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We present a robust and efficient approach to video stabilization that
achieves high-quality camera motion for a wide range of videos. In this
paper, we focus on the problem of transforming a set of input 2D motion
trajectories so that they are both smooth and resemble visually plausible
views of the imaged scene; our key insight is that we can achieve this goal
by enforcing subspace constraints on feature trajectories while smoothing
them. Our approach assembles tracked features in the video into a trajec-
tory matrix, factors it into two low-rank matrices, and performs filtering
or curve fitting in a low-dimensional linear space. In order to process long
videos, we propose a moving factorization that is both efficient and stream-
able. Our experiments confirm that our approach can efficiently provide sta-
bilization results comparable with prior 3D methods in cases where those
methods succeed, but also provides smooth camera motions in cases where
such approaches often fail, such as videos that lack parallax. The presented
approach offers the first method that both achieves high-quality video sta-
bilization and is practical enough for consumer applications.
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1. INTRODUCTION

One of the most obvious differences between professional and am-
ateur level video is the quality of camera motion; hand-held am-
ateur video is typically shaky and undirected, while professionals
use careful planning and equipment such as dollies or steadicams
to achieve directed motion. Such hardware is impractical for many
situations, so video stabilization software is a widely-used and im-
portant tool for improving casual video. In this paper we introduce
a technique for software video stabilization that is robust and effi-
cient, yet provides high quality results over a wide range of videos.

Prior techniques for software video stabilization follow two main
approaches, providing either high quality or robustness and effi-
ciency. The most common approach is 2D stabilization [Morimoto
and Chellappa 1997], which is widely implemented in commercial
software. This approach applies 2D motion models, such as affine
or projective transforms, to each video frame. Though 2D stabi-
lization is robust and fast, the amount of stabilization it can provide
is very limited because the motion model is too weak; it cannot
account for the parallax induced by 3D camera motion. In con-
trast, 3D video stabilization techniques [Buehler et al. 2001; Liu
et al. 2009] can perform much stronger stabilization, and even sim-
ulate 3D motions such as linear camera paths. In this approach, a
3D model of the scene and camera motion are reconstructed us-
ing structure-from-motion (SFM) techniques [Hartley and Zisser-
man 2000], and then novel views are rendered from a new, smooth
3D camera path. The problem with 3D stabilization is the oppo-
site of 2D: the motion model is too complex to compute quickly
and robustly. As we discuss in more detail in Section 2.1, SFM is
a fundamentally difficult problem, and the generality of current so-
lutions is limited when applied to the diverse camera motions of
amateur-level video. In general, requiring 3D reconstruction hin-
ders the practicality of the 3D stabilization pipeline.

In this paper, we introduce a novel video stabilization technique
that combines the advantages of 2D and 3D video stabilization.
That is, our method achieves the strongly stabilized, high-quality
appearance of 3D stabilization and the efficiency and robustness of
2D methods. Both 2D and 3D stabilization methods can be sum-
marized by three steps: (1) track scene points; (2) compute where
the tracked points should be located in the output to stabilize the
video content; (3) render an output video which both follows those
point locations and looks natural. The first tracking step is well
studied in computer vision, and the content-preserving warps pro-
posed by Liu et al. [2009] address the last step. The second step is
the key challenge of stabilization: it must plan new, smooth motion

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • Liu et al.

trajectories that respect geometric relationships between points, so
that they appear as the motion of a plausible, non-distorted view of
the scene. 2D approaches enforce plausibility by limiting changes
to 2D transformations, which is simple but too limiting. 3D ap-
proaches reconstruct a 3D model of the scene and use it to enforce
the validity of synthesized views. However, performing 3D recon-
struction is error-prone and overkill for the stabilization problem.

An ideal constraint should restrict the smoothed motion trajecto-
ries to visually plausible solutions without being too restrictive,
and be efficient and robust to compute. Our key insight is that we
can achieve such a constraint by leveraging a well-known result in
computer vision that a matrix of motion trajectories of a rigid scene
imaged by a moving camera over a short period of time should ap-
proximately lie in a low-dimensional subspace [Tomasi and Kanade
1992; Irani 2002]. We extend this idea by applying the constraint to
a moving window over the length of a potentially long video; that
is, we efficiently compute a time-varying subspace through moving
factorization. We show that we can achieve visual plausibility by
performing motion smoothing in this time-varying subspace rather
than directly on the original 2D trajectories. The result is the first
approach to video stabilization that achieve the strongly stabilized,
high-quality appearance of 3D stabilization methods, with the effi-
ciency, robustness, and generality of 2D ones.

Our novel subspace approach to video stabilization consists of four
steps. First, we use standard 2D point tracking and assemble the 2D
trajectories of sparse scene points into an incomplete trajectory ma-
trix. Second, we perform moving factorization to efficiently find
a time-varying subspace approximation to the input motion that
locally represents the trajectories as the product of basis vectors
we call eigen-trajectories and a coefficient matrix that describes
each feature as a linear combination of these eigen-trajectories.
Third, we perform motion planning (or smoothing) on the eigen-
trajectories, effectively smoothing the input motion while respect-
ing the low-rank relationship of the motion of points in the scene.
Fourth, the eigen-trajectories are re-multiplied with the original co-
efficient matrix to yield a set of smoothed output trajectories that
can be passed to a rendering solution, such as content-preserving
warps [Liu et al. 2009], to create a final result.

Our method achieves the high quality stabilization results seen
in 3D stabilization, without computing a 3D reconstruction. On
videos where SFM performs well, our results are comparable to
Liu et al. [2009], but our methods are much more efficient and
even allow a streaming implementation. Furthermore, our approach
can handle a much wider range of inputs that are challenging for
SFM, such as videos that lack parallax, or exhibit camera zoom,
in-camera stabilization, or rolling shutter [Meingast et al. 2005] ar-
tifacts.

2. RELATED WORK

Two-dimensional video stabilization techniques work by estimat-
ing a 2D motion model (such as an affine or projective transform)
between consecutive frames, computing new motions that remove
high-frequency jitter, and applying per-frame warps to achieve
the new motion [Morimoto and Chellappa 1997; Matsushita et al.
2006]. Standard 2D stabilization is robust and efficient, but can only
achieve limited smoothing, since 2D warps cannot account for the
parallax induced by a moving camera. While recent 2D methods
have attempted more aggressive smoothing, for example by care-
fully planning interpolation in a transform space [Gleicher and Liu

2008; Chen et al. 2008] or directly optimizing long trajectories [Lee
et al. 2009], the inability to accommodate parallax fundamentally
limits the amount of smoothing possible.

Three-dimensional video stabilization, which was introduced by
Buehler et al. [2001], instead begins by computing a 3D model of
the input camera motion and scene. Image-based rendering tech-
niques can then be used to render novel views from new cam-
era paths for videos of static scenes [Fitzgibbon et al. 2005; Bhat
et al. 2007]. Dynamic scenes are more challenging, however, since
blending multiple frames causes ghosting. Zhang et al. [2009]
avoid ghosting by fitting a homography to each frame; this ap-
proach cannot handle parallax, however. Liu et al. [2009] intro-
duced content-preserving warps as a non-physically-realistic ap-
proach to rendering the appearance of new camera paths for dy-
namic scenes. In this method, the reconstructed 3D point cloud is
projected to both the input and output cameras, producing a sparse
set of displacements that guide a spatially-varying warping tech-
nique.

2.1 Structure from Motion

While 3D stabilization techniques can achieve high quality camera
motions through extremely stabilized 3D camera paths, their prac-
ticality is limited by the need to perform 3D reconstruction through
structure-from-motion (SFM). SFM is an actively researched topic
in computer vision [Hartley and Zisserman 2000]. While the state
of the art in 3D reconstruction is advancing rapidly, there are fun-
damental issues that make a robust, efficient and general solution
challenging. The problem is inherently non-linear and often has
ambiguities, so most methods make restrictive assumptions about
the input and/or resort to large-scale non-linear optimization.

SFM has issues with robustness and generality because some
videos simply do not contain sufficient motion information to al-
low for reconstruction. These issues are common in amateur-level
video: (1) Lack of parallax. SFM is under-determined if the cam-
era motion does not provide sufficient parallax, for example if it
pans rather than translates or contains large, flat regions such as a
person in front of a wall. Techniques, such as [Torr et al. 1999],
can discover degenerate motions and switch motion models in re-
sponse, but this adds yet another moving part to the system that
has the potential to fail. (2) Camera zooming. Differentiating be-
tween camera zoom and forward motion is a well-known problem
in SFM, so many techniques assume that the camera is calibrated or
that its internal parameters are fixed. (3) In-camera stabilization.
Most modern video cameras damp camera shake either optically or
digitally, effectively changing the internal parameters of the cam-
era on a per-frame basis. Again, most SFM techniques assume the
camera is calibrated or that its internal parameters are fixed. (4)
Rolling shutter. Most new consumer-level video cameras employ
a CMOS sensor that does not expose a frame all at once, but rather
in a time-varying fashion from top-to-bottom, causing wobble and
shear in the video. This time-variation causes severe problems for
SFM [Meingast et al. 2005], although recent results show the pos-
sibility of removing these artifacts [Liang et al. 2008; Baker et al.
2010; Forssén and Ringaby 2010].

Efficiency is also a problem, since SFM typically requires global
non-linear optimization. Most SFM implementations are not
streamable (i.e., they require random access to the entire video
rather than just a window surrounding the current frame) since
they need to perform multiple iterations of optimization. A few
real-time SFM systems have been demonstrated, e.g., [Nister et al.
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Fig. 1: A typical incomplete trajectory matrix, with each tracked 2D point
moving from left to right across the matrix. Note that there are many more
trajectories than frames, and the y-axis is scaled to make the matrix appear
roughly diagonal. The red box indicates a typical low-pass filter kernel.

2004; Davison et al. 2007]; however, they all require a calibrated
video camera. Also, these systems focused on camera motion re-
covery rather than scene reconstruction, and thus yield very sparse
3D reconstruction which might not provide enough information for
3D video stabilization. In the end, it may be possible to create a
nearly real-time, streamable SFM system that handles all of the
above challenges, since all of these topics have been addressed
individually. However, to the best of our knowledge no such sys-
tem exists, and would certainly represent a formidable engineering
challenge. In contrast, our method is simple and requires no special
handling of the above challenges, since none of them changes the
subspace properties of motion trajectories on which our technique
relies. Furthermore, our method is nearly real-time, performs only
linear algorithms, and can be computed in a streaming fashion.

3. OUR APPROACH

We now describe our new approach to planning motion for video
stabilization. We first compute a set of sparse 2D feature trajec-
tories using the standard KLT approach [Shi and Tomasi 1994].
Given a set of 2D point trajectories, video stabilization can be split
into two problems: (1), where should those points be located in
the output to stabilize the video content, and (2), how do we ren-
der an output video which both follows those point locations and
looks natural. To more formally define the first problem, which is
our focus, we begin with a set of N input feature trajectories across
F frames whose i−th trajectory is {(xi

t, y
i
t)}, where (xi

t, y
i
t) are

coordinates at frame t. These trajectories can be assembled into a
trajectory matrix M:

M2N×F =

⎡
⎢⎢⎢⎢⎣

x1
1 x1

2 · · · x1
F

y1
1 y1

2 · · · y1
F

...
xN

1 xN
2 · · · xN

F

yN
1 yN

2 · · · yN
F

⎤
⎥⎥⎥⎥⎦ . (1)

Note that this matrix is highly incomplete, since trajectories will
appear and disappear over the duration of the video. We show the
occupancy of a typical trajectory matrix in Figure 1.

Our task is to create a new matrix of trajectories M̂ that guides the
rendering of a new, stabilized video, either by traditional full-frame
warping or by content-preserving warps. This new matrix should
both contain smooth trajectories and be consistent with the original
3D scene imaged by a moving camera. The latter property is hard to
satisfy accurately without actually reconstructing the input geome-
try; however, as we show in this section we have found that visual
plausibility can be achieved if we preserve the low-rank property of
apparent motion while we smooth the trajectories. We first describe
what happens if we do not preserve this property, and then describe
our technical approach in more detail.

3.1 Simple Trajectory Filtering

We first assume that we wish to create a new motion by low-pass
filtering the original motion across time (we address canonical mo-
tion paths, such as lines or parabolas, in Section 3.7.2). We also
assume the scene is static, and consider moving scene content in
Section 3.6. We would like to use large, strong smoothing kernels
to achieve the strongly stabilized look of 3D video stabilization.
Specifically, we employ a standard Gaussian low-pass filter with a
standard deviation of σ = w/

√
2, where w is the radius (half the

window size) of the filter in frames. In our experience, kernels with
a radius of 20-200 frames for a 30 fps video well describe a spec-
trum from spline-like motions (50) to almost linear motions (200),
though the effect will depend on the smoothness of the input. Our
default filter radius is 50, which is much stronger than the filtering
typically performed in 2D stabilization. For example, Matsushita et
al. [2006] reported a typical kernel radius of 6. Ideally, this smooth-
ing would be performed on the recovered 3D camera motion, but
since we are not performing SFM we do not have access to this
information.

What if we simply filtered the trajectory matrix directly, i.e., M̂ =
MK where K is a low-pass filter kernel? This is the same as apply-
ing a low pass filter to each trajectory individually via convolution.
While such an approach does not explicitly constrain the relation-
ships between points, the fact that the filter is linear and applied
in the same way to all points implicitly preserves properties of the
relationships between points. However, because the matrix M is
not complete, the filtering operation is not linear - each point re-
ceives different treatment (based on its incompleteness), and there-
fore inter-point relationships are broken. The visual result of this
naive approach is very poor; as we show in Figure 2, the geometry
of the scene is clearly not respected.

One intuitive way to understand why this result is so poor is to
examine what happens to nearby feature trajectories with differ-
ent durations near their temporal boundaries, as shown in Figure 2.
Because these trajectories have different temporal support regions
for the smoothing kernel, the strength of the smoothing can differ
significantly for nearby features, thus distorting local geometry.

One can imagine a number of simple solutions to this problem.
One would be to simply discard the beginning and end of each fea-
ture trajectory, so that the kernel domain is always fully supported.
However, since we use such large smoothing kernels this solution
is not practical, as there are often not enough trajectories that are
long enough to support the warping stage (this problem most often
occurs during camera panning, since features can enter and leave
the field of view quickly). Another solution would be to extend
each feature trajectory in duration using some sort of extrapolation
or prediction. We experimented with standard extrapolation using
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(a) Filter each trajectory independently

(b) Filter the eigen-trajectories

Fig. 2: Subspace low-pass filtering. Top-left plot: A low-pass filter on two
input trajectories (dashed lines) creates very different outputs (solid lines)
for two similar trajectories, since their durations (and thus filter supports)
are different, leading to broken geometric relationships in the rendered out-
put (a). Top-right plot: if, instead, the trajectory matrix is completed using
matrix factorization (not shown), the filter outputs are more similar, leading
to a better rendered result (b). Note that these renderings are created using
a 2D triangulation of the points to make the differences clearer.

a polynomial model, and the results were very poor; since each tra-
jectory is extrapolated independently, geometric relationships with
nearby features were again not preserved.

We next describe how subspace constraints can be used to perform
this extrapolation in a fashion that better preserves relationships
between feature trajectories.

3.2 Subspace Constraints

While 3D reconstruction would easily allow us to express geo-
metric relationships between features, it is also overkill for our
purposes, since we do not need to know the depths of points in
the scene; we only need constraints that allow us to preserve vi-
sual plausibility. Computer vision results suggest such a possible

constraint that is weaker than a full reconstruction. Tomasi and
Kanade [1992] were the first to observe that when a rigid 3D scene
is imaged by a moving affine camera, the observed motion trajec-
tories should reside in a low-dimensional subspace. This impor-
tant constraint has been used to help solve a number of problems
in computer vision, including structure from motion [Tomasi and
Kanade 1992], correspondence [Irani 2002], and motion segmenta-
tion [Vidal et al. 2008]. Under this subspace constraint, the trajec-
tory matrix can be factored into a product of a camera matrix, rep-
resenting each frame, and a scene matrix, representing each tracked
point. If the trajectory matrix is complete, this factorization process
is linear, fast, and robust. For an incomplete matrix, factorization is
a non-linear problem, but well-studied [Brand 2002; Buchanan and
Fitzgibbon 2005; Chen 2008].

Unfortunately, for the more common case of perspective cameras,
the rank constraint becomes more complicated. In general, motion
trajectories from a perspective camera will lie on a non-linear mani-
fold instead of a linear subspace [Goh and Vidal 2007]. However, it
is possible to approximate the manifold locally (over a short period
of time) with a linear subspace. In particular, Irani [2002] showed
that for instantaneous motions a trajectory matrix should have at
most rank 9. In this paper, we assume this property holds over a
short window of frames that is at least as large as our temporal
smoothing kernel. We evaluate the accuracy of this assumption in
more detail in Section 4.2, but the approximation seems sufficient
for the purpose of insuring plausible views for video stabilization.

3.3 Filtering with Subspace Constraints

We now show how to filter the trajectory matrix while maintain-
ing this low-rank constraint. Consider the n trajectories that appear
over a small window of the first k frames of our input sequence.
Over this range of k frames, we assume that the non-linear man-
ifold on which the motion data lie can be locally modeled with a
linear subspace of rank r. We use r = 9, as suggested by Irani
and because we empirically found it to model the data well without
overfitting or underfitting. This low-rank constraint implies that we
can factor the submatrix of the first k frames into the product of
two low-rank matrices:

M2n×k ≈ W � (C2n×rEr×k) (2)

where W is a binary mask matrix with 0 indicating missing data and
1 indicating existing data, and � means component-wise multipli-
cation (we describe how we perform this factorization later). We
call the r row vectors of E eigen-trajectories, in that they represent
the basis vectors that can be linearly combined to form a 2D motion
trajectory over this window of k frames. The coefficient matrix C
represent each observed feature as such a linear combination.

This factorization provides a straightforward way to smooth the tra-
jectory matrix while preserving its rank. We can first fill in the miss-
ing data, and then low-pass filter the complete matrix and drop the
elements corresponding to the missing data. But it turns out that it
is not necessary to first complete the missing data as smoothing is
a linear operation which can be represented as a matrix multiplica-
tion, and matrix multiplication is associative:

M̂ = W � (CE)K = W � C(EK) = W � CÊ, (3)

where Ê = EK. In other words, it is equivalent to first low-pass
filtering the eigen-trajectories E to obtain Ê, and then obtaining
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a new submatrix M̂2n×k by multiplying Ê with the original coef-
ficient matrix C and dropping the elements corresponding to the
missing data. We adopt the latter strategy as it is more efficient to
filter the eigen-trajectories. Also, for non-linear smoothing opera-
tions such as canonical path fitting, operating directly on the eigen-
trajectories allows us to preserve the low-rank property whether or
not the smoothing operation would do so if applied directly to the
trajectories themselves.

The result of the above factorization is a set of eigen-trajectories
that can take any partial trajectory through the first k frames and
complete it to a full trajectory. The final step before smoothing is
to extend this approach across the duration of the entire video. Re-
member that while the entire matrix M may not be well modeled
with a low-rank subspace because the data lie on a non-linear man-
ifold, we assume that it is over a range of k frames. This property
implies that for any range of k frames in the matrix in Figure 1, a
local factorization can be computed that well models the portion of
the matrix over the k frames that has existing values. To support
our low-pass filter, the factorization only needs to be able to extend
each trajectory forwards and backwards in time by the radius of the
smoothing kernel; thus, the factorization does not need to be accu-
rate everywhere, but only locally near the original trajectory values
(e.g., near the diagonal of Figure 1). Given a factorization of the
first k frames, we need to propagate it forwards in a fashion that is
consistent with the existing factorization, and explains the new data
as well. In essence, we need to track a time-varying subspace. We
do so in a greedy, moving fashion as we now describe in detail.

3.4 Moving Factorization

We employ a moving factorization approach that is customized to
our application and designed to be efficient, scalable, and stream-
able. In short, we perform factorization in a fixed window of k
frames, and move that window forward δ frames at each step (we
use values k = 50 and δ = 5).

Our algorithm starts by factoring the first k frames. Fortunately,
for our application there should be a reasonable number of com-
plete trajectories that already span all k frames and describe the
subspace. We therefore take these m complete feature trajectories
and use them to assemble a trajectory matrix M0

2m×k, which is a
complete sub-matrix of M2n×k defined in Equation 2. Note that
m must at least be as large as r/2 to make the subspace constraint
meaningful, and in practice should be much larger. In the rare cases
where m < 2r, we reduce k until there are a sufficient number of
trajectories. We then factor M0 as follows:

M0
2m×k = C2m×rEr×k. (4)

The factorization is calculated by truncating the output of
SVD [Golub and Van Loan 1996] to the rows, columns, and values
corresponding to the largest r singular values, and then distributing
the square root of each singular value to the left and right matrices.

Given a factorization of a window M0, we compute the factoriza-
tion M1 of the next window (moved forward δ frames) in the same
fashion; note that M1 is also a complete matrix. Since the factoriza-
tion windows are highly overlapped, the corresponding trajectory
matrices M0 and M1 are also highly overlapped. As shown in Fig-
ure 3, by matrix permutation, M0 and M1 can be re-organized as

M0 =

[
A00 A01

A10 A11

]
and M1 =

[
A11 A12

A21 A22

]
, respectively, where

A11 is shared between M0 and M1. Note that the factorization of

A11

A21

A12

A22

A10

A01A00 C0

C2

C1 E0 E1 E2=

Fig. 3: Moving Matrix Factorization. The factorization for an additional δ
frames is computed by keeping C0, C1,E0,and E1 fixed and computing
C2 and E2. The blue box indicates matrix M1.

A11 = C1E1 was already computed when M0 was factored, so we
keep these values fixed and process M1 as follows:

M1 =

[
A11 A12

A21 A22

]
=

[
C1

C2

] [
E1 E2

]
. (5)

We wish to estimate C2 and E2 in a fashion that is both consistent
with the already computed factorization (i.e., C1 and E1) and the
new data (i.e., A12, A21, and A22). We do so in a least-squares
fashion by minimizing:

min
C2,E2

‖C2E1−A21‖2
F +‖C2E2−A22‖2

F +‖C1E2−A12‖2
F , (6)

where ‖·‖F stands for the matrix Frobenius norm. Note that this is a
bilinear optimization problem. However, since we want an efficient
solution we choose to solve it approximately in a linear fashion.
Since the factorization window moves forward a small number of
frames per iteration, the size of A22 is significantly smaller than
A21 and A12. We therefore solve this problem by first estimating
C2 as the projection of A21 onto E1,

C2 = A21E1T
(E1E1T

)−1, (7)

and then solve for E2 as follows:

E2 =

([
C1

C2

]T [
C1

C2

])−1 [
C1

C2

]T [
A12

A22

]
. (8)

We find that this linear solution to the bilinear problem (6) is nearly
as accurate as those obtained through non-linear optimization tech-
niques such as Levenberg-Marquardt.

Note that all the matrices in equations 4-8 are complete. The final
step in performing the moving factorization is to handle the missing
data by computing the coefficients for those trajectories that were
too short to be included in matrix M1. We compute the coefficients
for any trajectory whose duration ends in the current factorization
window and whose coefficients are not already computed by pro-
jecting it onto the eigen-trajectories, as in Equation 7.

3.5 Algorithm Summary

In summary, our algorithm for subspace video stabilization pro-
ceeds as follows:

(1) Estimate 2D feature trajectories from the input video.

(2) Assemble a feature trajectory matrix, and factor it in a moving
fashion into two low-rank matrices, a coefficient matrix and an
eigen-trajectories matrix.

(3) Smooth the eigen-trajectories and obtain smooth output feature
trajectories by multiplying with the original coefficient matrix.
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(4) Warp the input video with the guidance of the new feature tra-
jectories using content-preserving warps [Liu et al. 2009].

3.6 Dynamic Scene Content

The low-rank constraints of which we take advantage do not hold
for moving objects in the scene. So, we need to remove as many of
these outlier trajectories as possible before performing factoriza-
tion and content-preserving warps (a small number of remaining
outliers can be treated by the factorization algorithm as noise). We
remove such trajectories using three strategies. First, we have found
that trajectories on moving objects are typically much shorter than
those on rigid objects. Therefore, trajectories shorter than 20 frames
are removed entirely. Also, trajectories shorter than k frames do
not influence the eigen-trajectories, since factorization is only com-
puted on trajectories that are complete over the window. Second,
we rule out motion outliers using the fundamental matrix con-
straint [Hartley and Zisserman 2000]. We estimate a fundamental
matrix between every 5 frames within a RANSAC loop [Fischler
and Bolles 1981], and remove a trajectory when it deviates from
the epipolar constraint by more than 1 pixel for more than 1/3 of
the duration our algorithm has processed. Third, after factorization
is computed we remove trajectories with large factorization error,
which we classify as any trajectory whose per-frame error ever ex-
ceeds 3 pixels. We could re-compute factorization after removing
these outlier trajectories, but we found the improvement in results
not worth the computational expense.

3.7 Smooth Motion Planning

Once the eigen-trajectories are computed using moving factor-
ization, the final task before rendering is to smooth the eigen-
trajectories to simulate smooth camera motion. Note that unlike 3D
video stabilization there is no need to linearize the non-Euclidean
space of camera orientations [Lee and Shin 2002], since in our case
apparent motion is already represented with a linear approximation.
This fact greatly simplifies our motion planning compared to Liu et
al. [2009]. We support several approaches to motion planning, in-
cluding simple low-pass filtering, automatic polynomial path fit-
ting, and interactive spline fitting.

3.7.1 Low-Pass Filtering. The simplest approach to smooth cam-
era motion is to just run a low-pass filter over the eigen-trajectories.
The advantage of this method is that it works for any length of
video, and fits within a streaming framework where only a window
of frames around the current frame need be accessible. Specifically,
our technique only requires access to a window of max(k, 2w)
frames centered at the current frame, where k is the factorization
window size and w is the radius of the smoothing kernel. We of-
fer a range of kernel sizes, though our default is w = 50. We can
support much larger kernels than 2D video stabilization since our
technique is not based on a 2D motion model, and can therefore
account for parallax in the input.

3.7.2 Polynomial Path Fitting. As observed by Liu et al. [2009],
some of the most dramatic cinematographic effects are created
by moving a camera along a very simple path, such as a line or
parabola. In our case, we cannot achieve such motions exactly since
we do not know the 3D camera projection matrices. However, we
have found that we can achieve qualitatively similar results by fit-
ting polynomial models to the eigen-trajectories.

Our method currently supports 3 polynomial motion models:
constant, linear and quadratic. We represent a polynomial mo-
tion model for the eigen-trajectories as Êt =

∑d
j=0 Kjt

j ,

where Êt is a vector containing the values of the new eigen-
trajectories at frame t, d is the degree of the polynomial, and
each Kj is an unknown r-element vector that is the coefficient
for the polynomial term. Degree-d polynomial eigen-trajectories
lead to degree-d polynomial feature trajectories: (xi

t, y
i
t) =

(C2i

∑d
j=0 Kjt

j , C2i+1

∑d
j=0 Kjt

j).

Our method computes the Kj coefficients of this polynomial model
for the output eigen-trajectories as the best polynomial approxima-
tion of the input eigen-trajectories. Specifically, we minimize the
displacement between the new position and the original position of
every feature point

min
Ê

‖W � (CÊ − CE)‖2
F (9)

The optimal polynomial eigen-trajectories can be computed by
solving the above linear system. Note again that the result of this
process creates a 2D polynomial path for each output trajectory,
which is different than fitting a 3D polynomial to the camera’s mo-
tion; however, we have found the visual result to be similar. Also,
this approach to planning camera motion requires access to the
whole video, and cannot be computed in a streaming fashion.

3.7.3 Interactive Spline Fitting. Polynomial path fitting is of-
ten not appropriate for long videos, since their motion cannot be
well modeled with a single polynomial. In these cases, we pro-
vide an interface that allows the user to select several keyframes.
We then fit a standard spline to the eigen-trajectories with knots
at the keyframes. The user can choose between quadratic and cu-
bic splines. Since the feature trajectories are linear combinations of
the eigen-trajectories, a quadratic (or cubic) spline for the eigen-
trajectories leads to a quadratic (or cubic) spline for each output
feature trajectory. This motion planning approach also cannot be
computed in a streaming fashion.

4. EXPERIMENTAL VALIDATION

Before evaluating the visual quality of our results, we first describe
three numerical experiments that experimentally validate the prop-
erties of our algorithm: the improvement in quality from eigen-
trajectory smoothing, the accuracy of our factorization scheme, and
robustness to rolling shutter artifacts.

4.1 Eigen-trajectory smoothing

The main contribution of our paper is a new smoothing ap-
proach that incrementally factorizes the input trajectories and then
smoothes the resultant eigen-trajectories. To evaluate the improve-
ment in quality created by this technique, we took our overall
pipeline summarized in Section 3.5 and replaced these two steps
(i.e., steps 2 and 3) with a simple Gaussian smoothing of each tra-
jectory individually. The Gaussian filter kernels were normalized at
the beginning and end of the trajectory durations. This experiment
is similar to the one shown in Figure 2, but with the output ren-
dered using content-preserving warps rather than triangulation. We
applied the experiment on two video sequences, and used smooth-
ing kernel radii of 40, 50, and 60; the resultant videos are included
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as supplemental materials. It is clear from the results that smooth-
ing each trajectory individually introduces significantly more dis-
tortion than smoothing the eigen-trajectories, especially when we
smooth the trajectories aggressively.

4.2 Factorization Accuracy

Our incremental factorization approach is an approximation in sev-
eral ways. For one, our assumption that motion trajectories over k
frames can be described with a low-rank subspace is only approx-
imately true. Second, our factorization approach is greedy, starting
from the first k frames and moving forward using a linear approx-
imation to the bilinear fitting; some sort of non-linear optimization
may yield more accurate results.

We evaluated the error of our factorization approach by comput-
ing the mean factorization error, i.e., the difference between the
original trajectory and the same trajectory reconstructed from the
subspace. (Note that we compute this error before removing any
large-error outlier trajectories, as described in Section 3.6.) For a
diverse set of 70 videos resized to 640 × 360, the mean error per
video ranged from 0.08 to 0.26 pixels. Next, we experimented with
several iterative global optimization techniques such as the damped
Newton method [Buchanan and Fitzgibbon 2005] and Levenberg-
Marquardt [Chen 2008]. We found that these methods significantly
reduced factorization error (by a factor of 4, on average), at the ex-
pense of much longer computation times. However, this improve-
ment in error did not significantly improve the visual quality of
our results, perhaps because the error is already sub-pixel. It is
also worth noting that we do not need as precise a factorization
as some other applications, just one that leads to visual plausibility.
We therefore choose to use our efficient, streamable approach.

4.3 Rolling Shutter Video

Most recent consumer-level video cameras have CMOS sensors
that can only be read-out in a sequential fashion from top to bottom.
The result is that a video frame does not record a snapshot of time;
instead, time varies across the frame, resulting in aliasing that can
be seen as skewing or wobbling of objects in the video. This prop-
erty of video poses serious challenges for both SFM and traditional
2D video stabilization [Liang et al. 2008; Meingast et al. 2005].

In practice, we’ve found that our approach works well on rolling
shutter videos. While we cannot make strong theoretical arguments
for why rolling shutter videos preserve the subspace constraint, we
believe that the artifacts appear as structured noise to our algorithm,
which tends to be robust to noise. However, to confirm the perfor-
mance of our algorithm on rolling shutter videos, we constructed
an experiment to challenge it. We took 30 videos shot with a 3-
CCD camera (and thus free of rolling shutter) and approximately
simulated a rolling shutter. Then, we compared factorization error
before and after the rolling shutter.

For our experiments we modeled rolling shutter similar to Liang et
al. [2008] by shifting each track according to its scanline. That is,
for each feature trajectory at frame t we calculate its new position,
p̃t = (xt, yt) by shifting it in time by λ and interpolating its posi-
tion at consecutive frames:

p̃t = (1 − λ)pt + λpt+1, (10)

where pt and pt+1 are its position at time t and t + 1, respectively.
These two coordinates are obtained from the tracking results of the

non-rolling shutter video, and λ is the shift in time. The value of λ
depends on the camera and vertical coordinate, i.e., λ = κ(yt/H)
where H is the height of the video frame. The parameter κ depends
on the amount of rolling shutter introduced by the camera, and is
typically less than 1. In our experiments, we set it as 1, which might
exaggerate the rolling shutter effect.

We then performed factorization on the original trajectory matrix
and the simulated rolling shutter matrix. We considered only the
first 100 frames of each sequence and only used trajectories that
spanned that entire duration, thus yielding a complete matrix that
we can factorize using SVD. We found that the mean factorization
errors for these rolling shutter matrices are reasonably close to the
original matrices: on average, the rolling shutter effect increases
the factorization error by 13.5%. Note that rolling shutter can also
negatively impact 2D tracking, since it introduces local distortion,
and our experiments do not measure this impact. Also, our method
only addresses stabilization in the presence of rolling shutter wob-
ble introduced by camera shake. We do not perform general rolling
shutter artifact removal, or handle more structured artifacts such as
the shear introduced by a fast, intentional panning motion.

These empirical experiments show that the effect of rolling shutter
on the subspace constraint is relatively minor and can be treated as
structured noise. We thus took another 40 videos using a rolling
shutter camera, and performed our incremental factorization ap-
proach. The mean reconstruction error for these rolling shutter
videos was 0.165 pixels, compared to the 0.135 error of non-rolling
shutter videos. We find that, in general, our method produces visu-
ally good results for rolling shutter sequences.

5. RESULTS

We show a number of results in our project website.1 We tested
our approach on 109 video sequences, from 5 to 180 seconds, cap-
tured by a variety of people and cameras in many different scenes.
Of these videos, 48 were captured with a 3-CCD camera without
a rolling shutter, and 61 were captured with a CMOS HD camera
with a rolling shutter. We also compared our results to the 3D stabi-
lization approach of Liu et al. [2009] and to the publicly-available
2D stabilization features of iMovie ’092 and Deshaker3.

Our first set of experiments evaluates our method on the 32 videos
used by Liu et al. [2009] to successfully demonstrate 3D video sta-
bilization. Note that these sequences were specifically chosen to be
friendly to SFM: they were shot by a person walking continuously
to provide sufficient parallax, and exhibit no zooming or in-camera
stabilization in order to keep the internal parameters of the camera
fixed. We found that our method produced qualitatively similar re-
sults for 25 of these videos, and better results for 7 of these videos.
Our comparative ratings are subjective, and were produced by two
students who watched the video and came to agreement on the rat-
ings. We consider two results as similar if the camera stability and
the degree of artifacts are similar, even if the exact motions and
field of view of the results are slightly different. We include several
such results in the supplemental video.

Next, we ran our system on 15 new videos captured with camera
motions known to challenge SFM. Like Liu et al. [2009] we use

1http://www.cs.pdx.edu/~fliu/project/subspace_

stabilization
2http://www.apple.com/ilife/imovie/
3http://www.guthspot.se/video/deshaker.htm
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Fig. 4: Plots (a) and (b) show the number of feature trajectories covering each factorization window for two example videos (with window
sizes k = 50 and k = 40, respectively). Our method succeeded for the blue line and failed for the red one. Plot (c) shows the maximal size
that a window at each frame can have to guarantee that at least 20 trajectories cover it for the failure case video.

the Voodoo4 camera tracker, and consider its output failed since
Voodoo produced a clearly incorrect reconstruction. The types of
camera motions that we found to be challenging for SFM include:
(1) sequences that include periods of both walking, and panning
while standing still, (2) sequences with significant rolling shut-
ter, (3) sequences with in-camera stabilization left on, and (4) se-
quences with changing focal length. We include several examples
in the accompanying video, along with comparisons to 2D stabi-
lization; we also provide three videos that Voodoo failed to recon-
struct, along with the results from our method and Liu et al. [2009],
in the supplemental materials. Note that other SFM implementa-
tions may perform better or worse than the one we tested, but all of
the above are well-known problems for SFM.

We are particularly interested in how our method works on rolling
shutter videos since more and more new video cameras exhibit this
artifact. Out of 61 rolling shutter videos, we found that 46 of our
results were completely successful, 12 were moderately successful,
and 3 were not successful. We consider a result moderately suc-
cessful if it suffers from slight artifacts, like bouncing or wobbling
locally, but is clearly preferable to the input. Rolling shutter is par-
ticularly challenging for 2D stabilization, since full-frame warps
cannot remove the local wobbling it introduces. We ran iMovie
’09 and Deshaker (which has a special feature designed for han-
dling rolling shutter) on our examples. We found that our algorithm
performs significantly better than iMovie for 47 out of 61 videos,
and moderately better than iMovie for 11 out of 61 videos. Our
algorithm performs significantly better than Deshaker for 42 out
of 61 videos, and moderately better than Deshaker for 16 out of
61 videos. We consider our results significantly better than those
produced by iMovie or Deshaker when their results suffer from ob-
vious high-frequency vibration, while ours do not. We include sev-
eral examples in the supplemental video. For the remaining 3 out of
the 61 videos, our method fails entirely since the videos are heav-
ily dominated by scene motion. For these 3 videos, both iMovie ’09
and Deshaker produce results that are visually worse than the input.

On the supplemental video we also demonstrate several additional
challenging scenes. These include a very long video, and a video
with large amounts of scene motion. We also show examples of dif-

4http://www.digilab.uni-hannover.de

ferent camera path planning, such as low-pass filtering, polynomial
paths, and splines.

Overall, of the 109 videos we tested we consider 86 as completely
successful, 20 as moderately successful because they exhibit mod-
erate bouncing or other small artifacts, and 3 as failures. The three
failure cases are due to excessive shake and scene motion. Our
method could not produce any results for these videos since our
pipeline could not proceed without the output trajectories from the
moving factorization step.

5.1 Limitations

To further evaluate the limitations of our method, we decided to
collect an additional 30 “stress-test” videos that were likely to be
challenging. Our experience with the first 109 videos suggested
that videos with large amounts of scene motion, excessive shake,
or strong motion blur were the most difficult for our method, so we
intentionally captured videos with these properties. As expected,
13 of these 30 videos were failure cases.

Of those 13 failure cases, 10 failed because there were not enough
long trajectories to cover an entire factorization window. In this
case, the moving factorization fails to complete and we are unable
to even produce an output. To further understand this type of fail-
ure, we counted the number of feature trajectories that cover each
factorization window for each of the 10 sequences. In this test, the
factorization window was moved forward 5 frames at each step, and
we tried two different window sizes: k = 50 and k = 40. For each
of the 10 videos, there were several windows with zero trajectories
long enough to cover the entire window. We also randomly selected
10 of the successful videos, and found that the minimum number
of trajectories covering each window was 80. Figure 4 (a) and (b)
show several plots of the number of feature trajectories covering
each window for a successful video (blue) and a failure case (red).
There are several possible reasons where there might be an insuf-
ficient number of long trajectories: dramatic camera motions that
push trajectories out of the field of view, strong motion blur, geom-
etry with little texture, or large moving objects that pass through
and occlude the tracked geometry. Two frames of several exam-
ples are shown in Figure 5 and included as supplemental materials.
One solution to this problem would be to reduce the window size
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(a)

(b)

(c)

Fig. 5: Failure cases caused by an insufficient number of long feature tra-
jectories. In examples (a) and (b), large objects (a person and a train) pass
quickly through the field of view and terminate the trajectories behind them.
In example (c), several frames exhibit large motion blur, thus breaking the
continuity of the trajectories.

(though it must be at least as large as the rank r). However, for
many failure cases there are “bottleneck” frames where trajectories
suddenly terminate en masse; in this case, even a very short window
can not be covered by enough trajectories. Figure 4 (c) shows the
maximum size a window at each frame can have before the number
of covering trajectories drops below 20; in this case, even a window
size of zero is not sufficient.

Figure 6 shows another common type of failure, which accounted
for 3 of the 13 failures. In this failure type, while there are enough
long feature trajectories, a significant portion of them are on a large
moving object that dominates the scene. Our method for removing
dynamic outliers, described in Section 3.6, will not succeed if the
object dominates the scene. In this case, a single subspace cannot
account for both the trajectories in the face and the background,
leading to distortions in the result. We include the input and output
of this failure case in the supplemental materials.

Finally, like most stabilization techniques, more aggressive stabi-
lization leads to smaller output field of views, since our results are
cropped to the largest possible rectangle. Motion blur is also not
removed by our method. Our technique could be combined with
others that address these issues [Matsushita et al. 2006; Chen et al.
2008].

5.2 Performance

The computation of our method consists of 3 major parts: fea-
ture tracking, matrix factorization, and content-preserving warp-

(a) Input with initial feature points

(b) Feature points after outlier rejection

(c) Final result

Fig. 6: A failure case caused by a large moving object (a face). Image (a)
shows the initial set of trajectories, while (b) shows the set after outlier
rejection. Our method cannot remove all the feature points in the dynamic
region, leading to distortions in the result ((c)).

ing. We did our experiments on a machine with a 3.16 GHz Intel
Dual Core CPU and 3GB of memory, although our implementa-
tion does not take advantage of multi-core processing. The KLT
tracker we used achieves 7 fps when it is tuned to track roughly
500 feature points per frame on the input videos, which are resized
to 640 × 360; note that others have developed GPU-accelerated
real-time versions [Sinha et al. 2006]. Our incremental factoriza-
tion method achieves 500 fps. Our implementation of content-
preserving warps [Liu et al. 2009], which builds a 64 × 36 grid
mesh for each frame and solves a linear system, achieves 10 fps;
however, we used a generic sparse matrix representation and be-
lieve that a customized one would allow us to construct the linear
system much more quickly. Overall, our implementation currently
achieves 4 fps, and we believe that with the use of parallelization
and the GPU we can reach real-time performance. In comparison,
Liu et al. [2009] report that their running time was dominated by
3D scene reconstruction using Voodoo; in our experiments, Voodoo
takes between 4 and 10 hours for a video of 600 frames (20 sec-
onds).
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6. CONCLUSION

In this paper, we have provided a technique for video stabilization
that can achieve aggressive, high-quality stabilizations on a wide
range of videos in a robust and efficient way. We can achieve the
appearance of smooth camera motions without creating 3D recon-
structions, allowing our approach to operate efficiently and to work
in situations where reconstruction is challenging. Therefore, we be-
lieve our approach is sufficiently practical to be used in consumer-
level video processing tools.

Our technique is based on the observation that accurate scene re-
construction is not necessary if our goal is merely to improve the
quality of video. For video processing applications, visually plausi-
ble results are sufficient. By aiming for this simpler goal, we can de-
vise methods that avoid solving challenging computer vision prob-
lems. In this paper, we have successfully applied this strategy to
address an important issue for video users: video stabilization. In
the future, we hope to apply the strategy to other video processing
tasks.
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