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Abstract—A new scheme of learning similarity measure is so called content-based image retrieval (CBIR) [12], [14]. For
proposed for content-based image retrieval (CBIR). It learns a many applications, such indexing schemes may be either sup-
boundary that separates the images in the database into two clus- plemental or preferable to text, and in some other cases they

ters. Images inside the boundary are ranked by their Euclidean be indi ble. M - | . b .
distances to the query. The scheme is called constrained similarity may be indispensable. vioreover, visual queries may be easier

measure (CSM), which not only takes into consideration the per- to formulate [8].
ceptual similarity between images, but also significantly improves ~ Image retrieval differs from traditional pattern classification

the retrieval performance of the Euclidean distance measure. sych as face detection and digit recognition. In retrieval, there is
Two techniques, support vector machine (SVM) and AdaBoost 5 \ser in the loop. The image retrieval system should take into
from machine learning, are L_Jtlllzed to I_earn the boundary. They consideration human perceptual similarity between the query
are compared to see their differences in boundary learning. The ) : : B b
positive and negative examples used to learn the boundary are @nd the retrieved images. Thus the process is subjective in a
provided by the user with relevance feedback. The CSM metric sense [7]. On the contrary, the job of classification is relatively
is evaluated in a large database of 10 009 natural images with gpjective and defined more clearly. The classification results are
an accurate ground truth. Experimental results demonstrate the ypicqly the returned class labels or probabilities that a test ex-
usefulness and effectiveness of the proposed similarity measureample belongs to each class
for image retrieval. N . .
_ o Relevance feedback (RF) is a powerful technique for inter-
Index Terms—AdaBoost, constrained similarity measure, con- g tive image retrieval [17]. Minka and Picard [11] presented a
]Eenggaslt(ad image retrieval fer?ture(ss\sll\tz;:tlon, leaming, relevance learning technique for interactive image retrieval. The key idea
eedback, support vector machine . . i ) : A
PP behind this approach is that each feature model has its own
strength in representing a certain aspect of image content, and
. INTRODUCTION thus, the best way for effective content-based retrieval is to uti-
V ISUAL information retrieval has been an active researdff€ ‘@ society of models.” A typical approach in relevance feed-
proie n it apictons ) () 1] 1 b2 0 ait e el o ruslees  accomodae
[19]. One approach is to use keywords or text descriptions : ' : ; . o=
indexing and retrieval of image data. However, there are seveY8[t the query into a new representation by using the positive
problems inherent in systems that are exclusively text-baséfd negative examples provided by the users [16]. In [6], rele-
First, automatic generation of descriptive keywords or extra¥ance feedback is used to modify the weighted metric for com-
tion of semantic information for broad varieties of images is b@4ting the distance between feature vectors. The basic idea is to
yond the capacity of current computer vision and artificial ifénhance the importance of those dimensions of an feature that
telligence technologies. Thus, text descriptors have to be ty%‘?ﬁ in re(tjr_levmg_the ri"EVz_”tc;ma%?S and reduce the importance
in by human operators, which is very time consuming and ti% those dimensions that hinder this process.
results are usually inaccurate and incomplete. Second, certaif!? this paper, we proposed a technique that learns a boundary
visual properties, such as textures and color patterns, are offefeparate the positive and negative examples provided by rele-
difficult, if not impossible, to describe with text in an objective/ance feedback. Support vector machine (SVM) and AdaBoost

way for general purpose usage. The old saying “An image s&/§ used to learn the boundary which is utilized to filter the im-

more than a thousand words” definitely still holds. ages in the database for Euclidean similarity measure. Another
An alternative to text-based indexing of images is to worRpPproach to filtering is to classify the images in the database into

with descriptions based on the visual features of an image, s&inantic or high-level categories [25]. In our system, the images

as colors, textures, patterns, and shapes. This scheme isifile the boundary are compared with the query based on the
Euclidean distance, while the images outside the boundary are

ranked by their distances to the boundary. The key idea is to con-
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[I. MOTIVATION OF OUR APPROACH vo %

° 0

Similarity measure is a key component in image retrieval.
Traditionally, Euclidean distances are used to measure the sim-
ilarity between the query and the images in the database. The
smaller the distance, the more similar the pattern to the query.
However, this metric is sensitive to the sample topology, which
can be illustrated in Fig. 1(a). Assume the point “A” is the )
query, the Euclidean distance-based similarity measure can be
viewed as drawing a hyper-sphere in the high-dimensional fé;%%' 1. Perceptually similar images denoted as rectangle patterns and all the

©% 00 09

. . . . o ers denoted by circle patterns. For query “A,” similarity measure based on
ture space (or a circle in two dimensions), centered at point “Ayaditional Euclidean distance can be viewed as drawing circles centered at “A.”

The larger the radius of the hyper-sphere, the more images &heundary can be constructed to separate these two groups of patterns as shown
enclosed in the hyper-sphere, as shown in Fig. 1(a). The B, e Celcenrtmnsermeases onyoowsene e peiens
dius is determined indirectly by the number of retrieved images; are very similar and close to the boundary.
For different queries, the centers move accordingly. As a result,
the retrieved images enclosed by the hyper-sphere are different. | o )
although these query images are perceptual similar. Furth&ffilarity is very subjective [7] and different from the task of
more, many irrelevant images could be enclosed by the regufissification.
hyper-sphere and retrieved to the user. To solve these problems,
we propose to use an “irregular” nonsphere boundary to enclose
the similar images inside and the Euclidean distance measure is
applied only to those images inside the boundary, as shown irColor information is the most intensively used feature for
Fig. 1(a). For query “A,” the Euclidean similarity measure arenage retrieval because of its strong correlation with the un-
only used to rank images inside the boundary. In this case, therlying image objects or scenes. Compared to other low-level
relevant images can be retrieved in the top matches. Our afsual information, color is more robust with respect to scaling,
proach is capable of learning the boundary from both positiegientation, perspective, and occlusion of images [22]. Two is-
and negative examples. sues are essential for color features. The firstis to select a proper
The boundary is used to discriminate between the similar iraelor space for representing color content of images, and the
ages and the others in the database. One possible schengetond is to choose a color quantization scheme to reduce the
identify the boundary is Bayesian decision function. Howevetjmensions of a color feature. We use the hue, saturation, and
the Bayesian classifier usually needs a large number of exaralue (HSV) color space because it provides the best retrieval
ples to estimate the model parameters, which is impractical feerformance for color histograms [8]. In our approach, the color
image retrieval because we can not expect the users to subdmstogram [22] is quantized with 256 levels, which results in
many positive and negative examples in the interactive proce®56 features for each image. Color moments of an image is an-
Instead, we decided to use learning techniques that are nonpather set of color features, which are very simple yet very ef-
metric and do not need a large number of examples to learfeative feature for color-based image retrieval [21]. It does not
decision boundary. Large margin classifiers, such as SVM [2@&quire color quantization. The mathematical foundation of this
and AdaBoost [4], can be used for such purpose. Duin [3] efeature is that any color distribution of images can be charac-
plained and illustrated why the SVM can work for small trainingerized by its moments. The first-, second-, and third-order mo-
sets. Here we use both SVM and AdaBoost to learn the boundargnts of images are calculated in the HSV space of each image,
and compare their performance in image retrieval. resulting in a feature vector of dimension nine. Because color
One issue should be noticed. That is, can we directly use thistograms and moments lack information about spatial distri-
distances of the images to the boundary for the similarity meaution of colors in an image, another feature called color coher-
sure? The answer is “no.” Suppose a query image “B” is giveamce vector (CCV) is proposed to incorporate spatial informa-
by the user, which is very similar to image “C,” as shown ition into color histogram representation [13]. We calculate the
Fig. 1(a) and (b). Both “B” and “C” are located in the posi<CCV features of images with 64 quantization, which results in
tive side of the boundary, and yet close to the boundary. In sufelature vectors of 128 dimensions.
a case, other images with large distances to the boundary willTexture is another type of low-level image features that has
always be ranked in the top matches when the distance-frobeen used extensively for content-based image retrieval. The
boundary metric is used for similarity measure, while image “Clamura features are designed based on the psychological studies
can only be retrieved for example after top 20 matches or evierhuman visual perceptions of textures [23]. We select to com-
more. In an extreme case, image “C” is the same as “B,” but cpate the coarseness histogram with ten quantization, and the
not be retrieved in the top one or two matches. On the contraiystogram of directionality with eight quantization. Other tex-
if we use Euclidean distance measure for the small numbertofe features used in our approach are the wavelet coefficients.
images filtered by the boundary, the image “C” can usually B&avelet transforms refer to the decomposition of a signal with
retrieved in the top one or two matches. Furthermore, there isafamily of basis functions obtained through translation and di-
evidence to prove that the distance-from-boundary measure lation of a mother wavelet. The pyramidal wavelet transform
good metric for image similarity measure. To sum up, imag®WT) [10] is used and the mean and standard deviation of the

I1l. | MAGE REPRESENTATION
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Fig. 2. Classification between two classes using hyperplanes: (a) arbitrary hypeiiplanesndr and (b) the optimal separating hyperplane with the largest
margin identified by the dashed lines, passing the support vectors.

energy distribution are calculated corresponding to each of theThe solution to the optimization problem of the SVM is given

subbands at each decomposition level. For three-level decombythe saddle point of the Lagrange functional

sition, PWT results in a feature vector ok34 x 2 components. .

Various features have their own strength in representing a cer: 1 5

tain aspect of image content. We conc%tenatepabove C(?Ior and ™0 =5 I wl” - > oi{wilw-x)+0 -1} (@)

texture features into one feature vector of dimension 435 to rep-

resent each image in the database. The features are normali¥eerec; are the Lagrange multipliers. Classical Lagrangian du-

into a normal distribution in each dimension, separately.  ality enables therimal problem (1) to be transformed to dsal
problem, which is easier to solve. The solution is given by

=1

IV. CONSTRAINED SIMILARITY MEASURE

{
- 1
) . . . & — . b= ——w - [x. 2
In our image representation scheme, each image is trans- w ;%y”x“ 2% [er 4] )

formed into a feature point in the feature space. In retrieval, .
we use the constrained similarity measure (CSM) with thigherex, andx; are any two support vectors with., @s > 0,

constraints imposed by the boundary between the positive and= 1, andy, = —1.

negative examples. To solve the nonseparable problem, Cortes and Vapnik [2] in-
troduced slack variables > 0 and a penalty functiont'(¢) =

A. Providing Examples to Learn the Boundary Ei:lgi, where thet are a measure of the misclassification

. . " _error. The solution is identical to the separable case except for
How to provide the system with some positive and negat'\éemodification of the Lagrange multipliers 8s< «; < C,

examples? One way is to present a set of preselected posifive 1,...1. The choice ofC is not strict in practice, and we

and negative examples for each query class as in [24]. Howe\éeg C = 100 in all our experiments. We refer to [26] for more
when a new query is given, it may be far away from the po?f

) . etails on the nonseparable case.
tive examples, and thus located outside the prelearned boun a%he SVM can realize nonlinear discrimination by kernel
(may be far away from the boundary, too). The retrieval resu

may be strange to the user. Another way to provide examp éapping [26]. When the samples in the input space can not
i ted b li h I th be li I
to the system is to use relevance feedback technique, whic separated by any inear hyperprane, mey may be ineary

. ; @é arated in the nonlinear mapped feature space. Note that
natural and adaptive. The learned boundary is adapted to e the feature space of the SVMs is different from the image
query in our scheme. The system learns the boundary iterativ; Yture space

through the user’s relevance feedback in the interactive ProcesSryare are many kernel functions for nonlinear mapping [26].
We choose to use the Gaussian radial basis function (GRBF)

B. Learning the Boundary With SVM as the kernel function in our experiments, which has the form,
We first describe the basic theory of SVM which is used t& (x,y) = exp (—(x —y)?/o?), where parameter is the
learn the boundary. width of the Gaussian function.

1) Basic Theory of Support Vector MachineGiven a For a given kernel function, the SVM classifier is given by
set of training vectors belonging to two separate classes, .
(X1,91)s -+, (xt,4), wherex; € R™ andy; € {-1,+1}, one o v K (% b 3
wants to find a hyperplanex + b = 0 to separate the data. J(x) = sign ; aiik (xi,%) + ®)
In Fig. 2(a), there are many possible hyperplanes, but there o )
is only one [shown in Fig. 2(b)] that maximizes the margignd the decision boundary is
(the distance between the hyperplane and the nearest data .
point of each class). This linear classifier is termed the optimal Z aiyiK (xi,%x) +b=0. @)
separating hyperplane (OSH). P
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C. Learning the Boundary With AdaBoost boundary. The images inside and outside the boundary are

Boosting is a method to combine a collection of weak claf€ated differently. For the images inside the boundary, we
sification functions (weak learner) to form a stronger classifigk them based on their Euclidean distances to the query. It
AdaBoost is an adaptive algorithm to boost a sequence of clssWell known that in the CIE."a"b" and L*u"v" color space
sifiers, in that the weights are updated dynamically accordinglf]: the Euclidean distance between two colors is proportional
the errors in previous learning [4]. AdaBoost is a kind of larg¢ their perceptual dissimilarity [15]. Thus the Euclidean
margin classifier. Tieu and Viola [24] adapted the AdaBoost Alistance can be used as a similarity measure for color images.
gorithm for natural image retrieval. They let the weak |eam&urrently, there are no texture features Whgre_ the Euclldean
workin a single feature each time. So afferounds of boosting, dlstance cor.responds to human p.ercgptual dissimilarity, yet the
T features are selected together withThareak classifiers. Tieu Euclidean distance can be used intuitively for a texture image

and Viola's AdaBoost algorithm [24] is briefly described as folSiMilarity measure [9]. On the contrary, the images outside
the boundary are ranked only based on their distances to the

lows. boundary. There is no evidence that this kind of distance can

be used as a similarity or dissimilarity measure. An intuition

AdaBoost Algorithm is that the images similar to the query may be outside the
Input: 1) n training examples boundary because there is no guarantee that the similar images
(X1,91)5 -+, (Xn,yn) With ;= 1 or 0; 2) the are always enclosed inside the boundary, but typically they
number of iterations T. are not far away from the boundary. So, these images can be
Initialize weights  w;; = 1/20 or 1/2m for  retrieved after the positive images (located inside the boundary,

yi =1 or 0, respectively, with I+m=n. with positive distances to the boundary) if they are ranked
Do for ¢=1,....T: by their distances to the boundary. For this reason, we use

1) Train one hypothesis h; for each the distance-from-boundary (DFB) measure to deal with the
feature  j with w,, and error negative images (located outside the boundary). Why we need

e; = Pri[h;(x:) # wil. to rank negative images? There are two considerations. The

2) Choose hn.(-) = hi(-) such that V j # k, firstoneis some perceptual similarimages may not be enclosed
e < ¢;. Let ¢ = ¢ by the learned boundary. If we discard these negative images,

3) Update:  wy1; = w7, where e = 1 they may notbe retrieved forever. The second is sometimes the
or 0 for example z,; classified cor- user would like to browse many images beyond the number
rectly or incorrectly respectively, of images enclosed by the boundary. If the images outside the

with 3 =¢/(1—¢) and o =logl/S:. boundary are discarded, the number of images to retrieve for

4) Normalize the weights so the user is insufficient. Our strategy for the similarity measure

that they are a distribution, is called constrained similarity measure (CSM). Note that the
W1 —— (Wei1,5)/ Z;.L:l Wet1 5)- DFB measure is only used for the images outside the boundary.

Output the final hypothesis The restricted similarity measure can be formulated as fol-

lows:
1 if i athe(x) > % i fa
hile) = { hem = ©) cx o [EDxq),  #Dx©)20
0 otherwise. (x,9) = {M — D(x,0), otherwise ©)

. ioval i i ing th where S(x, ¢) denotes the similarity measure of the image
In [24], image retrieval is realized by using the AdaBoo%i‘h respect to the query, andD(x, ©) represents the distance
classifier. However, the authors did not consider the perceptyal, . iha boundary characterized by a parametefseEhe

similarity between the images. In fact, there is no evidence #tance of the image to the boundanD(x, ©) = 0 is calcu-
show that the distance of images to the decision boundaries f:%@d by ’
e the

be used as a measure of perceptual similarities. Here, we us

AdaBoost [24] algorithm to learn a boundary for a given query s

and do a comparison with the SVM based boundary learning D(x,0) = Z iy K (%, %) + b (7)
approach. Further more, in [24], only a set of preselected im- im1

ages are used to represent each class to learn a fixed decision

boundary. In our experiments, we learn the boundary adaptivé® the SVM learned boundary, and computed by

each query in the interactive process, and give a comprehensive

evaluation on a large image database. The goal of our scheme is T

to learn a boundary to filter the images for late stage Euclidean D(x,0) = Z ay (hy(z) — 0.5) (8)
distance measure. t=1

D. Similarity Measure Constrained by the Boundary for AdaBoost learned boundary. In addition

For a query, after the boundary is learned based on the
user's feedback, the images in the database are filtered by the ED(x,q) = ||x — ql|2 9)
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is the Euclidean distance between imageand the query;. name. The number ofimages within each group ranges from 100
While M is the maximum Euclidean distance among the pogb 300. For “Race Car,” we add some images from the “Speed”

tive images to the query directory in the original Corel Gallery CDs (474 007-474 015),
in addition to the images in “Car_perf” and “Car_Race,” hence
M =maxED(x,q), VD(x,0)20. (10)  there are 209 images belonging to our “Race Car” concept. As

for other concepts, there are usually 100-300 images.
M — D(x,0) can be viewed as a kind pseudo-Euclidean P y g

distancemeasure for ranking any negative image B. Experimental Results

There are two goals in our experiments. The first goal is
to evaluate whether the constrained similarity measure can de-
Our constrained similarity measure is evaluated usingli@er a better retrieval results; The second is to compare the two
subset of the Corel photo Gallery image database. We selg@ithods for learning boundaries to see which one has a better
10009 images with ground truth of 79 concepts or classestrieval performance.
There are two goals in our evaluation. First, we want to see ifWe select nine concepts out of 79 to evaluate the retrieval
the retrieval performance can be improved based on the C$lrformance based on our constrained similarity measure. They
scheme. Second, we want to find out which method is better fafe “flower” (200), “leopard” (100), “model” (300), “mountain”
learning the boundary, i.e., with better generalization capabilit00), “plane” (200), “race car” (209), “sunsets” (200), “tiger”
Recall and precision are used to evaluate the retrieval pero0), and “waterfall” (100), as shown in Fig. 3. The numbers in-
formance. Recall is the ratio of the number of relevant imag@gate how many images belong to each “concept” in our image
returned to the total number of relevant images. Precisiondatabase.
the ratio of the number of relevant images returned to the totalin relevance feedback, the retrieved images are shown in the
number of images returned. We calculate precision and reggdteen each time, while the remaining images are left for an-
with respect to the number of relevance feedback for evalusther round of feedback if the user actually has some responses.
tion. The user clicks on similar images as positive examples while
The results of the traditional Euclidean distance measure @&@ving the unclicked ones as negative examples. All these re-
given as a baseline in the evaluation. Note that although retriegpbnses are taken from the user’s interaction with the system. In
results based on the Euclidean distance measure are shown iptaer to get the performance evaluation curves, we simulate the
same figure in the following experiments, there is no feedbagker’s behavior as follows: 40 images are shown to the user each
(on learning or we call no constraint) to it. The curves for theme, and the user clicks all the similar images to submit positive
Euclidean distance measure are just drawn with respect to #§x@mples. The number of negative examples typically become
number of images to display and used to show the improvemewsy large with the number of interactions. The users usually do
after learning. not like to click on negative examples frequently. For this con-
cern, we just select the negative examples submitted by the user
in the first round, and keep them unchanged. In later stage, the
The image database is a selected subset from Corel Gallasgrs only submit positive examples to the system. We assume
1000000 of 14 CDs, which is a collection of clipart, profesthe users know the ground truth in the interaction. In the preci-
sional photos, Web images, animations, sounds, videos, amh and recall curves, the feedback times are nine, and the zero
fonts. We selected about 10000 photos from Corel Gallefgedback refers to the retrieval results based on the starting Eu-
as our natural image database. It should be noted that Cai@dean distance measure without any learning, and the first 40
Photo Gallery use semantic concepts to group the photosages are displayed to the users. After that, the system learns
each with 100 images. However, there are two problemsafboundary, and the boundary is updated iteratively in response
we directly use the Corel’s division as the ground truth. Firdip user’s interaction in later steps.
some images have the same or similar content but divided intd=or each concept, the precision and recall are averaged over
different directories. For instance, the images in directories all query images belonging to that concept, instead of just aver-
“Ballon1” and “Ballon2,” “Fruitl” and “Fruit2,” “Cuisine” and aged over several random selected queries. The computation of
“Cuisines,” and so on. Considering them as different concept$ole average should be a more objective evaluation.
may cause some problems in performance evaluation. To avoidecause of space limits, we do not show the images in the
this problem, we put these images into the same conceptretrieval process. The precision and recall curves calculated
group. Second, some “concepts” are very abstract and foe the nine concepts (illustrated in Fig. 3) are shown in
images within the same concept can be largely varied in cdrigs. 4—6, separately. In [5], we gave the total average over
tent. For instance, the concepts of “Spring,” “Winter,” “Honghe nine concepts. However, we believe that the retrieval
Kong,” and “Montreal” are very abstract and the variations gferformance shown for each individual concept is more
image content within these concepts are very large, hencespiecific and illustrating. From these figures, it is obvious that
is very difficult for the current algorithms to measure imagboth precision and recall are explicitly improved by using
similarities for these concepts. Therefore we do not includke boundary constrained similarity measure. Even only after
these images in our image database. one or two iterations of relevance feedback, the performance
Based on above considerations, we construct an image dédias dramatically improved. Another observation is that using
base of 10 009 images of 79 groups. Each group has a semantiandaries learned by SVMs can usually deliver a better

V. RETRIEVAL PERFORMANCE

A. Image Database
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images returned to the user becomes small in the later rounds of
feedback. From the definition of precision in the second para-
graph of Section V, itis not difficult to understand this behavior.
The readers should not confuse with the precision and recall
curves versus the times of relevance feedback. One interesting
observation is that the precision curves of CSM (especially with
SVM) go up in the first one or two rounds of feedback, and then
go down gradually, but still explicitly above the Euclidean dis-
tance-based retrieval without constraint. This is because a large
number of similar images is retrieved for the user in the first
one or two feedback, which is a very useful property, as usually
the user may not like to do many times (e.g., five) of relevance
feedback in practice. The reason that we show here nine times
of feedback is mostly for the goal of evaluation.

VI. DISCUSSION ANDFUTURE RESEARCHEFFORTS

BUTIEATR waterfall plana Selecting a small set of features and reducing the number of
support vectors can largely improve the speed for SVM-based
F‘”‘ 3 ‘:! boundary constraints. In addition, two methods for boundary
B s learning can be supplemented in some cases or combined to-
i gether to further improve the overall retrieval performance.
. In our constrained similarity measure with SVM to learn the
boundary, we use all 435 features. A further consideration is
model TACe CAT liger to reduce the feature dimensions so as to speed up the retrieval
process. In AdaBoost [24], feature selection is incorporated into
Fig. 3. Some images of the selected nine concepts in our experimertfag learning stage. Usually, 20 rounds of boosting is enough
evaluation. to learn the boundary in image retrieval, and hence 20 features
are used for retrieval. We like to see if a similar method can be
result in comparison with that learned by AdaBoost, such ased for SVM to simply select a small number of features. For
in retrieval of “flower,” “leopard,” “mountain,” “waterfall,” this purpose, we tried a simple method for feature selection for
“plane,” “race car,” and “tiger.” The AdaBoost based boundargVM, as that used in [24] for AdaBoost. That is, the features
learning can only present performance close to the SVM basa@ ranked independently based on their discriminative power
approach for “sunsets” and “model,” as shown in Figs. 4(d1gjven the feedback examples. Then the firstfeatures are
(d2), and 5(f1), but still worse than that based on SVM. Furthesed for SVM to learn the boundary. In Fig. 7, we show the
more, the worst cases for AdaBoost approach are in the retriesaéraged precision and recall performance over 200 images
of “race car” and “tiger,” in which the boundary constraint®f the “flower” concept, withm = 20 features selected and
do not improve (in Fig. 6) or only improve marginally [inused for SVM, denoted as “C:rSVM-20" for simplicity. It
Fig. 5(h1) and (h2)] over the Euclidean distance measure.ifnobvious that its performance is worse than the traditional
summary, the retrieval performance can always be improvedclidean distance metric. To see whether it is because the
by the SVM-based constrained similarity measure, while tieimber of features is too small, we bet = 50 andm = 100
AdaBoost based CSM can improve the retrieval performanaad show the results in the same figure. The performance
in most cases, but sometimes may have no improvement. of “C:rSVM-50" and “C:rSVM-100" are still worse than the
In addition, we just set = 1 forthe SVM GRBF kernel func- AdaBoost-based approach, even though so many features are
tion in all our experiments. Even better results can be obtainselected and used, which indicates the major problem is not
if the kernel parameter is selected more carefully and changbeé number of features to select. The simple feature selection
adaptively to different queries. method similar to that in AdaBoost [24] can not be used for
It should be noted that with relevance feedback, the rec8WVM. A more elaborate algorithm should be used to select
curves go up no matter what methods are used, since more tgatures for SVM. This also indirectly indicates the different
more relevant or perceptually similarimages are retrieved wherechanism for SVM and AdaBoost, although both of them
the user interacts with the system and browses more and mare termed as large margin classifiers.
images, while the number of relevant images in the databasé\ novel method for feature selection for SVM has been
in fixed(assume we know the ground truth in the evaluatiomecently proposed by Weston [27]. Currently, we are trying to

However, the precision curves usually go down with respect ¢valuate that method to see if it can be used for feature selection
the times of relevance feedback, since the number of relevambur image retrieval problem.

A. Feature Selection
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. s
‘times of evance feadback

(d1) (d2)

Fig. 4. Averaged precision and recall versus the number of relevance feedback of C:SVM, C:AdaBoost, and the traditional Euclidean distandg¢ameasure (
Constraint), for concepts of “Flower” in (al) and (a2), “Leopard” in (b1) and (b2), “Mountains” in (c1) and (c2), and “Sunsets” in (d1) and (d2).

B. Reducing the Number of Support Vectors methods are expected to largely speed up the retrieval process,

The number of support vectors are determined automaticaW'Ch are currently under evaluation for our image retrieval

in SVM learning. If there are too many examples submitted BfoPlem.

the user (although it is usually not the case in practice), and

the boundary is very complex, the SVM decision boundary wig | earning Method Selection and Combination

be constructed by too many support vectors. Thus the filtering

process using the SVM will be slow. Burges [1] and Scholkopf It is obvious that the average retrieval performance of con-
[20] have introduced two methods to reduce the support vestrained similarity measure (CSM) with SVM-based boundary
tors without explicitly losing the classification accuracy. Theslearning (noted as “C:SVM”) is much better than the CSM
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(91) (92)

Retieval petformance for “Tiges" Retrieval parformianos for Tiger

(h1)
Fig.5. Averaged precision and recall for concepts of “Waterfalls” in (e1) and (e2), “Model” in (f1) and (f2), “Plane” in (g1) and (g2), and “Tig&)y'andlth2).

with AdaBoost (noted as “C:AdaBoost”). However, it does VII. CONCLUSION

not necessarily mean that for each query, the performance of

“C:SVM" is superior to the “C:AdaBoost.” For instance, in We have presented a constrained similarity measure for
Fig. 8, we show the precision and recall curves versus thentent based image retrieval. This measure takes into con-
number of relevance feedback for query “360 001" inthe “planesideration the perceptual similarity between images and
class. The performance of “C:AdaBoost” is much better thamproves the retrieval performance. Two techniques are used
“C:SVM.” This demonstrates that sometimes “C:AdaBoostib learn the boundary, and the experimental results indicate
can be a better choice than “C:SVM.” So, for a given querthat the SVM-based method is better than the AdaBoost-based
how to select a better method, or combine above two appproach. Hence more research is needed for AdaBoost to
proaches in order to deliver a more satisfactory result is anprove its generalization capability in learning a decision
open issue for future research. boundary. As for SVM, further research is needed for selecting
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Fig. 6. Averaged precision and recall for concept “Race car” in (i1) and (i2).
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—e— C:SVM —e— C:SVM
o45f [ -4~ C:AdaBoost 1 ousf -4-  C:AdaBoost

-~#--  No Constraint -+ No Constraint
oaf | = C:rSVM-20 J g "

S C:rSVM-50
—»—  CySVM-100

o 1 2 3 6 7 8 L]

4 5
times of relevance feadback

Fig. 7. Retrieval performance averaged over 200 queries of “flower” images to evaluate the simple scheme of feature selection for SVM (denutd)l as C:rS
compared with the C:SVM, C:AdaBoost, and the Euclidean distance measure. The number of selected featare® {50, and 100, denoted as C:rSVM-20,
C:rSVM-50, and C:rSVM-100, respectively.

Rotrioval performance for *Plane: 360001* Retrieval performanc for *Plane: 360001
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Fig. 8. Retrieval performance comparison between C:SVM and C:AdaBoost, for the query of “360 001" in “plane” group. The latter has better performance
this case.
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