in the registers used,
thus lengthening the steady state. If there are n repeating code
sequences, the steady state needs to be unrofled n times.

The algorithm of modulo variable expansion is as follows.
First, we identify those variables that are redefined at the
beginning of every iteration. Next, we pretend that every
iteration of the loop has a dedicated register location for each
qualified variable, and remove all inter-iteration precedence
constraints between operations on these variables. Scheduling
then proceeds as normal. The resulting schedule is then used
to determine the actual number of registers that must be
allocated to each variable. The lifetime of a register variable
is defied as the duration between the fist assignment into the
variable and ita last use. If the lifetime of a variable is l, and

rf i
an iteration is initiated every s cycles, then at least s number
of values must be kept alive concurrently, in that many loca-
ti0ll.S.

If each variable Vi is allocated its minimum number of
locations, q? the degree of unrolling is given by the lowest
common multiple of (qi). Even for small values of Q;. the
least common multiple can be quite large and can lead to an

322

intolerable increase in code size. The code size can be
reduced by trading off register space. We observe that the
minimum degree of unrolling, u, to implement the same
schedule is Simply max i Qi. This minimum degree Of Unroll-
ing can be achieved by setting the number of registers al-
located to variable vi to be the smallest factor of Y that is no
smaller than qi, i.e.,

minn,wherenZqiandumodn=O.

The increase in register space is much more tolerable than the
increase in code size of the first scheme for a machine like

warp.

Since we cannot determine the number of registers al-
located to each variable until all uses of registers have been
scheduled, we cannot determine if the register requirement of
a partial schedule can be satisfied. Moreover, once given a
schedule. it is very difficult to reduce its register requirement.
Indivisible micro-operation sequences make it hard to insert
code in a software pipelined loop to spill excess register data
into memory.

ln practice, we can assume that the target machine has a
large number of registers; otherwise, the resulting data
memory bottleneck would render the use of any global com-
paction techniques meaningless. The Warp machine has two
31-word register files for the floating-point units, and one
64-word register for the ALU. Empirical results show that
they are large enough for almost all the user programs
developed [21]. Register shortage is a problem for a small
fraction of the programs; however, these programs invariably
have loops that contain a large number of independent opera-
tions per iteration. In other words, these programs are amen-
able to other simpler scheduling techniques that only exploit
parallelism within an iteration. Thus, when register allocation
becomes a problem, software pipelining is not as crucial. The
best approach is therefore to use software pipelining aggres-
sively, by assuming that there are enough registers. When we
run out of registers, we then resort to simple techniques that
serializes the execution of loop iterations. Simpler scheduling
techniques are more amenable to register spilling techniques.

2.4. Code size
The code size increase due to software pipelining is reason-

able considering the speed up that can be achieved. If the
number of iterations is known at compile time, the code size
of a pipelined loop is within three times the code size for one
iteration of the loop 1211. If the number of iterations is not
known at compile time, then additional code must be
generated to handle the cases when there are so few iterations
in the loop that the steady state is never reached, and when
there are no more iterations to initiate in the middle of an
unrolled steady state.

To handle these cases, we generate two loops: a pipelined

version to execute most of the iterations, and an unpipelined
version to handle the rest. Let k be the number of iterations
started in the prolog of the pipelined loop, u be the degree of
unrolling, and n be the number of iterations to be executed.
Before the loop is executed, the values of n and k are com-
pared. If II c k. then all n iterations are executed using the
unpipelined code. Otherwise, we execute n-kmodu itera-
tions using the un

r4
@lined code, and the rest on the pipelined

loop. At most 5 iterations are executed in the unpipelined
mode, where 1 is the length of an iteration and s is the
initiation interval. Using this scheme, the total code size is at
most four times the size of the unpipelined loop.

A more important metric than the total code length is the
length of the innermost loop. An increase in coXde length by a
factor of four typically does not pose a problem for the
machine storage system. However. in machines with instruc-
tion buffers and caches. it is most important that the steady
state of a pipelined loop fits into the buffers or caches. Al-
though software pipelining increases the total co& size, the
steady state of the loop is typically much shorter than the
length of an unpipelined loop. Thus, we can conclude that the
increase in code size due to software pipelining is not an
issue.

3. Hierarchical reduction

The motivation for the hierarchical reduction technique is
to make software pipelining applicable to all innermost loops,
including those containing conditional statements. The
proposed approach schedules the program hierarchically,
starting with the innermost control constructs. As each con-
struct is schedkd, the entire construct is reduced to a simple
node representing all the scheduling constraints of its com-
ponents with other constructs. This node can then be
scheduled just like a simple node withm the surrounding
control construct. The scheduling process is complete when
the entire program is reduced to a single node.

The hierarchical reduction technique is derived from the
scheduling scheme previously proposed by Wood [32]. In
Wood’s approach, scheduled constructs are modeled BS black
boxes taking unit time. Operations outside the construct can
move around it but cannot execute concurrently with it. Here,
the resource utilization and precedence constraints of the
reduced constxuct are visible, permitting it to be scheduled in
parallel with other operations. This is essential to software
pipelining loops with conditional statements effectively.

323

3.1. Conditional statements
The procedure for scheduling conditional statements is as

follows: The THEN and ELSE branches of a conditional state-

ment are first scheduled independently. The entire con-

ditional statement is then reduced to a single node whose

scheduling constraints represent the union of the scheduling

constraints of the two branches. The length of the new node

is the maximum of that of the two branches; the value of each

entry in the resource reservation table is the maximum of the

corresponding entries in the tables of the two branches.

Precedence constrainta between operations inside the

branches and those outside must now be replaced by con-

straints between the node representing the entire construct and

those outside. The attributes of the constraints remain the
same.

The node representing the conditional construct can be

treated like any other simple node within the surrounding

construct. A schedule that satisfies the union of the con-

straints of both branches must also satisfy those of either

branch. At code emission time, two sets of code, correspond-

ing to the two branches, are generated. Any code scheduled

in parallel with the conditional statement is duplicated in both

branches. Although the two branches are padded to the same

length at code scheduling time, it is not necessary that the

lengths of the emitted code for the two branches be identical.

lf a machine instruction does not contain any operations for a

particular branch then the instruction simply can be omitted

for that branch. The simple representation of conditional
statements as straight-line sequences in the scheduling

process makes it easy to overlap conditional statements with

any other control constructs.

The above strategy is optimized for handling short con-

ditional statements in innermost loops executing on highly

parallel hardware. The assumption is that there are more
unused than used resources in an unpipehned schedule, and

that it is more profitable to satisfy the union of the scheduling

constraints of both branches all the time, so as not to reduce

the opportunity for parallelism among operations outside the

conditional statement. For those cases that violate this as-

sumption, we can simply mark all resources in the node

representing the conditional statements as used. By omitting

empty machine instructions at code emission time, the short

conditional branch will remain short Although this scheme

disallows overlap between the conditional statement and all

other operations, all other forms of code motion around the

construct can still take place.

3.2. Loops
The prolog and epilog of a software pipelined loop can be

overlapped with other operations outside the loop. This op-

timization can again be achieved by reducing a looping con-

struct to a simple node that represents the resource and

precedence constraints for the entire loop. only one iteration

of the steady state is represented. The steady state of the loop,

however, should not be overlapped with other operations. To

prevent this, all resources in the steady state are marked as

consumed.

3.3. Global code motions
Gnce conditional statements and loops are represented as

straight-line sequences of code, scheduling techniques,

formerly applicable only to basic blocks, such as software

pipelining and list scheduling, can be applied to compound

control constructs. Global code motions automatically take

place as the enclosing construct is scheduled according to the

objective of the scheduling technique.

The significance of hierarchical reduction is to permit a

consistent performance improvement be obtained for all

programs, not just those programs that have long innermost

loops with straight-line loop bodies. More precisely, hierar-

chical reduction has three major effects:

1. The most important benefit of hierarchical reduction is
that software pipelining can be applied to loops with
conditional statements. This allows software pipelining
to be applied to all innermost loops. Overlapping dii-
ferent iterations in a loop is an important source of paral-
lelism.

2. Hierarchical reduction is also important in compacting
long loop bodies containing conditional statements. In
these long loop bodies, there is often much parallelism to
be exploited within an iteration. Operations outside a
conditional statement can move around and into the
branches of the statement. Even branches of different
conditional statements can be overlapped.

3. Hierarchical reduction also minimizes the penalty of
short vectors, or loops with small number of iterations.
The prolog and epilog of a loop can be overlapped with
scalar operations outside the loop; the epilog of a loop
can be overlapped with the prolog of the next loop; and
lastly, software pipelining can be applied even to an
outer loop.

4. Evaluation
To provide and overall picture of the compiler’s perfor-

mance, we first give the statistics collected from a large

sample of user programs. These performance figures show

the effect of the software pipelining and hierarchical reduction

techniques on complete programs. To provide more detailed

information on the performance of software pipelining. we

also include the performance of Livermore loops on a single

warp cell.

324

4.1. Performance of users’ programs
The compiler for the Warp machine has been in use for

about two years, and a large number of programs in robot

navigation, low-level vision, and signal processing and scien-

tific computing have been developed [2,3]. Of these, a

sample of 72 programs have been collected and analyzed [2 11.

Table 4-l lists the performance of some representative

programs, and the Performance of all 72 programs is graphi-

cally presented in Figure 4-l.

Task
All images are 512x512

100X100 matrix multiplication
512~512 complex FFT (1 dimension)
3x3 convolution
Hough transform
Local selective averaging
Shortest path Warshall’s algorithm
(350 nodes, 10 iterations)
Roberts operator

Time
(m)

I%

2:!3
406
104

M flOpS

79.4
71.9
65.7
42.2
39.2
24.3

192 15.2

Table 4-1: Performance on Warp array

All application programs in the experiment have compile-

time loop bounds, and their execution speeds were determined

statically by assuming that half of the data dependent

branches in conditional statement were taken. All the

programs in the sample are homogeneous code, that is, the

same cell program is executed by all cells. Except for a short

setup time at the beginning, these programs never stall on

input or output. Therefore, the computation rate. for each cell
is simply one-tenth of the reported rate for the array.

25 T

Figure 4-l: Performance of 72 users’ programs

To study the significance of software pipelining and hierar-

chical reduction, we compare the performance obtained

against that obtained by only compacting individual basic

blocks. The speed up is shown in Figure 4-2. The average

factor of increase in speed is three. Programs are classified

according to whether they contain conditional statements. 42

of the 72 programs contain conditional statements. We ob-

serve that programs containing conditional statements are

sped up more. The reason is that conditional statements break

up the computation into small basic blocks, making code

motions across basic blocks even more important.

15

Programs 10

5

"
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 1.5

Factcn

Figure 4-2: Speed up over locally compacted code

In this sample of programs, 75% of all the loops are

scheduled with an initiation interval matching the theoretical

lower bound. 93% of the loops containing no conditional

statements or connected components are pipelined perfectly.

The presence of conditional statements and connected com-

ponents make calculating a tight lower bound for the initiation

interval and finding an optimal schedule difficult. In par-

ticular, branches of a conditional statement are first com-

pacted as much as possible, with no regard to the initiation

interval of the loop. Software pipelining is then applied to the

node representing the conditional statement, treating its opera-

tions as indivisible. This approach minimizes the length of

the branches to avoid code explosion, but increases the nun-

imum initiation interval of the loop. Of the 25% of the loops

for which the achieved initiation interval is greater than the

lower bound the average efficiency is 75% [21].

4.2. Livermore loops
The performance of Livermore loops [23] on a single Warp

cell is presented in Table 4-2. The Fortran programs were

translated manually into the W2 syntax. (The control con-

structs of W2 are similar to those of Pascal.) The translation

was straightforward except for kernels 15 and 16, which re-

quired the code be completely restructured. The INVERSE and

SQRT functions expanded into 7 and 19 floating-point opera-

tions, respectively. The EXP function in loop 22 expanded

into a calculation containing 19 conditional statements. The

large numbers of conditional statements made the loop not

pipelinable. In fact, the scheduler did not even attempt to

pipeline this loop because the length of the loop (331

instructions) was beyond the threshold that it used to decide if

pipelining was feasible. Loops 16 and 20 were also not

pipelined, because the calculated lower bound on the initia-

tion interval were within 99% of the length of the unpipelined

loop.

325

Kernel

;*

i*

z*

;*
9
10
11

::
14**
15

:;

if

;:
22***

ii
H-Mean

Efficiency
(lower
bound)

FE

:*z
0194

:::

E
ok
0.90

::i

iti

:t
0:97
1.00
0.99
1.00
0.56

:::

speed’tp

f-E
2:71
2.71
1.12
2.86

4.:
4:27
5.31
1.30
4.00
2.63
3.32
5.50

:fz
3:70

E
6:00
1.00
1.10
1.33

* Compiler directives to diiambiguate array references used
** Multiple loops were merged into one
***EXP function expanded into 19 r statements

Table 4-2: Performance of Livermore loops

The MFLOPS rates given in the second column are for
single-precision floating-point arithmetic. The third column
contains lower bound figures on the efficiency of the software
pipelining technique. As they were obtained by dividing the
lower bound on the initiation interval by the achieved interval
value, they represent a lower bound on the achieved ef-
ficiency. If a kernel contains multiple loops, the figure given
is the mean calculated by weighing each loop by its execution
time. The speed up factors in the fourth column are the ratios
of the execution time between an unpipelined and a pipelined
kernel. All branches of conditional statements were assumed
to be taken half the time.

The perfomumce of the Livermore loops is consistent with
that of the users’ programs, Except for kernel 22, which has
an extraordinary amount of conditional branching due to the
particular EXP library function, near-optimal, and often times,
optimal code is obtained. The MFLOPS rates achieved for
the different loops, however, vary greatly. This is due to the
difference in the available parallelism within the iterations of
a loop.

There are two major factors that determine the maximum
achievable MFWPS rate: data dependency and the critical
resource bottleneck.

1. Dutu dependency. Consider the following loop:

IOR i :- 0 TO n DO BEGIN
a:-r*b+c;

END;

Because of data dependency, each multiplication and
addition must be performed serially. As additions and
multiplications are seven-stage pipelined, the maximum
computation rate achievable by the machine for this loop
is only 0.7 MFLOPS.

2. Critical resource bottleneck. A program that does not
contain any multiplication operations can at most sustain
a 5 MFWPS execution rate on a Warp cell, since the
multiplier is idle all the time. In general, the MFLOPS
achievable for a particular program is limited by the ratio
of the total number of additions and multiplications in
the computation to the use count of the most heavily
used resource.

Inter-iteration data dependency, or recurrences, do not
necessarily mean that the code is serialized. This is one
important advantage that VLIW architectures have over vec-
tor machines. As long as there are other operations that can
execute in parallel with the serial computation, a high com-
putation rate can still be obtained.

5. Comparison with trace scheduling

The primary idea in trace scheduling [lo] is to optimize the
more frequently executed traces. The procedure is as follows:
fist, identify the most likely execution trace, then compact
the instructions in the trace as if they belong to one big basic
block. The large block size means that there is plenty of
opportunity to find independent activities that can be executed
in parallel. The second step is to add compensation code at
the entrances and exits of the trace to restore the semantics of
the original program for other traces. This process is then
repeated until all traces whose probabilities of execution are
above some threshold are scheduled. A straightforward
scheduling technique is used for the rest of the traces.

The strength of trace scheduling is that all operations for
the entire trace are scheduled together, and all legal code
motions are permitted. In fact, all other forms of optimiza-
tion, such as common subexpression elimination across all
operations in the trace can be performed. On the other hand,
major execution traces must exist for this scheduling tech-
nique to succeed. In trace scheduling, the more frequently
executed traces are scheduled first. The code motions per-
formed optimize the more frequently executed traces, at the
expense of the less frequently executed ones. This may be a
problem in data dependent conditional statements. Also, one
major criticism of trace scheduling is the possibility of ex-
ponential code explosion [17, 19,22.26].

The major difference between our approach and trace
scheduling is that we retain the control structure of the wm-

326

putation. By retaining information on the control structure of
the program, we can exploit the semantics of the different
control constructs better, control the code motion and hence
the code explosion. Another difference is that our scheduling
algorithm is designed for block-structured constructs, whereas
trace scheduling does not have similar restrictions. The fol-
lowing compares the two techniques in scheduling loop and
conditional branching separately.

5.1. Loop branches
Trace scheduling is applied only to the body of a loop, that

is. a major trace does not extend beyond the loop body bound-
ary. To get enough parallelism in the trace, trace scheduling
relies primarily on source code unrolling. At the end of each
iteration in the original source is an exit out of the loop; the
major trace is constructed by assuming that the exits off the
loop are not taken. If the number of iterations is known at
compile-time, then all but one exit off the loop are removed.

Software pipelining is more attractive than source code
unrolling for two reasons. First, software pipelining offers the
possibility of achieving optimal throughput. In unrolling,
filling and draining the hardware pipelines at the beginning
and the end of each iteration make optimal performance im-
possible. The second reason, a practical concern, is perhaps
more important. In trace scheduling, the performance almost
always improves as more iterations are unrolled. The degree
of unrolling for a particular application often requires ex-
perimentation. As the degree of unrolling increases, so do the
problem size and the fmal code size.

In software pipelining, the object code is sometimes un-
rolled at code emission time to implement modulo variable
expansion. Therefore, the compilation time is unaffected.
Furthermore, unlike source unrolling, there is an optimal de-
gree of unrolling for each schedule, and can easily be deter-
mined when the schedule is complete.

5.2. Conditional statements
In the case of data dependent conditional statements, the

premise that there is a most frequently executed trace is ques-
tionable. While it is easy to predict the outcome of a con-
ditional branch at the end of an iteration in a loop, outcomes
for all other branches are difficult to predict.

The generality of trace scheduling makes code explosion
difficult to control. Some global code motions require opera-
tions scheduled in the main trace be duplicated in the less
frequently executed traces. Since basic block boundaries are
not visible when compacting a trace. code motions that re-
quire large amounts of copying, and may not even be sig-
nificant in reducing the execution time, may be introduced.

Ellis showed that exponential code explosion can occur by

reordering conditional statements that are data independent of
each other [S]. Massive loop unrolling has a tendency to
increase the number of possibly data independent conditional
statements. Code explosion can be controlled by inserting
additional constraints between branching operations. For ex-
ample. Su et al. suggested restricting the motions of opera-
tions that are not on the critical path of the trace [26].

In our approach to scheduling conditional statements, the
objective is to minimize the effect of conditional statements
on parallel execution of other constructs. By modeling the
conditional statement as one unit, we can software pipeline all
innermost loops. The resources taken to execute the con-
ditional statement may be as much as the sum of both
branches. However, the amount of wasted cycles is bounded
by the operations within the conditional statement.

6. Concluding remarks

This paper shows that near-optimal, and sometimes op-
timal, code can be generated for VLIW machines. We use a
combination of two techniques: (1) software pipelining. a
specialized scheduling technique for iterative constructs, and
(2) hierarchical reduction, a simple, unified approach that
allows multiple basic blocks to be manipulated like operations
within a basic block. While software pipelining is the main
reason for the speed up in programs, hierarchical reduction
makes it possible to attain consistently good results on even
programs containing conditional statements in innermost
loops and innermost loops with small numbers of iterations.
Our experience with the Warp compiler is that the generated
code is comparable to, if not better than, handcrafted
microcode.

The Warp processors do not have any specialized hardware
support for software pipelining. Therefore. the results
reported here are likely to apply to other data paths with
similar degrees of parallelism. But what kind of performance
can be obtained if we scale up the degree of parallelism and
pipelining in the architecture? We observe that the limiting
factor in the performance of Warp is the available parallelism
among iterations in a loop. For those loops whose iterations
are independent, scaling up the hardware is likely to give a
similar factor of increase in performance. However, the speed
of all other loops are limited by the cycle length in their
precedence constraint graph. The control of all functional
units by a central sequencer makes it difficult for VLIW
architectures to exploit other forms of parallelism other than
the parallelism within a loop. Thii suggests that there is a
limit to the scalability of the VLIW architecture. Further
experimentation is necessary to determine this limit.

327

Acknowledgments

The research reported in this paper is part of my Ph.D.

thesis. I especially want to thank my thesis advisor,

H. T. Kung, for his advice in the past years. I would like to

thank all the members in the Warp project, and in particular,

Thomas Gross for his effort in the W2 compiler. I also want

to thank Jon Webb, C. H. Chang and P. S. Tseng for their help

in obtaining the performance numbers.

References

1. A&en. A. and Nicolau. A. Perfect Pipelining: A New Loop
Parallelixation Technique. Cornell University, Oct., 1987.

2. Amraratone. M., Bitx, F., Chute E., Kung H. T., Maul& P., Ribas.
H., Tseng, P., and Webb, J. Applications of Warp. Proc. Compcon
Spring 87, San Francisco, Feb., 1987, pp. 272-275.

3. Annaratone, M., Bitz. F., Deutch. J., Hamey. L., Ktmg, H. T.,
Maulik P. C., Tseng, P., and Webb, J. A. Applications Experience on
Warp. Pmt. 1987 National Computer Conference, AFIPS, Chicago,
June, 1987. pp. 149-158.

4. Annaratone. M.. Amould, E.. Gross, T.. Kung. H. T., Lam, M.,
Mmxilcioglu, 0. and Webb, J. A. “The Warp Computer: Architec-
ture, Implementation and Perfotmance”. IEEE Transactions on Com-
puters C-36.12 (December 1987).

5. Colwell. R. P.. Nix, R. P.. O’Dommll. J. J., Papworth. D. B.. and
Rodman. P. K. . A VLIW Architecture for a Trace Scheduling
Compiler. Proc. Second Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct., 1987. pp.
180-192.

6. Dantxig, G. B.. Blattner. W. 0. and Rao, M. R. All Shortest
Routes from a Fixed Origin in a Graph. ‘Theory of Graphs, Rome,
July, 1967. pp. 85-90.

7. Ebcioglu, Kemal. A Compilation Technique for Software Pipelin-
ing of Loops with Conditional Jumps. Pmt. 2&h Ammal Workshop
on Microprogramming, Dec., 1987.

8. Ellis. John R Bulldog: A Compilerfor VLJW Architectures.
Ph.D. T’h., Yale University, 1985.

9. Fisher, J. A. The Optimiurtion of Horizontal Microcode Within
and Beyond Basic Blockr: An Application of Processor Scheduling
with Resources. Ph.D. ‘lh., New York Univ., Oct. 1979.

10. Fisher, J. A. “Trace Scheduling: A Technique for Global
Microcode Compaction”. IEEE Trans. on Computers C-30,7 (July
1981). 478-490.

11. Fisher, J. A., Ellis, J. R., Ruttenberg. J. C. and Nieolau. A.
Parallel Processing: A Smart Compiler and a Dumb Machine. Proc.
ACM SIGPLAN ‘84 Symp. on Compiler Construction, Montreal.
Canada, June, 1984. pp. 37-47.

12. Fisher, J. A., Landskov, D. and Shriver. B. D. Microcode
Compaction: Locking Backward and Looking Forward. Pmt. 1981
National Computer Conference. 1981, pp. 95-1M.

13. Floyd, R. W. “Algorithm 97: Shortest Path”. Comm. ACh45.6
(1%2). 345.

14. Gamy, Michael R. and Johnson, David S.. Computers and
Intractability A Guide to the Theory ofNP-Completeness. Freeman,
1979.

15. Gross, T. and Lam, M. Compilation for a High-performance
Systolic Array. Proc. ACM SIGPLAN 86 Symposium on Compiler
Consttuchn, June, 1986, pp. 27-38.

16. Hsu. Peter. Highly Concurrent Scalar Processing. Ph.D. ‘Dt..
University of Illiuois at Urbana-Champaign, 1986. .

17. Isoda, Sadahiro, Kobayashi, Yoshixumi, and I&da, Tom.
“Global Compaction of Horizontal Microprograms Based on the
Genemlized Data Dependency Graph”. IEEE Tram. on Computers
c-32.10 (October 1983). 922-933.

18. Kuck. D. J., Kuhn, R. H., Padua, D. A.. Leasure, B. and Wolfe,
M. Dependence Graphs and Compiler Optimimtions. Proc. ACM
Symposium on Principles of Programming Languages, January. 1981,
pp. 2Ct7-218.

19. Lab. J. and Atkin, E. Tree Compaction of Microprograms. Proc.
16th Annual Workshop on Microprogramming, Oct., 1982, pp. 23-33.

20. Lam, Monica. Compiler Optimimtions for Asynchronous Sys-
tolic Army Programs. Proc. Fifteenth Annual ACM Symposium ou
Principles of Programming Languages, Jan., 1988.

21. Lam, Monica. A Systolic Array Optimizing Compiler. Ph.D. Th.,
Carnegie Mellon University, May 1987.

22. Limr. Joseph L. SRDAG Compaction - A Generalization of
Trace Scheduling to Increase the Use of Global Context Information.
Proc. 16th Annual Workshop on Microprogramming, 1983, pp.
11-22

23. McMahon, F. H. Lawrence Livermore National Laboratory
FORTRAN Kernels: MFLOPS.

24. Patel, Janak H. and Davidson, Edward S. Improving the
Throughput of a Pipeline by Insertion of Delays. Proc. 3rd Anuual
Symposium on Computer Architecture. Jan., 1976, pp. 159-164.

25. Rau. B. R. and Glaeser, C. D. Some Scheduling Techniques and
an Easily Schedulable Horizontal Architecture for High Performance
Scientific Computing. Proc. 14th Annual Workshop on
Microprogramming, Oct., 1981, pp. 183-198.

26. Su, B., Ding, S. and Jin, L. An Improvement of Trace Scbedul-
ing for Global Microcode Compaction. Proc. 17th Annual Workshop
in Micrqn-ogramming, Dec., 1984, pp. 78-85.

27. Su, B., Ding, S., Wang, J. and Xia, J. GURPR- A Method for
Global Software P@lining. Proc. 20th Annual Workshop on

~-TO8 ramming, Dee., 1987. pp. 88-%.

28. Su, B., Ding, S. and Xia, J. URPR - An Extension of URCR for
Software Pipeline. Proc. 19th Annual Workshop on Micropmgram-
miug, Oct., 1986, pp. 104-108.

29. Tarjan, R. E. “Depth fint search and linear graph algorithms”.
SIAM J. Coqwting I, 2 (1972), 146-160.

30. Touxeau, R. F. A Fortran Compiler for the FPS-164 Scientific
Computer. Proc. ACM SIGPLAN ‘84 Symp. on Compiler Constmc-
tion, June, 1984, pp. 48-57.

31. Weiss. S. and Smith, J. E. A Study of Scalar Compilation
Techniques for Pipelined Supercomputers. Proc. Second Intl. Conf.
on Amhiteetmal Support for Programming hgU2@3S and Operating
systems. Oct., 1987, pp. 105-109.

32. Wood, Graham. Global Optimization of Microprograms
Through Modular Control Constructs. Proc. 12th Annual Workshop
in Micr~rogramtnin g, 1979, pp. l-6.

328

