
ColumnOriented Storage Techniques for MapReduce

Avrilia Floratou
University of

Wisconsin–Madison

Jignesh M. Patel
University of

Wisconsin–Madison

Eugene J. Shekita
IBM Almaden

Research Center

Sandeep Tata
IBM Almaden

Research Center

ABSTRACT

Users of MapReduce often run into performance problems
when they scale up their workloads. Many of the problems
they encounter can be overcome by applying techniques
learned from over three decades of research on parallel
DBMSs. However, translating these techniques to a Map-
Reduce implementation such as Hadoop presents unique
challenges that can lead to new design choices. This paper
describes how column-oriented storage techniques can be
incorporated in Hadoop in a way that preserves its popular
programming APIs.
We show that simply using binary storage formats in

Hadoop can provide a 3x performance boost over the naive
use of text files. We then introduce a column-oriented
storage format that is compatible with the replication and
scheduling constraints of Hadoop and show that it can
speed up MapReduce jobs on real workloads by an order of
magnitude. We also show that dealing with complex column
types such as arrays, maps, and nested records, which are
common in MapReduce jobs, can incur significant CPU
overhead. Finally, we introduce a novel skip list column
format and lazy record construction strategy that avoids
deserializing unwanted records to provide an additional
1.5x performance boost. Experiments on a real intranet
crawl are used to show that our column-oriented storage
techniques can improve the performance of the map phase
in Hadoop by as much as two orders of magnitude.

1. INTRODUCTION

Over the last few years, there has been tremendous
growth in the need for large scale data processing systems.
These systems were once the province of parallel database
management systems (DBMSs), but lately the MapReduce
paradigm has gained substantial momentum. There is
currently an on-going tussle between proponents of these
two paradigms [17, 18, 28], with each side claiming strong
advantages over the other. However, there is a growing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 7
Copyright 2011 VLDB Endowment 21508097/11/04... $ 10.00.

sense that there are advantages to both paradigms, and
that techniques which have been successfully used in one
can be used to fix deficiencies in the other. Performance
is one area in particular where parallel DBMSs currently
enjoy an advantage over MapReduce [28].

Hadoop [2] is the popular open-source implementation of
MapReduce. In this paper, we describe how the column-
oriented storage techniques found in many parallel DBMSs
can be used to dramatically improve Hadoop’s performance.
Our work is motivated by observing the needs of real cor-
porate Hadoop users. These users are familiar with parallel
DBMS technology, but they still pick Hadoop for certain ap-
plications because of its ease of use, low cost scaling, fault
tolerance on commodity hardware, and programming flexi-
bility.

Corporate users tend to be thrilled by how quickly they
can get things working in Hadoop. However, as they try to
scale up their workloads, they often face a pain point with
respect to performance. For example, one user we worked
with at a large consumer bank was trying to use Hadoop
to process the logs from web applications. They started
with raw log files in text format for a single web applica-
tion. As logs from additional applications were added and
the retention period for the logs grew to 90 days, the 20-
node Hadoop cluster that they started with could no longer
generate reports in a reasonable amount of time. Critics of
MapReduce would argue that such users would be better off
with a parallel DBMS, but given Hadoop’s current advan-
tages for certain applications, and the growing investment
in Hadoop by many users, this is not a realistic option. The
goal is to fix Hadoop, not replace it with a parallel DBMS.

We have observed a recurring pattern of performance is-
sues in Hadoop that are related to: (a) the use of complex
data types such as arrays, maps, and nested records, which
are common in many MapReduce jobs, (b) the ability to
write arbitrary map and reduce functions in a programming
language instead of using a declarative query language, and
(c) Hadoop’s choice of Java as its default programming lan-
guage. These issues do not appear in a parallel DBMS; they
are unique to the MapReduce paradigm and Hadoop in par-
ticular. The column-oriented storage techniques we describe
are specifically designed to address these issues.

Besides column-oriented storage techniques, it should be
clear that other DBMS techniques can also be leveraged to
improve Hadoop’s performance, such as efficient join algo-
rithms and indexing [19, 23, 22]. These techniques are be-
yond the scope of this paper but should be complementary
to the ones described here.

419

1.1 Our Contributions
We first present the design and implementation of a

column-oriented, binary storage format for Hadoop. We
describe how such a format interacts with the replication
policy of the Hadoop Distributed File System (HDFS) and
the necessary mechanisms to co-locate column data. We
demonstrate through experiments that Hadoop can leverage
this storage format without incurring a large penalty for
reconstructing records from the constituent columns. Such
a storage format assumes that the application is willing
to pay a one-time loading cost to organize the input data
in the appropriate column-oriented fashion. As argued in
earlier papers [28], this is a reasonable assumption to make
for datasets that are expected to be analyzed multiple
times.
The use of text storage formats rather than binary storage

formats in performance evaluations of MapReduce has been
criticized [18] but never quantified. Recent evaluations of
Hadoop [12, 28] used text formats, so it has not been clear
how much Hadoop can actually benefit from binary formats.
We show that simply switching to a binary storage format
can improve Hadoop’s scan performance by 3x.
We identify performance challenges specific to complex

data types in Hadoop, and describe a novel skip list col-
umn format that enables lazy record construction. The lazy
record construction we describe is inspired by the late mate-
rialization techniques used in column-oriented DBMSs [11].
We also examine techniques that allow lazy decompression in
Hadoop. We show that compression techniques like LZO [5]
may be too CPU intensive for many MapReduce jobs. Ex-
periments on a real dataset show that lightweight dictionary
compression schemes, which provide worse compression ra-
tios than LZO but incur lower CPU overhead during de-
compression, may be a better alternative for complex data
types. We show that these methods can result in speedups
of up to 1.5x over an eager record construction strategy.
It is important to emphasize that our column-oriented

techniques leverage extensibility features that are already
in Hadoop, so no modifications to the core of Hadoop are
required. Moreover, our techniques do not require the use of
a declarative query language and are designed to work with
hand-coded MapReduce jobs. Applications using popular
serialization frameworks like Avro [1], Thrift [8], or Pro-
tobufs [7] can benefit from our techniques with almost no
modification. In aggregate, our techniques can improve the
performance of the map phase of a Hadoop job by as much
as two orders of magnitude, and the overall job by over an
order of magnitude.

2. HADOOP BACKGROUND
We first provide some background on Hadoop along with

a description of the extensibility points that were used to
implement our column-oriented storage format.
Consider the example MapReduce job shown in Figure 1.

This is a simplified version of a real Hadoop job that an-
alyzes a collection of crawled documents and finds all the
distinct “content-types” reported for URLs that contain the
pattern “ibm.com/jp”. We initially focus on the main pro-
gram where the job is configured with an InputFormat and
OutputFormat.
An InputFormat is an important abstraction and extensi-

bility point in Hadoop. It is responsible for two main func-

class MyMapper {
void map (NullWritable key, Record rec) {

String url = (String) rec.get("url");
if (url.contains("ibm.com/jp"))

output.collect(null,
rec.get("metadata").get("content-type"));

}
}

class MyReducer {
void reduce(NullWritable key, Iterator<Text> vals){

HashSet<Text> distinctVals = new HashSet<Text>();
for (Text t: vals)

distinctVals.add(t);
for (Text t: distinctVals)
output.collect(null, key);

}
}

main() {
Job job = new Job();
job.setMapperClass(MyMapper);
job.setReducerClass(MyReducer);
job.setInputFormat(SequenceFileInputFormat.class);
SequenceFileInputFormat.addInputPath(job,"/data/jan");
job.setOutputFormat(TextOutputFormat.class);
TextOutputFormat.setOutputPath("/output/job1");
JobRunner.submit(job);

}

Figure 1: Example MapReduce job.

tions: first, to generate splits 1 of the data that can each
be assigned to a map task; and second, to transform data
on disk to the typed key and value pairs that are required
by the map function. An InputFormat implements the fol-
lowing three methods:

addInputPath() is used to specify input data sets when
configuring the job.

getSplits() is used by the Hadoop scheduler to get a list
of splits for the job.

getRecordReader() is invoked by Hadoop to obtain an
implementation of a RecordReader, which is used to
read the key and value pairs from a given split.

Hadoop provides different InputFormats to consume data
from text files, comma separated files, etc. For example,
the MapReduce job in Figure 1 is configured to use a
SequenceFileInputFormat. A SequenceFile stores key
and value pairs in a standard, serialized binary format. The
dual of an InputFormat in Hadoop is an OutputFormat,
which is responsible for transforming the key-value pairs
output by a MapReduce job to a disk format.

The key and value pairs consumed by map and reduce
functions can be of any object type. In this paper, we as-
sume that Record objects are used for values. Serialization
frameworks like Avro [1], Protocol Buffers [7], or Thrift [8]
can be used to provide a record abstraction with methods
to convert records to raw bytes, read them from disk, or
pass them between map and reduce tasks. The attributes
of a record are accessed using a Java get(name) method,
which takes the name of an attribute as a parameter. Type
casting is usually required to access an attribute. A more
detailed discussion of the Avro record abstraction used in
our experiments can be found in Appendix A.

1A split is the unit of scheduling and is a non-overlapping
partition of the input data that is assigned to a map task.

420

URLInfo {
Utf8 url,
Utf8 srcUrl,
time fetchTime,
Utf8[] inlink,
Map<String, String> metadata,
Map<String,String> annotations,
byte[] content

}

Figure 2: Example schema with complex types.

3. CHALLENGES
This section discusses the performance challenges outlined

in the introduction in more detail.

3.1 Complex Data Types
In large scale data analysis, it is often convenient to use

complex types like arrays, maps, and nested records to
model data. Recent studies [16, 25] have argued that it
is better to use native, nested representations of complex
types in read-mostly workloads. This is in contrast to
flattening complex types into normalized relational tables.
Figure 2 shows an example schema with complex types.

The example is taken from an actual intranet search appli-
cation where documents are crawled and stored along with
metadata, extracted annotations, and inlinks. The annota-
tions and the metadata vary widely from page to page and
are therefore stored using maps. Inlinks are stored in an
array. The use of complex types causes two major prob-
lems: deserialization costs and the lack of effective column-
oriented compression techniques.

3.2 Serialization and Deserialization
Serialization is the process of converting a data structure

in memory into bytes that can be transmitted over the net-
work or written out to disk. Deserialization is the inverse of
this process.
The overhead of deserializing and creating the objects cor-

responding to a complex type can be substantial. Previous
studies [16, 23] have noted the importance of paying at-
tention to the cost of deserialization and object creation in
Hadoop. Most column-oriented DBMSs are implemented
in C++, allowing column data from disk to be directly ac-
cessed in memory as an array without any deserialization
overhead [9]. For example, suppose we want to compute the
sum of 1 million integers in a file. In C++, the integers can
be read into a memory buffer, and an array pointer can be
cast to the beginning of the buffer. Then the array’s ele-
ments can be summed directly in a tight loop. Java, on the
other hand, would require deserializing each integer from the
memory buffer before summing it.
We conducted an experiment to measure this overhead.

Our experiments showed that the CPU overhead of dese-
rialization and object creation is so significant that it can
quickly become a bottleneck in Hadoop. This overhead even
affects simpler data types such as integers. For more details
on this experiment, see Appendix B.

3.3 Compression
Using compression results in lower I/O costs at the ex-

pense of higher CPU costs. In general, column-oriented
storage formats tend to exhibit better compression ratios
since data within a column tends to be more similar than
data across columns. Previous studies have looked at com-

(a) column files without co-location

Node 1

C1 C2

C3

Node 2

C1

C2

Node 3

C1

C3

Node 4

C2

C3

Node 1

C1 C2

C3

Node 2 Node 3

C1 C2

C3

Node 4

C1 C2

C3

(b) column files with co-location

Figure 3: Co-locating column files.

pression in the context of a column-oriented DBMS [10].
However complex types, which are not as amenable to tech-
niques like run-length compression, dictionary compression,
offset encoding, etc., were not considered in those studies.

Lightweight compression schemes are critical in Hadoop.
Schemes like ZLIB, which achieve excellent compression ra-
tios, incur substantial CPU overhead during decompression.
As a result, LZO [5] is commonly used in Hadoop to provide
reasonable compression ratios with low decompression over-
head. In Section 5.3, we describe a lightweight dictionary
compression scheme for our column-oriented storage format
that works well with complex types and provides better per-
formance than LZO and ZLIB.

3.4 Query Language vs. Programming API
In contrast to a DBMS, where a declarative query lan-

guage is compiled into a set of runtime operators, the basic
MapReduce framework provides only a programming API.
Unfortunately, many of the advanced techniques used by
column-oriented DBMSs are not feasible with hand-coded
map and reduce functions – the programming task would
be too difficult for a human. These techniques include op-
erating on compressed data [10], the use of SIMD instruc-
tions [14], and late materialization [11]. This paper focuses
on hand-coded MapReduce jobs written against the pro-
gramming API of Hadoop. The techniques described here
are also applicable to declarative languages on Hadoop such
as Pig [27], Hive [3], or Jaql [4].

4. COLUMNORIENTED STORAGE
We now describe the design and implementation of our

column-oriented storage format and its interaction with
Hadoop’s data replication and scheduling.

4.1 Replication and Colocation
A straightforward way to implement a column-oriented

storage format in Hadoop is to store each column of the
dataset in a separate file. This imposes two problems. First,
how can we generate roughly equal sized splits so that a
job can be effectively parallelized over the cluster? Second,
how do we make sure that the corresponding values from
different columns in the dataset are co-located on the same
node running the map task?

The first problem can be solved by horizontally partition-
ing the dataset and storing each partition in a separate sub-
directory. Each such subdirectory now serves as a split.
The second problem is harder to solve. HDFS uses 3-way
block-level replication to provide fault tolerance on commod-
ity servers, but the default block placement policy does not
provide any co-location guarantees.

421

{…}104403http://d.com

{…}103412http://c.org

{…}103372http://b.org

{…}103345http://a.com

MetadataFetchTimeURL

http://b.org

http://a.com

./Url

103372

103345

. /FetchTime

{…}

{…}

./Metadata/data/2011-01-01/

/data/2011-01-01/s1

http://d.com

http://c.org

./Url

104403

103412

. /FetchTime

{…}

{…}

./Metadata

/data/2011-01-01/s0

Figure 4: Data layout with COF.

Consider a dataset with three columns C1, C2, and C3.
Assume the columns are stored in three different files, and
for simplicity, also assume that each file occupies a single
HDFS block. In practice, a large file could span many HDFS
blocks. The files of C1-C3 need to be accessed together as
a split, but with Hadoop’s default placement policy, they
could be randomly spread over the cluster. Figure 3a illus-
trates what can happen with Hadoop’s default placement
policy. C1-C3 are co-located on Node 1 but not co-located
on any other node. Suppose a map task is scheduled for the
split consisting of C1-C3 but Node 1 is busy. In that case,
Hadoop would schedule the map task on some other node,
say Node 2, but performance would suffer, since C3 would
have to be remotely accessed.
Recent work on the RCFile format [20] avoids these prob-

lems by resorting to a PAX [13] format instead of a true
column-oriented format. RCFile takes the approach of pack-
ing each HDFS block with chunks called row-groups. Each
row-group contains a special synchronization marker at the
start, followed by a metadata region, and then a data region,
with the data region laid out in a column-oriented fashion.
The metadata describes the columns in the data region and
their starting offsets, as well as the number of rows in the
data region. Since all the columns are packed into a single
row-group, and each row-group can function independently
as a split, it avoids the two challenges that arise when storing
columns separately.
While RCFile is simple and fits well within Hadoop’s con-

straints, it has a few drawbacks. Since the columns are all
interleaved in a single HDFS block, efficient I/O elimina-
tion becomes difficult because of prefetching by HDFS and
the local filesystem. Tuning the row-group size and the I/O
transfer size correctly also becomes critical. With larger I/O
transfer sizes like 1MB, records that contain more than four
columns show very poor I/O elimination characteristics with
the default RCFile settings. Finally, extra metadata needs
to be written for each row group, leading to additional space
overhead.
The next section describes an alternative to RCFile that

uses separate files for each column and still avoids these
problems. Experiments in Section 6 will show that this new
format can significantly outperform RCFile.

4.2 The CIF Storage Format
We solved the problem of co-locating associated column

files by implementing a new HDFS block placement policy.
HDFS allows its placement policy to be changing by setting
the configuration property “dfs.block.replicator.classname”
to point to the appropriate class. This feature has been
present since Hadoop 0.21.0 and does not require recompil-
ing Hadoop or HDFS.
ColumnPlacementPolicy (CPP) is the class name of our

column-oriented block placement policy. For simplicity, we

will assume that each column file occupies a single HDFS
block and describe CPP as though it works at the file level.
In effect, CPP guarantees that the files corresponding to the
different columns of a split are always co-located across repli-
cas. Figure 3b shows how C1-C3 would be co-located across
replicas using CPP. Subdirectories that store splits need to
follow a specific naming convention for CPP to work. Files
that do not follow this naming convention, are replicated
using the default placement policy of HDFS.

We implemented the logic for our column-oriented stor-
age format in two classes: the ColumnInputFormat (CIF)
and the ColumnOutputFormat (COF). Data may arrive into
Hadoop in any format. Once it is in HDFS, a parallel loader
is used to load the data using COF.

Consider an example scenario involving the data described
in Figure 2. Assume that crawled data arrives at regular
intervals and that a day’s worth of data has arrived and
needs to be stored in “/data/2011-01-01”. When a dataset is
loaded into a subdirectory using COF, it breaks the dataset
into smaller horizontal partitions. Each partition, referred
to as a split-directory, is a subdirectory with a set of files, one
per column in the dataset. An additional file describing the
schema is also kept in each split-directory. Figure 4 shows
the layout of data using COF, with split-directories s0 and
s1.

When reading a dataset, CIF can actually assign one or
more split-directories to a single split. The column files of
a split-directory are scanned sequentially and the records
are reassembled using values from corresponding positions
in the files. Projections can be pushed into CIF by supplying
it with a list of columns. This can be done while configuring
a MapReduce job as follows:

ColumnInputFormat.setColumns(job, "url, metadata");

The record objects created by CIF are populated only with
the fields that are selected. The files corresponding to the
remaining columns are not scanned.

4.3 Discussion
A major advantage of CIF over RCFile is that adding a

column to a dataset is not an expensive operation. This
can be done by simply placing an additional file for the new
column in each of the split-directories. With RCFile, adding
a new column is a very expensive operation – the entire
dataset has to be read and each block re-written.

Adding columns is well known to be an important fea-
ture. This is a particularly common operation when the
dataset needs to be augmented with derived columns com-
puted from the existing columns. We have also seen the need
for this feature when a customer starts by extracting a set
of columns from raw input files (such as logs) into organized
storage for efficient querying. As business needs evolve, ad-
ditional columns from the raw input files need to be moved
to organized storage.

Experiments in Section 6 will show that CIF does not
pay a performance penalty for this flexibility advantage over
RCFile. In fact, CIF overcomes some drawbacks of RCFile
with respect to metadata overheads, poor prefetching, and
I/O elimination.

On the other hand, a potential disadvantage of CIF is that
the available parallelism may be limited for smaller datasets.
Maximum parallelism is achieved for a MapReduce job when
the number of splits is at least equal to the number of map

422

lastPos = curPos

Url Metadata

(a) lastPos

(b) lastPos after

get(“Metadata”)

skip

Figure 5: Lazy record construction.

slots, say m. RCFile allows fine grained splits at the row-
group level (4MB) when compared to split-directories in CIF
(typically 64 MB). For RCFile, assuming that each HDFS
block has r row-groups, maximum parallelism is available
when the total dataset size is greater than m/r blocks. With
CIF, this happens when there are at leastm split-directories.
If we choose split-directories containing c blocks worth of
data in each directory (where c is the number of columns),
full parallelism is available when the dataset size exceeds
m× c blocks.
Assuming a typical cluster with 200 map slots and 64M

blocks, a dataset with 10 columns would need to be at least
128GB in size before full parallelism is reached. Since we ex-
pect to deal with datasets in the terabyte range on Hadoop,
we expect to be able to utilize all the available parallelism in
a cluster with CIF. In practice even with RCFile, large row-
groups are preferred since they minimize metadata overhead
and improve I/O elimination (see Figure 9 in Appendix B).
Load balancing with CIF and CPP happens at a coarser

granularity (per split-directory) using the same algorithms
as the default placement policy. This is because CPP
chooses the location of the first block of a split-directory
using the default placement policy. All the remaining
blocks in the split directory are then placed on the same
set of nodes.
In summary, CIF offers flexibility and some performance

benefits over RCFile. This advantage comes at the cost
of needing to install a special block-placement policy for
HDFS and potentially limiting the amount of parallelism
for smaller datasets. We do not expect either of these con-
siderations to be a problem for large deployments. A deeper
analysis of load-balancing and re-replication after failures
are important avenues for future work.

5. LAZY RECORD CONSTRUCTION
In this section, we describe our lazy record construction

technique, which is used to mitigate the deserialization over-
head in Hadoop, as well as eliminate disk I/O. The basic idea
behind lazy record construction is to deserialize only those
columns of a record that are actually accessed in a map func-
tion. Consider the example MapReduce job in Figure 1 that
was described earlier. The metadata column is accessed in
the map function only for records where the URL column
contains the pattern “ibm.com/jp”. Using lazy record con-
struction, we can avoid deserializing the metadata column
for the records where the URL column does not contain this
pattern.

5.1 Implementation
CIF can be configured to use one of two classes for materi-

alizing records, namely, EagerRecord or LazyRecord. Both
of these classes implement the same Record interface. As a
result, the map function code looks the same, regardless of
which class is instantiated.

Skip10 = 1099
Skip100 = 9560

Skip10 = 850

skip 10 rows

skip 100 rows

Skip10 = 900
Skip100 = 8740

…
…

Figure 6: Skip list format for complex types.

EagerRecord eagerly deserializes all the columns that are
being scanned by CIF. LazyRecord is slightly more compli-
cated. Internally, LazyRecord maintains a split-level curPos
pointer, which keeps track of the current record the map
function is working on in a split. It also maintains a lastPos

pointer per column file, which keeps track of the last record
that was actually read and deserialized for a particular col-
umn file. Both pointers are initialized to the first record of
the split at the start of processing.

Each time RecordReader is asked to read the next record,
it increments curPos. No bytes are actually read or deseri-
alized until one of the get() methods is called on the result-
ing Record object. Consider the example in Figure 5. Since
get(“url”) is called on every record, lastPos is always equal
to curPos for the URL column. However, for the meta-
data column, lastPos may lag behind curPos if there are
records where the URL column does not contain the pat-
tern “ibm.com/jp”. When the URL column contains this
pattern and get(“metadata”) is called, lastPos skips ahead
to curPos before the metadata column is deserialized.

Note that complex column types with variable lengths are
the main reason both the split-level curPos and per column
file lastPos pointers are needed for lazy record construction.
Ostensibly, it might seem like just a curPos pointer per col-
umn file could be used without a lastPos pointer. How-
ever, in that case, each next record call would require all
the columns to be deserialized to extract length information
to update their respective curPos pointers. This in turn
would defeat the purpose of lazy record construction.

5.2 Skip List Format
A skip list format [29] can be used within each column

file to efficiently skip records. Figure 6 shows the format
used in CIF. A column file contains two kinds of values,
regular serialized values and skip blocks. Skip blocks contain
information about byte offsets to enable skipping the next
N records, where N is typically configured for 10, 100, and
1000 record skips.

Column files support a skip() method that is called by
LazyRecord as skip(curPos - lastPos). If a column file is not
formatted as as a skip list, each record is skipped individu-
ally, resulting in no deserialization or I/O savings. The cost
for creating a skip list format is paid once at load time. Ex-
periments in Appendix B show that the additional overhead
incurred during loading is minimal.

5.3 Compression
We propose two schemes to compress columns of complex

data types: compressed blocks, and dictionary compressed
skip lists. Section 6 compares these two schemes. Both
schemes are amenable to lazy decompression where portions
of the data that are not accessed in the map function are
not decompressed.

423

Compressed Blocks: This scheme uses a standard
compression algorithm to compress a block of contiguous
column values. Multiple compressed blocks may fit into a
single HDFS block. The compressed block size is set at
load time. It affects both the compression ratio and the
decompression overhead. A header indicates the number of
records in a compressed block and the block’s size. This
allows the block to be skipped if no values are accessed in
it. However, when a value in the block is accessed, the entire
block needs to be decompressed. LZO is generally chosen for
the compression algorithm in favor of other strategies like
ZLIB when low decompression overhead is more important
than the compression ratio. We study both LZO and ZLIB
in Section 6.
Dictionary Compressed Skip List: This scheme is

tailored for map-typed columns. It takes advantage of the
fact that the keys used in maps are often strings that are
drawn from a limited universe. Such strings are well suited
for dictionary compression. We build a dictionary of keys for
each block of map values and store the compressed keys in
a map using a skip list format. This scheme often provides
a worse compression ratio than LZO but compensates with
lower CPU overhead for decompression. The main advan-
tage of this scheme is that a value can be accessed without
having to decompress an entire block of values.

6. EXPERIMENTS
In this section, we present experimental results demon-

strating that column-oriented storage techniques can be ef-
fectively used in Hadoop. We compare CIF with popular for-
mats in use, namely text files (TXT), SequenceFiles (SEQ),
and RCFile.

6.1 Experimental Setup
The experiments were run on a cluster with 42 nodes con-

nected by a 1Gbit ethernet switch. Two nodes were re-
served to run the Hadoop jobtracker and the namenode.
The remaining 40 nodes were used for HDFS and Map-
Reduce. Each node had 8 cores (via two quad-core 2.4Ghz
sockets), 32GB of main memory, and five locally attached
500GB SATA 1.0 disks. Datanodes spread their data across
four of these disks. Hadoop version 0.21.0 was used, and
was configured to run 6 mappers per node (i.e., 6 map slots

per node) and 1 reducer per node.

6.2 Benefits of ColumnOriented Storage
The first experiment was a microbenchmark to verify that

using CIF can indeed make scans faster compared to using
SEQ and TXT. As in [23], these experiments were run on
a single node of the cluster. Data was read using standard
HDFS and InputFormat APIs. We present experiments us-
ing the full cluster in Section 6.3.
We used a synthetic dataset generated as follows: Each

record consisted of 6 strings, 6 integers, and a map. The in-
tegers were randomly assigned values between 1 and 10000.
Random strings of length between 20 and 40 were gener-
ated over readable ASCII characters. Each map column
consisted of 10 items, where the keys were random strings
of length 4, and the values were randomly chosen integers.
The data was written out in each of the formats. For SEQ,
NullWritables were used as the keys. A record containing
the above fields was used as the value class. The total size of
the dataset was 57GB in the SEQ format. The I/O transfer

Columns Scanned

T
X

T

S
E

Q

A
llC

o
lu

m
n

s

1
 I

n
te

g
e

r

1
 S

tr
in

g

1
 M

a
p

1
 S

tr
in

g
+

1
 M

a
p

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

4000
TextFile

SEQ

CIF

Compressed RCFile

Uncompressed RCFile

Figure 7: Microbenchmark comparing Text, SEQ,
CIF, and RCFile.

size, io.file.buffer.size, was set to 128K. This is a com-
monly configured value for many deployments. Repeating
the experiment with 4KB and 1MB produced similar results
and are omitted. The time to scan various projections of the
dataset for each of the formats is shown in Figure 7. The
filesystem cache was flushed before each experiment. For
TXT and SEQ, the time to scan any projection was roughly
the same and therefore only one value is reported.

Comparison with TXT: As shown in Figure 7, the
scan time with SEQ was approximately 3x faster than
TXT. Parsing each line of the text file caused TXT to
quickly become CPU-bound, whereas the parsing overhead
was avoided in SEQ. This confirms the criticism by Google
engineers [18] where they argued that previous studies com-
paring Hadoop’s performance to a parallel DBMS [28, 12]
were flawed because of the naive use of text files in Hadoop.
Using a binary format like SEQ is a straightforward way to
dramatically improve Hadoop’s performance.

Comparison with Sequence Files: When using CIF,
the times for scanning a single integer, string, or map were
2.5x to 95x faster than SEQ. In each case, the speedup is
directly attributable to the fact that CIF read much less data
than SEQ. When scanning all the columns of the dataset,
CIF took about 25% longer than SEQ. This is because of
the additional seeks that CIF incurred when gathering data
from columns stored in different files. In all other cases, CIF
is superior to both TXT and SEQ.

Comparison with RCFile: The uncompressed RC-
File was approximately 69GB and the compressed RCFile
was 43GB. The row-group size for RCFile was set to the
recommended value of 4MB [20]. When a small number
of columns were chosen from the dataset, CIF was more
efficient than RCFile at eliminating unnecessary I/O. For
the case of a single integer, the worse case for RCFile, CIF
was nearly 38x faster than the uncompressed RCFile. Mea-
surements using iostat revealed that RCFile read 20x more
bytes than CIF even when instructed to scan exactly one col-
umn. Some of this overhead is due to the use of inefficient
serialization in parts of RCFile. Additionally, it incurred
more CPU overhead since it had to interpret the metadata
blocks for approximately every 4MB of data.

424

Data Map Map Total Total
Read Time Time Time Time

Layout (GB) (sec) Ratio (sec) Ratio

SEQ-uncomp 6400 1416 - 1482 -
SEQ-record 3008 820 - 889 -
SEQ-block 2848 806 - 886 -
SEQ-custom 3040 754 1.0x 806 1.0x

RCFile 1113 702 1.1x 761 1.1x
RCFile-comp 102 202 3.7x 291 2.8x

CIF-ZLIB 36 12.8 59.1x 77 10.4x
CIF 96 12.4 60.8x 78 10.3x
CIF-LZO 54 12.4 61.0x 79 10.2x
CIF-SL 75 9.2 81.9x 70 11.5x
CIF-DCSL 61 7.0 107.8x 63 12.8x

Table 1: Comparison of storage formats, with
speedup ratios relative to SEQ-custom.

When using a compressed RCFile, the running time im-
proved. However, CIF was still faster in all cases. For in-
stance, when a single integer was projected, CIF was 33x
faster than the compressed RCFile. For the case where all
the columns from the dataset were examined, CIF, com-
pressed RCFile, and the uncompressed RCFile all had ap-
proximately the same performance. SEQ was 1.2x faster
than the rest. Experiments in Appendix B show that CIF’s
advantage over RCFile holds for other values of the row-
group size.

6.3 Comparison of Column Layouts
Next, we compared the performance of different storage

formats on a real dataset consisting of crawled pages for an
intranet search application. This application currently uses
Hadoop for its backend analytics. The data was acquired
using the Nutch [6] crawler and stored in HDFS. The schema
of the dataset we used is described in Figure 2 and included
fields like encoding, language, location, among others.
The MapReduce job used in our experiments found all

the distinct content-types reported by web pages from IBM
Japan i.e., URLs containing “ibm.com/jp”. The content-
type for a page was stored in a metadata column with a
map data type. The metadata column also included other
information returned in the HTTP response for the page.
The code of our MapReduce job was very similar to the
example in Figure 1. The selectivity of the predicate on
the URL was approximately 6%. We executed this job on
a 6.4TB subset of the crawl dataset. The total amount of
data per node was approximately 160GB.
With SEQ, we tried four variants: uncompressed

(SEQ-uncomp), block-compressed (SEQ-block), record
compressed (SEQ-record), and a custom format (SEQ-
custom), which used an uncompressed sequence file, but
compressed the content column using application specific
code. We also included the time taken with RCFile with
and without Zlib compression enabled (RCFile and RCFile-
comp). For CIF, we laid out the metadata column in five
different ways: default (CIF), CIF with skip lists (CIF-SL),
CIF with block compression using LZO (CIF-LZO) and
ZLIB (CIF-ZLIB), and CIF with dictionary compressed
skip lists (CIF-DCSL). TXT was omitted from our ex-
periments because of its exceedingly bad performance.
ColumnPlacementPolicy (CPP) was used for all the CIF
experiments.
Table 1 presents the time consumed along with the total

bytes read from HDFS for each of the storage formats. As

shown, we report the map time and the total time for each
storage format. The map time was the average time spent
per node in the map phase. This was calculated by taking
the total time consumed by all map tasks and dividing it
by the number of map slots in the cluster. Measuring the
map time allowed us to isolate the improvement offered by
different storage formats to just the map phase of our Map-
Reduce job. In contrast, the total time was the wall-clock
time for the full MapReduce job to finish.

The results in Table 1 show that the SEQ variants were
generally the slowest since they also read the content field,
which contains several KB of data for each record. In terms
of map time, SEQ-record and SEQ-block were both better
than SEQ-uncomp by approximately 1.7x. SEQ-custom was
the fastest by a small margin.

The map time of RCFile and RCFile-comp were better
than SEQ-custom by 1.1x and 3.7x respectively. Both RC-
File and RCFile-comp eliminated some of the I/O for unref-
erenced columns and read substantially less data than SEQ-
custom (3040GB for SEQ-custom vs. 102GB for RCFile-
comp).

Turning to the CIF variants, the map time of CIF was
60.8x better than SEQ-custom. This speedup was largely
the result of 31.7x less data being read in CIF because of
its column-oriented storage format. CIF-ZLIB was slightly
worse than CIF, despite reading significantly less data
(36GB vs. 96GB). This was because the data reduction
in CIF-ZLIB was not enough to compensate for the CPU
overhead of its decompression algorithm. The performance
of CIF-LZO was similar. We also repeated the experiment
with different compression block sizes but did not observe
a significant difference.

Continuing down Table 1, the map time of CIF-SL was
better then CIF-LZO even though it read more data (75GB
vs. 54GB). This was the result of using skip lists and the
LazyRecord format to avoid deserializing the metadata col-
umn unless the URL contained “ibm.com/jp”. CIF-DCSL
demonstrated the best performance overall, providing a
speedup of 107.8x over SEQ-custom. Its decompression
algorithm proved to be extremely fast and it also benefited
from lazy record construction and the use of skip lists.

The last two columns of Table 1 compare the total time
of our MapReduce job with different storage formats. Com-
pared to the map time, the speedup in total time was lower.
This is because the total time included the shuffle, sort, and
reduce phases of the MapReduce job, which are unaffected
by the storage format. However, similar trends were ob-
served, with CIF-DCSL providing the best overall results
and a 12.8x speedup over SEQ-custom.

6.4 Impact of CoLocation
To measure the impact of co-location, we re-executed the

same MapReduce job as above but this time using CIF with
the default HDFS block placement policy rather than with
CPP. The map time with CPP was 5.1x better than the map
time without CPP. CIF with CPP was faster because CPP
ensured that no column files had to be remotely accessed.

7. RELATED WORK
Pavlo et. al [28] compared the performance of Hadoop

with parallel DBMSs and found that Hadoop can perform
substantially worse on certain workloads. Subsequent stud-
ies have tried to improve on Hadoop using parallel DBMS

425

techniques while still maintaining the flexibility of its APIs.
HadoopDB [12] advocated using database nodes to do the
actual work and relying on MapReduce only for schedul-
ing and communication. A later study [19] pointed out
the drawbacks of HadoopDB and demonstrated, along with
other independent efforts [22, 23], how indexing can be in-
corporated into MapReduce in a less disruptive manner.
Using DBMS optimization techniques for declarative query
languages like Pig was suggested in [26]. However, our fo-
cus is on MapReduce programs written directly in Java.
The database community has also been interested in sev-
eral other aspects of bridging the gap between MapReduce
and DBMSs [15].
This paper draws on many of the techniques advocated

in the literature for column-oriented DBMSs. The advan-
tage of column-oriented storage for eliminating I/O is well
known. However, many of the advanced techniques used
in a column-oriented runtime such as careful integration of
compression with query execution [10, 24], late materializa-
tion [11], use of SIMD instructions [14], and other organiz-
ing techniques [21] are challenging to adapt to MapReduce
without assuming a declarative query language and a highly
specialized runtime for query execution.
A recent paper described Dremel [25],which is a column-

oriented storage system used at Google for processing large
datasets involving nested types. Dremel shreds nested data
into separate columns and reconstructs only the portions
needed by a query. Dremel uses a SQL-like language and
a special runtime. In contrast to Dremel, we store complex
types as a single column and do not shred it into separate
columns. In addition to nested records, we also deal with
map data types, which are not a focus in Dremel. Our focus
is on performance improvement in the context of Hadoop
and Java. However, we believe our column-oriented stor-
age techniques complement many of the techniques used in
Dremel.

8. CONCLUSIONS
The column-oriented storage techniques that have proven

so successful in parallel DBMSs can also be used to dra-
matically improve the performance of MapReduce. How-
ever, translating these techniques to a MapReduce imple-
mentation such as Hadoop presents unique challenges be-
cause of different replication and scheduling constraints, the
low-level MapReduce programming API, and the use of com-
plex types in MapReduce jobs. In this paper, we described
a new column-oriented binary storage format for Hadoop
that is not only compatible with Hadoop’s programming
APIs but also requires no changes to the core of Hadoop. It
includes features such as lightweight compression and lazy
record construction to avoid deserializing unwanted records.
Experiments on a real intranet crawl were used to show that
our column-oriented storage techniques can improve the per-
formance of the map phase in Hadoop by as much as two
orders of magnitude, and the overall time of a full Map-
Reduce job by over one order of magnitude.

9. ACKNOWLEDGEMENTS
We would like to thank the reviewers of this paper for

their constructive comments. This research was supported
in part by the National Science Foundation under grant IIS-
0963993.

10. REFERENCES

[1] Avro. http://avro.apache.org.

[2] Hadoop. http://hadoop.apache.org.
[3] Hive. http://hive.apache.org/.
[4] Jaql. http://code.google.com/p/jaql/.
[5] LZO. http://www.oberhumer.com/opensource/lzo/.

[6] Nutch. http://nutch.apache.org/.
[7] Protocol Buffers. http://code.google.com/p/protobuf/.
[8] Thrift. http://incubator.apache.org/thrift/.

[9] D. Abadi, S. R. Madden, and N. Hachem. Column-Stores
vs. Row-Stores: How Different Are They Really? In
SIGMOD, pages 967–980, 2008.

[10] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
Compression and Execution in Column-Oriented Database
Systems. In SIGMOD, pages 671–682, 2006.

[11] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden.
Materialization Strategies in a Column-Oriented DBMS. In
ICDE, pages 466–475, 2007.

[12] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin,
and A. Silberschatz. HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for Analytical
Workloads. PVLDB, 2(1):922–933, 2009.

[13] A. Ailamaki, D. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, pages
169–180, 2001.

[14] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, pages
225–237, 2005.

[15] Q. Chen et al. Efficiently Support MapReduce-like
Computation Models Inside Parallel DBMS. In IDEAS,
pages 43–53, 2009.

[16] S. Chen. Cheetah: A High Performance, Custom Data
Warehouse on Top of MapReduce. PVLDB,
3(2):1459–1468, 2010.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. CACM, 51(1):107–113, 2008.

[18] J. Dean and S. Ghemawat. MapReduce: A Flexible Data
Processing Tool. CACM, 53:72–77, January 2010.

[19] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin,
V. Setty, and J. Schad. Hadoop++: Making a Yellow
Elephant Run Like a Cheetah. PVLDB, 3(1):518–529, 2010.

[20] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and
Z. Xu. RCFile: A Fast and Space-efficient Data Placement
Structure in MapReduce-based Warehouse Systems. In
ICDE, 2011.

[21] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing
Tuple Reconstruction in Column-Stores. In SIGMOD,
pages 297–308, 2009.

[22] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
Optimization for MapReduce Programs. PVLDB, 4(6),
2011.

[23] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The Performance of
MapReduce: An In-depth Study. PVLDB, 3(1):472–483,
2010.

[24] C. Lemka, K.-U. Sattler, F. Faerber, and A. Zeier. Speeding
Up Queries in Column Stores. 6263:117–129, 2010.

[25] S. Melnik et al. Dremel: Interactive Analysis of Web-Scale
Datasets. PVLDB, 3(1):330–339, 2010.

[26] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic Optimization of Parallel Dataflow Programs. In
USENIX, pages 267–273, 2008.

[27] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for
Data Processing. In SIGMOD, pages 1099–1110, 2008.

[28] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A Comparison of
Approaches to Large-Scale Data Analysis. In SIGMOD,
pages 165–178, 2009.

[29] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. CACM, 33(6):668–676, 1990.

426

APPENDIX

A. RECORD ABSTRACTION
In a MapReduce job, the type of keys and values supplied

to the map function depends on the InputFormat. The pro-
grammer is responsible for supplying a map function that
is compatible with the InputFormat. For instance, in the
case of the job described in Figure 1, the programmer needs
to know that the SequenceFile being read contains keys of
type NullWritable and values of type Record.
In this paper, we assume that MapReduce jobs are writ-

ten using a generic class that provides a record abstrac-
tion. We use the Record interface supplied by the Avro
serialization framework. LazyRecord and EagerRecord de-
scribed in Section 5 are classes that implement this interface.
ColumnInputFormat produces keys of type NullWritable

and values of type Record.
Attributes are accessed using a get(name) method that

takes the name of the attribute as a parameter. The return
type for this method is java.lang.Object. As a result, type
casting is required to access the field values. This Record

class can be used for records that conform to any schema.
Figure 1 illustrates the use of this record abstraction in a
map function.
Other serialization frameworks have emerged in the open

source that generate a binary representation for a record.
Examples include Protocol Buffers [7] and Thrift [8]. These
frameworks typically allow developers to specify a schema
so that records can be serialized and deserialized efficiently.
The schema language supports complex fields like arrays,
maps, and nested records.
Avro also supports the notion of a “specific” record.

Given a schema, the Avro compiler can be used to produce
a Java class containing specific get methods for each of
the attributes with precise return types. For instance, one
could generate a URLInfo class using the schema from
Figure 2. The equivalent map function for Figure 1 would
be simplified to:

map(NullWritable key, URLInfoRecord rec)

{

if (rec.getUrl().contains.("ibm.com/jp"))

output.collect(null,

rec.get("metadata").get("content-type"))

}

While we used Avro, the principles we describe in this
paper are also applicable to Thrift and Protobufs. A minor
advantage of Avro is that code-generation is optional. A
generic record class can be used to process data without
generating code from a schema. Protobuf and Thrift require
code generation by default. Additional work would have
been needed to use those frameworks.
Note that as of Version 1.3.3, by default, Avro supplies

only a single get() method in its generated classes, much
like the generic Record class. Extending the compiler to
generate accessor methods with the appropriate return types
is not difficult.

B. ADDITIONAL EXPERIMENTS

B.1 Cost of Deserialization
We conducted a simple experiment to illustrate the over-

head involved in deserializing simple and complex types. We

Percentage of Typed Data

0% 20% 40% 60% 80% 100%

R
e

a
d

 B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

0

400

800

1200

1600

2000

Java Integers

Java Doubles

Java Maps

C++ Integers

C++ Doubles

C++ Maps

Figure 8: Microbenchmark examining overhead of
serialization and object creation.

created a dataset with 1 million records, each 1000 bytes
wide. We filled a given fraction f of the 1000 bytes with
integers. The remainder of the record was filled with a byte
array. The integers require deserialization when the data is
scanned. The byte array can be read into the record with-
out any deserialization. We vary the fraction f from 0.0 to
1.0. We measure the time taken to scan this entire dataset
in a simple Java program. The data was written to a local
file and the filesystem cache was warmed before reading the
data. As a result, the entire dataset was present in memory,
and no-disk I/O was incurred in any of the cases. We also
repeated the experiment in C++. The same single machine
configuration that was described in Section 6 was used here.

Figure 8 shows the total read bandwidth measured while
scanning this dataset as f was varied for different data types:
integers, doubles, and maps. For the map implementations,
we used java.util.map for Java and std::map for C++.

As shown, in each case, the read bandwidth drops as f
increases. This is because deserializing typed data imposes
a larger CPU overhead than reading a simply byte array. As
explained in Section 3.2, Java suffers much more from this
phenomenon than C++. The read bandwidth of the C++
program is substantially higher for integers and doubles than
the Java program.

The case of deserializing maps is more interesting. Each
map consisted of 4 entries, the keys were mutable strings and
the values were integers. Since maps require new objects
to be created, the total overhead of deserializing maps is
substantially larger. In fact, as the figure shows, when f
exceeds 60%, the rate at which maps are deserialized can be
slower than the bandwidth of a typical SATA disk.

B.2 Tuning RCFile
We studied the impact of varying the row-group size of

the RCFile on the scan tests described in Section 6.2. Using
the same dataset as before, we varied the row-group sizes
as 1MB, 4MB, and 16MB. The running times for scanning
various projections are shown in Figure 9.

For the case where a single integer was scanned, CIF read
a total of 415MB. RCFile read 16.5GB, 8.5GB, and 4.5 GB
for the 1MB, 4MB, and 16MB row-group size settings re-

427

Columns Scanned

A
llC

o
lu

m
n

s

1
 I

n
te

g
e

r

1
 S

tr
in

g

1
 M

a
p

1
 S

tr
in

g
+

1
 M

a
p

T
im

e
 (

s
e

c
)

0

300

600

900

1200

1500

1800

2100

CIF

16M RCFile

4M RCFile

1M RCFile

Figure 9: Tuning row-group size for RCFiles

spectively. The larger row-group size clearly helped achieve
better I/O elimination. However, a larger row-group size has
an adverse impact on the benefits from lazy decompression
as described by the authors of RCFile [20]. By eliminating
this additional tuning parameter, CIF is more robust and at
the same time offers better performance than RCFile.
The single integer scan was the worst case for RCFile.

The performance degradation in other cases (single string,
single map) was 2x-3x when using 16MB as the row-group
size.

B.3 Load Times
We measured the time taken to convert the synthetic

dataset used in Section 6.2 from SEQ to various formats.
These are presented in Table 2.

Layout Time (min)
CIF 89
CIF-SL 93
RCFile 89

Table 2: Load times with synthetic data.

Observe that the overhead of adding skip lists to the CIF
was fairly minor. We expect this cost to be representative.
The additional overhead comes from the fact HDFS exposes
an append-only API. While writing the output of a job, one
can only append to the file. It is not possible to go back
and alter any values. As a result, building skip lists requires
double buffering the data so one can actually calculate the
number of bytes for each skip pointer before writing the data
to disk. With the current load algorithm, the largest skip is
limited by the size of the main memory. Another observation
from Table 2 is that converting to uncompressed RCFiles
takes approximately the same amount of time as CIF. We
do not expect the load utilities that convert data to CIF to
be any worse than those that convert data to RCFile.

Selectivity

0% 20% 40% 60% 80% 100%

T
im

e
 (

s
e

c
)

600

650

700

750

800

850

900

CIF

CIF−SL

Figure 10: Benefits of lazy materialization and skip
lists.

R
e

a
d

 B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

0

10

20

30

40

50

60

Number of Columns

20 40 80

SEQ

CIF_1

CIF_10%

CIF_all

RCFile_1

RCFile_10%

RCFile_all

Figure 11: Comparison of CIF and RCFile as the
number of columns in a record increases.

B.4 Varying Selectivity
Working with the same dataset as in Section 6.2, we mea-

sured the benefits of skip lists and lazy deserialization as
the selectivity of the predicate in the map function was var-
ied. We measured the time taken to aggregate the value in
the map-typed column under a given key for all the records
where the string column satisfied a given pattern. We var-
ied the selectivity of the predicate and measured the running
time of the job. We compared the running time of CIF vs
CIF-SL. The results are shown in Figure 10.

The figure shows that for highly selective queries, CIF-SL
provides more savings by eliminating unnecessary deserial-
ization and object creation. As the selectivity gets closer
to 100% CIF-SL converges to the performance of CIF. The
overhead for CIF-SL with respect to CIF at 100% selectiv-
ity is minor. The performance benefits of CIF-SL depend
on the complex type, and the associated cost of deserializing
it.

B.5 Varying Record Size
In this experiment, we compared the performance of CIF

and RCFile as the number of columns in a record increases.

428

We generated three datasets with 20, 40, and 80 columns per
record. Each column contained a random string of length 30.
In each case, the total data size was approximately 60GB.
We conducted three scan tests where we projected 1 column,
10% of the columns, or all the columns of the dataset. For
the RCFile, we used 16MB as the row-group size. Figure 11
reports the read bandwidth measured for each of the scan
tests.
The figure shows that when projecting a small number of

columns, CIF performs better than RCFile in all cases. The
overhead of CIF over SEQ when scanning all the columns of

a dataset is greater as the number of columns in the dataset
increases. This is consistent with previous research on the
overheads of column oriented storage [25]. Another inter-
esting observation is that as the number of columns in the
dataset increases, the read bandwidth for reading a single
column decreases for RCFile, while it remains relatively sta-
ble for CIF. This is because in a wider row, the amount
of data corresponding to a single column in a row group
(16MB) decreases, and consequently the overheads associ-
ated with processing a row-group are amortized over fewer
records.

429

