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Abstract 

Machine learning studies automatic algorithms that improve themselves through experience. It is widely used for analyzing 
and extracting value from large biomedical data sets, or “big biomedical data;” advancing biomedical research; and improving 
healthcare. Before a machine learning model is trained, the user of a machine learning software tool typically must manually 
select a machine learning algorithm and set one or more model parameters termed hyper-parameters. The algorithm and hyper-
parameter values used can greatly impact the resulting model’s performance, but their selection requires special expertise as 
well as many labor-intensive manual iterations. To make machine learning accessible to layman users with limited computing 
expertise, computer science researchers have proposed various automatic selection methods for algorithms and/or hyper-
parameter values for a given supervised machine learning problem. This paper reviews these methods, identifies several of 
their limitations in the big biomedical data environment, and provides preliminary thoughts on how to address these limitations. 
These findings establish a foundation for future research on automatically selecting algorithms and hyper-parameter values for 
analyzing big biomedical data. 
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1. Introduction 
1.1 The use of machine learning in analyzing big 
biomedical data 

Due to widespread use of applications such as electronic 
medical records, genomic sequencing, and mobile sensors, 
biomedical data are being accumulated at an exponentially 
growing rate annually. According to the current trend, the 
volume of healthcare data is expected to increase from 500 
petabytes in 2012 to 25,000 petabytes by 2020 (Roski et al. 
2014). Machine learning studies automatic algorithms that 
improve themselves through experience. It is a key 
technology to transform large biomedical data sets, or “big 
biomedical data,” into actionable knowledge. 

Machine learning is widely used in many biomedical 
applications, including predictive modeling for healthcare 
(Steyerberg 2009), computer-aided diagnosis, and biomedical 
natural language processing. For instance, machine learning 
models can be used to determine an individual’s health risk, 
future behavior, or outcomes to provide appropriate and 
timely care, such as: 
(1) Predict whether an asthma patient will be hospitalized in 

the following year. Enroll patients at high risk of 
hospitalization in an asthma case management program 
(Luo et al. 2015b). 

(2) Predict a diabetic patient’s total healthcare cost in the 
following year. Enroll patients at high risk of incurring 
high costs in a diabetes case management program (Luo 
et al. 2015b). 

(3) Predict whether a child with clinically significant 
bronchiolitis will develop asthma. Schedule more 
frequent physician visits for children at high risk of 
asthma development to help physicians make timely 
asthma diagnoses and begin asthma treatment earlier 
(Luo et al. 2015a; Luo et al. 2014). An episode of 
bronchiolitis is clinically significant if it causes an 
emergency department visit, outpatient clinic visit, 
and/or hospitalization. 

(4) In the emergency department, predict appropriate 
hospital admissions for bronchiolitis patients to guide 
disposition decisions (Luo et al. 2014; Luo et al. 2016). 

The input variables used for building machine learning 
models can come from various sources, such as structured 
data in healthcare administrative systems, electronic medical 
records, and government databases (demographics, insurance, 
claims, diagnoses, allergies, immunizations, lab results, 
medications, smoking status, vital signs, family history, 
mortality record, aggregated census record, etc.), attributes 
extracted from genomic sequences, medical images, and 
clinical notes, and aggregated results from environmental 
monitors and mobile sensors. The data set can expand a wide 
spectrum in size, including from several dozen to millions of 
rows and from a few to several thousand attributes. Many 
more examples of the use of machine learning in biomedicine 
are described in the books (Steyerberg 2009; Cleophas and 
Zwinderman 2013a; Cleophas and Zwinderman 2013b; 
Cleophas and Zwinderman 2013c). 

 
1.2 The state of the art of building machine learning 
models 

To lower the entry bar to using machine learning, computer 
science and statistics researchers have developed open source 
software such as Weka (Witten et al. 2011), RapidMiner, R, 
and KNIME (Jovic et al. 2014) that integrate a wide variety 
of machine learning algorithms as well as provide an intuitive 
graphical user interface. Despite these efforts, it is still a 
challenging task to use machine learning effectively, partly 
because of the difficulty in manually selecting an effective 
combination of an algorithm and hyper-parameter values for 
a given supervised machine learning problem, a.k.a. model 
selection. 

There are many machine learning algorithms, most of 
which are complex. Each machine learning algorithm has two 
types of model parameters: ordinary parameters that are 
automatically optimized or learned in a model training phase, 
and hyper-parameters that are typically set by the user of a 
machine learning software tool manually before a machine 
learning model is trained. A list of example machine learning 
algorithms, ordinary parameters, and hyper-parameters is 
shown in Table 1. Some of these examples will also be 
mentioned in the text below. 

 
Table 1 A list of example machine learning algorithms, ordinary parameters, and hyper-parameters 
Machine learning 

algorithm 
Example ordinary parameters Example hyper-parameters 

Decision tree the input variable used at each internal node, 
the threshold value chosen at each internal 
node 

the minimal number of data instances at a leaf 
node, the pruning strategy for the tree after 
training 

Random forest the input variable used at each internal node of 
a decision tree, the threshold value chosen at 
each internal node of a decision tree 

the number of decision trees, the number of 
input variables to consider at each internal 
node of a decision tree 

Support vector 
machine 

the support vectors, the Lagrange multiplier for 
each support vector 

the kernel to use, the degree of a polynomial 
kernel, the regularization constant C, the ε for 
round-off error, the tolerance parameter 

Neural network the weight on each edge the number of hidden layers, the number of 
nodes on each hidden layer, the number of 
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epochs to train through, the learning rate for 
the backpropagation algorithm 

k-nearest neighbor  the number of nearest neighbors used (k), the 
mechanism of weighting the nearest neighbors, 
the distance function to use 

Naïve Bayes the probability of an input variable taking on a 
particular value given a specific class p(xi|c), 
the prior probability of each class p(c) 

whether kernel density estimator or normal 
distribution is used for numeric attributes, the 
window width of a kernel density estimator 

Multiboost with 
decision stumps 

the input variable used by each decision stump, 
the threshold value chosen by each decision 
stump, the weight of each decision stump 

the number of iterations, the number of sub-
committees, whether resampling is used for 
boosting

 
Given a supervised machine learning problem such as 

predicting whether an asthma patient will be hospitalized in 
the following year, a researcher usually builds machine 
learning models in a manual and iterative way. First, the 
researcher manually selects a machine learning algorithm 
from a long list of applicable algorithms such as the 39 
classification algorithms available in Weka (Thornton et al. 
2013): decision tree, random forest, support vector machine, 
neural network, k-nearest neighbor, naïve Bayes, multiboost 
with decision stumps, etc. Second, the researcher manually 
determines the values of the chosen algorithm’s hyper-
parameters. For example, if k-nearest neighbor is used, the 
researcher needs to determine the value of k, the mechanism 
of weighting the nearest neighbors, the distance function to 
use, etc. As another example, if support vector machine is 
used, the researcher needs to determine the kernel to use, the 
value of the regularization constant C, the value of the ε for 
round-off error, the value of the tolerance parameter, etc. In 
the case of the polynomial kernel being selected, the 
researcher also needs to determine the polynomial’s degree. 
Third, the researcher trains the machine learning model to 
automatically optimize the ordinary parameters of the chosen 
algorithm. If the model achieves satisfactory prediction 
accuracy, the model building process is complete. Otherwise, 
the researcher manually changes the values of the hyper-
parameters and/or the algorithm and re-trains the model. This 
process is repeated until the researcher obtains a model with 
satisfactory accuracy, runs out of time, or thinks that the 
model’s accuracy cannot be improved much further any more. 
Due to the enormous number of possible combinations of 
algorithms and hyper-parameter values, the model building 
process can easily take hundreds or thousands of manual 
iterations and is labor intensive. 

Moreover, the machine learning algorithm and hyper-
parameter values used affect the resulting model’s accuracy, 
in some cases changing it from 1% to 95% (Thornton et al. 
2013; Petrak 2000). As shown in Thornton et al. (2013), for 
the 39 algorithms available in Weka, the average change in 
model accuracy on 21 data sets caused by the algorithm and 
hyper-parameter values used is 46%. Even if only a few 
popular algorithms (support vector machine, random forest, 
decision tree, neural network, Adaboost, k-nearest neighbor, 
logistic regression) are considered, the change in model 
accuracy caused by the algorithm and hyper-parameter values 

used is still over 20% on 14 of 21 data sets. Also, the effective 
algorithm and hyper-parameter values vary by the specific 
machine learning problem (Thornton et al. 2013; Komer et al. 
2014). Among the 39 algorithms available in Weka, each 
produces a model accuracy that is at least 22% worse than that 
produced by the best algorithm on at least one of 21 data sets. 
Selecting the effective algorithm and hyper-parameter values 
is currently an art requiring both deep machine learning 
knowledge and repeated trials. This is not only beyond the 
capability of layman users with limited computing expertise, 
but also often a non-trivial task even for machine learning 
experts (Sparks et al. 2015). 

 
1.3 Automatic selection of machine learning algorithms 
and hyper-parameter values 

To make machine learning accessible to layman users, 
computer science researchers have proposed various 
automatic selection methods for machine learning algorithms 
and/or hyper-parameter values for a given supervised 
machine learning problem. These methods’ goal is to quickly 
find, within a pre-specified resource limit, an effective 
algorithm and/or combination of hyper-parameter values that 
maximize an accuracy measure on the given machine learning 
problem and data set. An example accuracy measure is area 
under the receiver operating characteristic curve. The 
resource limit is typically specified by the amount of time, the 
number of algorithms and/or combinations of hyper-
parameter values tested on the data set, or the number of scans 
over the training data (Komer et al. 2014). Using an automatic 
selection method, the user of a machine learning software tool 
can skip the manual and iterative process of selecting an 
effective algorithm and/or combination of hyper-parameter 
values, which is labor intensive and requires a high skill set in 
machine learning. This skip applies to every supervised 
machine learning problem because the automatic selection 
methods rely on no special property of any specific problem. 

Although further improvement is needed, some automatic 
selection methods for machine learning algorithms and/or 
hyper-parameter values can already find equally good or 
better results than careful manual tuning by machine learning 
experts (Komer et al. 2014; Snoek et al. 2012; Bergstra et al. 
2011). This shows that automatic selection can produce 
meaningful results. As mentioned in Section 2.2, many 
automatic model selection methods in the statistics literature 
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focus on probabilistic or nested models and are not ideally 
suited for machine learning, in which many models are 
neither probabilistic nor nested. In this paper, we review the 
existing automatic selection methods from the computer 
science literature, present their limitations and knowledge 
gaps in the big biomedical data environment, and discuss 
specific responses to selected gaps and limitations. By 
establishing this foundation, we hope to stimulate future 
research on automatically selecting algorithms and hyper-
parameter values for analyzing big biomedical data. 

 
2. Problem Statement and Related Topics 
2.1 Problem statement 

Given a set of machine learning algorithms ࣛ and a data 
set D, the goal of algorithm selection is to find the algorithm 
∗ܣ ∈ ࣛ having the highest generalization accuracy among all 
algorithms in ࣛ. The generalization accuracy of an algorithm 
A∈ ࣛ is A’s accuracy for new data instances not in D. It is 
estimated by M(A, D), the accuracy achieved by A when 
trained and tested on D, e.g., through stratified multi-fold 
cross validation to reduce the likelihood of overfitting (Witten 
et al. 2011). Using this estimate, the goal of algorithm 
selection is to find ܣ∗ ∈  ሻ. In practice dueܦ	,ܣሺܯࣛ∋ݔܽ݉݃ݎܽ
to resource constraints, it is often not possible to test every 
algorithm in ࣛ thoroughly and find the algorithm with the 
highest generalization accuracy with full certainty. Instead, 
we strive to find, within a pre-specified resource limit, an 
algorithm that can achieve high generalization accuracy. 
Similarly, given an algorithm A, a hyper-parameter space Λ, 
and a data set D, the goal of hyper-parameter value selection 
is to find the combination of hyper-parameter values *Λ 
having the highest generalization accuracy among all 
combinations of hyper-parameter values in Λ. That is, ߣ∗ ∈
 ሻ. Here, A denotes the algorithm Aܦ	,ఒܣሺܯఒ∈ஃݔܽ݉݃ݎܽ
using the combination of hyper-parameter values . Put 
together, the goal of combined algorithm and hyper-
parameter value selection is to find the algorithm ܣ∗ ∈ ࣛ and 
combination of hyper-parameter values *Λ having the 
highest generalization accuracy among all algorithms in ࣛ 
and all combinations of hyper-parameter values in Λ. That is, 
∗ఒ∗ܣ ∈  .ሻܦ	,ఒܣሺܯఒ∈ஃ	∈ࣛ,ݔܽ݉݃ݎܽ

Although machine learning is a computer science field, the 
problem of automatic selection of machine learning 
algorithms and/or hyper-parameter values has a close 
relationship with several fields outside of computer science. 
All of these fields share the commonality of using a specific 
quality criterion to compare different objects, with the goal of 
selecting a good one. In particular, many ideas from statistical 
model selection and traditional optimization have been 
borrowed in machine learning for selecting algorithms and 
hyper-parameter values. Before moving to this paper’s focus 
on reviewing the automatic selection work in computer 
science, we briefly discuss a few aspects of the several related 
fields outside of computer science. The discussion is not 
intended to be exhaustive. Instead, it is used for describing 

several unique properties of automatic selection of algorithms 
and/or hyper-parameter values in machine learning within the 
context of the relationship among all of these fields. 

 
2.2 Relationship with statistical model selection 

Model selection has a large body of literature and a long 
history in statistics and related areas, such as econometrics 
and quantitative social science (Claeskens and Hjort 2008; 
Burnham and Anderson 2003; Hendry and Doornik 2014). In 
the statistics literature, model selection can have three 
different meanings: 
(1) Selecting effective hyper-parameter values for a given 

algorithm/approach and modeling problem. For example, 
in time series analysis, for an autoregressive moving 
average ARMA(p, q) model we need to determine both 
the number of autoregressive terms p and the number of 
moving average terms q. As another example, for 
polynomial regression we need to determine the 
polynomial’s degree. 

(2) Selecting an effective algorithm/approach for a given 
modeling problem. 

(3) Feature/variable selection (Kadane and Lazar 2004). 
In this paper when discussing statistics, we use model 
selection to refer to the first two meanings. For machine 
learning, we mention selection of algorithms and selection of 
hyper-parameter values explicitly for clarity. 

In the statistics literature, many automatic model selection 
methods focus on probabilistic models (particularly for 
Bayesian statistics (Gelman et al. 2013)) or nested models (for 
frequentist statistics) (Claeskens and Hjort 2008; Kadane and 
Lazar 2004). The methods focusing on probabilistic or nested 
models are not ideally suited for machine learning, as many 
machine learning models are neither probabilistic nor nested. 
Examples of such machine learning models include k-nearest 
neighbor, decision tree, and support vector machine. An ideal 
automatic selection method for machine learning algorithms 
and/or hyper-parameter values should cover both 
probabilistic and non-probabilistic models, as well as both 
nested and non-nested models. Some automatic model 
selection methods in the statistics literature are based on 
traditional optimization techniques. For the reasons listed in 
Section 2.3, many of those methods are not ideally suited for 
machine learning. 
 
2.3 Relationship with traditional optimization 

Optimization studies the minimization or maximization of 
an objective function. In optimization, frequently the goal is 
to find a point at which the function value is as close to the 
global optimum as possible by avoiding being trapped in a 
local optimum. Automatic selection of machine learning 
algorithms and/or hyper-parameter values is an optimization 
problem. Optimization has a large body of literature and a 
long history (Nocedal and Wright 2006; Bertsekas 1999). 
However, many traditional optimization methods are not 
necessarily well suited for this problem, which has its own 
unique properties: 
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(1)  The optimization target M(A, D) is usually a non-concave 
function. Hence, convex optimization methods (Boyd 
and Vandenberghe 2004) are not always suitable for this 
problem. 

(2)  The optimization target M(A, D) is usually non-
differentiable, making gradient-based optimization 
methods not always suitable for hyper-parameter value 
selection. Also, some traditional derivative-free 
optimization methods (Nocedal and Wright 2006) 
perform poorly at selecting hyper-parameter values, 
partly because the optimization target lacks smoothness 
(Sparks et al. 2015). 

(3)  The choice of algorithm is a categorical variable. Also, 
hyper-parameters include categorical (e.g., the type of 
kernel in a support vector machine), discrete (e.g., the 
number of nodes in the first hidden layer in a neural 
network), and continuous variables. Thus, numerical 
optimization methods (Nocedal and Wright 2006; 
Bertsekas 1999) dealing with numerical variables are not 
always suitable for this problem. 

(4)  For a given combination of hyper-parameter values, it is 
usually computationally expensive to train a machine 
learning algorithm on a data set of moderate or large size. 
In other words, each function evaluation is extremely 
expensive (Snoek et al. 2012), particularly for big 
biomedical data. As a result, handling this problem often 
requires using techniques such as sampling of the data set 
to obtain approximate values of the optimization target 
function M(A, D). An ideal automatic selection method 
for machine learning algorithms and/or hyper-parameter 
values should be able to use these approximate values. In 
contrast, function evaluation is inexpensive in many 
other black-box optimization problems. Thus, many 
black-box optimization methods require using exact 
values of the function. 

 
2.4 Relationship with statistical model averaging and 
ensemble methods 

Multiple base models combined together frequently 
outperform any single one of them. In statistics, the technique 
of combining multiple base models together is known as 
model averaging (Claeskens and Hjort 2008). In machine 
learning, this is known as ensemble methods (Zhou 2012). 
Neither model averaging nor ensemble methods eliminate the 
need for automatically selecting machine learning algorithms 
and/or hyper-parameter values. In fact, some automatic 
selection methods were designed specifically to address the 

issue of automatically forming and selecting ensembles 
(Thornton et al. 2013; Lacoste et al. 2014a, b). 

In the statistics literature, many model averaging methods 
focus on probabilistic models (Claeskens and Hjort 2008). 
This is particularly the case for Bayesian statistics (Gelman et 
al. 2013). The methods focusing on probabilistic models are 
not ideally suited for machine learning, as many machine 
learning models are non-probabilistic. 

In the machine learning literature, existing ensemble 
methods (Zhou 2012) usually do not address the issue of 
automatically selecting an effective combination of hyper-
parameter values for each individual base model. An 
ensemble of multiple base models is unlikely to achieve its 
maximum performance without each individual base model 
doing so first. Moreover, existing ensemble methods 
frequently do not address the issue of automatically selecting 
the number and types of individual base models for the 
ensemble. Without choosing the appropriate number and 
types of individual base models, an ensemble is unlikely to 
achieve its maximum performance. 

Due to the reasons mentioned above, many new methods 
have been developed for automatic selection of machine 
learning algorithms and/or hyper-parameter values. These 
methods are often related to, but are different from, traditional 
statistical model selection and optimization methods. Two 
other topics closely related to automatic selection of machine 
learning algorithms and/or hyper-parameter values are 
automatic feature selection (Liu and Motoda 2013) and model 
evaluation/validation (Steyerberg 2009; Alpaydin 2014). 
Each topic has its own literature that has been well covered in 
machine learning textbooks, and is not discussed in this paper. 

 
3. Existing Automatic Selection Methods for Machine 
Learning Algorithms and/or Hyper-parameter Values 

In this section, we review the existing automatic selection 
methods for machine learning algorithms and/or hyper-
parameter values for a given supervised machine learning 
problem. A summary of these methods is given in Table 2. 
Some automatic selection methods require knowledge from 
experiments with previous machine learning problems, while 
others do not. In practice, a comprehensive database of 
experiments with previous machine learning problems is 
often unavailable. In this case, only methods that do not 
require such a database can be used. So far, most work on 
automatic selection focuses on either selecting algorithms or 
selecting hyper-parameter values for a specific algorithm. The 
first published and implemented work on automatically 
selecting both algorithms and hyper-parameter values 
appeared in 2013 (Thornton et al. 2013).
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Table 2 Categorization of existing automatic selection methods for machine learning algorithms and/or hyper-parameter values 
Category Article Method Can 

efficiently 
handle 
big data 

Can 
handle a 
wide 
range of 
algorithms 

Can handle 
various 
types of 
hyper-
parameters

Can handle 
any number 
of hyper-
parameter 
value 
combinations

Select 
machine 
learning 
algorithms 

Independent 
of previous 
problems 

Pfahringer et al. 2000 Landmarking    
Petrak 2000 Sampling-based 

landmark 
✓ ✓   

Soares et al. 2001 Sampling-based 
landmark 

✓ ✓   

Maron and Moore 1993 Gradually expand the 
test set 

 ✓   

Require 
knowledge 
from 
experiments 
with previous 
problems 

Brazdil et al. 2003 Meta-learning ✓ ✓   
Leite and Brazdil 2005 Sampling + meta-

learning 
✓ ✓   

Leite and Brazdil 2010 Sampling + meta-
learning 

✓ ✓   

van Rijn JN et al. 2015 Meta-learning ✓ ✓   
Leite et al. 2012 Tournament testing + 

meta-learning 
 ✓   

Select 
hyper-
parameter 
values 

Independent 
of previous 
problems 

Bergstra and Bengio 
2012 

Random search   ✓ ✓ 

Snoek et al. 2012 Sequential model-
based optimization 

   ✓ 

Bergstra et al. 2011 Sequential model-
based optimization 

   ✓ 

Hutter et al. 2011 Sequential model-
based optimization 

  ✓ ✓ 

Wang et al. 2015 Sampling + sequential 
model-based 
optimization 

✓  ✓ ✓ 

Swersky et al. 2014 Freeze-thaw    ✓ 
Bengio 2000 Gradient-based    ✓ 
Guo et al. 2008 Particle swarm 

optimization 
   ✓ 

Adankon and Cheriet 
2009 

Gradient descent    ✓ 

Domhan et al. 2015 Sequential model-
based optimization + 
terminate unpromising 
runs early 

  ✓ ✓ 

Require 
knowledge 
from 
experiments 
with previous 
problems 

Bardenet et al. 2013 Surrogate-based 
ranking + sequential 
model-based 
optimization 

   ✓ 

Swersky et al. 2013 Sequential model-
based optimization 

   ✓ 

Yogatama and Mann 
2014 

Sequential model-
based optimization 

   ✓ 

Wistuba et al. 2015a Sequential model-
based optimization 

   ✓ 
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Wistuba et al. 2015b Sequential model-
based optimization 

   ✓ 

Select both 
machine 
learning 
algorithms 
and hyper-
parameter 
values 

Independent 
of previous 
problems 

Thornton et al. 2013 Sequential model-
based optimization 

 ✓ ✓ ✓ 

Lacoste et al. 2014a Sequential model-
based optimization 

 ✓  ✓ 

Lacoste et al. 2014b Sequential model-
based optimization 

 ✓ ✓ ✓ 

Komer et al. 2014 Sequential model-
based optimization 

 ✓ ✓ ✓ 

Sparks et al. 2015 Multi-armed bandit + 
batching 

 ✓ ✓ ✓ 

Hoffman et al. 2014 Multi-armed bandit  ✓ ✓  
Sabharwal et al. 2016 Cost-sensitive training 

data allocation 
✓ ✓ ✓  

Ali et al. 2014 Active learning + 
model selection 

✓ ✓ ✓  

Require 
knowledge 
from 
experiments 
with previous 
problems 

Feurer et al. 2015a Sequential model-
based optimization + 
meta-learning 

 ✓ ✓ ✓ 

Feurer et al. 2015b Sequential model-
based optimization + 
meta-learning 

 ✓ ✓ ✓ 

 
3.1 Automatic selection methods for machine learning 
algorithms 

Several methods have been proposed for automatically 
selecting algorithms for a given supervised machine learning 
problem. In this case, an algorithm’s hyper-parameters are 
typically set to their default values (Leite et al. 2012). 
 
3.1.1 Methods independent of previous machine learning 
problems 

Landmarking (Pfahringer et al. 2000) is a method for 
automatically selecting machine learning algorithms. To 
quickly obtain a rough estimate of an algorithm’s accuracy on 
a data set, the method runs a simplified version of the 
algorithm called a landmarker on the data set. For instance, a 
simplified version of a decision tree classifier is its top node. 
The accuracy estimates are used to select the algorithm to be 
used. In the selection process, we can use either the 
landmarkers’ absolute accuracy measures or the relationship 
of the landmarkers’ accuracy relative to each other 
(Fürnkranz and Petrak 2001). Often, a landmarker’s accuracy 
cannot represent the original algorithm’s accuracy well, 
causing a less effective algorithm to be selected. 

Sampling-based landmark (Petrak 2000; Fürnkranz and 
Petrak 2001; Soares et al. 2001) is another method for 
automatically selecting machine learning algorithms. To 
quickly obtain a rough estimate of each algorithm’s accuracy 
on a data set, the method applies the algorithm on a sample of 
the data set. The accuracy estimates are used to select the 
algorithm to be used on the whole data set. 

Consider a fixed set of models, one per machine learning 
algorithm. Maron and Moore (1993) proposed a method to 

expedite the process of discarding bad models. First, the same 
training set is used to train each model. Then the test set is 
gradually expanded to obtain a progressively more precise 
estimate of each model’s accuracy together with a confidence 
bound. When a model is clearly outperformed by another in 
accuracy, as determined by their confidence bounds, the 
former is discarded. 
 
3.1.2 Methods requiring knowledge from experiments 
with previous machine learning problems 

Meta-learning (Brazdil et al. 2003) is a method for 
automatically selecting machine learning algorithms. The 
method stores previous experimental results of different 
algorithms’ accuracy on various machine learning problems 
and data sets. Each data set is characterized by several 
measures such as the number of data points present, the 
number of categorical attributes present, the number of 
numerical attributes present, and the entropy of classes. A 
predictive model is built on previous experimental results to 
predict each algorithm’s accuracy on a new machine learning 
problem and data set. The algorithm with the highest 
predicted accuracy is selected. 

By combining the ideas of sampling and meta-learning, 
Leite and Brazdil (2005) proposed a method for automatically 
selecting machine learning algorithms. For each algorithm 
and previous data set, a learning curve (Provost et al. 1999) is 
computed and stored. As shown in Fig. 1, the learning curve 
shows how the machine learning model’s accuracy improves 
when more data are used to train the model. Consider a new 
machine learning problem and data set. For each algorithm, 
several samples of the new data set are used to train and 



8 
 

evaluate the machine learning model to quickly obtain an 
initial segment of the learning curve. A regression model is 
built from prior experimental results on previous data sets to 
predict the machine learning model’s accuracy when (a large 
sample of) the whole new data set is used to train and evaluate 
the machine learning model. The algorithm with the highest 
predicted accuracy is selected. 

 

 
Fig. 1 An example learning curve 

 
The above method was refined in Leite and Brazdil (2010). 

There, instead of following a fixed sequence of sample sizes 
one by one, the plan of conducting experiments on samples of 
the new data set is built up gradually, by considering prior 
experimental results on both previous data sets and the new 
data set. Consequently, differing sequences of sample sizes 
are used for different machine learning algorithms. 

By considering the amount of time needed for testing a 
machine learning algorithm on the data set in the meta-
learning process, van Rijn JN et al. (2015) proposed a method 
for automatically selecting algorithms. The method optimizes 
the ratio of forecasted accuracy to the r-th square root of the 
amount of time needed for testing an algorithm on the data 
set, where r is a pre-determined positive constant controlling 
the importance of time. This gives preference to algorithms 
that are not only likely to produce accurate machine learning 
models, but also likely to be evaluated quickly. 

By combining the ideas of tournament testing and meta-
learning, Leite et al. (2012) proposed a method for 
automatically selecting machine learning algorithms. The 
method proceeds in rounds. In each round, the similarity 
between the new data set and every previous data set is re-
computed based on prior experimental results of different 
algorithms’ accuracy on various machine learning problems 
and data sets. Among all algorithms that have been evaluated 
on the new data set so far, the one achieving the highest 
accuracy is the current best candidate algorithm. Based on 
data set similarities and different algorithms’ accuracy on 
previous data sets, a challenger algorithm most likely to 
outperform the current best candidate algorithm on the new 
data set is selected. The challenger algorithm is evaluated and 
its accuracy is obtained on the new data set. Then the whole 
process is repeated until a stopping criterion is satisfied. 

Usually, a good algorithm can be found after a small portion 
of all algorithms is evaluated on the new data set. 

 
3.2 Automatic selection methods for hyper-parameter 
values for a given machine learning algorithm 

For a given supervised machine learning problem, a key 
question in comparing different machine learning algorithms 
is to determine whether one algorithm is fundamentally 
superior to another, or the former outperforms the latter just 
because hyper-parameters have been better tuned for the 
former. In addition to making machine learning accessible to 
layman users, automatic selection methods for hyper-
parameter values also facilitate comparing different 
algorithms based on generalization accuracy through 
automatically tuning hyper-parameters (Hutter et al. 2009). 

In selecting hyper-parameter values for a machine learning 
algorithm, both conditional and unconditional hyper-
parameters need to be considered. In contrast to the case of an 
unconditional hyper-parameter, a conditional hyper-
parameter’s relevance depends on another hyper-parameter’s 
value. For instance, in the case of support vector machine, 
certain kernel parameters are relevant only if the 
corresponding kernel type is selected. In general, as shown in 
Fig. 2, all hyper-parameters of an algorithm form a tree or, 
sometimes, a directed acyclic graph. 
 

Fig. 2 An example dependency tree formed by all hyper-
parameters of a machine learning algorithm 

 
3.2.1 Methods independent of previous machine learning 
problems 

Bergstra and Bengio (2012) demonstrated that for a given 
machine learning algorithm, random search is an effective 
method for selecting hyper-parameter values. It is more 
effective than an exhaustive search over a grid of hyper-
parameter values. For a specific machine learning problem, 
usually only some hyper-parameters really matter. The others 
have little impact on the machine learning model’s accuracy. 
The set of important hyper-parameters varies by the machine 
learning problem. A method for quantifying the importance 
of different hyper-parameters is described in Hutter et al. 
(2014). 
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Sequential model-based optimization (Snoek et al. 2012; 
Bergstra et al. 2011; Hutter et al. 2011; Shahriari et al. 2015) 
is a commonly used method for automatically selecting 
hyper-parameter values for a given machine learning 
algorithm. The method first tests one or more combinations 
of hyper-parameter values, e.g., each is a random combination 
or the algorithm’s default, and obtains the corresponding 
machine learning models’ accuracy on the data set. A 
regression model is built to predict the accuracy of a machine 
learning model based on hyper-parameter values. Random 
forest and Gaussian process are two regression models 
commonly used for this purpose. For a specific combination 
of hyper-parameter values, evaluating the regression model’s 
output is less expensive than training the machine learning 
model and assessing its accuracy on the data set. When 
training the regression model and using it for predictions, 
unused conditional hyper-parameters are assigned to their 
default values (Thornton et al. 2013). Then the following 
three steps are repeated until reaching a pre-determined 
stopping condition: use the regression model to select a 
promising combination of hyper-parameter values co to test 
next; train the machine learning model and assess its accuracy 
a on the data set at co; and use the new data point (co, a) to 
modify the regression model. In reality, the regression model 
can be misled. To achieve good performance even in this 
scenario, every second combination of hyper-parameter 
values to assess next is randomly selected. Thus, new areas of 
the hyper-parameter space can be probed (Hutter et al. 2011). 

In selecting a promising combination of hyper-parameter 
values to test next, a typical approach is to optimize a specific 
measure of expected improvement in accuracy (Snoek et al. 
2012). Frequently, the time t() needed for testing a 
combination of hyper-parameter values  on the data set 
varies significantly from one combination to another. As a 
result, this approach can be sub-optimal under a fixed total 
amount of time allowed for automatically selecting hyper-
parameter values. A better approach is to consider both 
expected improvement in accuracy and t() simultaneously. 
Along these lines, Snoek et al. (2012) used a separate 
Gaussian process to model ln(t()) and optimized the ratio of 
expected improvement in accuracy to t(). This gives 
preference to combinations of hyper-parameter values that are 
not only likely to produce accurate machine learning models, 
but also likely to be evaluated quickly. 

Wang et al. (2015) proposed combining sampling and 
sequential model-based optimization to automatically select 
hyper-parameter values for a given machine learning 
algorithm. The proposed method first performs sequential 
model-based optimization on a relatively small random 
sample of the data set, which is used to quickly provide a 
rough estimate of the accuracy that a combination of hyper-
parameter values can achieve on the whole data set. Then the 
top few candidate combinations of hyper-parameter values 
producing the highest accuracies are used to initialize 
sequential model-based optimization on the whole data set. If 

needed, the proposed method can proceed in multiple stages 
by gradually expanding the random sample of the data set. 

Assuming that the error rate of a model roughly follows an 
exponential decay during the model training process, Swersky 
et al. (2014) developed a freeze-thaw method to automatically 
select hyper-parameter values for a given machine learning 
algorithm. At any time during the sequential model-based 
optimization process, the method keeps a set of partially 
completed models and uses their forecasted final accuracies 
to determine whether to freeze training an old model, continue 
training a partially completed model, or start training a new 
model with a different combination of hyper-parameter 
values. This saves unnecessary overhead due to continuing 
training unpromising, partially completed models to 
completion. 

Bengio (2000) proposed a gradient-based method to 
automatically select hyper-parameter values for a given 
machine learning algorithm. At any step, the search direction 
is defined by the gradient of a model selection criterion at the 
current point in the hyper-parameter space. 

Guo et al. (2008) used particle swarm optimization to 
automatically select hyper-parameter values for the machine 
learning algorithm of least-squares support vector machine. 
As a population-based optimization method, particle swarm 
optimization simulates the behavior of a group of birds 
looking for food randomly in an area. 

Through minimizing an empirical error criterion, Adankon 
and Cheriet (2009) used a gradient descent method to 
automatically select hyper-parameter values for the least-
squares support vector machine. 

To speed up automatically selecting hyper-parameter 
values for deep neural networks, Domhan et al. (2015) 
conducted early termination of unpromising runs training the 
model for a combination of hyper-parameter values. 
 
3.2.2 Methods requiring knowledge from experiments 
with previous machine learning problems 

By combining surrogate-based ranking and sequential 
model-based optimization, Bardenet et al. (2013) proposed a 
method for automatically selecting hyper-parameter values 
for a given machine learning algorithm. The method stores 
previous experimental results of the algorithm’s accuracy for 
different combinations of hyper-parameter values on various 
machine learning problems and data sets. Each data set is 
characterized by several measures. The method first builds a 
Gaussian process regression model on previous experimental 
results to predict the ranking of various combinations of 
hyper-parameter values on a new machine learning problem 
and data set. The ranking is based on the algorithm’s 
accuracy. Then the following three steps are repeated until 
arriving at a pre-determined stopping condition: use the 
regression model to find the highest ranked combination of 
hyper-parameter values co to assess next; train the machine 
learning model and assess its accuracy a on the data set at co; 
and use the new data point (co, a) to modify the regression 
model. 
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Using sequential model-based optimization and 
experimental results on previous data sets, Swersky et al. 
(2013) proposed a method for automatically selecting hyper-
parameter values for a given machine learning algorithm. The 
method builds a Gaussian process regression model, with 
normalized deviations from the mean per data set being the 
response values. The parameter estimates’ posterior 
probabilities are computed using a maximum likelihood 
approach. Yogatama and Mann (2014) proposed a similar 
method, where the parameter estimates’ posterior 
probabilities are computed using a Monte Carlo approach. 

Using sequential model-based optimization and 
experimental results on previous data sets, Wistuba et al. 
(2015a, b) proposed two methods for automatically selecting 
hyper-parameter values for a given machine learning 
algorithm. In each iteration of the sequential model-based 
optimization process, the first method (Wistuba et al. 2015a) 
uses knowledge extracted from experimental results on 
previous data sets to prune regions of the hyper-parameter 
space unlikely to contain good combinations of hyper-
parameter values. When initializing the selection process of 
hyper-parameter values, the second method (Wistuba et al. 
2015b) determines the initial combinations of hyper-
parameter values through optimizing for a hyper-parameter 
loss function. In this way, the initial combinations are not 
limited to the ones that have been tried in previous 
experiments. Also, meta-features of data sets are not required 
because data set similarities do not need to be computed. 

 
3.3 Automatic selection methods for both machine 
learning algorithms and hyper-parameter values 

Several papers have been published on automatically and 
simultaneously selecting algorithms and hyper-parameter 
values for a given supervised machine learning problem. 
 
3.3.1 Methods independent of previous machine learning 
problems 

Auto-WEKA (Thornton et al. 2013) is the first published 
and implemented work on automatically selecting algorithms 
and hyper-parameter values for a given machine learning 
problem. Auto-WEKA runs on one computer and is based on 
Weka (Witten et al. 2011), a widely used open-source 
machine learning and data mining toolkit written in Java. 
Auto-WEKA considers all 39 machine learning classification 
algorithms implemented in Weka. By treating the choice of 
algorithm as a new hyper-parameter at the root level, Auto-
WEKA maps the problem of selecting algorithms and hyper-
parameter values to the problem of selecting hyper-parameter 
values. Auto-WEKA uses sequential model-based 
optimization and a random forest regression model to 
approximate the dependence of a model’s accuracy on the 
algorithm and hyper-parameter values. By treating the choice 
of feature selection technique as a hyper-parameter, Auto-
WEKA can automatically choose feature selection techniques 
during the model building process. Auto-WEKA limits each 
ensemble classifier to use no more than five base classifiers. 

Lacoste et al. (2014a, b) extended sequential model-based 
optimization to remove this limitation. 

Using an approach similar to that in Auto-WEKA, Komer 
et al. developed the software hyperopt-sklearn (Komer et al. 
2014; Bergstra et al. 2013), which automatically selects 
machine learning algorithms and hyper-parameter values for 
scikit-learn (Pedregosa et al. 2011). Scikit-learn is a library of 
machine learning algorithms written in Python. If desired, the 
user can specify a narrower search space of algorithms and 
hyper-parameter values in hyperopt-sklearn to improve 
search speed. Since scikit-learn can handle only small to 
medium-sized data sets (Feurer et al. 2015a), any software 
developed on top of it will have the same limitation. 

MLbase (Sparks et al. 2015; Kraska et al. 2013) is the first 
published work on automatically selecting algorithms and 
hyper-parameter values for a given machine learning problem 
that supports distributed computing on a cluster of commodity 
computers. MLbase is based on MLlib (Kraska et al. 2013; 
Sparks et al. 2013), Spark’s machine learning library. Spark 
(Zaharia et al. 2010) is a widely used open source big data 
software system supporting Google’s MapReduce framework 
(Dean and Ghemawat 2004) for distributed computing. Spark 
was developed on top of the Hadoop distributed file system, 
the open source implementation of Google’s BigTable file 
system (Chang et al. 2006). To improve performance, Spark 
executes most operations in memory and avoids disk 
inputs/outputs whenever possible. 

MLbase is a framework yet to be fully implemented. It is 
designed to find a reasonably good combination of a machine 
learning algorithm and hyper-parameter values early, so that 
the user can experiment with it. The combination is 
continuously refined via additional exploration in the 
background for further improvement. In this way, the process 
becomes more interactive. 

To improve efficiency, MLbase batches together training of 
multiple models, one per combination of a machine learning 
algorithm and hyper-parameter values. This achieves better 
central processing unit (CPU) utilization and amortizes the 
overhead of task scheduling and network latency in a 
distributed computing environment. Typically, many passes 
through the training data are needed to train a model. Based 
on this observation, MLbase uses a multi-armed bandit 
method (White 2013) to allocate resources among different 
combinations of algorithms and hyper-parameter values. 
Initially, a fixed number of passes through the training data 
are allocated to each combination. Based on the quality of the 
model trained through these passes, MLbase decides whether 
to allocate additional passes to the combination to train the 
model further, e.g., to completion. In this way, unpromising 
combinations are pruned early on. 

By modeling correlations among the arms, Hoffman et al. 
(2014) developed a multi-armed bandit method to 
automatically select machine learning algorithms and hyper-
parameter values. This method evaluates a combination of an 
algorithm and hyper-parameter values on a small fixed 
percentage of the whole data set. Sabharwal et al. (2016) 
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developed a cost-sensitive training data allocation method to 
automatically select machine learning algorithms and hyper-
parameter values. That method evaluates a combination of an 
algorithm and hyper-parameter values initially on a small 
random sample of the data set and gradually expands the 
random sample over time for re-evaluating the combination if 
it looks promising. By combining active learning with model 
selection, Ali et al. (2014) developed a method for actively 
sampling data requiring labeling to train a pre-determined set 
of candidate models, each of which corresponds to a 
combination of an algorithm and hyper-parameter values, and 
to select a good model from that set simultaneously. For every 
algorithm, each of the three methods can handle only a pre-
determined set of combinations of hyper-parameter values. In 
practice, the set is likely to miss many better combinations of 
hyper-parameter values for the algorithm, causing all three 
methods to be sub-optimal for selecting algorithms and hyper-
parameter values. 
 
3.3.2 Methods requiring knowledge from experiments 
with previous machine learning problems 

When searching algorithms and hyper-parameter values for 
a new machine learning problem, Feurer et al. (2015b) used 
meta-learning to choose a good starting point for sequential 
model-based optimization. The method stores the best 
combination of an algorithm and hyper-parameter values that 
has been found for each previous machine learning problem 
and data set. Each data set is characterized by several 
measures. Based on the similarity between the new data set 
and every previous data set, several previously stored highest 
ranked combinations are used to initialize sequential model-
based optimization. Feurer et al. (2015b) demonstrated that 
within the same resource limit, this starting point can lead to 
better search results than one using one or more random or 
user-defined default combinations. 

By improving the approach used in Auto-WEKA, Feurer et 
al. (2015a) developed the software auto-sklearn to 
automatically select machine learning algorithms and hyper-
parameter values for scikit-learn. The method uses meta-
learning to choose a good starting point for sequential model-
based optimization. Noticing that meta and ensemble models 
taking base models as inputs (Thornton et al. 2013) are slow 
to train, the method ignores meta and ensemble models in the 
sequential model-based optimization process. Instead, after 
completing the process, the method uses the approach 
described in Caruana et al. (2004) to automatically construct 
an ensemble model from the base models found during the 
process with a low overhead. By treating the choices of 
feature selection and data pre-processing techniques as hyper-
parameters, auto-sklearn can automatically choose feature 
selection and data pre-processing techniques during the model 
building process. 

The Google Prediction API (Google 2016) is Google’s 
work for machine learning problems with some degree of 
automation. Its internal workings are unpublished. Also, it 
limits the maximum training data size to 2.5GB. A list of 

similar, commercially available machine learning services 
was provided in Feurer et al. (2015a). 
 
4. Limitations of Existing Methods in the Big Biomedical 
Data Environment and Opportunities for Improvement 

In practice, it is insufficient to select only machine learning 
algorithms or hyper-parameter values for a specific algorithm. 
What is most needed is to automatically and simultaneously 
select both algorithms and hyper-parameter values for a given 
supervised machine learning problem. The discussion in this 
section focuses on such automatic selection methods. 
Automatic selection can save effort for machine learning tool 
users, reduce the machine learning skill required of users, and 
improve model accuracy (Komer et al. 2014; Snoek et al. 
2012; Bergstra et al. 2011). 

Other things being equal, we prefer automatic selection 
methods independent of previous machine learning problems. 
In reality and particularly in biomedicine, a comprehensive 
database of experiments with previous machine learning 
problems is often unavailable, creating difficulty in using 
methods that require knowledge from experiments with 
previous machine learning problems. Biomedical data sets 
have different characteristics from non-biomedical ones. 
Even if experimental results on non-biomedical data sets are 
available, their use for automatically selecting machine 
learning algorithms and hyper-parameter values on 
biomedical data sets can be limited. An ideal method should 
support distributed computing for scalable parallel processing 
on a cluster of commodity computers. This is critical for 
finishing the analysis of big biomedical data in a reasonable 
amount of time. So far, MLbase (Sparks et al. 2015; Kraska 
et al. 2013) is the only method designed specifically for 
distributed computing. 

Similar to MLbase, an ideal automatic selection method 
should find a reasonably good combination of a machine 
learning algorithm and hyper-parameter values as quickly as 
possible. Realizing that a good combination can reach only 
low accuracy can prompt examination of feature engineering 
and/or other solutions. Then time does not need to be spent on 
continually searching for a much better combination unlikely 
to exist. If time allows, additional fine-tuning of the best 
combination identified so far can be performed in the 
background. 
 
4.1 Limitations of existing methods 

In the big biomedical data environment, existing automatic 
selection methods for machine learning algorithms and hyper-
parameter values have limitations in efficiency. When a wide 
range of algorithms is considered, none of the existing 
methods can effectively select algorithms and hyper-
parameter values for a large biomedical data set in a short 
amount of time. This limits these methods’ practical 
usefulness. 

A fundamental obstacle to automatic selection is the long 
time required to test a combination of a machine learning 
algorithm and hyper-parameter values on the whole data set. 
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To find a good combination, existing methods test many 
combinations on the whole data set. This can take several days 
on a data set with a moderate number of data points and 
attributes (Thornton et al. 2013). 

In practice, search time can be much longer for three 
reasons. First, machine learning is an iterative process. If a 
designated set of biomedical attributes produces low 
prediction accuracy, the analyst is likely to consider other 
available but unused biomedical attributes that may have 
predictive power. Each iteration requires a new search. 
Second, a data set can contain a large number of data points, 
e.g., from multiple healthcare systems. Third, a data set can 
have a large number of attributes, such as those extracted from 
genomic and/or textual data. A machine learning algorithm’s 
execution time often grows superlinearly with the number of 
data points and at least linearly with the number of attributes. 
To realize personalized medicine, thousands of predictive 
modeling problems must be solved for various diseases and 
outcomes. Search time will be a bottleneck in this case, 
regardless of whether it is an issue for a single predictive 
modeling problem. As machine learning software keeps 
incorporating more algorithms and algorithms with more 
hyper-parameters (e.g., deep neural network) keep getting 
created and used, the issue of search time will become more 
severe in the future. 
 
4.2 Opportunities for improvement 

New approaches are needed for improving the efficiency of 
selecting algorithms and hyper-parameter values for a specific 
supervised machine learning problem on a large biomedical 
data set. Within a fixed resource limit, the more efficiently a 
search is performed, the better the search result quality 
reflected by the machine learning model’s accuracy. In the 
following, we provide some preliminary thoughts on how to 
use progressive sampling (Provost et al. 1999) to improve 
search efficiency (Luo 2015). 

Our idea is to conduct inexpensive trials on small samples 
of the data set to eliminate unpromising combinations of 
machine learning algorithms and hyper-parameter values as 
much and as early as possible, and to devote more 
computational resources to fine-tuning promising 
combinations. More specifically, we use a relatively small 
random sample of the data set to test various combinations 
and find multiple promising combinations as the basis of a 
reduced search space. We then expand the random sample, 
test and adjust these combinations on the expanded sample, 
and find fewer promising combinations as the basis of a 
further reduced search space. We repeat this process for 
several rounds. As the random sample expands, the search 
space shrinks. In the last round, we use the whole data set to 
find a good combination of an algorithm and hyper-parameter 
values. 

There are various approaches for determining the initial 
sample’s size and for expanding the sample over rounds. One 
possible approach is to set the initial sample’s size to the 
number of input variables of the model multiplied by a pre-

determined constant, such as 10, and then to expand the 
sample size exponentially over rounds (Provost et al. 1999). 
Sampling has been used before to select either machine 
learning algorithms (Petrak 2000; Leite et al. 2012; Fürnkranz 
and Petrak 2001; Soares et al. 2001; Leite and Brazdil 2005; 
Provost et al. 1999; Leite and Brazdil 2010; John and Langley 
1996; Gu et al. 2001) (sometimes each with a pre-determined 
set of combinations of hyper-parameter values (Hoffman et 
al. 2014; Sabharwal et al. 2016)) or hyper-parameter values 
(Wang et al. 2015), but not for selecting algorithms and hyper-
parameter values simultaneously without limiting the 
candidate combinations of hyper-parameter values for an 
algorithm to a pre-determined set. 

To realize personalized medicine, multiple predictive 
modeling problems, each with its own prediction target, often 
need to be solved using the same data set or overlapping 
portions of it. An example case is that each problem uses a set 
of clinical attributes to predict a different outcome on patients 
from the same healthcare system. Overlap exists among the 
sets of clinical attributes used in these problems. In the 
presence of overlap, we would expect some degree of 
similarity among the effective machine learning algorithms 
and hyper-parameter values for these problems. This property 
can be used to expedite the process of selecting algorithms 
and hyper-parameter values for these problems (Swersky et 
al. 2013). For instance, we can solve these problems one by 
one. The effective algorithms and hyper-parameter values 
found for the previous problems are used to generate a good 
starting point of the search process for the current problem 
(Feurer et al. 2015b). Within the same resource limit, a good 
starting point can lead to better search results than a mediocre 
one (Feurer et al. 2015b). 

Besides the difficulty in selecting a good combination of an 
algorithm and hyper-parameter values for a given supervised 
machine learning problem, biomedical researchers face 
another challenge using machine learning effectively. Raw 
clinical data are typically stored in the Entity-Attribute-Value 
format (Nadkarni 2011), e.g., using a table schema of 
(hospital admission id, lab test id, test result value) for lab 
tests. These data must be transformed by pivot operations into 
the standard relational table format (Luo and Frey 2016), e.g., 
one lab test per column, before machine learning can be 
performed. Since machine learning is an iterative process, 
such data extraction is often performed repeatedly. Each 
round of data extraction requires work from a computing 
professional (Einbinder et al. 2001), creating dependency. To 
address this issue, it would be desirable to build new software 
supporting the process of iterative machine learning on big 
biomedical data, including clinical parameter extraction (Luo 
and Frey 2016), feature construction, algorithm and hyper-
parameter value selection, model building, model evaluation 
(Luo 2015), and explanation of machine learning 
classification/prediction results (Luo et al. 2015b; Luo 2016). 
Such software would enable biomedical researchers with 
limited computing expertise to perform machine learning 
effectively. This will open the use of big biomedical data to 
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thousands of biomedical researchers and increase the ability 
to foster biomedical discovery and improve healthcare. 

In healthcare, efficiently building accurate machine 
learning models is not the final goal. Instead, model building 
is part of the process to achieve the final goal of improving 
health outcomes and reducing costs. Often, a patient has bad 
outcomes or incurs high cost for multiple seasons, some at the 
patient level and others at the system level. To effectively 
improve outcomes and reduce cost, healthcare professionals 
need to know these reasons and provide tailored interventions. 
To facilitate this, we recently proposed a method to 
automatically explain machine learning 
classification/prediction results without losing accuracy and 
suggest tailored interventions at both the patient and system 
level (Luo et al. 2015b; Luo 2016). For example, if we 
discover that a patient is likely to have bad outcomes because 
he/she lives in a low-income neighborhood and cannot afford 
expensive medications, we can give him/her special discounts 
for some of the medications. As another example, if we 
discover that a patient is likely to have bad outcomes because 
he/she lives far from his/her physician, we can provide 
transportation or telemedicine for him/her. As a third 
example, if we discover that many patients have bad 
outcomes because they live in an area with no primary care 
clinic nearby, we can recommend opening a new primary care 
clinic in this area. So far, our method has been demonstrated 
on a single test case (Luo 2016). It would be an interesting 
area for future work to fine tune our method and test it on 
more cases. 

 
5. Conclusions 

Automating machine learning model selection is a hot topic 
in computer science with an active open competition ongoing 
(Guyon et al. 2015). We reviewed the literature on automatic 
selection methods for machine learning algorithms and/or 
hyper-parameter values for a given supervised machine 
learning problem. Our results show that these methods have 
limitations in the big biomedical data environment. Future 
studies will need to address these limitations to achieve better 
results. 
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