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Abstract 
Early access to partial query results is highly desirable 
during exploration of massive data sets. However, it is 
challenging to provide transactionally consistent, 
immediate partial results without significantly increasing 
queries’ execution time. To address this problem, this paper 
proposes a partial materialized view (PMV) method to 
cache some of the most frequently accessed results rather 
than all the possible results. Compared to traditional 
materialized views, the proposed PMVs do not require 
maintenance during insertion into base relations, and have 
much smaller storage and maintenance overhead. Upon the 
arrival of a query, the RDBMS first searches the PMV and 
returns to the user the cached partial results. Since a large 
portion of the PMV is cached in memory, this usually 
finishes within a millisecond. Then the RDBMS continues to 
execute the query to find the remaining results. The 
efficiency of our PMV method is evaluated through a 
simulation study, a theoretical analysis, and an initial 
implementation in PostgreSQL. 
 

1. Introduction 
Large data sets are common in practice, and the sizes of 

these data sets are becoming larger and larger. As a result, 
the capability of efficiently exploring massive data sets is 
urgently needed [19]. It has been widely recognized that 
early access to partial query results can provide the 
following benefits and greatly facilitate the exploration of 
massive data sets: 
Benefit 1: The RDBMS becomes more user-friendly. 
Benefit 2: Early termination of those queries with 
unsatisfactory partial results (e.g., if users would like to 
refine them) can greatly reduce the load on the RDBMS 
and significantly speed up the exploration process. 
In practice, it is important to provide transactionally 
consistent, immediate partial results without significantly 
increasing queries’ execution time, while statistical 
guarantee for the partial results is often not necessary. 

For example, consider a retailer’s customer service call 
center. When a customer calls in, the call center operator 
can offer him on-sale items that are of his interest. The 
operator first obtains all the items Ip that the customer 
recently purchased and then performs a query Q on two 
relations. From the first relation, Q retrieves all the items Ir 
that are related to at least one of the items in Ip. From the 
second relation Rsale, Q finds all the items in Ir that are 
currently on sale with a discount of at least p%, where p is 
determined based on the loyalty of the customer. The 

operator only needs to see partial results of Q in order to 
start making offers to the customer and no statistical 
guarantee is needed for these partial results. Nevertheless, 
these partial results have to be obtained quickly (before the 
customer hangs up). In commercial databases, a common 
practice is to use a separate Rsale for each store or each 
department. Consequently, many query templates are 
needed to support this application. 

Database researchers have spent much effort on 
investigating techniques for providing partial query results. 
However, none of the existing techniques is completely 
satisfactory. These techniques fall into three categories: 
(1) Use non-blocking query processing to generate output 

tuples continuously [7, 20, 19]. 
(2) Use special optimization techniques to find the first or 

top-k output tuples quickly [5, 8, 12, 22]. 
(3) Use asynchronously updated replicas to provide output 

tuples quickly [3, 16]. 
Non-blocking query processing often increases a query’s 

execution time significantly. During exploration of massive 
data sets, knowing beforehand whether or not the user 
wants to see all the query results is often infeasible. Hence, 
it is difficult to decide in advance whether traditional 
(blocking) query processing should be used to optimize the 
query’s execution time, or non-blocking query processing 
should be used to generate output tuples continuously. 

The optimization techniques for quickly finding the first 
or top-k output tuples are based on traditional (blocking) 
query processing and often require expensive I/Os. Hence, 
it can take much time (e.g., a few minutes) to generate the 
first or top-k output tuples. Moreover, in order to use these 
optimization techniques, the user needs to specify k, which 
can be difficult to know beforehand. If the user is not 
satisfied with the first or top-k output tuples and would like 
to see all the results, he has to re-execute the query. This 
re-execution wastes system resources and is slower than 
requiring all the results at the first time. 

In general, there is a delay before the data in the master 
copy is transferred to an asynchronously updated replica. 
Thus, the query results provided by the replica can be 
transactionally inconsistent with the data in the master copy 
(e.g., a tuple is deleted from the master copy but still exists 
in the replica). This is unacceptable to many applications. 

In this paper, we propose a partial materialized view 
(PMV) method that can provide immediate partial results 
without increasing queries’ execution time much. These 
partial results are transactionally consistent and suitable for 
those applications that do not require statistical guarantee. 
Our idea is to reuse previous “hot” results. More 



 

specifically, from previous queries’ execution, some of the 
most frequently accessed results are remembered in the so-
called PMVs. When a new query Q comes, the 
corresponding PMV is first searched and the found partial 
results are returned to the user. This often finishes within a 
millisecond, because a large portion of PMV is cached in 
memory. Then Q is executed to find the remaining results. 

 
 

 
 

 
Compared to traditional materialized views (MVs) that 

store all possible results, our PMVs only store some of the 
most frequently accessed results and have smaller sizes. 
This saves most of the storage and maintenance overhead 
of traditional MVs while many queries can still have early 
access to partial results. Since PMVs are not used to 
provide all the query results, no maintenance of PMV is 
needed during insertion into base relations. To ensure that a 
large portion of PMVs is cached in memory and thus the 
return of partial results is quick, the size of each PMV has 
an upper bound. To increase our chance of using a PMV to 
provide partial results with only a limited storage, we 
continuously update the content in the PMV to adapt to the 
current query pattern, and restrict the maximum number of 
tuples that can be stored in the PMV for any single, so-
called basic condition part. Whenever possible, both the 
maintenance and the update of PMVs are coupled with 
query execution for free. We investigate the performance 
of the PMV method with a simulation study, a theoretical 
analysis, and an initial implementation in PostgreSQL. Our 
results show that PMVs have minor overhead and can often 
provide partial results almost instantly. Also, the RDBMS 
can afford storing many PMVs. 

The rest of the paper is organized as follows. Section 2 
discusses the limitations of traditional MV method. Section 
3 presents the details of the proposed PMV method. 
Section 4 investigates the performance of the PMV 
method. Finally, we discuss related work in Section 5 and 
conclude in Section 6. 

 

2. Limitations of Materialized Views 
A traditional method of speeding up query execution is 

to use MVs [17]. In this section, we first describe the 
queries that will be considered by the PMV method and 
then discuss the limitations of traditional MV method. 
 

2.1 Query Specification 
We consider one type of queries that are frequently 

encountered in practice (e.g., in form-based applications) – 
queries coming from templates of the following form: 
qt:  select Ls from R1, R2, …, Rn where Cjoin and Cselect; 

Here, Ls is the select list. Cjoin includes both the join 
condition among the 1≥n  relations R1, R2, …, and Rn, and 
the selection conditions on a single relation that have no 

parameters (e.g., R1.b=100). 
i

m
iselect CC 1=∧= , where m is a 

number. Each Ci ( mi ≤≤1 ) is a selection condition on a 

single relation 
ihR  ( nhi ≤≤1 ). Ci takes one of the following 

two disjunctive forms, which accept one or more 
parameters:  

Equality form: ).( ,1 rikh
u
r vaR

ii

i =∨ =
.  

Interval form: ).( ,,1 rikhri
u
r waRv

ii

i <<∨ =
. The intervals 

),( 1,1, ii wv , ),( 2,2, ii wv , …, and ),( ,, ii uiui wv  are disjoint from 

each other. 
Different queries from the same template can have different 
ui’s ( mi ≤≤1 ). In Section 3.6, we will show how to extend 
our techniques to handle other forms of queries (e.g., 
aggregate queries, nested queries). 

In the interval form case, 
ii kh aR .  can be a non-numerical 

(e.g., string) attribute. Also, 
riv ,
 (

iur ≤≤1 ) can be -∞ while 

riw ,
 can be +∞, and “<” can be replaced by “≤”. In other 

words, the intervals can be either bounded or unbounded, 
open or closed. For ease of presentation, in the remainder 
of this paper, we always write an interval as an open 
bounded one, with the understanding that it can be closed 
and/or unbounded if necessary. 

 

select R.a, S.e from R, S  
where R.c=S.d and (R.f=f1 or R.f=f2 or … or R.f=fh)  

and (S.g=g1 or S.g=g2 or … or S.g=gk); 
Figure 1. An example query template Eqt. 

 

For a large subset of queries of the qt form, traditional 
query processing cannot produce output tuples quickly and 
continuously. These queries are our focus. Their query 
plans can be either fully pipelined or not fully pipelined. To 
illustrate the former case, let us consider the template Eqt in 
Figure 1. Suppose that an index exists on each 
selection/join attribute. The query plan fetches tuples from 
R using the index on R.f. For each retrieved tuple tR, the 
index on S.d is used to search S for matching tuples. If the 
selectivity of S.g is low, the index on S.d needs to be 
searched many times before the first query result tuple is 
obtained. This can take a few seconds in a lightly loaded 
RDBMS, and a few minutes in a heavily loaded RDBMS. 
 

2.2 Limitations of Large Materialized Views 
 

 create materialized view VM as 
 select R.a, S.e, R.f, S.g from R, S where R.c=S.d; 

Figure 2. An example large materialized view. 
 

Existing techniques for automatically selecting MVs 
from query traces are based on “merging,” where the 
definition of each suggested MV is based on the common 
part of some of the queries [2, 33]. For example, for the 
template Eqt in Figure 1, existing automatic MV selection 
tools may suggest a materialized view VM as shown in 
Figure 2. (The search procedure in VM needs attributes R.f 
and S.g.) As VM needs to keep all the possible results for 
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queries from Eqt, VM is fairly large. In general, due to the 
extreme storage and maintenance overhead of MVs [17], 
the RDBMS cannot keep a MV for each frequently used 
query template. 
 
2.3 Limitations of Small Materialized Views 

For the template Eqt in Figure 1, instead of using the big 
VM in Figure 2 for all possible (fi, gj) pairs, one might 
wonder whether we could create multiple small MVs, one 
for each “hot” (fi, gj) pair, and use them to speed up query 
processing. These small MVs have the following 
advantages. First, a hot (fi, gj) pair appears frequently in 
queries from Eqt. Therefore, the RDBMS can use a small 
MV that is built for a hot (fi, gj) pair to partially answer a 
lot of queries from Eqt. Second, the combined size of these 
small MVs is a small percentage of that of the big VM. 
Thus, the combined storage and maintenance overhead of 
these small MVs is smaller than that of VM. Also, compared 
to VM, these small MVs can be accessed more quickly, as 
they are more likely to be cached in memory. 

However, existing techniques for answering queries 
using MVs [9, 14, 18] focus on shortening queries’ 
execution time. For many queries from the template Eqt, 
these small MVs cannot help much for that purpose. This is 
because typically, a query from Eqt contains both several 
hot (fi, gj) pairs and several cold (fi, gj) pairs. During the 
process of obtaining the results corresponding to the cold 
(fi, gj) pairs, the results corresponding to the hot (fi, gj) pairs 
can be computed inexpensively without using these small 
MVs. 

For example, suppose that (R.f=1, S.g=2) is the only hot 
(fi, gj) pair. We create a small materialized view VsM for 
(R.f=1, S.g=2) as follows: 

create materialized view VsM as select R.a, S.e  
from R, S where R.c=S.d and R.f=1 and S.g=2; 

Consider the following query that comes from the 
template Eqt in Figure 1: 

select R.a, S.e from R, S 
where R.c=S.d and (R.f=1 or R.f=3)  

and (S.g=2 or S.g=4); 
In order to obtain the results corresponding to the cold pair 
(R.f=1, S.g=4), tuple(s) tR of R where R.f=1 are fetched. 
Similarly, to obtain the results corresponding to (R.f=3, 
S.g=2), tuple(s) tS of S where S.g=2 are retrieved. Then it is 
not expensive to compute the (possibly in-memory) join 
between tR and tS and there is no need to use VsM. 
 

3. The Partial Materialized View Method 
In this section, we present our PMV method for 

providing partial query results, which can overcome the 
limitations of traditional MV method. We first describe the 
main ideas. Then we go into the details of the method. 

All discussions in Section 2.3 about small MVs are from 
the viewpoint of minimizing queries’ execution time. The 
main goal of our PMV method is to minimize the time of 
generating partial results. In this case, these small MVs for 
the hot (fi, gj) pairs become useful, as they can quickly 

provide partial results to a large number of queries from the 
template Eqt. 

For example, consider a query Q from the template Eqt in 
Figure 1. Q contains both several hot (fi, gj) pairs and 
several cold (fi, gj) pairs. The RDBMS answers Q in the 
following way: 
Step 1: These small MVs are used to quickly obtain the 
partial results corresponding to the hot (fi, gj) pairs. These 
partial results are returned to the user and recorded in a 
temporary in-memory data structure DS. 
Step 2: Q is executed to obtain all the results. For each 
result tuple t, we check whether t∈DS. If so (i.e., the user 
has already obtained t at Step 1), t is removed from DS and 
not returned to the user. Otherwise if t∉DS, the RDBMS 
knows that t corresponds to some cold (fi, gj) pair and 
returns t to the user. In this way, each result tuple is 
returned to the user exactly once. (Query results can 
contain duplicate tuples. In the case that t∈DS, if t is not 
removed from DS and later another tuple t'=t comes, the 
user can miss some result tuples.)  

The above method will slightly increase query Q’s 
execution time, as neither Step 1 nor the checking at Step 2 
is needed in traditional query processing. However, this 
extra overhead is minor compared to the two benefits (user-
friendliness, load reduction) of providing partial results that 
are mentioned in the introduction. Thus, for those 
applications of exploring massive data sets, it is worth to 
make this tradeoff. For the purpose of easy management, 
all the small MVs are combined into a single so-called 
PMV. This becomes our PMV method. More details of our 
method are described in the following subsections. 
 

3.1 Definitions 
We first introduce some definitions.  

Partial materialized view. Consider a MV definition VM. 
VM may or may not exist in the RDBMS. Any subset VPM 
of VM is a partial materialized view. VM is the containing 
materialized view of VPM. The base relations of VM are also 
called the base relations of VPM. (Both MVs and PMVs are 
treated as multi-sets and thus can contain duplicate tuples.) 

For the materialized view VM in Figure 2, we show an 
example partial materialized view VPM in Figure 3. 
 

 
 
 

 
Figure 3. An example partial materialized view. 

 
Condition part. Consider the query template qt in Section 
2.1. A condition part is an m-tuple (d1, d2, …, dm), where 
for each i ( mi ≤≤1 ): 
(1) If the selection condition Ci is of equality form, di is of 

the form 
ikh baR

ii
=. .  

a e f g
1 2 1 7
1 2 1 7
7 8 3 9

d e g 
4 2 7 
5 2 7 
6 8 9 

a c f 
1 4 1 
1 5 1 
7 6 3 

relation S relation R 
materialized 
view VM 

partial materialized 
view VPM 

a e f g
1 2 1 7

R.f

S.g 

1 3

4
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(2) If Ci is of interval form, di is of the form 

ikhi caRb
ii

<< . .  

A query result tuple t belongs to a condition part (d1, d2, …, 
dm) if t satisfies all conditions di ( mi ≤≤1 ). A condition 
part (d1, d2, …, dm) is contained in another condition part 
(d1', d2', …, dm') if whenever conditions di ( mi ≤≤1 ) are 
true, conditions di' ( mi ≤≤1 ) are also true. 

For each selection condition Ci ( mi ≤≤1 ) that is of 
interval form, let Ei denote the entire range of all possible 
intervals in Ci (e.g., ),( ∞+−∞=iE ). We assume that the 

RDBMS knows multiple “dividing” values that can divide 
Ei into multiple non-overlapping “basic” intervals and 
these basic intervals fully cover Ei. Each basic interval is 
assigned a different id. The purpose of this division is 
discretization so that the problem becomes more tractable. 
The criterion for choosing dividing values is that the 
resulting basic intervals can be used to differentiate hot 
results from cold results. 

In many form-based applications, for each selection 
condition Ci ( mi ≤≤1 ) that is of interval form, the user is 
provided with both a list of from values and a list of to 
values. Each (from value, to value) pair chosen by the user 
forms an interval ),( ,, riri wv , where 

iur ≤≤1 . In this case, 

these from values and to values can serve as dividing 
values. In other cases, we assume that either the person 
(e.g., DBA) who defines the PMV for the query template 
will specify the dividing values, or the continuous feature 
discretization technique [11] in machine learning can 
automatically learn dividing values from query traces. 
Basic condition part. A condition part (d1, d2, …, dm) is a 
basic condition part, if for each selection condition Ci 
( mi ≤≤1 ) that is of interval form, di is of the form 

ikhi caRb
ii

<< . , where (bi, ci) is a basic interval. 

A basic condition part (d1, d2, …, dm) is stored in the 
following way: 
(1) If di is of the form 

ikh baR
ii

=. , value bi is stored.  

(2) If di is of the form 
ikhi caRb

ii
<< . , where (bi, ci) is a 

basic interval, the id of (bi, ci) is stored. 
 

3.2 Organization of Partial Materialized Views 
Consider a frequently used query template qt (see Section 

2.1). Suppose that the RDBMS cannot afford to keep a 
materialized view VM=(select Ls' from R1, R2, …, Rn where 
Cjoin). Here, Ls' is the expanded select list that includes all 
the attributes in both Cselect and the original select list Ls. 
(The search procedure in VM needs the attributes in Cselect.)  

We build a partial materialized view VPM for qt: 
create partial materialized view VPM as subset of 
select Ls' from R1, R2, …, Rn 

where Cjoin with selection condition template Cselect; 
VM is the containing MV of VPM. All the tuples in VPM 
satisfy the condition Cjoin.  

The person who defines VPM specifies an upper bound UB 
for the size of VPM. This UB is used to constrain the storage 
and maintenance overhead of VPM, and ensure that a 
significant portion of VPM is cached in memory so that VPM 
can be accessed quickly. Initially, VPM is empty. Our goal is 
to use VPM to provide immediate partial results to as many 
queries from the template qt as possible. 

In the template qt, the original select list Ls is replaced 
with the expanded select list Ls'. This is to let all the 
attributes in Cselect appear in query result tuples. As will be 
shown later, some result tuples are stored in VPM. The 
attributes in Cselect are needed to find partial results in VPM. 
When the RDBMS obtains a query result tuple, it only 
returns the attributes in Ls to the user. Hence, the user still 
receives the same answer, as if VPM did not exist and Ls in 
qt had not been replaced by Ls'. 

Each tuple of VPM is composed of two parts: the 
“conceptual” basic condition part bcp=(d1, d2, …, dm), and 
attributes ats. ats is a query result tuple that includes all the 
attributes in the expanded select list Ls', and belongs to bcp. 
bcp is “conceptual” in the sense that it is not actually stored 
in the tuple. Whenever needed, bcp is recovered from ats. 
We build an index I on bcp. If m>1, I is a multi-attribute 
index. For example, for the template Eqt in Figure 1, Figure 
4 shows the corresponding PMV. 

 
 
 

 
Figure 4. Data structure of a partial materialized view VPM. 

 
Our goal is to use VPM to provide immediate partial 

results to as many queries as possible. Hence, it is 
preferable to have a large number of basic condition parts 
stored in VPM. In general, many query result tuples can 
belong to a single basic condition part, and it is not 
desirable to flood VPM with all these tuples. Therefore, the 
person who defines VPM specifies a constant F. For a basic 
condition part bcp, the RDBMS stores at most F result 
tuples (rather than all the possible result tuples) that belong 
to bcp in VPM. This is different from the case of traditional 
MVs, where a materialized view VM stores all the result 
tuples that satisfy the definition of VM. Given the storage 
limit UB of VPM, for a query Q, this F makes a tradeoff 
between (a) the probability that VPM can provide some 
partial results to Q, and (b) in the case that VPM contains 
some partial results of Q, the number of partial result tuples 
that VPM can provide to Q. 

Let L denote the number of basic condition parts in VPM. 
At denotes the average size of the tuples in VPM. We have 

tB AFLU ××≤ . If L=10K, F=2, and At=50B, then the 

size of VPM is no more than 1MB and thus the memory can 
hold many PMVs. As will be shown in Section 4.1, L=10K 
can lead to a hit probability of 95%. 

The design principles of our algorithm are as follows. 
The storage budget UB is limited. Hence, VPM should store 

bcp=(f, g) a e f g 
     

… … … … … 
     

index I 
on bcp 



 

hot basic condition parts. (A hot basic condition part 
appears in a large number of queries.) This is to maximize 
the chance that VPM can provide partial results to a query.  

The query pattern can change from time to time. That is, 
the basic condition parts that are hot can keep changing. 
We want to automatically keep track of this change and 
update VPM accordingly. Hence, all the basic condition 
parts in VPM are managed by the CLOCK algorithm [29]: 
when VPM is full, the RDBMS replaces the basic condition 
parts in VPM that are no longer hot with the currently hot 
basic condition parts. 

VPM is initially empty. Before VPM becomes full, content 
is filled into VPM. When VPM becomes full, the content in 
VPM is updated as query pattern changes. Both the fill in 
process and the update process of VPM should be as 
efficient as possible. Therefore, in the case that there is no 
change to the base relations of VPM, the RDBMS only fills 
content into VPM (if VPM is not full) or changes the content 
of VPM (if VPM is full) for free when it obtains result tuples 
from query execution. There is no separate process for 
examining the base relations of VPM. 

Similarly, in the case that the base relations of VPM get 
changed, the maintenance of VPM should be as efficient as 
possible. Hence, whenever possible, the RDBMS couples 
the maintenance of VPM with the execution of subsequent 
queries for free. Lastly, the use of VPM needs to have minor 
influence on queries’ execution time. 
 

3.3 Handling Queries 
When a query Q comes, the RDBMS performs the 

following operations: 
Operation O1: The Cselect of Q is broken into one or more 
non-overlapping condition parts. Each condition part is 
either a basic condition part itself or contained in a basic 
condition part.  
Operation O2: For each generated condition part, the 
RDBMS checks whether there is a corresponding entry in 
VPM. If so, the related tuples in VPM are returned to the user 
as partial results. In this way, the RDBMS finds all the 
result tuples of Q that are in VPM. 
Operation O3: Q is executed to obtain all the result tuples. 
For those tuples that the user does not receive in Operation 
O2, the RDBMS returns them to the user now. Also, the 
content in VPM is updated to reflect the observed change in 
the hot basic condition parts. 
 

Operation O1: Cselect ⇒ Condition Parts 

i
m
iselect CC 1=∧= . For each i ( mi ≤≤1 ), there are two 

possible cases: 
(1) Ci is of equality form ).( ,1 rikh

u
r vaR

ii

i =∨ =
. Let set 

}1|.{ , irikhi urvaRS
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(2) Ci is of interval form ).( ,,1 rikhri
u
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i <<∨ =
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each r (1≤r≤ui), the RDBMS finds all the basic 

intervals 
riJ ,
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Cselect is broken into a number ( 1≥h ) of “non-overlapping” 

condition parts }1|{
1

hjcpS j
m

i i ≤≤=∏ =
. For each condition 

part cpj ( hj ≤≤1 ), there are two possible cases: 

(1) cpj is a basic condition part bcpj itself. 
(2) cpj is contained in a basic condition part bcpj. 
In either case, bcpj is called the containing basic condition 
part of cpj. 

Suppose that in the template Eqt in Figure 1, the selection 
condition on S.g is of interval form rather than of equality 
form. Figure 5 shows an example of breaking the Cselect of a 
query from Eqt into condition parts. The outer rectangle 
represents the entire query space, which is partitioned into 
non-overlapping basic condition parts as shown by the 
dashed lines. The gray rectangle represents the query. The 
Cselect of this query is broken into nine condition parts. Each 
condition part is represented by the intersection of the gray 
rectangle and a dashed rectangle that is filled with either 
upward or downward diagonals. 

 
 
 
 
 
 

Figure 5. An example of breaking the Cselect of a query 
from Eqt into condition parts. 

 
Operation O2: Returning Partial Results 

A temporary in-memory data structure DS is kept. For 
each condition part cpj ( hj ≤≤1 ) generated in Operation 

O1, a counter cj is kept for its containing basic condition 
part bcpj. Initially, DS is empty and cj=0 ( hj ≤≤1 ). For 

each cpj ( hj ≤≤1 ), the index I on bcp is used to check 

whether cpj’s containing basic condition part bcpj exists in 
VPM. There are two possible cases: 
(1) bcpj exists in VPM. cj is set to be the number of tuples in 

VPM that belong to bcpj. For each tuple t in VPM that 
belongs to bcpj, the RDBMS checks whether t belongs 
to cpj. This is equivalent to checking whether t satisfies 
the Cselect of query Q. If cpj is a basic condition part 
itself, t must belong to cpj. In contrast, if cpj is 
contained in a basic condition part, t may or may not 
belong to cpj. All the tuples in VPM satisfy the 
condition Cjoin. Hence, if t satisfies Cselect, t is returned 
to the user as a partial result, and recorded in DS.  

(2) bcpj does not exist in VPM. Nothing is done in this case. 
 
Operation O3: Returning Remaining Result Tuples and 
Updating Partial Materialized View 

Query Q is executed to obtain all the result tuples. For 
each such result tuple t, the data structure DS is checked to 
see whether the user has already obtained t in Operation 

R.f

S.g 



 

O2. If t∈DS, t is removed from DS. If t∉DS, the RDBMS 
performs the following operations: 
(1) Return t to the user.  
(2) Find the containing basic condition part bcpj ( hj ≤≤1 ) 

that t belongs to. For each basic condition part bcp, at 
most F query result tuples that belong to bcp can be 
stored in VPM. If the counter cj<F, t is added into VPM 
and cj is incremented by 1. This can require purging 
some basic condition part (and the associated query 
result tuples) from VPM if VPM has already been full. 
This case of cj<F is possible, e.g., as VPM is not 
maintained immediately during insertion into the base 
relations of VPM (see Section 3.4). In the case that cj=0, 
a new basic condition part bcpj is added into VPM. 

After all the result tuples have been processed, the data 
structure DS must be empty. DS is freed. 
 

3.4 Maintaining Partial Materialized Views 
When the base relations of VPM get changed, VPM is 

maintained in a different way from traditional MVs. This is 
because VPM is only a subset of its containing materialized 
view VM. VPM is not used to provide all the query results. 
As long as VPM does not provide incorrect partial results, 
there is no need to change VPM immediately. Rather, the 
maintenance of VPM is deferred to when the RDBMS 
obtains result tuples from the execution of future queries 
for free. This minimizes the influence of VPM on 
transactions that change the base relations of VPM. 

Upon a change ΔRi to a base relation Ri ( ni ≤≤1 ) of VPM, 
there are three possible cases: 
(1) The change is an insert. This insert may generate new 

query result tuples. However, existing tuples in VPM 
are not affected by this insert. Hence, VPM is not 
maintained immediately. 

(2) The change is a delete. The join between ΔRi and the 
other base relations Rj ( nj ≤≤1 , ij ≠ ) of VPM is 

computed. For each join result tuple t, the index I on 
bcp is used to check whether t∈VPM. (t must exist in 
VPM’s containing MV VM. However, since VPM⊆VM, t 
may or may not exist in VPM.) If t∈VPM, t is removed 
from VPM.  

(3) The change is an update. Recall that all the attributes 
in Cselect appear in the expanded select list Ls'. If this 
update does not change the attributes of Ri that appear 
in either Ls' or the condition Cjoin, it will not affect the 
existing tuples in VPM. Hence, there is no need to 
maintain VPM. (Deletion influences all the attributes of 
Ri and thus does not have this optimization.) Otherwise 
we proceed in a way similar to that in the case of 
deletion.  

Note that in the case of delete or update, computing the join 
between ΔRi and the other base relations can be costly. In 
many cases, we can avoid this join computation by building 
indices on some attributes of VPM. Due to space constraints, 
the details of this method are available in [25].  

 

3.5 Using Better Cache Management Method 
Consider a basic condition part bcp that exists in the 

partial materialized view VPM. Tuples in VPM often have 
either a large number of attributes or some long attributes 
(e.g., detailed description). As a result, the combined size 
of all the tuples in VPM that belong to bcp is usually much 
larger than the size of bcp. If we treat bcp as the page id, 
and all the tuples in VPM that belong to bcp as the page, 
then VPM looks much like a buffer pool. Hence, instead of 
using the CLOCK algorithm, the RDBMS can use other 
better buffer pool management algorithms (e.g., 2Q [23]) to 
manage VPM. This will increase the probability that VPM can 
provide partial results to queries from the template qt. The 
experimental section 4.1 gives a performance comparison 
between CLOCK and 2Q. 
 

3.6 Discussions and Summary of Advantages 
Like traditional MVs, the standard locking protocol is 

used on PMVs to ensure serializability. When a query Q 
reads a partial materialized view VPM in Operation O2, Q 
puts an S lock on VPM. Then between Operations O2 and 
O3, no other transaction can change the correct (VPM) read 
result of Q by updating some base relation, as that would 
require updating VPM with the acquisition of an X lock on 
VPM. Hence, Q would not have read anomaly. 

With minor changes in our algorithm, PMVs can be used 
to handle queries with distinct clauses. In Operation O2, 
only distinct tuples in the partial results obtained from the 
PMV are returned to the user and stored in the data 
structure DS. In Operation O3, all distinct result tuples are 
first obtained from query execution. Then only those tuples 
that are not in DS are returned to the user. 

The above discussion focuses on non-aggregate queries, 
which are common these days. For example, both the call 
center scenario in the introduction and deep analytical tasks 
in real-time data warehouses require detailed data. With 
minor changes in the user interface, PMVs can also be used 
to handle aggregate queries (e.g., group by) or queries with 
order by clauses. The details are available in [25]. 

In certain cases, with some extension, PMVs can be used 
to handle nested queries. For example, consider a two-level 
nested query. The subquery appears in the where clause of 
the main query after an EXISTS operator. Suppose that we 
can quickly obtain tuples from the main query but checking 
the EXISTS condition is time-consuming. In this case, a 
PMV can be used to quickly generate partial results of the 
subquery. Then for some tuples from the main query, the 
process of checking the EXISTS condition can be sped up. 
Consequently, we can rapidly produce some partial results 
for the entire query.  

The partial materialized view VPM has the following 
advantages:  
(1) VPM has small storage and maintenance overhead.  
(2) VPM can provide immediate partial results to a large 

number of queries from the template qt.  



 

Figure  6. Hit probability (number of 

bcps experiment).
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(3) A large portion of provided partial results are hot 
results – they are frequently accessed by other queries 
from qt. This is desirable for those applications where 
users care more about hot results than cold results. 
(For applications that users want to see random partial 
results, this can be a disadvantage. However, as shown 
in [10], in general it is difficult to provide random 
partial results.)  

(4) VPM has minor influence on queries’ execution time. 
 

4. Performance Evaluation of Partial 
Materialized View 

The performance of our PMV method has been evaluated 
from three perspectives: (1) the probability that a PMV can 
provide partial results to a query, (2) the influence of the 
PMV method on queries’ execution time, and (3) the 
maintenance overhead of a PMV when its base relations 
get changed. 
 

4.1 Probability of Being Useful 
We first perform a simulation study to show that in a 

large number of cases, PMVs can provide partial results to 
a query. Consider a read-only database. We focus on those 
queries that come from the same template qt. Assume that a 
partial materialized view VPM is built for qt. In Operation 
O1, the Cselect of each query is broken into the same number 

1≥h  of condition parts, where each condition part is a basic 
condition part itself. The entire query space contains 1M 
basic condition parts bcpi ( Mi 11 ≤≤ ). For each basic 
condition part, the number of query result tuples that 
belong to it is greater than F. As a result, for each basic 
condition part that exists in VPM, F query result tuples are 
stored in VPM. For each basic condition part in the Cselect of 
a query, the probability that it is bcpi ( Mi 11 ≤≤ ) is ei. All 
the ei’s ( Mi 11 ≤≤ ) follow a Zipfian distribution with 

parameter α. That is, αiei /1∝ .  

We compare the following two methods of managing all 
the basic condition parts in VPM: 
(1) The CLOCK algorithm. VPM is a queue with L entries 

that is managed by the CLOCK algorithm. Each entry 
can store one basic condition part bcp and F query 
result tuples that belong to bcp.  

(2) A simplified version of the 2Q algorithm [23]. VPM is 
composed of two queues: Am and A1. Am has N entries 
and is managed by the CLOCK algorithm. Each entry 
can store one basic condition part bcp and F query 
result tuples that belong to bcp. A1 has N'=50%×N 
entries and is a FIFO queue. Each entry stores one 
basic condition part. Upon the first time that a basic 
condition part bcp appears in the Cselect of a query, bcp 
is put into A1. If during its stay in A1, bcp appears 
again in the Cselect of another query, both bcp and F 
query result tuples that belong to bcp are moved to Am. 
Am is used to provide partial results to a query. 

We assume that the storage requirement of a basic 
condition part is 4% of that of F query result tuples. Thus, 
given the same storage budget UB of VPM for both the 
CLOCK and the 2Q algorithms, we have L=1.02×N. 

The purpose of the comparison between the CLOCK 
algorithm and the 2Q algorithm is to show that in a large 
number of cases, the simple CLOCK algorithm performs 
well. Also, CLOCK is not the best algorithm for managing 
all the basic condition parts in VPM. In many cases, 2Q 
performs better than CLOCK. We leave it as an interesting 
area for future work to identify other algorithms that 
perform better than both CLOCK and 2Q. 

We performed the following two experiments: 
Number of bcps experiment. We fixed N=20K and tested 
two cases: 
(i) α=1.07. This is the high skew case. 10% of all the 1M 

basic condition parts get 90% of the chance of 
appearing in the Cselect of a query. 

(ii) α=1.01. This is the moderate skew case. 21% of all the 
1M basic condition parts get 90% of the chance of 
appearing in the Cselect of a query. 

In either case, we varied h from 1 to 5. Recall that h is the 
number of basic condition parts in the Cselect of a query. 
PMV size experiment. We fixed α=1.07 and h=2. We 
varied N from 10K to 30K. Recall that N determines the 
size of VPM. 

The hit probability is defined as the probability that VPM 
can provide some partial results to a query Q. That is, if 
any of the h basic condition parts in the Cselect of Q exists in 
VPM, Q is “hit.” This definition is different from that in 
traditional caching [23], as our case is about “partial hit” 
while traditional caching is about “full hit.” In each test 
case, 1M queries were used to “warm up” VPM. Then the hit 
probability was reported over the next 1M queries. (We 
also tested other numbers of “warm up” queries. The 
results were similar and thus omitted.) 

For the number of bcps experiment, Figure 6 shows the 
hit probability results. The y-axis starts from 50%. h is the 
number of basic condition parts in the Cselect of a query Q. 
If any basic condition part in the Cselect of Q is “hit,” Q is 
“hit.” Hence, the hit probability approaches 100% quickly 
as h increases. The larger the α, the more queries focus on 
a few basic condition parts and thus the more likely these 
basic condition parts are cached in VPM. Therefore, for a 
fixed algorithm (either CLOCK or 2Q) and a fixed h, the 
hit probability increases with α. For a fixed α and a fixed 
h, 2Q performs better than CLOCK, which is consistent 
with the results in [23]. 

 
 
 
 
 
 
 
 
 



 

 
Figure 7 shows the hit probability results from the PMV 

size experiment. The y-axis starts from 70%. The larger the 
N, the more basic condition parts and their corresponding 
query result tuples can be stored in VPM, and thus the more 
likely VPM can provide some partial results to a query. 
Therefore, the hit probability approaches 100% quickly as 
N increases. Again, for a fixed N, 2Q performs better than 
CLOCK. 
 

4.2 Influence on Queries’ Execution Time 
In order to show that the PMV method has negligible 

influence on queries’ execution time, we did a prototype 
implementation of our techniques in PostgreSQL Version 
7.3.4 [28] for read-only database. Our measurements were 
performed with the PostgreSQL client application and 
server running on a computer with one 2.2GHz processor, 
512MB main memory, one 40GB disk, and running the 
Microsoft Windows XP operating system. The default 
setting of PostgreSQL was used, where the buffer pool size 
is 1,000 pages. (We also tested larger buffer pool sizes. The 
results were similar and thus omitted.) 

The relations used for the experiments followed the 
schema of the standard TPC-R Benchmark relations [32]: 

customer (custkey, nationkey, …), 
orders (orderkey, custkey, orderdate, …), 
lineitem (orderkey, suppkey, …). 

 

Table 1. Test data set. 
 number of tuples total size 
customer 0.15×s M 23×s MB 
orders 1.5×s M 114×s MB 
lineitem 6×s M 755×s MB 

 
s is the scale factor of the database. In our experiments, 

on average, each customer tuple matches ten orders tuples 
on the attribute custkey. Each orders tuple matches 4 
lineitem tuples on the attribute orderkey. 

We used the following two query templates: 
Template T1: Find lineitems whose parts were provided by 
certain suppliers and sold on certain days. 

select * from orders o, lineitem l  
where o.orderkey=l.orderkey  

and (o.orderdate=d1 or … or o.orderdate=de)  
and (l.suppkey=s1 or … or l.suppkey=sf);  

Template T2: Find lineitems whose parts were provided by 
certain suppliers and sold to certain customers on certain 
days. 

select * from orders o, lineitem l, customer c 
where o.orderkey=l.orderkey and o.custkey=c.custkey  

and (o.orderdate=d1 or … or o.orderdate=de)  
and (l.suppkey=s1 or … or l.suppkey=sf)  
and (c.nationkey=n1 or … or c.nationkey=ng);  

We built an index on each selection/join attribute. Before 
we ran queries, we ran the PostgreSQL statistics collection 
program on all the relations. For either template, due to the 
low selectivity of the selection attributes, the query plan is 

not fully pipelined and thus traditional query execution 
cannot provide any result until it almost finishes. 

For the template T1, each basic condition part is a 2-tuple 
(di, sj). For the template T2, each basic condition part is a 3-
tuple (di, sj, nk). We built two PMVs, one for T1 and the 
other for T2. Either PMV contains 20K entries. Each entry 
can store one basic condition part bcp and F query result 
tuples that belong to bcp. (For each basic condition part, 
the number of query result tuples that belong to it is greater 
than F.) 

For the template T1, its combination factor is defined as 
h=e×f. For the template T2, its combination factor is 
defined as h=e×f×g. In Operation O1, the Cselect of each 
query from T1/T2 is broken into the same number (h) of 
condition parts, where each condition part is a basic 
condition part itself, and one of these h basic condition 
parts exists in the PMV. We performed three experiments. 
Each experiment was repeated a large number of times (a 
large number of runs). All the reported numbers are 
averaged over these runs. 
 
Number of Tuples 

In this experiment, we fixed h=4 and s=1. We varied F, 
the number of query result tuples stored in each entry of the 

PMV, from 1 to 5. 
Figure 8 shows the 
impact of F on the 
overhead of our 
techniques. The 
overhead of our 
techniques increases 
with F. This is easy to 
understand, as for each 
entry of the PMV, F 

query result tuples stored there are checked. For a fixed F, 
the overhead of our techniques for the template T2 is 
greater than that for the template T1. This is because T2 is 
more complex than T1: T2 joins three relations, while T1 
joins two relations. As a result, the basic condition parts 
generated from T2 are more complex than those generated 
from T1. Also, the query result tuples of T2 are longer than 
that of T1. Recall that in our PMV method, both basic 
condition parts and query result tuples are checked. 
 
Combination Factor 

In this experiment, 
we fixed F=3 and 
s=1. We varied the 
combination factor h 
from 1 to 10. Figure 9 
shows the impact of h 
on the overhead of 
our techniques. The 
larger the h, the more 
basic condition parts a 
query generated. Then 

Figure 8. Overhead of our techniques 

(number of tuples experiment).
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Figure  11. TW  for transaction T .
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Figure 12. Speedup ratio gained by the  
partial material ized view method.
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the RDBMS needs to spend more time on dealing with all 
these basic condition parts. As a result, the overhead of our 
techniques increases with h. Again, for a fixed h, the 
overhead of our techniques for the template T2 is greater 
than that for the template T1. 
 
Database Scale Factor 

In this experiment, we fixed h=4 and F=3. We varied the 
database scale factor s from 0.5 to 2. The purpose of this 
experiment is to show that our techniques have negligible 
influence on queries’ execution time. 

 Figure 10 shows 
both the overhead of 
our techniques and 
the query execution 
time. The lines for 
“PMV T1/T2” 
represent the 
overhead of our 
techniques. The lines 
for “execute T1/T2” 

represent the query execution time. The y-axis uses 
logarithmic scale. 

Our techniques examine query result tuples rather than 
the data set. Also, our techniques mainly perform fast in-
memory operations (recall that a significant portion of the 
PMV is cached in memory). Hence, compared to the query 
execution time, the overhead of our techniques is more than 
five orders of magnitude smaller. Since the cost of 
Operations O1 and O2 is less than the overhead of our 
techniques, the RDBMS can use the PMV to provide 
partial query results within a millisecond. 
 

4.3 Maintenance Overhead 
We use an analytical model to gain insight into the 

maintenance overhead of PMVs vs. MVs when their base 
relations get changed. A similar analytical model for MV 
maintenance has been validated in a commercial RDBMS 
(NCR Teradata) in [24]. Due to space constraints, the 
details of our model are available in [25]. (PostgreSQL 
currently does not support MVs. As a result, we were not 
able to compare the actual maintenance overhead of PMVs 
vs. MVs in PostgreSQL.) 

Consider the template in Figure 1 and its corresponding 
partial materialized view VPM. The materialized view VM in 
Figure 2 is the containing MV of VPM. We consider a single 
transaction T, where p×|ΔR| tuples are inserted into R and 
(1-p)×|ΔR| tuples are deleted from R. For both VM and VPM, 
the same updates must be performed on base relation R. 
Because of this, our model omits the cost of these updates 
and compares the maintenance cost of VM and VPM. The 
total workload TW for transaction T, which is defined as 
the total work done, is used as the cost metric. 

Setting |ΔR|=1,000, we present in Figures 11 and 12 the 
resulting performance of both the MV method and the 
PMV method. Figure 11 shows the total workload for 

transaction T. The y-axis uses logarithmic scale. The 
maintenance of VPM mainly performs cheap in-memory 
operations, while the maintenance of VM requires a large 
number of expensive I/Os. Hence, for a fixed percentage of 
insertion p, maintaining VPM is at least two orders of 
magnitude cheaper than maintaining VM. 

 
 
 
 
 
 
 
 
 
 

 
Inserting a tuple into VM is less expensive than deleting a 

tuple from VM. Also, there is no need to maintain VPM in the 
presence of insertion into base relation R. As a result, both 
the maintenance overhead of VM and the maintenance 
overhead of VPM decrease as p increases. When p=100%, 
the maintenance overhead of VPM is 0. However, this 
cannot be shown in Figure 11, as the y-axis is on 
logarithmic scale. 

Figure 12 shows the speedup ratio gained by maintaining 
VPM over maintaining VM. This speedup ratio increases with 
the percentage of insertion p, as there is no need to 
maintain VPM during insertion into base relation R. 

The above two-relation model can be easily extended to 
handle a (partial) MV defined on multiple base relations. 
However, this does not provide any insight not shown 
above and is thus omitted. 
 

5. Related Work 
To facilitate exploration of massive data sets, [20, 19] 

proposed using online aggregation to return approximate 
answers to the user immediately after a query is submitted 
to the RDBMS. Online aggregation focuses on aggregate 
queries. In contrast, our PMV method works for non-
aggregate queries. 

[1, 4] proposed building histograms “for free” by 
analyzing query results rather than checking the relation. In 
our case, if base relations do not change, the RDBMS both 
fills content into and updates PMVs “for free” by analyzing 
query results. 

[30, 31] use partial indices to reduce index maintenance 
overhead. Upon an insertion into a relation R, the partial 
index Ip on R needs to be maintained immediately if this 
insertion satisfies the selection condition in the definition 
of Ip. In contrast, the PMV defined on R is not maintained 
immediately. 

[26] proposed using sample MVs to support approximate 
query answering. A sample MV is a random sample of 
tuples in a MV. The maintenance of sample MVs is more 
expensive than that of PMVs, as randomness needs to be 
maintained in sample MVs. Also, since a sample MV does 

Figure  10. Query exe cution time vs. overhead of 

our techniques (database scale  factor experiment).
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not focus on hot query result tuples, the probability that it 
can provide partial results to a query is low. In a read-only 
environment, [15] proposed using icicles samples to 
support approximate query answering for key-foreign key 
join queries. In contrast, PMVs work in a general 
environment that allows updates. 

[13] uses chunks to cache OLAP query results in the 
middle tier. [13] focuses on aggregate queries in a read-
only environment, and imposes an order on each dimension 
if no implicit order exists. In contrast, our method works 
for non-aggregate queries in a general environment that 
allows updates, and does not impose non-natural orders on 
attribute values. 

In a data stream environment, to speed up the processing 
of continuous multi-way windowed join queries, [6] 
proposed caching a subset of the join result tuples of some 
of the streams. If a key value v exists in the cache, all the 
join result tuples related to v must also exist in the cache. 
This requires maintaining the cache immediately upon 
arrival of new tuples from the streams. In contrast, upon 
insertion into base relations, PMVs are not maintained 
immediately. 

In a distributed data integration environment, [21] and 
[27] define a PMV as a MV whose definition contains a 
subset of all the attributes and a where clause, respectively. 
Both PMV definitions are different from the one used in 
this paper. 
 

6. Conclusion 
We have presented a partial materialized view method 

that can provide transactionally consistent, immediate 
partial query results to the user without increasing queries’ 
execution time much, by caching hot query results in 
PMVs. Our experiments with a simulation study, a 
theoretical analysis, and a prototype implementation in 
PostgreSQL show that PMVs have low storage and 
maintenance overhead. In a large number of cases, they can 
provide partial results almost instantly. Many PMVs can 
reside in the RDBMS simultaneously. Also, our method 
has negligible influence on queries’ execution time. Hence, 
our PMV method can greatly facilitate the exploration of 
massive data sets. Besides providing partial query results, 
our techniques can be extended to address other problems, 
such as ranking query result tuples according to their 
popularity. The details are available in [25]. 
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