
Partial Materialized Views

Gang Luo
IBM T.J. Watson Research Center

luog@us.ibm.com

Abstract
Early access to partial query results is highly desirable
during exploration of massive data sets. However, it is
challenging to provide transactionally consistent,
immediate partial results without significantly increasing
queries’ execution time. To address this problem, this paper
proposes a partial materialized view (PMV) method to
cache some of the most frequently accessed results rather
than all the possible results. Compared to traditional
materialized views, the proposed PMVs do not require
maintenance during insertion into base relations, and have
much smaller storage and maintenance overhead. Upon the
arrival of a query, the RDBMS first searches the PMV and
returns to the user the cached partial results. Since a large
portion of the PMV is cached in memory, this usually
finishes within a millisecond. Then the RDBMS continues to
execute the query to find the remaining results. The
efficiency of our PMV method is evaluated through a
simulation study, a theoretical analysis, and an initial
implementation in PostgreSQL.

1. Introduction
Large data sets are common in practice, and the sizes of

these data sets are becoming larger and larger. As a result,
the capability of efficiently exploring massive data sets is
urgently needed [19]. It has been widely recognized that
early access to partial query results can provide the
following benefits and greatly facilitate the exploration of
massive data sets:
Benefit 1: The RDBMS becomes more user-friendly.
Benefit 2: Early termination of those queries with
unsatisfactory partial results (e.g., if users would like to
refine them) can greatly reduce the load on the RDBMS
and significantly speed up the exploration process.
In practice, it is important to provide transactionally
consistent, immediate partial results without significantly
increasing queries’ execution time, while statistical
guarantee for the partial results is often not necessary.

For example, consider a retailer’s customer service call
center. When a customer calls in, the call center operator
can offer him on-sale items that are of his interest. The
operator first obtains all the items Ip that the customer
recently purchased and then performs a query Q on two
relations. From the first relation, Q retrieves all the items Ir
that are related to at least one of the items in Ip. From the
second relation Rsale, Q finds all the items in Ir that are
currently on sale with a discount of at least p%, where p is
determined based on the loyalty of the customer. The

operator only needs to see partial results of Q in order to
start making offers to the customer and no statistical
guarantee is needed for these partial results. Nevertheless,
these partial results have to be obtained quickly (before the
customer hangs up). In commercial databases, a common
practice is to use a separate Rsale for each store or each
department. Consequently, many query templates are
needed to support this application.

Database researchers have spent much effort on
investigating techniques for providing partial query results.
However, none of the existing techniques is completely
satisfactory. These techniques fall into three categories:
(1) Use non-blocking query processing to generate output

tuples continuously [7, 20, 19].
(2) Use special optimization techniques to find the first or

top-k output tuples quickly [5, 8, 12, 22].
(3) Use asynchronously updated replicas to provide output

tuples quickly [3, 16].
Non-blocking query processing often increases a query’s

execution time significantly. During exploration of massive
data sets, knowing beforehand whether or not the user
wants to see all the query results is often infeasible. Hence,
it is difficult to decide in advance whether traditional
(blocking) query processing should be used to optimize the
query’s execution time, or non-blocking query processing
should be used to generate output tuples continuously.

The optimization techniques for quickly finding the first
or top-k output tuples are based on traditional (blocking)
query processing and often require expensive I/Os. Hence,
it can take much time (e.g., a few minutes) to generate the
first or top-k output tuples. Moreover, in order to use these
optimization techniques, the user needs to specify k, which
can be difficult to know beforehand. If the user is not
satisfied with the first or top-k output tuples and would like
to see all the results, he has to re-execute the query. This
re-execution wastes system resources and is slower than
requiring all the results at the first time.

In general, there is a delay before the data in the master
copy is transferred to an asynchronously updated replica.
Thus, the query results provided by the replica can be
transactionally inconsistent with the data in the master copy
(e.g., a tuple is deleted from the master copy but still exists
in the replica). This is unacceptable to many applications.

In this paper, we propose a partial materialized view
(PMV) method that can provide immediate partial results
without increasing queries’ execution time much. These
partial results are transactionally consistent and suitable for
those applications that do not require statistical guarantee.
Our idea is to reuse previous “hot” results. More

specifically, from previous queries’ execution, some of the
most frequently accessed results are remembered in the so-
called PMVs. When a new query Q comes, the
corresponding PMV is first searched and the found partial
results are returned to the user. This often finishes within a
millisecond, because a large portion of PMV is cached in
memory. Then Q is executed to find the remaining results.

Compared to traditional materialized views (MVs) that

store all possible results, our PMVs only store some of the
most frequently accessed results and have smaller sizes.
This saves most of the storage and maintenance overhead
of traditional MVs while many queries can still have early
access to partial results. Since PMVs are not used to
provide all the query results, no maintenance of PMV is
needed during insertion into base relations. To ensure that a
large portion of PMVs is cached in memory and thus the
return of partial results is quick, the size of each PMV has
an upper bound. To increase our chance of using a PMV to
provide partial results with only a limited storage, we
continuously update the content in the PMV to adapt to the
current query pattern, and restrict the maximum number of
tuples that can be stored in the PMV for any single, so-
called basic condition part. Whenever possible, both the
maintenance and the update of PMVs are coupled with
query execution for free. We investigate the performance
of the PMV method with a simulation study, a theoretical
analysis, and an initial implementation in PostgreSQL. Our
results show that PMVs have minor overhead and can often
provide partial results almost instantly. Also, the RDBMS
can afford storing many PMVs.

The rest of the paper is organized as follows. Section 2
discusses the limitations of traditional MV method. Section
3 presents the details of the proposed PMV method.
Section 4 investigates the performance of the PMV
method. Finally, we discuss related work in Section 5 and
conclude in Section 6.

2. Limitations of Materialized Views
A traditional method of speeding up query execution is

to use MVs [17]. In this section, we first describe the
queries that will be considered by the PMV method and
then discuss the limitations of traditional MV method.

2.1 Query Specification
We consider one type of queries that are frequently

encountered in practice (e.g., in form-based applications) –
queries coming from templates of the following form:
qt: select Ls from R1, R2, …, Rn where Cjoin and Cselect;

Here, Ls is the select list. Cjoin includes both the join
condition among the 1≥n relations R1, R2, …, and Rn, and
the selection conditions on a single relation that have no

parameters (e.g., R1.b=100).
i

m
iselect CC 1=∧= , where m is a

number. Each Ci (mi ≤≤1) is a selection condition on a

single relation
ihR (nhi ≤≤1). Ci takes one of the following

two disjunctive forms, which accept one or more
parameters:

Equality form:).(,1 rikh
u
r vaR

ii

i =∨ =
.

Interval form:).(,,1 rikhri
u
r waRv

ii

i <<∨ =
. The intervals

),(1,1, ii wv ,),(2,2, ii wv , …, and),(,, ii uiui wv are disjoint from

each other.
Different queries from the same template can have different
ui’s (mi ≤≤1). In Section 3.6, we will show how to extend
our techniques to handle other forms of queries (e.g.,
aggregate queries, nested queries).

In the interval form case,
ii kh aR . can be a non-numerical

(e.g., string) attribute. Also,
riv ,
 (

iur ≤≤1) can be -∞ while

riw ,
 can be +∞, and “<” can be replaced by “≤”. In other

words, the intervals can be either bounded or unbounded,
open or closed. For ease of presentation, in the remainder
of this paper, we always write an interval as an open
bounded one, with the understanding that it can be closed
and/or unbounded if necessary.

select R.a, S.e from R, S
where R.c=S.d and (R.f=f1 or R.f=f2 or … or R.f=fh)

and (S.g=g1 or S.g=g2 or … or S.g=gk);
Figure 1. An example query template Eqt.

For a large subset of queries of the qt form, traditional
query processing cannot produce output tuples quickly and
continuously. These queries are our focus. Their query
plans can be either fully pipelined or not fully pipelined. To
illustrate the former case, let us consider the template Eqt in
Figure 1. Suppose that an index exists on each
selection/join attribute. The query plan fetches tuples from
R using the index on R.f. For each retrieved tuple tR, the
index on S.d is used to search S for matching tuples. If the
selectivity of S.g is low, the index on S.d needs to be
searched many times before the first query result tuple is
obtained. This can take a few seconds in a lightly loaded
RDBMS, and a few minutes in a heavily loaded RDBMS.

2.2 Limitations of Large Materialized Views

 create materialized view VM as
 select R.a, S.e, R.f, S.g from R, S where R.c=S.d;

Figure 2. An example large materialized view.

Existing techniques for automatically selecting MVs
from query traces are based on “merging,” where the
definition of each suggested MV is based on the common
part of some of the queries [2, 33]. For example, for the
template Eqt in Figure 1, existing automatic MV selection
tools may suggest a materialized view VM as shown in
Figure 2. (The search procedure in VM needs attributes R.f
and S.g.) As VM needs to keep all the possible results for

data on
disk

partial materialized
view in memory

query query

partial result
remaining result

user

queries from Eqt, VM is fairly large. In general, due to the
extreme storage and maintenance overhead of MVs [17],
the RDBMS cannot keep a MV for each frequently used
query template.

2.3 Limitations of Small Materialized Views

For the template Eqt in Figure 1, instead of using the big
VM in Figure 2 for all possible (fi, gj) pairs, one might
wonder whether we could create multiple small MVs, one
for each “hot” (fi, gj) pair, and use them to speed up query
processing. These small MVs have the following
advantages. First, a hot (fi, gj) pair appears frequently in
queries from Eqt. Therefore, the RDBMS can use a small
MV that is built for a hot (fi, gj) pair to partially answer a
lot of queries from Eqt. Second, the combined size of these
small MVs is a small percentage of that of the big VM.
Thus, the combined storage and maintenance overhead of
these small MVs is smaller than that of VM. Also, compared
to VM, these small MVs can be accessed more quickly, as
they are more likely to be cached in memory.

However, existing techniques for answering queries
using MVs [9, 14, 18] focus on shortening queries’
execution time. For many queries from the template Eqt,
these small MVs cannot help much for that purpose. This is
because typically, a query from Eqt contains both several
hot (fi, gj) pairs and several cold (fi, gj) pairs. During the
process of obtaining the results corresponding to the cold
(fi, gj) pairs, the results corresponding to the hot (fi, gj) pairs
can be computed inexpensively without using these small
MVs.

For example, suppose that (R.f=1, S.g=2) is the only hot
(fi, gj) pair. We create a small materialized view VsM for
(R.f=1, S.g=2) as follows:

create materialized view VsM as select R.a, S.e
from R, S where R.c=S.d and R.f=1 and S.g=2;

Consider the following query that comes from the
template Eqt in Figure 1:

select R.a, S.e from R, S
where R.c=S.d and (R.f=1 or R.f=3)

and (S.g=2 or S.g=4);
In order to obtain the results corresponding to the cold pair
(R.f=1, S.g=4), tuple(s) tR of R where R.f=1 are fetched.
Similarly, to obtain the results corresponding to (R.f=3,
S.g=2), tuple(s) tS of S where S.g=2 are retrieved. Then it is
not expensive to compute the (possibly in-memory) join
between tR and tS and there is no need to use VsM.

3. The Partial Materialized View Method
In this section, we present our PMV method for

providing partial query results, which can overcome the
limitations of traditional MV method. We first describe the
main ideas. Then we go into the details of the method.

All discussions in Section 2.3 about small MVs are from
the viewpoint of minimizing queries’ execution time. The
main goal of our PMV method is to minimize the time of
generating partial results. In this case, these small MVs for
the hot (fi, gj) pairs become useful, as they can quickly

provide partial results to a large number of queries from the
template Eqt.

For example, consider a query Q from the template Eqt in
Figure 1. Q contains both several hot (fi, gj) pairs and
several cold (fi, gj) pairs. The RDBMS answers Q in the
following way:
Step 1: These small MVs are used to quickly obtain the
partial results corresponding to the hot (fi, gj) pairs. These
partial results are returned to the user and recorded in a
temporary in-memory data structure DS.
Step 2: Q is executed to obtain all the results. For each
result tuple t, we check whether t∈DS. If so (i.e., the user
has already obtained t at Step 1), t is removed from DS and
not returned to the user. Otherwise if t∉DS, the RDBMS
knows that t corresponds to some cold (fi, gj) pair and
returns t to the user. In this way, each result tuple is
returned to the user exactly once. (Query results can
contain duplicate tuples. In the case that t∈DS, if t is not
removed from DS and later another tuple t'=t comes, the
user can miss some result tuples.)

The above method will slightly increase query Q’s
execution time, as neither Step 1 nor the checking at Step 2
is needed in traditional query processing. However, this
extra overhead is minor compared to the two benefits (user-
friendliness, load reduction) of providing partial results that
are mentioned in the introduction. Thus, for those
applications of exploring massive data sets, it is worth to
make this tradeoff. For the purpose of easy management,
all the small MVs are combined into a single so-called
PMV. This becomes our PMV method. More details of our
method are described in the following subsections.

3.1 Definitions
We first introduce some definitions.

Partial materialized view. Consider a MV definition VM.
VM may or may not exist in the RDBMS. Any subset VPM
of VM is a partial materialized view. VM is the containing
materialized view of VPM. The base relations of VM are also
called the base relations of VPM. (Both MVs and PMVs are
treated as multi-sets and thus can contain duplicate tuples.)

For the materialized view VM in Figure 2, we show an
example partial materialized view VPM in Figure 3.

Figure 3. An example partial materialized view.

Condition part. Consider the query template qt in Section
2.1. A condition part is an m-tuple (d1, d2, …, dm), where
for each i (mi ≤≤1):
(1) If the selection condition Ci is of equality form, di is of

the form
ikh baR

ii
=. .

a e f g
1 2 1 7
1 2 1 7
7 8 3 9

d e g
4 2 7
5 2 7
6 8 9

a c f
1 4 1
1 5 1
7 6 3

relation S relation R
materialized
view VM

partial materialized
view VPM

a e f g
1 2 1 7

R.f

S.g

1 3

4
2

(2) If Ci is of interval form, di is of the form

ikhi caRb
ii

<< . .

A query result tuple t belongs to a condition part (d1, d2, …,
dm) if t satisfies all conditions di (mi ≤≤1). A condition
part (d1, d2, …, dm) is contained in another condition part
(d1', d2', …, dm') if whenever conditions di (mi ≤≤1) are
true, conditions di' (mi ≤≤1) are also true.

For each selection condition Ci (mi ≤≤1) that is of
interval form, let Ei denote the entire range of all possible
intervals in Ci (e.g.,),(∞+−∞=iE). We assume that the

RDBMS knows multiple “dividing” values that can divide
Ei into multiple non-overlapping “basic” intervals and
these basic intervals fully cover Ei. Each basic interval is
assigned a different id. The purpose of this division is
discretization so that the problem becomes more tractable.
The criterion for choosing dividing values is that the
resulting basic intervals can be used to differentiate hot
results from cold results.

In many form-based applications, for each selection
condition Ci (mi ≤≤1) that is of interval form, the user is
provided with both a list of from values and a list of to
values. Each (from value, to value) pair chosen by the user
forms an interval),(,, riri wv , where

iur ≤≤1 . In this case,

these from values and to values can serve as dividing
values. In other cases, we assume that either the person
(e.g., DBA) who defines the PMV for the query template
will specify the dividing values, or the continuous feature
discretization technique [11] in machine learning can
automatically learn dividing values from query traces.
Basic condition part. A condition part (d1, d2, …, dm) is a
basic condition part, if for each selection condition Ci
(mi ≤≤1) that is of interval form, di is of the form

ikhi caRb
ii

<< . , where (bi, ci) is a basic interval.

A basic condition part (d1, d2, …, dm) is stored in the
following way:
(1) If di is of the form

ikh baR
ii

=. , value bi is stored.

(2) If di is of the form
ikhi caRb

ii
<< . , where (bi, ci) is a

basic interval, the id of (bi, ci) is stored.

3.2 Organization of Partial Materialized Views
Consider a frequently used query template qt (see Section

2.1). Suppose that the RDBMS cannot afford to keep a
materialized view VM=(select Ls' from R1, R2, …, Rn where
Cjoin). Here, Ls' is the expanded select list that includes all
the attributes in both Cselect and the original select list Ls.
(The search procedure in VM needs the attributes in Cselect.)

We build a partial materialized view VPM for qt:
create partial materialized view VPM as subset of
select Ls' from R1, R2, …, Rn

where Cjoin with selection condition template Cselect;
VM is the containing MV of VPM. All the tuples in VPM
satisfy the condition Cjoin.

The person who defines VPM specifies an upper bound UB
for the size of VPM. This UB is used to constrain the storage
and maintenance overhead of VPM, and ensure that a
significant portion of VPM is cached in memory so that VPM
can be accessed quickly. Initially, VPM is empty. Our goal is
to use VPM to provide immediate partial results to as many
queries from the template qt as possible.

In the template qt, the original select list Ls is replaced
with the expanded select list Ls'. This is to let all the
attributes in Cselect appear in query result tuples. As will be
shown later, some result tuples are stored in VPM. The
attributes in Cselect are needed to find partial results in VPM.
When the RDBMS obtains a query result tuple, it only
returns the attributes in Ls to the user. Hence, the user still
receives the same answer, as if VPM did not exist and Ls in
qt had not been replaced by Ls'.

Each tuple of VPM is composed of two parts: the
“conceptual” basic condition part bcp=(d1, d2, …, dm), and
attributes ats. ats is a query result tuple that includes all the
attributes in the expanded select list Ls', and belongs to bcp.
bcp is “conceptual” in the sense that it is not actually stored
in the tuple. Whenever needed, bcp is recovered from ats.
We build an index I on bcp. If m>1, I is a multi-attribute
index. For example, for the template Eqt in Figure 1, Figure
4 shows the corresponding PMV.

Figure 4. Data structure of a partial materialized view VPM.

Our goal is to use VPM to provide immediate partial

results to as many queries as possible. Hence, it is
preferable to have a large number of basic condition parts
stored in VPM. In general, many query result tuples can
belong to a single basic condition part, and it is not
desirable to flood VPM with all these tuples. Therefore, the
person who defines VPM specifies a constant F. For a basic
condition part bcp, the RDBMS stores at most F result
tuples (rather than all the possible result tuples) that belong
to bcp in VPM. This is different from the case of traditional
MVs, where a materialized view VM stores all the result
tuples that satisfy the definition of VM. Given the storage
limit UB of VPM, for a query Q, this F makes a tradeoff
between (a) the probability that VPM can provide some
partial results to Q, and (b) in the case that VPM contains
some partial results of Q, the number of partial result tuples
that VPM can provide to Q.

Let L denote the number of basic condition parts in VPM.
At denotes the average size of the tuples in VPM. We have

tB AFLU ××≤ . If L=10K, F=2, and At=50B, then the

size of VPM is no more than 1MB and thus the memory can
hold many PMVs. As will be shown in Section 4.1, L=10K
can lead to a hit probability of 95%.

The design principles of our algorithm are as follows.
The storage budget UB is limited. Hence, VPM should store

bcp=(f, g) a e f g

… … … … …

index I
on bcp

hot basic condition parts. (A hot basic condition part
appears in a large number of queries.) This is to maximize
the chance that VPM can provide partial results to a query.

The query pattern can change from time to time. That is,
the basic condition parts that are hot can keep changing.
We want to automatically keep track of this change and
update VPM accordingly. Hence, all the basic condition
parts in VPM are managed by the CLOCK algorithm [29]:
when VPM is full, the RDBMS replaces the basic condition
parts in VPM that are no longer hot with the currently hot
basic condition parts.

VPM is initially empty. Before VPM becomes full, content
is filled into VPM. When VPM becomes full, the content in
VPM is updated as query pattern changes. Both the fill in
process and the update process of VPM should be as
efficient as possible. Therefore, in the case that there is no
change to the base relations of VPM, the RDBMS only fills
content into VPM (if VPM is not full) or changes the content
of VPM (if VPM is full) for free when it obtains result tuples
from query execution. There is no separate process for
examining the base relations of VPM.

Similarly, in the case that the base relations of VPM get
changed, the maintenance of VPM should be as efficient as
possible. Hence, whenever possible, the RDBMS couples
the maintenance of VPM with the execution of subsequent
queries for free. Lastly, the use of VPM needs to have minor
influence on queries’ execution time.

3.3 Handling Queries
When a query Q comes, the RDBMS performs the

following operations:
Operation O1: The Cselect of Q is broken into one or more
non-overlapping condition parts. Each condition part is
either a basic condition part itself or contained in a basic
condition part.
Operation O2: For each generated condition part, the
RDBMS checks whether there is a corresponding entry in
VPM. If so, the related tuples in VPM are returned to the user
as partial results. In this way, the RDBMS finds all the
result tuples of Q that are in VPM.
Operation O3: Q is executed to obtain all the result tuples.
For those tuples that the user does not receive in Operation
O2, the RDBMS returns them to the user now. Also, the
content in VPM is updated to reflect the observed change in
the hot basic condition parts.

Operation O1: Cselect ⇒ Condition Parts

i
m
iselect CC 1=∧= . For each i (mi ≤≤1), there are two

possible cases:
(1) Ci is of equality form).(,1 rikh

u
r vaR

ii

i =∨ =
. Let set

}1|.{ , irikhi urvaRS
ii

≤≤== .

(2) Ci is of interval form).(,,1 rikhri
u
r waRv

ii

i <<∨ =
. For

each r (1≤r≤ui), the RDBMS finds all the basic

intervals
riJ ,
 that overlap with the interval),(,, riri wv .

Let set U i

ii

u

r ribbririkhi JIIwvaRS
1 ,,, }|),(.{= ∈∩∈= .

Cselect is broken into a number (1≥h) of “non-overlapping”

condition parts }1|{
1

hjcpS j
m

i i ≤≤=∏ =
. For each condition

part cpj (hj ≤≤1), there are two possible cases:

(1) cpj is a basic condition part bcpj itself.
(2) cpj is contained in a basic condition part bcpj.
In either case, bcpj is called the containing basic condition
part of cpj.

Suppose that in the template Eqt in Figure 1, the selection
condition on S.g is of interval form rather than of equality
form. Figure 5 shows an example of breaking the Cselect of a
query from Eqt into condition parts. The outer rectangle
represents the entire query space, which is partitioned into
non-overlapping basic condition parts as shown by the
dashed lines. The gray rectangle represents the query. The
Cselect of this query is broken into nine condition parts. Each
condition part is represented by the intersection of the gray
rectangle and a dashed rectangle that is filled with either
upward or downward diagonals.

Figure 5. An example of breaking the Cselect of a query
from Eqt into condition parts.

Operation O2: Returning Partial Results

A temporary in-memory data structure DS is kept. For
each condition part cpj (hj ≤≤1) generated in Operation

O1, a counter cj is kept for its containing basic condition
part bcpj. Initially, DS is empty and cj=0 (hj ≤≤1). For

each cpj (hj ≤≤1), the index I on bcp is used to check

whether cpj’s containing basic condition part bcpj exists in
VPM. There are two possible cases:
(1) bcpj exists in VPM. cj is set to be the number of tuples in

VPM that belong to bcpj. For each tuple t in VPM that
belongs to bcpj, the RDBMS checks whether t belongs
to cpj. This is equivalent to checking whether t satisfies
the Cselect of query Q. If cpj is a basic condition part
itself, t must belong to cpj. In contrast, if cpj is
contained in a basic condition part, t may or may not
belong to cpj. All the tuples in VPM satisfy the
condition Cjoin. Hence, if t satisfies Cselect, t is returned
to the user as a partial result, and recorded in DS.

(2) bcpj does not exist in VPM. Nothing is done in this case.

Operation O3: Returning Remaining Result Tuples and
Updating Partial Materialized View

Query Q is executed to obtain all the result tuples. For
each such result tuple t, the data structure DS is checked to
see whether the user has already obtained t in Operation

R.f

S.g

O2. If t∈DS, t is removed from DS. If t∉DS, the RDBMS
performs the following operations:
(1) Return t to the user.
(2) Find the containing basic condition part bcpj (hj ≤≤1)

that t belongs to. For each basic condition part bcp, at
most F query result tuples that belong to bcp can be
stored in VPM. If the counter cj<F, t is added into VPM
and cj is incremented by 1. This can require purging
some basic condition part (and the associated query
result tuples) from VPM if VPM has already been full.
This case of cj<F is possible, e.g., as VPM is not
maintained immediately during insertion into the base
relations of VPM (see Section 3.4). In the case that cj=0,
a new basic condition part bcpj is added into VPM.

After all the result tuples have been processed, the data
structure DS must be empty. DS is freed.

3.4 Maintaining Partial Materialized Views
When the base relations of VPM get changed, VPM is

maintained in a different way from traditional MVs. This is
because VPM is only a subset of its containing materialized
view VM. VPM is not used to provide all the query results.
As long as VPM does not provide incorrect partial results,
there is no need to change VPM immediately. Rather, the
maintenance of VPM is deferred to when the RDBMS
obtains result tuples from the execution of future queries
for free. This minimizes the influence of VPM on
transactions that change the base relations of VPM.

Upon a change ΔRi to a base relation Ri (ni ≤≤1) of VPM,
there are three possible cases:
(1) The change is an insert. This insert may generate new

query result tuples. However, existing tuples in VPM
are not affected by this insert. Hence, VPM is not
maintained immediately.

(2) The change is a delete. The join between ΔRi and the
other base relations Rj (nj ≤≤1 , ij ≠) of VPM is

computed. For each join result tuple t, the index I on
bcp is used to check whether t∈VPM. (t must exist in
VPM’s containing MV VM. However, since VPM⊆VM, t
may or may not exist in VPM.) If t∈VPM, t is removed
from VPM.

(3) The change is an update. Recall that all the attributes
in Cselect appear in the expanded select list Ls'. If this
update does not change the attributes of Ri that appear
in either Ls' or the condition Cjoin, it will not affect the
existing tuples in VPM. Hence, there is no need to
maintain VPM. (Deletion influences all the attributes of
Ri and thus does not have this optimization.) Otherwise
we proceed in a way similar to that in the case of
deletion.

Note that in the case of delete or update, computing the join
between ΔRi and the other base relations can be costly. In
many cases, we can avoid this join computation by building
indices on some attributes of VPM. Due to space constraints,
the details of this method are available in [25].

3.5 Using Better Cache Management Method
Consider a basic condition part bcp that exists in the

partial materialized view VPM. Tuples in VPM often have
either a large number of attributes or some long attributes
(e.g., detailed description). As a result, the combined size
of all the tuples in VPM that belong to bcp is usually much
larger than the size of bcp. If we treat bcp as the page id,
and all the tuples in VPM that belong to bcp as the page,
then VPM looks much like a buffer pool. Hence, instead of
using the CLOCK algorithm, the RDBMS can use other
better buffer pool management algorithms (e.g., 2Q [23]) to
manage VPM. This will increase the probability that VPM can
provide partial results to queries from the template qt. The
experimental section 4.1 gives a performance comparison
between CLOCK and 2Q.

3.6 Discussions and Summary of Advantages
Like traditional MVs, the standard locking protocol is

used on PMVs to ensure serializability. When a query Q
reads a partial materialized view VPM in Operation O2, Q
puts an S lock on VPM. Then between Operations O2 and
O3, no other transaction can change the correct (VPM) read
result of Q by updating some base relation, as that would
require updating VPM with the acquisition of an X lock on
VPM. Hence, Q would not have read anomaly.

With minor changes in our algorithm, PMVs can be used
to handle queries with distinct clauses. In Operation O2,
only distinct tuples in the partial results obtained from the
PMV are returned to the user and stored in the data
structure DS. In Operation O3, all distinct result tuples are
first obtained from query execution. Then only those tuples
that are not in DS are returned to the user.

The above discussion focuses on non-aggregate queries,
which are common these days. For example, both the call
center scenario in the introduction and deep analytical tasks
in real-time data warehouses require detailed data. With
minor changes in the user interface, PMVs can also be used
to handle aggregate queries (e.g., group by) or queries with
order by clauses. The details are available in [25].

In certain cases, with some extension, PMVs can be used
to handle nested queries. For example, consider a two-level
nested query. The subquery appears in the where clause of
the main query after an EXISTS operator. Suppose that we
can quickly obtain tuples from the main query but checking
the EXISTS condition is time-consuming. In this case, a
PMV can be used to quickly generate partial results of the
subquery. Then for some tuples from the main query, the
process of checking the EXISTS condition can be sped up.
Consequently, we can rapidly produce some partial results
for the entire query.

The partial materialized view VPM has the following
advantages:
(1) VPM has small storage and maintenance overhead.
(2) VPM can provide immediate partial results to a large

number of queries from the template qt.

Figure 6. Hit probability (number of

bcps experiment).

50%

60%

70%

80%

90%

100%

1 2 3 4 5
h

h
it

 p
ro

b
ab

il
it

y

2Q, alpha=1.07

CLOCK, alpha=1.07

2Q, alpha=1.01

CLOCK, alpha=1.01

Figure 7. Hit probability (PMV size

experiment).

70%

75%

80%

85%

90%

95%

100%

10000 20000 30000

N

h
it

 p
ro

b
ab

il
it

y

2Q

CLOCK

(3) A large portion of provided partial results are hot
results – they are frequently accessed by other queries
from qt. This is desirable for those applications where
users care more about hot results than cold results.
(For applications that users want to see random partial
results, this can be a disadvantage. However, as shown
in [10], in general it is difficult to provide random
partial results.)

(4) VPM has minor influence on queries’ execution time.

4. Performance Evaluation of Partial
Materialized View

The performance of our PMV method has been evaluated
from three perspectives: (1) the probability that a PMV can
provide partial results to a query, (2) the influence of the
PMV method on queries’ execution time, and (3) the
maintenance overhead of a PMV when its base relations
get changed.

4.1 Probability of Being Useful
We first perform a simulation study to show that in a

large number of cases, PMVs can provide partial results to
a query. Consider a read-only database. We focus on those
queries that come from the same template qt. Assume that a
partial materialized view VPM is built for qt. In Operation
O1, the Cselect of each query is broken into the same number

1≥h of condition parts, where each condition part is a basic
condition part itself. The entire query space contains 1M
basic condition parts bcpi (Mi 11 ≤≤). For each basic
condition part, the number of query result tuples that
belong to it is greater than F. As a result, for each basic
condition part that exists in VPM, F query result tuples are
stored in VPM. For each basic condition part in the Cselect of
a query, the probability that it is bcpi (Mi 11 ≤≤) is ei. All
the ei’s (Mi 11 ≤≤) follow a Zipfian distribution with

parameter α. That is, αiei /1∝ .

We compare the following two methods of managing all
the basic condition parts in VPM:
(1) The CLOCK algorithm. VPM is a queue with L entries

that is managed by the CLOCK algorithm. Each entry
can store one basic condition part bcp and F query
result tuples that belong to bcp.

(2) A simplified version of the 2Q algorithm [23]. VPM is
composed of two queues: Am and A1. Am has N entries
and is managed by the CLOCK algorithm. Each entry
can store one basic condition part bcp and F query
result tuples that belong to bcp. A1 has N'=50%×N
entries and is a FIFO queue. Each entry stores one
basic condition part. Upon the first time that a basic
condition part bcp appears in the Cselect of a query, bcp
is put into A1. If during its stay in A1, bcp appears
again in the Cselect of another query, both bcp and F
query result tuples that belong to bcp are moved to Am.
Am is used to provide partial results to a query.

We assume that the storage requirement of a basic
condition part is 4% of that of F query result tuples. Thus,
given the same storage budget UB of VPM for both the
CLOCK and the 2Q algorithms, we have L=1.02×N.

The purpose of the comparison between the CLOCK
algorithm and the 2Q algorithm is to show that in a large
number of cases, the simple CLOCK algorithm performs
well. Also, CLOCK is not the best algorithm for managing
all the basic condition parts in VPM. In many cases, 2Q
performs better than CLOCK. We leave it as an interesting
area for future work to identify other algorithms that
perform better than both CLOCK and 2Q.

We performed the following two experiments:
Number of bcps experiment. We fixed N=20K and tested
two cases:
(i) α=1.07. This is the high skew case. 10% of all the 1M

basic condition parts get 90% of the chance of
appearing in the Cselect of a query.

(ii) α=1.01. This is the moderate skew case. 21% of all the
1M basic condition parts get 90% of the chance of
appearing in the Cselect of a query.

In either case, we varied h from 1 to 5. Recall that h is the
number of basic condition parts in the Cselect of a query.
PMV size experiment. We fixed α=1.07 and h=2. We
varied N from 10K to 30K. Recall that N determines the
size of VPM.

The hit probability is defined as the probability that VPM
can provide some partial results to a query Q. That is, if
any of the h basic condition parts in the Cselect of Q exists in
VPM, Q is “hit.” This definition is different from that in
traditional caching [23], as our case is about “partial hit”
while traditional caching is about “full hit.” In each test
case, 1M queries were used to “warm up” VPM. Then the hit
probability was reported over the next 1M queries. (We
also tested other numbers of “warm up” queries. The
results were similar and thus omitted.)

For the number of bcps experiment, Figure 6 shows the
hit probability results. The y-axis starts from 50%. h is the
number of basic condition parts in the Cselect of a query Q.
If any basic condition part in the Cselect of Q is “hit,” Q is
“hit.” Hence, the hit probability approaches 100% quickly
as h increases. The larger the α, the more queries focus on
a few basic condition parts and thus the more likely these
basic condition parts are cached in VPM. Therefore, for a
fixed algorithm (either CLOCK or 2Q) and a fixed h, the
hit probability increases with α. For a fixed α and a fixed
h, 2Q performs better than CLOCK, which is consistent
with the results in [23].

Figure 7 shows the hit probability results from the PMV

size experiment. The y-axis starts from 70%. The larger the
N, the more basic condition parts and their corresponding
query result tuples can be stored in VPM, and thus the more
likely VPM can provide some partial results to a query.
Therefore, the hit probability approaches 100% quickly as
N increases. Again, for a fixed N, 2Q performs better than
CLOCK.

4.2 Influence on Queries’ Execution Time
In order to show that the PMV method has negligible

influence on queries’ execution time, we did a prototype
implementation of our techniques in PostgreSQL Version
7.3.4 [28] for read-only database. Our measurements were
performed with the PostgreSQL client application and
server running on a computer with one 2.2GHz processor,
512MB main memory, one 40GB disk, and running the
Microsoft Windows XP operating system. The default
setting of PostgreSQL was used, where the buffer pool size
is 1,000 pages. (We also tested larger buffer pool sizes. The
results were similar and thus omitted.)

The relations used for the experiments followed the
schema of the standard TPC-R Benchmark relations [32]:

customer (custkey, nationkey, …),
orders (orderkey, custkey, orderdate, …),
lineitem (orderkey, suppkey, …).

Table 1. Test data set.
 number of tuples total size
customer 0.15×s M 23×s MB
orders 1.5×s M 114×s MB
lineitem 6×s M 755×s MB

s is the scale factor of the database. In our experiments,

on average, each customer tuple matches ten orders tuples
on the attribute custkey. Each orders tuple matches 4
lineitem tuples on the attribute orderkey.

We used the following two query templates:
Template T1: Find lineitems whose parts were provided by
certain suppliers and sold on certain days.

select * from orders o, lineitem l
where o.orderkey=l.orderkey

and (o.orderdate=d1 or … or o.orderdate=de)
and (l.suppkey=s1 or … or l.suppkey=sf);

Template T2: Find lineitems whose parts were provided by
certain suppliers and sold to certain customers on certain
days.

select * from orders o, lineitem l, customer c
where o.orderkey=l.orderkey and o.custkey=c.custkey

and (o.orderdate=d1 or … or o.orderdate=de)
and (l.suppkey=s1 or … or l.suppkey=sf)
and (c.nationkey=n1 or … or c.nationkey=ng);

We built an index on each selection/join attribute. Before
we ran queries, we ran the PostgreSQL statistics collection
program on all the relations. For either template, due to the
low selectivity of the selection attributes, the query plan is

not fully pipelined and thus traditional query execution
cannot provide any result until it almost finishes.

For the template T1, each basic condition part is a 2-tuple
(di, sj). For the template T2, each basic condition part is a 3-
tuple (di, sj, nk). We built two PMVs, one for T1 and the
other for T2. Either PMV contains 20K entries. Each entry
can store one basic condition part bcp and F query result
tuples that belong to bcp. (For each basic condition part,
the number of query result tuples that belong to it is greater
than F.)

For the template T1, its combination factor is defined as
h=e×f. For the template T2, its combination factor is
defined as h=e×f×g. In Operation O1, the Cselect of each
query from T1/T2 is broken into the same number (h) of
condition parts, where each condition part is a basic
condition part itself, and one of these h basic condition
parts exists in the PMV. We performed three experiments.
Each experiment was repeated a large number of times (a
large number of runs). All the reported numbers are
averaged over these runs.

Number of Tuples

In this experiment, we fixed h=4 and s=1. We varied F,
the number of query result tuples stored in each entry of the

PMV, from 1 to 5.
Figure 8 shows the
impact of F on the
overhead of our
techniques. The
overhead of our
techniques increases
with F. This is easy to
understand, as for each
entry of the PMV, F

query result tuples stored there are checked. For a fixed F,
the overhead of our techniques for the template T2 is
greater than that for the template T1. This is because T2 is
more complex than T1: T2 joins three relations, while T1
joins two relations. As a result, the basic condition parts
generated from T2 are more complex than those generated
from T1. Also, the query result tuples of T2 are longer than
that of T1. Recall that in our PMV method, both basic
condition parts and query result tuples are checked.

Combination Factor

In this experiment,
we fixed F=3 and
s=1. We varied the
combination factor h
from 1 to 10. Figure 9
shows the impact of h
on the overhead of
our techniques. The
larger the h, the more
basic condition parts a
query generated. Then

Figure 8. Overhead of our techniques

(number of tuples experiment).

0

0.00001

0.00002

0.00003

0.00004

0.00005

1 2 3 4 5

F

o
v

er
h

ea
d

 (
se

co
n

d
) T 1

T 2

Figure 9. O verhead of our techniques

(combination factor experiment).

0

0.00002

0.00004

0.00006

0.00008

1 2 3 4 5 6 7 8 9 10

h

o
v

er
h

ea
d

 (
se

co
n

d
) T 1

T2

Figure 11. TW for transaction T .

1

10

100

1000

10000

0% 20% 40% 60% 80% 100%

p

T
W

 i
n

 I
/O

s

MV
PMV

Figure 12. Speedup ratio gained by the
partial material ized view method.

0

100

200

300

400

500

600

0% 20% 40% 60% 80% 100%

p

sp
ee

d
u

p
 r

at
io

the RDBMS needs to spend more time on dealing with all
these basic condition parts. As a result, the overhead of our
techniques increases with h. Again, for a fixed h, the
overhead of our techniques for the template T2 is greater
than that for the template T1.

Database Scale Factor

In this experiment, we fixed h=4 and F=3. We varied the
database scale factor s from 0.5 to 2. The purpose of this
experiment is to show that our techniques have negligible
influence on queries’ execution time.

 Figure 10 shows
both the overhead of
our techniques and
the query execution
time. The lines for
“PMV T1/T2”
represent the
overhead of our
techniques. The lines
for “execute T1/T2”

represent the query execution time. The y-axis uses
logarithmic scale.

Our techniques examine query result tuples rather than
the data set. Also, our techniques mainly perform fast in-
memory operations (recall that a significant portion of the
PMV is cached in memory). Hence, compared to the query
execution time, the overhead of our techniques is more than
five orders of magnitude smaller. Since the cost of
Operations O1 and O2 is less than the overhead of our
techniques, the RDBMS can use the PMV to provide
partial query results within a millisecond.

4.3 Maintenance Overhead
We use an analytical model to gain insight into the

maintenance overhead of PMVs vs. MVs when their base
relations get changed. A similar analytical model for MV
maintenance has been validated in a commercial RDBMS
(NCR Teradata) in [24]. Due to space constraints, the
details of our model are available in [25]. (PostgreSQL
currently does not support MVs. As a result, we were not
able to compare the actual maintenance overhead of PMVs
vs. MVs in PostgreSQL.)

Consider the template in Figure 1 and its corresponding
partial materialized view VPM. The materialized view VM in
Figure 2 is the containing MV of VPM. We consider a single
transaction T, where p×|ΔR| tuples are inserted into R and
(1-p)×|ΔR| tuples are deleted from R. For both VM and VPM,
the same updates must be performed on base relation R.
Because of this, our model omits the cost of these updates
and compares the maintenance cost of VM and VPM. The
total workload TW for transaction T, which is defined as
the total work done, is used as the cost metric.

Setting |ΔR|=1,000, we present in Figures 11 and 12 the
resulting performance of both the MV method and the
PMV method. Figure 11 shows the total workload for

transaction T. The y-axis uses logarithmic scale. The
maintenance of VPM mainly performs cheap in-memory
operations, while the maintenance of VM requires a large
number of expensive I/Os. Hence, for a fixed percentage of
insertion p, maintaining VPM is at least two orders of
magnitude cheaper than maintaining VM.

Inserting a tuple into VM is less expensive than deleting a

tuple from VM. Also, there is no need to maintain VPM in the
presence of insertion into base relation R. As a result, both
the maintenance overhead of VM and the maintenance
overhead of VPM decrease as p increases. When p=100%,
the maintenance overhead of VPM is 0. However, this
cannot be shown in Figure 11, as the y-axis is on
logarithmic scale.

Figure 12 shows the speedup ratio gained by maintaining
VPM over maintaining VM. This speedup ratio increases with
the percentage of insertion p, as there is no need to
maintain VPM during insertion into base relation R.

The above two-relation model can be easily extended to
handle a (partial) MV defined on multiple base relations.
However, this does not provide any insight not shown
above and is thus omitted.

5. Related Work
To facilitate exploration of massive data sets, [20, 19]

proposed using online aggregation to return approximate
answers to the user immediately after a query is submitted
to the RDBMS. Online aggregation focuses on aggregate
queries. In contrast, our PMV method works for non-
aggregate queries.

[1, 4] proposed building histograms “for free” by
analyzing query results rather than checking the relation. In
our case, if base relations do not change, the RDBMS both
fills content into and updates PMVs “for free” by analyzing
query results.

[30, 31] use partial indices to reduce index maintenance
overhead. Upon an insertion into a relation R, the partial
index Ip on R needs to be maintained immediately if this
insertion satisfies the selection condition in the definition
of Ip. In contrast, the PMV defined on R is not maintained
immediately.

[26] proposed using sample MVs to support approximate
query answering. A sample MV is a random sample of
tuples in a MV. The maintenance of sample MVs is more
expensive than that of PMVs, as randomness needs to be
maintained in sample MVs. Also, since a sample MV does

Figure 10. Query exe cution time vs. overhead of

our techniques (database scale factor experiment).

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0.5 1 1.5 2
s

ex
ec

u
ti

o
n

 t
im

e
o

r
o

v
er

h
ea

d
 (

se
co

n
d

)

execute T1
PMV T1
execute T2
PMV T2

not focus on hot query result tuples, the probability that it
can provide partial results to a query is low. In a read-only
environment, [15] proposed using icicles samples to
support approximate query answering for key-foreign key
join queries. In contrast, PMVs work in a general
environment that allows updates.

[13] uses chunks to cache OLAP query results in the
middle tier. [13] focuses on aggregate queries in a read-
only environment, and imposes an order on each dimension
if no implicit order exists. In contrast, our method works
for non-aggregate queries in a general environment that
allows updates, and does not impose non-natural orders on
attribute values.

In a data stream environment, to speed up the processing
of continuous multi-way windowed join queries, [6]
proposed caching a subset of the join result tuples of some
of the streams. If a key value v exists in the cache, all the
join result tuples related to v must also exist in the cache.
This requires maintaining the cache immediately upon
arrival of new tuples from the streams. In contrast, upon
insertion into base relations, PMVs are not maintained
immediately.

In a distributed data integration environment, [21] and
[27] define a PMV as a MV whose definition contains a
subset of all the attributes and a where clause, respectively.
Both PMV definitions are different from the one used in
this paper.

6. Conclusion
We have presented a partial materialized view method

that can provide transactionally consistent, immediate
partial query results to the user without increasing queries’
execution time much, by caching hot query results in
PMVs. Our experiments with a simulation study, a
theoretical analysis, and a prototype implementation in
PostgreSQL show that PMVs have low storage and
maintenance overhead. In a large number of cases, they can
provide partial results almost instantly. Many PMVs can
reside in the RDBMS simultaneously. Also, our method
has negligible influence on queries’ execution time. Hence,
our PMV method can greatly facilitate the exploration of
massive data sets. Besides providing partial query results,
our techniques can be extended to address other problems,
such as ranking query result tuples according to their
popularity. The details are available in [25].

Acknowledgements
We would like to thank Jiuxing Liu, Jeffrey F. Naughton,

Ying-li Tian, Michail Vlachos, Haijing Wang, Michael W.
Watzke, and Hao Yang for helpful discussions.

References
[1] A. Aboulnaga, S. Chaudhuri. Self-tuning Histograms: Building
Histograms without Looking at Data. SIGMOD Conf. 1999: 181-192.
[2] S. Agrawal, S. Chaudhuri, and V.R. Narasayya. Automated Selection
of Materialized Views and Indexes in SQL Databases. VLDB 2000: 496-
505.

[3] C. Bornhövd, M. Altinel, and S. Krishnamurthy et al. DBCache:
Middle-tier Database Caching for Highly Scalable e-Business
Architectures. SIGMOD Conf. 2003: 662.
[4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
Multidimensional Workload-Aware Histogram. SIGMOD Conf. 2001:
211-222.
[5] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k Selection Queries
over Relational Databases: Mapping Strategies and Performance
Evaluation. TODS 27(2): 153-187, 2002.
[6] S. Babu, K. Munagala, and J. Widom et al. Adaptive Caching for
Continuous Queries. ICDE 2005: 118-129.
[7] S. Chandrasekaran, O. Cooper, and A. Deshpande et al. TelegraphCQ:
Continuous Dataflow Processing for an Uncertain World. CIDR 2003.
[8] M.J. Carey, D. Kossmann. On Saying "Enough Already!" in SQL.
SIGMOD Conf. 1997: 219-230.
[9] S. Chaudhuri, R. Krishnamurthy, and S. Potamianos et al. Optimizing
Queries with Materialized Views. ICDE 1995: 190-200.
[10] S. Chaudhuri, R. Motwani, and V.R. Narasayya. On Random
Sampling over Joins. SIGMOD Conf. 1999: 263-274.
[11] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and
Unsupervised Discretization of Continuous Features. ICML 1995: 194-
202.
[12] D. Donjerkovic, R. Ramakrishnan. Probabilistic Optimization of Top
N Queries. VLDB 1999: 411-422.
[13] P. Deshpande, K. Ramasamy, and A. Shukla et al. Caching
Multidimensional Queries Using Chunks. SIGMOD Conf. 1998: 259-270.
[14] J. Goldstein, P. Larson. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. SIGMOD Conf. 2001: 331-342.
[15] V. Ganti, M. Lee, and R. Ramakrishnan. ICICLES: Self-Tuning
Samples for Approximate Query Answering. VLDB 2000: 176-187.
[16] H. Guo, P. Larson, and R. Ramakrishnan et al. Relaxed Currency and
Consistency: How to Say "Good Enough" in SQL. SIGMOD Conf. 2004:
815-826.
[17] A. Gupta, I.S. Mumick. Materialized Views: Techniques,
Implementations, and Applications. MIT Press, 1999.
[18] A.Y. Halevy. Answering Queries Using Views: A Survey. VLDB J.
10(4): 270-294, 2001.
[19] J.M. Hellerstein, P.J. Haas, and H. Wang. Online Aggregation.
SIGMOD Conf. 1997: 171-182.
[20] P.J. Haas, J.M. Hellerstein. Ripple Joins for Online Aggregation.
SIGMOD Conf. 1999: 287-298.
[21] R. Hull, G. Zhou. A Framework for Supporting Data Integration
Using the Materialized and Virtual Approaches. SIGMOD Conf. 1996:
481-492.
[22] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting Top-k Join
Queries in Relational Databases. VLDB J. 13(3): 207-221, 2004.
[23] T. Johnson, D. Shasha. 2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm. VLDB 1994: 439-450.
[24] G. Luo, J.F. Naughton, and C.J. Ellmann et al. A Comparison of
Three Methods for Join View Maintenance in Parallel RDBMS. ICDE
2003: 177-188.
[25] G. Luo. Partial Materialized Views, full version. Available at
http://www.cs.wisc.edu/~gangluo/partial_full.pdf, 2006.
[26] F. Olken, D. Rotem. Maintenance of Materialized Views of Sampling
Queries. ICDE 1992: 632-641.
[27] Oracle Label Security. http://www.oracle.com/technology/docs
/deploy/security/pdf/olsag.pdf, 2000.
[28] PostgreSQL homepage, 2005. http://www.postgresql.org.
[29] A. Silberschatz, P. Galvin, and G. Gagne. Operating System
Concepts, Sixth Edition. John Wiley, 2002.
[30] P. Seshadri, A.N. Swami. Generalized Partial Indexes. ICDE 1995:
420-427.
[31] M. Stonebraker: The Case for Partial Indexes. SIGMOD Record
18(4): 4-11, 1989.
[32] TPC Homepage. TPC-R benchmark, www.tpc.org.
[33] D.C. Zilio, J. Rao, and S. Lightstone et al. DB2 Design Advisor:
Integrated Automatic Physical Database Design. VLDB 2004: 1087-1097.

