
1

A Review of Automatic Selection Methods for Machine Learning Algorithms and Hyper-
parameter Values

Gang Luo (corresponding author)
Department of Biomedical Informatics, University of Utah, Suite 140, 421 Wakara Way, Salt Lake City, UT 84108, USA
gang.luo@utah.edu
Phone: 1-801-213-3565
Fax: 1-801-581-4297

Abstract

Machine learning studies automatic algorithms that improve themselves through experience. It is widely used for analyzing
and extracting value from large biomedical data sets, or “big biomedical data;” advancing biomedical research; and improving
healthcare. Before a machine learning model is trained, the user of a machine learning software tool typically must manually
select a machine learning algorithm and set one or more model parameters termed hyper-parameters. The algorithm and hyper-
parameter values used can greatly impact the resulting model’s performance, but their selection requires special expertise as
well as many labor-intensive manual iterations. To make machine learning accessible to layman users with limited computing
expertise, computer science researchers have proposed various automatic selection methods for algorithms and/or hyper-
parameter values for a given supervised machine learning problem. This paper reviews these methods, identifies several of
their limitations in the big biomedical data environment, and provides preliminary thoughts on how to address these limitations.
These findings establish a foundation for future research on automatically selecting algorithms and hyper-parameter values for
analyzing big biomedical data.

Keywords: Machine learning, big biomedical data, automatic algorithm selection, automatic hyper-parameter value selection

2

1. Introduction
1.1 The use of machine learning in analyzing big
biomedical data

Due to widespread use of applications such as electronic
medical records, genomic sequencing, and mobile sensors,
biomedical data are being accumulated at an exponentially
growing rate annually. According to the current trend, the
volume of healthcare data is expected to increase from 500
petabytes in 2012 to 25,000 petabytes by 2020 (Roski et al.
2014). Machine learning studies automatic algorithms that
improve themselves through experience. It is a key
technology to transform large biomedical data sets, or “big
biomedical data,” into actionable knowledge.

Machine learning is widely used in many biomedical
applications, including predictive modeling for healthcare
(Steyerberg 2009), computer-aided diagnosis, and biomedical
natural language processing. For instance, machine learning
models can be used to determine an individual’s health risk,
future behavior, or outcomes to provide appropriate and
timely care, such as:
(1) Predict whether an asthma patient will be hospitalized in

the following year. Enroll patients at high risk of
hospitalization in an asthma case management program
(Luo et al. 2015b).

(2) Predict a diabetic patient’s total healthcare cost in the
following year. Enroll patients at high risk of incurring
high costs in a diabetes case management program (Luo
et al. 2015b).

(3) Predict whether a child with clinically significant
bronchiolitis will develop asthma. Schedule more
frequent physician visits for children at high risk of
asthma development to help physicians make timely
asthma diagnoses and begin asthma treatment earlier
(Luo et al. 2015a; Luo et al. 2014). An episode of
bronchiolitis is clinically significant if it causes an
emergency department visit, outpatient clinic visit,
and/or hospitalization.

(4) In the emergency department, predict appropriate
hospital admissions for bronchiolitis patients to guide
disposition decisions (Luo et al. 2014; Luo et al. 2016).

The input variables used for building machine learning
models can come from various sources, such as structured
data in healthcare administrative systems, electronic medical
records, and government databases (demographics, insurance,
claims, diagnoses, allergies, immunizations, lab results,
medications, smoking status, vital signs, family history,
mortality record, aggregated census record, etc.), attributes
extracted from genomic sequences, medical images, and
clinical notes, and aggregated results from environmental
monitors and mobile sensors. The data set can expand a wide
spectrum in size, including from several dozen to millions of
rows and from a few to several thousand attributes. Many
more examples of the use of machine learning in biomedicine
are described in the books (Steyerberg 2009; Cleophas and
Zwinderman 2013a; Cleophas and Zwinderman 2013b;
Cleophas and Zwinderman 2013c).

1.2 The state of the art of building machine learning
models

To lower the entry bar to using machine learning, computer
science and statistics researchers have developed open source
software such as Weka (Witten et al. 2011), RapidMiner, R,
and KNIME (Jovic et al. 2014) that integrate a wide variety
of machine learning algorithms as well as provide an intuitive
graphical user interface. Despite these efforts, it is still a
challenging task to use machine learning effectively, partly
because of the difficulty in manually selecting an effective
combination of an algorithm and hyper-parameter values for
a given supervised machine learning problem, a.k.a. model
selection.

There are many machine learning algorithms, most of
which are complex. Each machine learning algorithm has two
types of model parameters: ordinary parameters that are
automatically optimized or learned in a model training phase,
and hyper-parameters that are typically set by the user of a
machine learning software tool manually before a machine
learning model is trained. A list of example machine learning
algorithms, ordinary parameters, and hyper-parameters is
shown in Table 1. Some of these examples will also be
mentioned in the text below.

Table 1 A list of example machine learning algorithms, ordinary parameters, and hyper-parameters
Machine learning

algorithm
Example ordinary parameters Example hyper-parameters

Decision tree the input variable used at each internal node,
the threshold value chosen at each internal
node

the minimal number of data instances at a leaf
node, the pruning strategy for the tree after
training

Random forest the input variable used at each internal node of
a decision tree, the threshold value chosen at
each internal node of a decision tree

the number of decision trees, the number of
input variables to consider at each internal
node of a decision tree

Support vector
machine

the support vectors, the Lagrange multiplier for
each support vector

the kernel to use, the degree of a polynomial
kernel, the regularization constant C, the ε for
round-off error, the tolerance parameter

Neural network the weight on each edge the number of hidden layers, the number of
nodes on each hidden layer, the number of

3

epochs to train through, the learning rate for
the backpropagation algorithm

k-nearest neighbor the number of nearest neighbors used (k), the
mechanism of weighting the nearest neighbors,
the distance function to use

Naïve Bayes the probability of an input variable taking on a
particular value given a specific class p(xi|c),
the prior probability of each class p(c)

whether kernel density estimator or normal
distribution is used for numeric attributes, the
window width of a kernel density estimator

Multiboost with
decision stumps

the input variable used by each decision stump,
the threshold value chosen by each decision
stump, the weight of each decision stump

the number of iterations, the number of sub-
committees, whether resampling is used for
boosting

Given a supervised machine learning problem such as

predicting whether an asthma patient will be hospitalized in
the following year, a researcher usually builds machine
learning models in a manual and iterative way. First, the
researcher manually selects a machine learning algorithm
from a long list of applicable algorithms such as the 39
classification algorithms available in Weka (Thornton et al.
2013): decision tree, random forest, support vector machine,
neural network, k-nearest neighbor, naïve Bayes, multiboost
with decision stumps, etc. Second, the researcher manually
determines the values of the chosen algorithm’s hyper-
parameters. For example, if k-nearest neighbor is used, the
researcher needs to determine the value of k, the mechanism
of weighting the nearest neighbors, the distance function to
use, etc. As another example, if support vector machine is
used, the researcher needs to determine the kernel to use, the
value of the regularization constant C, the value of the ε for
round-off error, the value of the tolerance parameter, etc. In
the case of the polynomial kernel being selected, the
researcher also needs to determine the polynomial’s degree.
Third, the researcher trains the machine learning model to
automatically optimize the ordinary parameters of the chosen
algorithm. If the model achieves satisfactory prediction
accuracy, the model building process is complete. Otherwise,
the researcher manually changes the values of the hyper-
parameters and/or the algorithm and re-trains the model. This
process is repeated until the researcher obtains a model with
satisfactory accuracy, runs out of time, or thinks that the
model’s accuracy cannot be improved much further any more.
Due to the enormous number of possible combinations of
algorithms and hyper-parameter values, the model building
process can easily take hundreds or thousands of manual
iterations and is labor intensive.

Moreover, the machine learning algorithm and hyper-
parameter values used affect the resulting model’s accuracy,
in some cases changing it from 1% to 95% (Thornton et al.
2013; Petrak 2000). As shown in Thornton et al. (2013), for
the 39 algorithms available in Weka, the average change in
model accuracy on 21 data sets caused by the algorithm and
hyper-parameter values used is 46%. Even if only a few
popular algorithms (support vector machine, random forest,
decision tree, neural network, Adaboost, k-nearest neighbor,
logistic regression) are considered, the change in model
accuracy caused by the algorithm and hyper-parameter values

used is still over 20% on 14 of 21 data sets. Also, the effective
algorithm and hyper-parameter values vary by the specific
machine learning problem (Thornton et al. 2013; Komer et al.
2014). Among the 39 algorithms available in Weka, each
produces a model accuracy that is at least 22% worse than that
produced by the best algorithm on at least one of 21 data sets.
Selecting the effective algorithm and hyper-parameter values
is currently an art requiring both deep machine learning
knowledge and repeated trials. This is not only beyond the
capability of layman users with limited computing expertise,
but also often a non-trivial task even for machine learning
experts (Sparks et al. 2015).

1.3 Automatic selection of machine learning algorithms
and hyper-parameter values

To make machine learning accessible to layman users,
computer science researchers have proposed various
automatic selection methods for machine learning algorithms
and/or hyper-parameter values for a given supervised
machine learning problem. These methods’ goal is to quickly
find, within a pre-specified resource limit, an effective
algorithm and/or combination of hyper-parameter values that
maximize an accuracy measure on the given machine learning
problem and data set. An example accuracy measure is area
under the receiver operating characteristic curve. The
resource limit is typically specified by the amount of time, the
number of algorithms and/or combinations of hyper-
parameter values tested on the data set, or the number of scans
over the training data (Komer et al. 2014). Using an automatic
selection method, the user of a machine learning software tool
can skip the manual and iterative process of selecting an
effective algorithm and/or combination of hyper-parameter
values, which is labor intensive and requires a high skill set in
machine learning. This skip applies to every supervised
machine learning problem because the automatic selection
methods rely on no special property of any specific problem.

Although further improvement is needed, some automatic
selection methods for machine learning algorithms and/or
hyper-parameter values can already find equally good or
better results than careful manual tuning by machine learning
experts (Komer et al. 2014; Snoek et al. 2012; Bergstra et al.
2011). This shows that automatic selection can produce
meaningful results. As mentioned in Section 2.2, many
automatic model selection methods in the statistics literature

4

focus on probabilistic or nested models and are not ideally
suited for machine learning, in which many models are
neither probabilistic nor nested. In this paper, we review the
existing automatic selection methods from the computer
science literature, present their limitations and knowledge
gaps in the big biomedical data environment, and discuss
specific responses to selected gaps and limitations. By
establishing this foundation, we hope to stimulate future
research on automatically selecting algorithms and hyper-
parameter values for analyzing big biomedical data.

2. Problem Statement and Related Topics
2.1 Problem statement

Given a set of machine learning algorithms ࣛ and a data
set D, the goal of algorithm selection is to find the algorithm
∗ܣ ∈ ࣛ having the highest generalization accuracy among all
algorithms in ࣛ. The generalization accuracy of an algorithm
A∈ ࣛ is A’s accuracy for new data instances not in D. It is
estimated by M(A, D), the accuracy achieved by A when
trained and tested on D, e.g., through stratified multi-fold
cross validation to reduce the likelihood of overfitting (Witten
et al. 2011). Using this estimate, the goal of algorithm
selection is to find ܣ∗ ∈ ሻ. In practice dueܦ	,ܣሺܯࣛ∋ݔܽ݉݃ݎܽ
to resource constraints, it is often not possible to test every
algorithm in ࣛ thoroughly and find the algorithm with the
highest generalization accuracy with full certainty. Instead,
we strive to find, within a pre-specified resource limit, an
algorithm that can achieve high generalization accuracy.
Similarly, given an algorithm A, a hyper-parameter space Λ,
and a data set D, the goal of hyper-parameter value selection
is to find the combination of hyper-parameter values *Λ
having the highest generalization accuracy among all
combinations of hyper-parameter values in Λ. That is, ߣ∗ ∈
 ሻ. Here, A denotes the algorithm Aܦ	,ఒܣሺܯఒ∈ஃݔܽ݉݃ݎܽ
using the combination of hyper-parameter values . Put
together, the goal of combined algorithm and hyper-
parameter value selection is to find the algorithm ܣ∗ ∈ ࣛ and
combination of hyper-parameter values *Λ having the
highest generalization accuracy among all algorithms in ࣛ
and all combinations of hyper-parameter values in Λ. That is,
∗ఒ∗ܣ ∈ .ሻܦ	,ఒܣሺܯఒ∈ஃ	∈ࣛ,ݔܽ݉݃ݎܽ

Although machine learning is a computer science field, the
problem of automatic selection of machine learning
algorithms and/or hyper-parameter values has a close
relationship with several fields outside of computer science.
All of these fields share the commonality of using a specific
quality criterion to compare different objects, with the goal of
selecting a good one. In particular, many ideas from statistical
model selection and traditional optimization have been
borrowed in machine learning for selecting algorithms and
hyper-parameter values. Before moving to this paper’s focus
on reviewing the automatic selection work in computer
science, we briefly discuss a few aspects of the several related
fields outside of computer science. The discussion is not
intended to be exhaustive. Instead, it is used for describing

several unique properties of automatic selection of algorithms
and/or hyper-parameter values in machine learning within the
context of the relationship among all of these fields.

2.2 Relationship with statistical model selection

Model selection has a large body of literature and a long
history in statistics and related areas, such as econometrics
and quantitative social science (Claeskens and Hjort 2008;
Burnham and Anderson 2003; Hendry and Doornik 2014). In
the statistics literature, model selection can have three
different meanings:
(1) Selecting effective hyper-parameter values for a given

algorithm/approach and modeling problem. For example,
in time series analysis, for an autoregressive moving
average ARMA(p, q) model we need to determine both
the number of autoregressive terms p and the number of
moving average terms q. As another example, for
polynomial regression we need to determine the
polynomial’s degree.

(2) Selecting an effective algorithm/approach for a given
modeling problem.

(3) Feature/variable selection (Kadane and Lazar 2004).
In this paper when discussing statistics, we use model
selection to refer to the first two meanings. For machine
learning, we mention selection of algorithms and selection of
hyper-parameter values explicitly for clarity.

In the statistics literature, many automatic model selection
methods focus on probabilistic models (particularly for
Bayesian statistics (Gelman et al. 2013)) or nested models (for
frequentist statistics) (Claeskens and Hjort 2008; Kadane and
Lazar 2004). The methods focusing on probabilistic or nested
models are not ideally suited for machine learning, as many
machine learning models are neither probabilistic nor nested.
Examples of such machine learning models include k-nearest
neighbor, decision tree, and support vector machine. An ideal
automatic selection method for machine learning algorithms
and/or hyper-parameter values should cover both
probabilistic and non-probabilistic models, as well as both
nested and non-nested models. Some automatic model
selection methods in the statistics literature are based on
traditional optimization techniques. For the reasons listed in
Section 2.3, many of those methods are not ideally suited for
machine learning.

2.3 Relationship with traditional optimization

Optimization studies the minimization or maximization of
an objective function. In optimization, frequently the goal is
to find a point at which the function value is as close to the
global optimum as possible by avoiding being trapped in a
local optimum. Automatic selection of machine learning
algorithms and/or hyper-parameter values is an optimization
problem. Optimization has a large body of literature and a
long history (Nocedal and Wright 2006; Bertsekas 1999).
However, many traditional optimization methods are not
necessarily well suited for this problem, which has its own
unique properties:

5

(1) The optimization target M(A, D) is usually a non-concave
function. Hence, convex optimization methods (Boyd
and Vandenberghe 2004) are not always suitable for this
problem.

(2) The optimization target M(A, D) is usually non-
differentiable, making gradient-based optimization
methods not always suitable for hyper-parameter value
selection. Also, some traditional derivative-free
optimization methods (Nocedal and Wright 2006)
perform poorly at selecting hyper-parameter values,
partly because the optimization target lacks smoothness
(Sparks et al. 2015).

(3) The choice of algorithm is a categorical variable. Also,
hyper-parameters include categorical (e.g., the type of
kernel in a support vector machine), discrete (e.g., the
number of nodes in the first hidden layer in a neural
network), and continuous variables. Thus, numerical
optimization methods (Nocedal and Wright 2006;
Bertsekas 1999) dealing with numerical variables are not
always suitable for this problem.

(4) For a given combination of hyper-parameter values, it is
usually computationally expensive to train a machine
learning algorithm on a data set of moderate or large size.
In other words, each function evaluation is extremely
expensive (Snoek et al. 2012), particularly for big
biomedical data. As a result, handling this problem often
requires using techniques such as sampling of the data set
to obtain approximate values of the optimization target
function M(A, D). An ideal automatic selection method
for machine learning algorithms and/or hyper-parameter
values should be able to use these approximate values. In
contrast, function evaluation is inexpensive in many
other black-box optimization problems. Thus, many
black-box optimization methods require using exact
values of the function.

2.4 Relationship with statistical model averaging and
ensemble methods

Multiple base models combined together frequently
outperform any single one of them. In statistics, the technique
of combining multiple base models together is known as
model averaging (Claeskens and Hjort 2008). In machine
learning, this is known as ensemble methods (Zhou 2012).
Neither model averaging nor ensemble methods eliminate the
need for automatically selecting machine learning algorithms
and/or hyper-parameter values. In fact, some automatic
selection methods were designed specifically to address the

issue of automatically forming and selecting ensembles
(Thornton et al. 2013; Lacoste et al. 2014a, b).

In the statistics literature, many model averaging methods
focus on probabilistic models (Claeskens and Hjort 2008).
This is particularly the case for Bayesian statistics (Gelman et
al. 2013). The methods focusing on probabilistic models are
not ideally suited for machine learning, as many machine
learning models are non-probabilistic.

In the machine learning literature, existing ensemble
methods (Zhou 2012) usually do not address the issue of
automatically selecting an effective combination of hyper-
parameter values for each individual base model. An
ensemble of multiple base models is unlikely to achieve its
maximum performance without each individual base model
doing so first. Moreover, existing ensemble methods
frequently do not address the issue of automatically selecting
the number and types of individual base models for the
ensemble. Without choosing the appropriate number and
types of individual base models, an ensemble is unlikely to
achieve its maximum performance.

Due to the reasons mentioned above, many new methods
have been developed for automatic selection of machine
learning algorithms and/or hyper-parameter values. These
methods are often related to, but are different from, traditional
statistical model selection and optimization methods. Two
other topics closely related to automatic selection of machine
learning algorithms and/or hyper-parameter values are
automatic feature selection (Liu and Motoda 2013) and model
evaluation/validation (Steyerberg 2009; Alpaydin 2014).
Each topic has its own literature that has been well covered in
machine learning textbooks, and is not discussed in this paper.

3. Existing Automatic Selection Methods for Machine
Learning Algorithms and/or Hyper-parameter Values

In this section, we review the existing automatic selection
methods for machine learning algorithms and/or hyper-
parameter values for a given supervised machine learning
problem. A summary of these methods is given in Table 2.
Some automatic selection methods require knowledge from
experiments with previous machine learning problems, while
others do not. In practice, a comprehensive database of
experiments with previous machine learning problems is
often unavailable. In this case, only methods that do not
require such a database can be used. So far, most work on
automatic selection focuses on either selecting algorithms or
selecting hyper-parameter values for a specific algorithm. The
first published and implemented work on automatically
selecting both algorithms and hyper-parameter values
appeared in 2013 (Thornton et al. 2013).

6

Table 2 Categorization of existing automatic selection methods for machine learning algorithms and/or hyper-parameter values
Category Article Method Can

efficiently
handle
big data

Can
handle a
wide
range of
algorithms

Can handle
various
types of
hyper-
parameters

Can handle
any number
of hyper-
parameter
value
combinations

Select
machine
learning
algorithms

Independent
of previous
problems

Pfahringer et al. 2000 Landmarking
Petrak 2000 Sampling-based

landmark
✓ ✓

Soares et al. 2001 Sampling-based
landmark

✓ ✓

Maron and Moore 1993 Gradually expand the
test set

 ✓

Require
knowledge
from
experiments
with previous
problems

Brazdil et al. 2003 Meta-learning ✓ ✓
Leite and Brazdil 2005 Sampling + meta-

learning
✓ ✓

Leite and Brazdil 2010 Sampling + meta-
learning

✓ ✓

van Rijn JN et al. 2015 Meta-learning ✓ ✓
Leite et al. 2012 Tournament testing +

meta-learning
 ✓

Select
hyper-
parameter
values

Independent
of previous
problems

Bergstra and Bengio
2012

Random search ✓ ✓

Snoek et al. 2012 Sequential model-
based optimization

 ✓

Bergstra et al. 2011 Sequential model-
based optimization

 ✓

Hutter et al. 2011 Sequential model-
based optimization

 ✓ ✓

Wang et al. 2015 Sampling + sequential
model-based
optimization

✓ ✓ ✓

Swersky et al. 2014 Freeze-thaw ✓
Bengio 2000 Gradient-based ✓
Guo et al. 2008 Particle swarm

optimization
 ✓

Adankon and Cheriet
2009

Gradient descent ✓

Domhan et al. 2015 Sequential model-
based optimization +
terminate unpromising
runs early

 ✓ ✓

Require
knowledge
from
experiments
with previous
problems

Bardenet et al. 2013 Surrogate-based
ranking + sequential
model-based
optimization

 ✓

Swersky et al. 2013 Sequential model-
based optimization

 ✓

Yogatama and Mann
2014

Sequential model-
based optimization

 ✓

Wistuba et al. 2015a Sequential model-
based optimization

 ✓

7

Wistuba et al. 2015b Sequential model-
based optimization

 ✓

Select both
machine
learning
algorithms
and hyper-
parameter
values

Independent
of previous
problems

Thornton et al. 2013 Sequential model-
based optimization

 ✓ ✓ ✓

Lacoste et al. 2014a Sequential model-
based optimization

 ✓ ✓

Lacoste et al. 2014b Sequential model-
based optimization

 ✓ ✓ ✓

Komer et al. 2014 Sequential model-
based optimization

 ✓ ✓ ✓

Sparks et al. 2015 Multi-armed bandit +
batching

 ✓ ✓ ✓

Hoffman et al. 2014 Multi-armed bandit ✓ ✓
Sabharwal et al. 2016 Cost-sensitive training

data allocation
✓ ✓ ✓

Ali et al. 2014 Active learning +
model selection

✓ ✓ ✓

Require
knowledge
from
experiments
with previous
problems

Feurer et al. 2015a Sequential model-
based optimization +
meta-learning

 ✓ ✓ ✓

Feurer et al. 2015b Sequential model-
based optimization +
meta-learning

 ✓ ✓ ✓

3.1 Automatic selection methods for machine learning
algorithms

Several methods have been proposed for automatically
selecting algorithms for a given supervised machine learning
problem. In this case, an algorithm’s hyper-parameters are
typically set to their default values (Leite et al. 2012).

3.1.1 Methods independent of previous machine learning
problems

Landmarking (Pfahringer et al. 2000) is a method for
automatically selecting machine learning algorithms. To
quickly obtain a rough estimate of an algorithm’s accuracy on
a data set, the method runs a simplified version of the
algorithm called a landmarker on the data set. For instance, a
simplified version of a decision tree classifier is its top node.
The accuracy estimates are used to select the algorithm to be
used. In the selection process, we can use either the
landmarkers’ absolute accuracy measures or the relationship
of the landmarkers’ accuracy relative to each other
(Fürnkranz and Petrak 2001). Often, a landmarker’s accuracy
cannot represent the original algorithm’s accuracy well,
causing a less effective algorithm to be selected.

Sampling-based landmark (Petrak 2000; Fürnkranz and
Petrak 2001; Soares et al. 2001) is another method for
automatically selecting machine learning algorithms. To
quickly obtain a rough estimate of each algorithm’s accuracy
on a data set, the method applies the algorithm on a sample of
the data set. The accuracy estimates are used to select the
algorithm to be used on the whole data set.

Consider a fixed set of models, one per machine learning
algorithm. Maron and Moore (1993) proposed a method to

expedite the process of discarding bad models. First, the same
training set is used to train each model. Then the test set is
gradually expanded to obtain a progressively more precise
estimate of each model’s accuracy together with a confidence
bound. When a model is clearly outperformed by another in
accuracy, as determined by their confidence bounds, the
former is discarded.

3.1.2 Methods requiring knowledge from experiments
with previous machine learning problems

Meta-learning (Brazdil et al. 2003) is a method for
automatically selecting machine learning algorithms. The
method stores previous experimental results of different
algorithms’ accuracy on various machine learning problems
and data sets. Each data set is characterized by several
measures such as the number of data points present, the
number of categorical attributes present, the number of
numerical attributes present, and the entropy of classes. A
predictive model is built on previous experimental results to
predict each algorithm’s accuracy on a new machine learning
problem and data set. The algorithm with the highest
predicted accuracy is selected.

By combining the ideas of sampling and meta-learning,
Leite and Brazdil (2005) proposed a method for automatically
selecting machine learning algorithms. For each algorithm
and previous data set, a learning curve (Provost et al. 1999) is
computed and stored. As shown in Fig. 1, the learning curve
shows how the machine learning model’s accuracy improves
when more data are used to train the model. Consider a new
machine learning problem and data set. For each algorithm,
several samples of the new data set are used to train and

8

evaluate the machine learning model to quickly obtain an
initial segment of the learning curve. A regression model is
built from prior experimental results on previous data sets to
predict the machine learning model’s accuracy when (a large
sample of) the whole new data set is used to train and evaluate
the machine learning model. The algorithm with the highest
predicted accuracy is selected.

Fig. 1 An example learning curve

The above method was refined in Leite and Brazdil (2010).

There, instead of following a fixed sequence of sample sizes
one by one, the plan of conducting experiments on samples of
the new data set is built up gradually, by considering prior
experimental results on both previous data sets and the new
data set. Consequently, differing sequences of sample sizes
are used for different machine learning algorithms.

By considering the amount of time needed for testing a
machine learning algorithm on the data set in the meta-
learning process, van Rijn JN et al. (2015) proposed a method
for automatically selecting algorithms. The method optimizes
the ratio of forecasted accuracy to the r-th square root of the
amount of time needed for testing an algorithm on the data
set, where r is a pre-determined positive constant controlling
the importance of time. This gives preference to algorithms
that are not only likely to produce accurate machine learning
models, but also likely to be evaluated quickly.

By combining the ideas of tournament testing and meta-
learning, Leite et al. (2012) proposed a method for
automatically selecting machine learning algorithms. The
method proceeds in rounds. In each round, the similarity
between the new data set and every previous data set is re-
computed based on prior experimental results of different
algorithms’ accuracy on various machine learning problems
and data sets. Among all algorithms that have been evaluated
on the new data set so far, the one achieving the highest
accuracy is the current best candidate algorithm. Based on
data set similarities and different algorithms’ accuracy on
previous data sets, a challenger algorithm most likely to
outperform the current best candidate algorithm on the new
data set is selected. The challenger algorithm is evaluated and
its accuracy is obtained on the new data set. Then the whole
process is repeated until a stopping criterion is satisfied.

Usually, a good algorithm can be found after a small portion
of all algorithms is evaluated on the new data set.

3.2 Automatic selection methods for hyper-parameter
values for a given machine learning algorithm

For a given supervised machine learning problem, a key
question in comparing different machine learning algorithms
is to determine whether one algorithm is fundamentally
superior to another, or the former outperforms the latter just
because hyper-parameters have been better tuned for the
former. In addition to making machine learning accessible to
layman users, automatic selection methods for hyper-
parameter values also facilitate comparing different
algorithms based on generalization accuracy through
automatically tuning hyper-parameters (Hutter et al. 2009).

In selecting hyper-parameter values for a machine learning
algorithm, both conditional and unconditional hyper-
parameters need to be considered. In contrast to the case of an
unconditional hyper-parameter, a conditional hyper-
parameter’s relevance depends on another hyper-parameter’s
value. For instance, in the case of support vector machine,
certain kernel parameters are relevant only if the
corresponding kernel type is selected. In general, as shown in
Fig. 2, all hyper-parameters of an algorithm form a tree or,
sometimes, a directed acyclic graph.

Fig. 2 An example dependency tree formed by all hyper-
parameters of a machine learning algorithm

3.2.1 Methods independent of previous machine learning
problems

Bergstra and Bengio (2012) demonstrated that for a given
machine learning algorithm, random search is an effective
method for selecting hyper-parameter values. It is more
effective than an exhaustive search over a grid of hyper-
parameter values. For a specific machine learning problem,
usually only some hyper-parameters really matter. The others
have little impact on the machine learning model’s accuracy.
The set of important hyper-parameters varies by the machine
learning problem. A method for quantifying the importance
of different hyper-parameters is described in Hutter et al.
(2014).

m
ac

hi
ne

 le
ar

ni
ng

 m
od

el
's

ac

cu
ra

cy

training set size

unconditional
hyper-parameter p1

conditional hyper-
parameter p2

conditional hyper-
parameters p3 and p4

conditional hyper-
parameters p5, p6, and p7

value 1
of p2

value 2
of p2

conditional hyper-
parameters p8 and p9

value 1
of p1

value 2
of p1

9

Sequential model-based optimization (Snoek et al. 2012;
Bergstra et al. 2011; Hutter et al. 2011; Shahriari et al. 2015)
is a commonly used method for automatically selecting
hyper-parameter values for a given machine learning
algorithm. The method first tests one or more combinations
of hyper-parameter values, e.g., each is a random combination
or the algorithm’s default, and obtains the corresponding
machine learning models’ accuracy on the data set. A
regression model is built to predict the accuracy of a machine
learning model based on hyper-parameter values. Random
forest and Gaussian process are two regression models
commonly used for this purpose. For a specific combination
of hyper-parameter values, evaluating the regression model’s
output is less expensive than training the machine learning
model and assessing its accuracy on the data set. When
training the regression model and using it for predictions,
unused conditional hyper-parameters are assigned to their
default values (Thornton et al. 2013). Then the following
three steps are repeated until reaching a pre-determined
stopping condition: use the regression model to select a
promising combination of hyper-parameter values co to test
next; train the machine learning model and assess its accuracy
a on the data set at co; and use the new data point (co, a) to
modify the regression model. In reality, the regression model
can be misled. To achieve good performance even in this
scenario, every second combination of hyper-parameter
values to assess next is randomly selected. Thus, new areas of
the hyper-parameter space can be probed (Hutter et al. 2011).

In selecting a promising combination of hyper-parameter
values to test next, a typical approach is to optimize a specific
measure of expected improvement in accuracy (Snoek et al.
2012). Frequently, the time t() needed for testing a
combination of hyper-parameter values on the data set
varies significantly from one combination to another. As a
result, this approach can be sub-optimal under a fixed total
amount of time allowed for automatically selecting hyper-
parameter values. A better approach is to consider both
expected improvement in accuracy and t() simultaneously.
Along these lines, Snoek et al. (2012) used a separate
Gaussian process to model ln(t()) and optimized the ratio of
expected improvement in accuracy to t(). This gives
preference to combinations of hyper-parameter values that are
not only likely to produce accurate machine learning models,
but also likely to be evaluated quickly.

Wang et al. (2015) proposed combining sampling and
sequential model-based optimization to automatically select
hyper-parameter values for a given machine learning
algorithm. The proposed method first performs sequential
model-based optimization on a relatively small random
sample of the data set, which is used to quickly provide a
rough estimate of the accuracy that a combination of hyper-
parameter values can achieve on the whole data set. Then the
top few candidate combinations of hyper-parameter values
producing the highest accuracies are used to initialize
sequential model-based optimization on the whole data set. If

needed, the proposed method can proceed in multiple stages
by gradually expanding the random sample of the data set.

Assuming that the error rate of a model roughly follows an
exponential decay during the model training process, Swersky
et al. (2014) developed a freeze-thaw method to automatically
select hyper-parameter values for a given machine learning
algorithm. At any time during the sequential model-based
optimization process, the method keeps a set of partially
completed models and uses their forecasted final accuracies
to determine whether to freeze training an old model, continue
training a partially completed model, or start training a new
model with a different combination of hyper-parameter
values. This saves unnecessary overhead due to continuing
training unpromising, partially completed models to
completion.

Bengio (2000) proposed a gradient-based method to
automatically select hyper-parameter values for a given
machine learning algorithm. At any step, the search direction
is defined by the gradient of a model selection criterion at the
current point in the hyper-parameter space.

Guo et al. (2008) used particle swarm optimization to
automatically select hyper-parameter values for the machine
learning algorithm of least-squares support vector machine.
As a population-based optimization method, particle swarm
optimization simulates the behavior of a group of birds
looking for food randomly in an area.

Through minimizing an empirical error criterion, Adankon
and Cheriet (2009) used a gradient descent method to
automatically select hyper-parameter values for the least-
squares support vector machine.

To speed up automatically selecting hyper-parameter
values for deep neural networks, Domhan et al. (2015)
conducted early termination of unpromising runs training the
model for a combination of hyper-parameter values.

3.2.2 Methods requiring knowledge from experiments
with previous machine learning problems

By combining surrogate-based ranking and sequential
model-based optimization, Bardenet et al. (2013) proposed a
method for automatically selecting hyper-parameter values
for a given machine learning algorithm. The method stores
previous experimental results of the algorithm’s accuracy for
different combinations of hyper-parameter values on various
machine learning problems and data sets. Each data set is
characterized by several measures. The method first builds a
Gaussian process regression model on previous experimental
results to predict the ranking of various combinations of
hyper-parameter values on a new machine learning problem
and data set. The ranking is based on the algorithm’s
accuracy. Then the following three steps are repeated until
arriving at a pre-determined stopping condition: use the
regression model to find the highest ranked combination of
hyper-parameter values co to assess next; train the machine
learning model and assess its accuracy a on the data set at co;
and use the new data point (co, a) to modify the regression
model.

10

Using sequential model-based optimization and
experimental results on previous data sets, Swersky et al.
(2013) proposed a method for automatically selecting hyper-
parameter values for a given machine learning algorithm. The
method builds a Gaussian process regression model, with
normalized deviations from the mean per data set being the
response values. The parameter estimates’ posterior
probabilities are computed using a maximum likelihood
approach. Yogatama and Mann (2014) proposed a similar
method, where the parameter estimates’ posterior
probabilities are computed using a Monte Carlo approach.

Using sequential model-based optimization and
experimental results on previous data sets, Wistuba et al.
(2015a, b) proposed two methods for automatically selecting
hyper-parameter values for a given machine learning
algorithm. In each iteration of the sequential model-based
optimization process, the first method (Wistuba et al. 2015a)
uses knowledge extracted from experimental results on
previous data sets to prune regions of the hyper-parameter
space unlikely to contain good combinations of hyper-
parameter values. When initializing the selection process of
hyper-parameter values, the second method (Wistuba et al.
2015b) determines the initial combinations of hyper-
parameter values through optimizing for a hyper-parameter
loss function. In this way, the initial combinations are not
limited to the ones that have been tried in previous
experiments. Also, meta-features of data sets are not required
because data set similarities do not need to be computed.

3.3 Automatic selection methods for both machine
learning algorithms and hyper-parameter values

Several papers have been published on automatically and
simultaneously selecting algorithms and hyper-parameter
values for a given supervised machine learning problem.

3.3.1 Methods independent of previous machine learning
problems

Auto-WEKA (Thornton et al. 2013) is the first published
and implemented work on automatically selecting algorithms
and hyper-parameter values for a given machine learning
problem. Auto-WEKA runs on one computer and is based on
Weka (Witten et al. 2011), a widely used open-source
machine learning and data mining toolkit written in Java.
Auto-WEKA considers all 39 machine learning classification
algorithms implemented in Weka. By treating the choice of
algorithm as a new hyper-parameter at the root level, Auto-
WEKA maps the problem of selecting algorithms and hyper-
parameter values to the problem of selecting hyper-parameter
values. Auto-WEKA uses sequential model-based
optimization and a random forest regression model to
approximate the dependence of a model’s accuracy on the
algorithm and hyper-parameter values. By treating the choice
of feature selection technique as a hyper-parameter, Auto-
WEKA can automatically choose feature selection techniques
during the model building process. Auto-WEKA limits each
ensemble classifier to use no more than five base classifiers.

Lacoste et al. (2014a, b) extended sequential model-based
optimization to remove this limitation.

Using an approach similar to that in Auto-WEKA, Komer
et al. developed the software hyperopt-sklearn (Komer et al.
2014; Bergstra et al. 2013), which automatically selects
machine learning algorithms and hyper-parameter values for
scikit-learn (Pedregosa et al. 2011). Scikit-learn is a library of
machine learning algorithms written in Python. If desired, the
user can specify a narrower search space of algorithms and
hyper-parameter values in hyperopt-sklearn to improve
search speed. Since scikit-learn can handle only small to
medium-sized data sets (Feurer et al. 2015a), any software
developed on top of it will have the same limitation.

MLbase (Sparks et al. 2015; Kraska et al. 2013) is the first
published work on automatically selecting algorithms and
hyper-parameter values for a given machine learning problem
that supports distributed computing on a cluster of commodity
computers. MLbase is based on MLlib (Kraska et al. 2013;
Sparks et al. 2013), Spark’s machine learning library. Spark
(Zaharia et al. 2010) is a widely used open source big data
software system supporting Google’s MapReduce framework
(Dean and Ghemawat 2004) for distributed computing. Spark
was developed on top of the Hadoop distributed file system,
the open source implementation of Google’s BigTable file
system (Chang et al. 2006). To improve performance, Spark
executes most operations in memory and avoids disk
inputs/outputs whenever possible.

MLbase is a framework yet to be fully implemented. It is
designed to find a reasonably good combination of a machine
learning algorithm and hyper-parameter values early, so that
the user can experiment with it. The combination is
continuously refined via additional exploration in the
background for further improvement. In this way, the process
becomes more interactive.

To improve efficiency, MLbase batches together training of
multiple models, one per combination of a machine learning
algorithm and hyper-parameter values. This achieves better
central processing unit (CPU) utilization and amortizes the
overhead of task scheduling and network latency in a
distributed computing environment. Typically, many passes
through the training data are needed to train a model. Based
on this observation, MLbase uses a multi-armed bandit
method (White 2013) to allocate resources among different
combinations of algorithms and hyper-parameter values.
Initially, a fixed number of passes through the training data
are allocated to each combination. Based on the quality of the
model trained through these passes, MLbase decides whether
to allocate additional passes to the combination to train the
model further, e.g., to completion. In this way, unpromising
combinations are pruned early on.

By modeling correlations among the arms, Hoffman et al.
(2014) developed a multi-armed bandit method to
automatically select machine learning algorithms and hyper-
parameter values. This method evaluates a combination of an
algorithm and hyper-parameter values on a small fixed
percentage of the whole data set. Sabharwal et al. (2016)

11

developed a cost-sensitive training data allocation method to
automatically select machine learning algorithms and hyper-
parameter values. That method evaluates a combination of an
algorithm and hyper-parameter values initially on a small
random sample of the data set and gradually expands the
random sample over time for re-evaluating the combination if
it looks promising. By combining active learning with model
selection, Ali et al. (2014) developed a method for actively
sampling data requiring labeling to train a pre-determined set
of candidate models, each of which corresponds to a
combination of an algorithm and hyper-parameter values, and
to select a good model from that set simultaneously. For every
algorithm, each of the three methods can handle only a pre-
determined set of combinations of hyper-parameter values. In
practice, the set is likely to miss many better combinations of
hyper-parameter values for the algorithm, causing all three
methods to be sub-optimal for selecting algorithms and hyper-
parameter values.

3.3.2 Methods requiring knowledge from experiments
with previous machine learning problems

When searching algorithms and hyper-parameter values for
a new machine learning problem, Feurer et al. (2015b) used
meta-learning to choose a good starting point for sequential
model-based optimization. The method stores the best
combination of an algorithm and hyper-parameter values that
has been found for each previous machine learning problem
and data set. Each data set is characterized by several
measures. Based on the similarity between the new data set
and every previous data set, several previously stored highest
ranked combinations are used to initialize sequential model-
based optimization. Feurer et al. (2015b) demonstrated that
within the same resource limit, this starting point can lead to
better search results than one using one or more random or
user-defined default combinations.

By improving the approach used in Auto-WEKA, Feurer et
al. (2015a) developed the software auto-sklearn to
automatically select machine learning algorithms and hyper-
parameter values for scikit-learn. The method uses meta-
learning to choose a good starting point for sequential model-
based optimization. Noticing that meta and ensemble models
taking base models as inputs (Thornton et al. 2013) are slow
to train, the method ignores meta and ensemble models in the
sequential model-based optimization process. Instead, after
completing the process, the method uses the approach
described in Caruana et al. (2004) to automatically construct
an ensemble model from the base models found during the
process with a low overhead. By treating the choices of
feature selection and data pre-processing techniques as hyper-
parameters, auto-sklearn can automatically choose feature
selection and data pre-processing techniques during the model
building process.

The Google Prediction API (Google 2016) is Google’s
work for machine learning problems with some degree of
automation. Its internal workings are unpublished. Also, it
limits the maximum training data size to 2.5GB. A list of

similar, commercially available machine learning services
was provided in Feurer et al. (2015a).

4. Limitations of Existing Methods in the Big Biomedical
Data Environment and Opportunities for Improvement

In practice, it is insufficient to select only machine learning
algorithms or hyper-parameter values for a specific algorithm.
What is most needed is to automatically and simultaneously
select both algorithms and hyper-parameter values for a given
supervised machine learning problem. The discussion in this
section focuses on such automatic selection methods.
Automatic selection can save effort for machine learning tool
users, reduce the machine learning skill required of users, and
improve model accuracy (Komer et al. 2014; Snoek et al.
2012; Bergstra et al. 2011).

Other things being equal, we prefer automatic selection
methods independent of previous machine learning problems.
In reality and particularly in biomedicine, a comprehensive
database of experiments with previous machine learning
problems is often unavailable, creating difficulty in using
methods that require knowledge from experiments with
previous machine learning problems. Biomedical data sets
have different characteristics from non-biomedical ones.
Even if experimental results on non-biomedical data sets are
available, their use for automatically selecting machine
learning algorithms and hyper-parameter values on
biomedical data sets can be limited. An ideal method should
support distributed computing for scalable parallel processing
on a cluster of commodity computers. This is critical for
finishing the analysis of big biomedical data in a reasonable
amount of time. So far, MLbase (Sparks et al. 2015; Kraska
et al. 2013) is the only method designed specifically for
distributed computing.

Similar to MLbase, an ideal automatic selection method
should find a reasonably good combination of a machine
learning algorithm and hyper-parameter values as quickly as
possible. Realizing that a good combination can reach only
low accuracy can prompt examination of feature engineering
and/or other solutions. Then time does not need to be spent on
continually searching for a much better combination unlikely
to exist. If time allows, additional fine-tuning of the best
combination identified so far can be performed in the
background.

4.1 Limitations of existing methods

In the big biomedical data environment, existing automatic
selection methods for machine learning algorithms and hyper-
parameter values have limitations in efficiency. When a wide
range of algorithms is considered, none of the existing
methods can effectively select algorithms and hyper-
parameter values for a large biomedical data set in a short
amount of time. This limits these methods’ practical
usefulness.

A fundamental obstacle to automatic selection is the long
time required to test a combination of a machine learning
algorithm and hyper-parameter values on the whole data set.

12

To find a good combination, existing methods test many
combinations on the whole data set. This can take several days
on a data set with a moderate number of data points and
attributes (Thornton et al. 2013).

In practice, search time can be much longer for three
reasons. First, machine learning is an iterative process. If a
designated set of biomedical attributes produces low
prediction accuracy, the analyst is likely to consider other
available but unused biomedical attributes that may have
predictive power. Each iteration requires a new search.
Second, a data set can contain a large number of data points,
e.g., from multiple healthcare systems. Third, a data set can
have a large number of attributes, such as those extracted from
genomic and/or textual data. A machine learning algorithm’s
execution time often grows superlinearly with the number of
data points and at least linearly with the number of attributes.
To realize personalized medicine, thousands of predictive
modeling problems must be solved for various diseases and
outcomes. Search time will be a bottleneck in this case,
regardless of whether it is an issue for a single predictive
modeling problem. As machine learning software keeps
incorporating more algorithms and algorithms with more
hyper-parameters (e.g., deep neural network) keep getting
created and used, the issue of search time will become more
severe in the future.

4.2 Opportunities for improvement

New approaches are needed for improving the efficiency of
selecting algorithms and hyper-parameter values for a specific
supervised machine learning problem on a large biomedical
data set. Within a fixed resource limit, the more efficiently a
search is performed, the better the search result quality
reflected by the machine learning model’s accuracy. In the
following, we provide some preliminary thoughts on how to
use progressive sampling (Provost et al. 1999) to improve
search efficiency (Luo 2015).

Our idea is to conduct inexpensive trials on small samples
of the data set to eliminate unpromising combinations of
machine learning algorithms and hyper-parameter values as
much and as early as possible, and to devote more
computational resources to fine-tuning promising
combinations. More specifically, we use a relatively small
random sample of the data set to test various combinations
and find multiple promising combinations as the basis of a
reduced search space. We then expand the random sample,
test and adjust these combinations on the expanded sample,
and find fewer promising combinations as the basis of a
further reduced search space. We repeat this process for
several rounds. As the random sample expands, the search
space shrinks. In the last round, we use the whole data set to
find a good combination of an algorithm and hyper-parameter
values.

There are various approaches for determining the initial
sample’s size and for expanding the sample over rounds. One
possible approach is to set the initial sample’s size to the
number of input variables of the model multiplied by a pre-

determined constant, such as 10, and then to expand the
sample size exponentially over rounds (Provost et al. 1999).
Sampling has been used before to select either machine
learning algorithms (Petrak 2000; Leite et al. 2012; Fürnkranz
and Petrak 2001; Soares et al. 2001; Leite and Brazdil 2005;
Provost et al. 1999; Leite and Brazdil 2010; John and Langley
1996; Gu et al. 2001) (sometimes each with a pre-determined
set of combinations of hyper-parameter values (Hoffman et
al. 2014; Sabharwal et al. 2016)) or hyper-parameter values
(Wang et al. 2015), but not for selecting algorithms and hyper-
parameter values simultaneously without limiting the
candidate combinations of hyper-parameter values for an
algorithm to a pre-determined set.

To realize personalized medicine, multiple predictive
modeling problems, each with its own prediction target, often
need to be solved using the same data set or overlapping
portions of it. An example case is that each problem uses a set
of clinical attributes to predict a different outcome on patients
from the same healthcare system. Overlap exists among the
sets of clinical attributes used in these problems. In the
presence of overlap, we would expect some degree of
similarity among the effective machine learning algorithms
and hyper-parameter values for these problems. This property
can be used to expedite the process of selecting algorithms
and hyper-parameter values for these problems (Swersky et
al. 2013). For instance, we can solve these problems one by
one. The effective algorithms and hyper-parameter values
found for the previous problems are used to generate a good
starting point of the search process for the current problem
(Feurer et al. 2015b). Within the same resource limit, a good
starting point can lead to better search results than a mediocre
one (Feurer et al. 2015b).

Besides the difficulty in selecting a good combination of an
algorithm and hyper-parameter values for a given supervised
machine learning problem, biomedical researchers face
another challenge using machine learning effectively. Raw
clinical data are typically stored in the Entity-Attribute-Value
format (Nadkarni 2011), e.g., using a table schema of
(hospital admission id, lab test id, test result value) for lab
tests. These data must be transformed by pivot operations into
the standard relational table format (Luo and Frey 2016), e.g.,
one lab test per column, before machine learning can be
performed. Since machine learning is an iterative process,
such data extraction is often performed repeatedly. Each
round of data extraction requires work from a computing
professional (Einbinder et al. 2001), creating dependency. To
address this issue, it would be desirable to build new software
supporting the process of iterative machine learning on big
biomedical data, including clinical parameter extraction (Luo
and Frey 2016), feature construction, algorithm and hyper-
parameter value selection, model building, model evaluation
(Luo 2015), and explanation of machine learning
classification/prediction results (Luo et al. 2015b; Luo 2016).
Such software would enable biomedical researchers with
limited computing expertise to perform machine learning
effectively. This will open the use of big biomedical data to

13

thousands of biomedical researchers and increase the ability
to foster biomedical discovery and improve healthcare.

In healthcare, efficiently building accurate machine
learning models is not the final goal. Instead, model building
is part of the process to achieve the final goal of improving
health outcomes and reducing costs. Often, a patient has bad
outcomes or incurs high cost for multiple seasons, some at the
patient level and others at the system level. To effectively
improve outcomes and reduce cost, healthcare professionals
need to know these reasons and provide tailored interventions.
To facilitate this, we recently proposed a method to
automatically explain machine learning
classification/prediction results without losing accuracy and
suggest tailored interventions at both the patient and system
level (Luo et al. 2015b; Luo 2016). For example, if we
discover that a patient is likely to have bad outcomes because
he/she lives in a low-income neighborhood and cannot afford
expensive medications, we can give him/her special discounts
for some of the medications. As another example, if we
discover that a patient is likely to have bad outcomes because
he/she lives far from his/her physician, we can provide
transportation or telemedicine for him/her. As a third
example, if we discover that many patients have bad
outcomes because they live in an area with no primary care
clinic nearby, we can recommend opening a new primary care
clinic in this area. So far, our method has been demonstrated
on a single test case (Luo 2016). It would be an interesting
area for future work to fine tune our method and test it on
more cases.

5. Conclusions

Automating machine learning model selection is a hot topic
in computer science with an active open competition ongoing
(Guyon et al. 2015). We reviewed the literature on automatic
selection methods for machine learning algorithms and/or
hyper-parameter values for a given supervised machine
learning problem. Our results show that these methods have
limitations in the big biomedical data environment. Future
studies will need to address these limitations to achieve better
results.

Conflict of interest

The author reports no conflicts of interest.

Acknowledgments

We thank Qing T. Zeng, Michael Conway, Philip J.
Brewster, David E. Jones, Angela P. Presson, Yue Zhang,
Tom Greene, Alun Thomas, and Selena B. Thomas for helpful
discussions.

References
Adankon MM, Cheriet M (2009) Model selection for the LS-

SVM. Application to handwriting recognition. Pattern
Recognition 42(12):3264-70.

Ali A, Caruana R, Kapoor A (2014) Active learning with
model selection. Proc. AAAI 2014:1673-9.

Alpaydin E (2014) Introduction to Machine Learning, 3rd ed.
The MIT Press, Cambridge, MA, USA.

Bardenet R, Brendel M, Kégl B, Sebag M (2013)
Collaborative hyperparameter tuning. Proc. ICML
2013:199-207.

Bengio Y (2000) Gradient-based optimization of
hyperparameters. Neural Computation 12(8):1889-1900.

Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms
for hyper-parameter optimization. Proc. NIPS
2011:2546-54.

Bergstra J, Bengio Y (2012) Random search for hyper-
parameter optimization. Journal of Machine Learning
Research 13:281-305.

Bergstra J, Yamins D, Cox DD (2013) Hyperopt: a Python
library for optimizing the hyperparameters of machine
learning algorithms. Proc. SciPy 2013:13-20.

Bertsekas DP (1999) Nonlinear Programming, 2nd ed.
Athena Scientific, Belmont, MA, USA.

Boyd S, Vandenberghe L (2004) Convex Optimization.
Cambridge University Press, Cambridge, UK.

Brazdil P, Soares C, da Costa JP (2003) Ranking learning
algorithms: using IBL and meta-learning on accuracy and
time results. Machine Learning 50(3):251-77.

Burnham KP, Anderson DR (2003) Model Selection and
Multimodel Inference: A Practical Information-
Theoretic Approach, 2nd ed. Springer, New York, NY,
USA.

Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004)
Ensemble selection from libraries of models. Proc. ICML
2004.

Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA,
Burrows M et al. (2006) Bigtable: a distributed storage
system for structured data. Proc. OSDI 2006:205-18.

Claeskens G, Hjort N (2008) Model Selection and Model
Averaging. Cambridge University Press, Cambridge,
UK.

Cleophas TJ, Zwinderman AH (2013a) Machine Learning in
Medicine. Springer, New York, NY, USA.

Cleophas TJ, Zwinderman AH (2013b) Machine Learning in
Medicine: Part Two. Springer, New York, NY, USA.

Cleophas TJ, Zwinderman AH (2013c) Machine Learning in
Medicine: Part Three. Springer, New York, NY, USA.

Dean J, Ghemawat S (2004) MapReduce: Simplified data
processing on large clusters. Proc. OSDI 2004:137-50.

Domhan T, Springenberg JT, Hutter F (2015) Speeding up
automatic hyperparameter optimization of deep neural
networks by extrapolation of learning curves. Proc.
IJCAI 2015:3460-8.

Einbinder JS, Scully KW, Pates RD, Schubart JR, Reynolds
RE (2001) Case study: a data warehouse for an academic
medical center. J Healthc Inf Manag. 15(2):165-75.

Feurer M, Klein A, Eggensperger K, Springenberg J, Blum
M, Hutter F (2015a) Efficient and robust automated
machine learning. Proc. NIPS 2015:2944-52.

14

Feurer M, Springenberg T, Hutter F (2015b) Initializing
Bayesian hyperparameter optimization via meta-
learning. Proc. AAAI 2015:1128-35.

Fürnkranz J, Petrak J (2001) An evaluation of landmarking
variants. Proc. ECML/PKDD Workshop on Integrating
Aspects of Data Mining, Decision Support and Meta-
Learning 2001:57-68.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A,
Rubin DB (2013) Bayesian Data Analysis, 3rd ed.
Chapman and Hall/CRC, Boca Raton, FL, USA.

Google Prediction API homepage (2016)
https://cloud.google.com/prediction/docs. Accessed
January 20, 2016.

Gu B, Liu B, Hu F, Liu H (2001) Efficiently determining the
starting sample size for progressive sampling. Proc.
ECML 2001:192-202.

Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A
novel LS-SVMs hyper-parameter selection based on
particle swarm optimization. Neurocomputing 71(16-
18):3211-5.

Guyon I, Bennett K, Cawley GC, Escalante HJ, Escalera S,
Ho TK, Macià N, Ray B, Saeed M, Statnikov AR, Viegas
E (2015) Design of the 2015 ChaLearn AutoML
challenge. Proc. IJCNN 2015:1-8.

Hendry DF, Doornik JA (2014) Empirical Model Discovery
and Theory Evaluation: Automatic Selection Methods in
Econometrics. The MIT Press, Cambridge, MA, USA.

Hoffman MD, Shahriari B, de Freitas N (2014) On correlation
and budget constraints in model-based bandit
optimization with application to automatic machine
learning. Proc. AISTATS 2014:365-74.

Hutter F, Hoos H, Leyton-Brown K (2014) An efficient
approach for assessing hyperparameter importance.
Proc. ICML 2014:754-62.

Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009)
ParamILS: An automatic algorithm configuration
framework. J. Artif. Intell. Res. 36:267-306.

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential
model-based optimization for general algorithm
configuration. Proc. LION 2011:507-23.

John GH, Langley P (1996) Static versus dynamic sampling
for data mining. Proc. KDD 1996:367-70.

Jovic A, Brkic K, Bogunovic N (2014) An overview of free
software tools for general data mining. Proc. MIPRO
2014:1112-7.

Kadane JB, Lazar NA (2004) Methods and criteria for model
selection. J. Am. Stat. Assoc. 99(465):279-90.

Komer B, Bergstra J, Eliasmith C (2014) Hyperopt-sklearn:
automatic hyperparameter configuration for scikit-learn.
Proc. SciPy 2014:33-9.

Kraska T, Talwalkar A, Duchi JC, Griffith R, Franklin MJ,
Jordan MI (2013) MLbase: a distributed machine-
learning system. Proc. CIDR 2013.

Lacoste A, Larochelle H, Marchand M, Laviolette F (2014a)
Sequential model-based ensemble optimization. Proc.
UAI 2014:440-8.

Lacoste A, Marchand M, Laviolette F, Larochelle H (2014b)
Agnostic Bayesian learning of ensembles. Proc. ICML
2014:611-9.

Leite R, Brazdil P (2005) Predicting relative performance of
classifiers from samples. Proc. ICML 2005:497-503.

Leite R, Brazdil P (2010) Active testing strategy to predict the
best classification algorithm via sampling and
metalearning. Proc. ECAI 2010:309-14.

Leite R, Brazdil P, Vanschoren J (2012) Selecting
classification algorithms with active testing. Proc.
MLDM 2012:117-31.

Liu H, Motoda H (2013) Feature Selection for Knowledge
Discovery and Data Mining. Springer, New York, NY,
USA.

Luo G (2015) MLBCD: a machine learning tool for big
clinical data. Health Inf Sci Syst. 3:3.

Luo G, Frey LJ (2016) Efficient execution methods of
pivoting for bulk extraction of Entity-Attribute-Value-
modeled data. IEEE J Biomed Health Inform. 20(2):644-
54.

Luo G, Nkoy FL, Gesteland PH, Glasgow TS, Stone BL
(2014) A systematic review of predictive modeling for
bronchiolitis. Int J Med Inform. 83(10):691-714.

Luo G, Nkoy FL, Stone BL, Schmick D, Johnson MD (2015a)
A systematic review of predictive models for asthma
development in children. BMC Med Inform Decis Mak.
15(1):99.

Luo G, Stone BL, Sakaguchi F, Sheng X, Murtaugh MA
(2015b) Using computational approaches to improve
risk-stratified patient management: rationale and
methods. JMIR Res Protoc. 4(4):e128.

Luo G (2016) Automatically explaining machine learning
prediction results: a demonstration on type 2 diabetes risk
prediction. Health Inf Sci Syst. 4:2.

Luo G, Stone BL, Johnson MD, Nkoy FL (2016) Predicting
appropriate admission of bronchiolitis patients in the
emergency room: rationale and methods. JMIR Res
Protoc. 5(1):e41.

Maron O, Moore AW (1993) Hoeffding races: Accelerating
model selection search for classification and function
approximation. Proc. NIPS 1993:59-66.

Nadkarni PM (2011) Metadata-driven Software Systems in
Biomedicine: Designing Systems that can Adapt to
Changing Knowledge. Springer, New York, NY, USA.

Nocedal J, Wright S (2006) Numerical Optimization, 2nd ed.
Springer, New York, NY, USA.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion
B, Grisel O et al. (2011) Scikit-learn: machine learning
in Python. Journal of Machine Learning Research
12:2825-30.

Petrak J (2000) Fast subsampling performance estimates for
classification algorithm selection. Proc. ECML
Workshop on Meta-Learning: Building Automatic Advice
Strategies for Model Selection and Method Combination
2000:3-14.

15

Pfahringer B, Bensusan H, Giraud-Carrier CG (2000) Meta-
learning by landmarking various learning algorithms.
Proc. ICML 2000:743-50.

Provost FJ, Jensen D, Oates T (1999) Efficient progressive
sampling. Proc. KDD 1999:23-32.

Roski J, Bo-Linn GW, Andrews TA (2014) Creating value in
health care through big data: opportunities and policy
implications. Health Aff. (Millwood) 33(7):1115-22.

Sabharwal A, Samulowitz H, Tesauro G (2016) Selecting
near-optimal learners via incremental data allocation.
Proc. AAAI 2016.

Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N
(2015) Taking the human out of the loop: a review of
Bayesian optimization. Proceedings of the IEEE
104(1):148-75.

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian
optimization of machine learning algorithms. Proc. NIPS
2012:2960-8.

Soares C, Petrak J, Brazdil P (2001) Sampling-based relative
landmarks: systematically test-driving algorithms before
choosing. Proc. EPIA 2001:88-95.

Sparks ER, Talwalkar A, Haas D, Franklin MJ, Jordan MI,
Kraska T (2015) Automating model search for large scale
machine learning. Proc. SoCC 2015: 368-80.

Sparks ER, Talwalkar A, Smith V, Kottalam J, Pan X,
Gonzalez JE et al. (2013) MLI: an API for distributed
machine learning. Proc. ICDM 2013:1187-92.

Steyerberg EW (2009) Clinical Prediction Models: A
Practical Approach to Development, Validation, and
Updating. Springer, New York, NY, USA.

Swersky K, Snoek J, Adams RP (2013) Multi-task Bayesian
optimization. Proc. NIPS 2013:2004-12.

Swersky K, Snoek J, Adams RP (2014) Freeze-thaw Bayesian
optimization. http://arxiv.org/abs/1406.3896. Accessed
January 20, 2016.

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013)
Auto-WEKA: combined selection and hyperparameter
optimization of classification algorithms. Proc. KDD
2013:847-55.

van Rijn JN, Abdulrahman SM, Brazdil P, Vanschoren J
(2015) Fast algorithm selection using learning curves.
Proc. IDA 2015:298-309.

Wang L, Feng M, Zhou B, Xiang B, Mahadevan S (2015)
Efficient hyper-parameter optimization for NLP
applications. Proc. EMNLP 2015:2112-7.

White JM (2013) Bandit Algorithms for Website
Optimization. O'Reilly Media, Sebastopol, CA, USA.

Wistuba M, Schilling N, Schmidt-Thieme L (2015a)
Hyperparameter search space pruning - a new component
for sequential model-based hyperparameter optimization.
Proc. ECML/PKDD (2) 2015:104-19.

Wistuba M, Schilling N, Schmidt-Thieme L (2015b) Learning
hyperparameter optimization initializations. Proc. DSAA
2015:1-10.

Witten IH, Frank E, Hall MA (2011) Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed.
Morgan Kaufmann, Burlington, MA, USA.

Yogatama D, Mann G (2014) Efficient transfer learning
method for automatic hyperparameter tuning. Proc.
AISTATS 2014:1077-85.

Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I
(2010) Spark: cluster computing with working sets. Proc.
HotCloud 2010.

Zhou Z (2012) Ensemble Methods: Foundations and
Algorithms. Chapman and Hall/CRC, Boca Raton, FL,
USA.

