
Neuro-Dynamic Programming for Fractionated

Radiotherapy Planning∗

Geng Deng1 and Michael C. Ferris2

1 Department of Mathematics, University of Wisconsin at Madison, 480 Lincoln
Dr., Madison, WI 53706, USA, geng@cs.wisc.edu

2 Computer Sciences Department, University of Wisconsin at Madison, 1210 W.
Dayton Street, Madison, WI 53706, USA, ferris@cs.wisc.edu

Summary. We investigate an on-line planning strategy for the fractionated radio-
therapy planning problem, which incorporates the effects of day-to-day patient mo-
tion. On-line planning demonstrates significant improvement over off-line strategies
in terms of reducing registration error, but it requires extra work in the replanning
procedures, such as in the CT scans and the re-computation of a deliverable dose
profile. We formulate the problem in a dynamic programming framework and solve
it based on the approximate policy iteration techniques of neuro-dynamic program-
ming. In initial limited testing the solutions we obtain outperform existing solutions
and offer an improved dose profile for each fraction of the treatment.

1 Introduction

Every year, nearly 500,000 patients in the US are treated with external beam
radiation, the most common form of radiation therapy. Before receiving irra-
diation, the patient is imaged using computed tomography (CT) or magnetic
resonance imaging (MRI). The physician contours the tumor and surrounding
critical structures on these images and prescribes a dose of radiation to be de-
livered to the tumor. Intensity-Modulated Radiotherapy (IMRT) is one of the
most powerful tools to deliver conformal dose to a tumor target [6, 23, 17].
The treatment process involves optimization over specific parameters, such as
angle selection and (pencil) beam weights [8, 9, 16, 18]. The organs near the
tumor will inevitably receive radiation as well; the physician places constraints
on how much radiation each organ should receive. The dose is then delivered
by radiotherapy devices, typically in a fractionated regime consisting of five
doses per week for a period of 4–9 weeks [10].

∗ This material is based on research partially supported by the National Science
Foundation Grants DMS-0427689 and IIS-0511905 and the Air Force Office of
Scientific Research Grant FA9550-04-1-0192

2 Geng Deng and Michael C. Ferris

Generally, the use of fractionation is known to increase the probability of
controlling the tumor and to decrease damage to normal tissue surrounding
the tumor. However, the motion of the patient or the internal organs between
treatment sessions can result in failure to deliver adequate radiation to the
tumor [14, 21]. We classify the delivery error in the following types:

1. Registration Error (see Fig. 1 (a)). Registration error is due to the in-
correct positioning of the patient in day-to-day treatment. This is the
interfraction error we primarily consider in this paper. Accuracy in pa-
tient positioning during treatment set-up is a requirement for precise de-
livery. Traditional positioning techniques include laser alignment to skin
markers. Such methods are highly prone to error and in general show a
displacement variation of 4–7mm depending on the site treated. Other
advanced devices, such as electronic portal imaging systems, can reduce
the registration error by comparing real-time digital images to facilitate
a time-efficient patient repositioning [17].

2. Internal Organ Motion Error, (Fig. 1 (b)). The error is caused by internal
motion of organs and tissues of a human body. For example, intracranial
tissue shifts up to 1.5 mm when patients change position from prone to
supine. The use of implanted radio-opaque markers allow physicians to
verify the displacement of organs.

3. Tumor Shrinkage Error, (Fig. 1 (c)). This error is due to tumor area
shrinkage as the treatment progresses. The originally prescribed dose de-
livered to target tissue does not reflect the change in tumor area. For
example, the tumor can shrink up to 30% in volume within 3 treatments.

4. Non-rigid Transformation Error, (Fig. 1 (d)). This type of intrafraction
motion error is internally induced by non-rigid deformation of organs,
including for example, lung and cardiac motion in normal breathing con-
ditions.

In our model formulation, we consider only the registration error between
fractions and neglect the other three types of error. Internal organ motion error
occurs during delivery and is therefore categorized as an intrafraction error.
Our methods are not real-time solution techniques at this stage and hence
are not applicable to this setting. Tumor shrinkage error and non-rigid trans-
formation error mainly occur between treatment sessions and are therefore
called interfraction errors. However, the changes in the tumor in these cases
are not volume preserving and incorporating such effects remains a topic of
future research. The principal computational difficulty arises in that setting
from the mapping of voxels between two stages.

Off-line planning is currently widespread. It only involves a single planning
step and delivers the same amount of dose at each stage. It was suggested
in [5, 15, 19] that an optimal inverse plan should incorporate an estimated
probability distribution of the patient motion during the treatment. Such
distribution of patient geometry can be estimated [7, 12], for example using

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 3

(a) Registration error (b) Internal organ shifts

(c) Tumor area shrinks (d) Non-rigid organ transformation

Fig. 1. Four types of delivery error in hypo-fraction treatment

a few pre-scanned images, by techniques such as Bayesian inference [20]. The
probability distributions vary among organs and patients.

An alternative delivery scheme is so called on-line planning, which in-
cludes multiple planning steps during the treatment. Each planning step uses
feedback from images generated during treatment, for example by CT scans.
On-line replanning accurately captures the changing requirements for radia-
tion dose at each stage, but it inevitably consumes much more time at every
replanning procedure.

This paper aims at formulating a dynamic programming (DP) framework
that solves the day-to-day on-line planning problem. The optimal policy is
selected from several candidate deliverable dose profiles, compensating over
time for movement of the patient. The techniques are based on neuro-dynamic
programming (NDP) ideas [3]. In the next section, we introduce the model

4 Geng Deng and Michael C. Ferris

formulation and in Sect. 3, we describe serval types of approximation archi-
tecture and the NDP methods we employ. We give computational results on
a real patient case in Sect. 4.

2 Model Formulation

To describe the problem more precisely, suppose the treatment lasts N periods
(stages), and the state xk(i), k = 0, 1, . . . , N, i ∈ T , contains the actual dose
delivered to all voxels after k stages (xk is obtained through a replanning
process). Here T represents the collection of voxels in the target organ. The
state evolves as a discrete-time dynamic system:

xk+1 = φ(xk, uk, ωk), k = 0, 1, . . . , N − 1, (1)

where uk is the control (namely dose applied) at the kth stage, and ωk is
a (typically three dimensional) random vector representing the uncertainty
of patient positioning. Normally, we assume that ωk corresponds to a shift
transformation to uk, hence the function φ has the explicit form

φ(xk(i), uk(i), ωk) = xk(i) + uk(i + ωk), ∀i ∈ T . (2)

Since each treatment is delivered in succession and separately, we also assume
the uncertainty vector ωk are i.i.d. In the context of voxelwise shifts, ωk is
regarded as a discretely distributed random vector. The control uk is drawn
from an applicable control set U(xk).

Since there is no recourse for dose delivered outside of the target, an in-
stantaneous error (or cost) g(xk, xk+1, uk) is incurred when evolving between
stage xk and xk+1. Let the final state xN represent the total dose deliv-
ered on the target during the treatment period. At the end of N stages,
a terminal cost JN (xN) will be evaluated. Thus, the plan chooses controls
uuu = {u0, u1, . . . , uN−1} so as to minimize an expected total cost:

J0(x0) = min E

[

N−1
∑

k=0

g(xk, xk+1, uk) + JN (xN)

]

s.t. xk+1 = φ(xk, uk, ωk),

uk ∈ U(xk), k = 0, 1, . . . , N − 1.

(3)

We use the notation J0(x0) to represent an optimal cost-to-go function that
accumulates the expected optimal cost starting at stage 0 with the initial
state x0. Moreover, if we extend the definition to a general stage, the cost-to-
go function Jj defined at jth stage is expressed in a recursive pattern,

Jj(xj)

= min E





N−1
∑

k=j

g(xk, xk+1, uk) + JN (xN)
xk+1 = φ(xk, uk, ωk),

uk ∈ U(xk), k = j, . . . , N − 1





= min E [g(xj , xj+1, uj) + Jj+1(xj+1) | xj+1 = φ(xj , uj, ωj), uj ∈ U(xj)] .

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 5

For ease of exposition, we assume that the final cost function is a linear com-
bination of the absolute differences between the current dose and the ideal
target dose at each voxel, that is

JN (xN) =
∑

i∈T

p(i)|xN (i) − T (i)|. (4)

Here, T (i), i ∈ T , in voxel i represents the required final dosage on the target,
and the vector p weights the importance of hitting the ideal value for each
voxel. We typically set p(i) = 10, for i ∈ T , and p(i) = 1 elsewhere, in our
problem to emphasize the importance of target volume. Other forms of final
cost function could be used, such as the sum of least squares error [19].

A key issue to note is that the controls are nonnegative since dose cannot
be removed from the patient. The immediate cost g at each stage is the amount
of dose delivered outside of the target volume due to the random shift,

g(xk, xk+1, uk) =
∑

i+wk /∈T

p(i + ωk)uk(i + ωk). (5)

It is clear that the immediate cost is only associated with the control uk and
the random term ωk. If there is no displacement error (ωk = 0), the immediate
cost is 0, corresponding to the case of accurate delivery.

The control most commonly used in the clinic is the constant policy, which
delivers

uk = T/N

at each stage and ignores the errors and uncertainties. (As mentioned in the
introduction, when the planner knows the probability distribution, an opti-
mal off-line planning strategy calculates a total dose profile D, which is later
divided by N and delivered using the constant policy, so that the expected
delivery after N stages is close to T .) We propose an on-line planning strategy
that attempts to compensate for the error over the remaining time stages. At
each time stage, we divide the residual dose required by the remaining time
stages:

uk = max(0, T − xk)/(N − k).

Since the reactive policy takes into consideration the residual at each time
stage, we expect this reactive policy to outperform the constant policy. Note
the reactive policy requires knowledge of the cumulative dose xk and replan-
ning at every stage – a significant additional computation burden over current
practice.

We show later in this paper how the constant and reactive heuristic policies
perform on several examples. We also show the NDP approach improves upon
these results. The NDP makes decisions on several candidate policies (so called
modified reactive policies), which account for a variation of intensities on the
reactive policy. At each stage, given an amplifying parameter a on the overall
intensity level, the policy delivers

6 Geng Deng and Michael C. Ferris

uk = a · max(0, T − xk)/(N − k).

We will show that the amplifying range of a > 1 is preferable to a = 1,
which is equivalent to the standard reactive policy. The parameter a should
be confined with an upper bound, so that the total delivery does not exceed
the tolerance level of normal tissue.

Note that we assume these idealized policies uk (the constant, reactive and
modified reactive policies) are valid and deliverable in our model. However,
in practice they are not because uk has to be a combination of dose profiles
of beamlets fired from a gantry. In Voelker’s thesis [22], some techniques to
approximate uk are provided. Furthermore, as delivering devices and planning
tools become more sophisticated such policies will become attainable.

So far, the fractionation problem is formulated in a finite horizon3 dynamic
programming framework [1, 4, 13]. Numerous techniques for such problems can
be applied to compute optimal decision policies. But unfortunately, because of
the immensity of these state spaces (Bellman’s “curse of dimensionality”), the
classical dynamic programming algorithm is inapplicable. For instance, in a
simple one-dimensional problem with only ten voxels involving 6 time stages,
the DP solution times are around one-half hour. To address these complex
problems, we design sub-optimal solutions using approximate DP algorithms
– neuro-dynamic programming [3, 11].

3 Neuro-Dynamic Programming

3.1 Introduction

Neuro-dynamic programming is a class of reinforcement learning methods
that approximate the optimal cost-to-go function. Bertsekas and Tsitsiklis [3]
coined the term neuro-dynamic programming because it is associated with
building and tuning a neural network via simulation results. The idea of an
approximate cost function helps NDP avoid the curse of dimensionality and
distinguishes the NDP methods from earlier approximation versions of DP
methods. Sub-optimal DP solutions are obtained at significantly smaller com-
putational cost.

The central issue we consider is the evaluation and approximation of the
reduced optimal cost function Jk in the setting of the radiation fractionation
problem – a finite horizon problem with N periods. We will approximate a
total of N optimal cost-to-go functions Jk, k = 0, 1, . . . , N − 1, by simulation
and training of a neural network. We replace the optimal cost Jk(·) with an
approximate function J̃k(·, rk) (all of the J̃k(·, rk) have the same parametric
form), where rk is a vector of parameters to be ascertained from a train-
ing process. The function J̃k(·, rk) is called a scoring function, and the value
J̃k(x, rk) is called the score of state x. We use the optimal control ûk that

3 finite horizon means finite number of stages

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 7

solves the minimum problem in the (approximation of the) right-hand side of
Bellman’s equation defined using

ûk(xk) ∈

argmin
uk∈U(xk)

E[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)|xk+1 = φ(xk, uk, ωk)]. (6)

The policy set U(xk) is a finite set, so the best ûk is found by the direct
comparison of a set of values. In general, the approximate function J̃k(·, rk)
has a simple form and is easy to evaluate. Several practical architectures of
J̃k(·, rk) are described below.

3.2 Approximation Architectures

Designing and selecting suitable approximation architectures are important
issues in NDP. For a given state, several representative features are extracted
and serve as input to the approximation architecture. The output is usually
a linear combination of features or a transformation via a neural network
structure. We propose using the following three types of architecture:

1. A neural network/multilayer perceptron architecture. The input state x is
encoded into a feature vector f with components fl(x), l = 1, 2, . . . , L,
which represent the essential characteristics of the state. For example, in
the fractionation radiotherapy problem, the average dose distribution and
standard deviation of dose distribution are two important components of
the feature vector associated with the state x, and it is a common practice
to add the constant 1 as an additional feature. A concrete example of such
a feature vector is given in Sect. 4.1.
The feature vector is then linearly mapped with coefficients r(j, l) to P
‘hidden units’ in a hidden layer,

L
∑

l=1

r(j, l)fl(x), j = 1, 2, . . . , P, (7)

as depicted in Fig. 2.
The values of each hidden unit are then input to a sigmoidal function that
is differentiable and monotonically increasing. For example, the hyperbolic
tangent function

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

or the logistic function

σ(ξ) =
1

1 + e−ξ

can be used. The sigmoidal functions should satisfy

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) < ∞.

8 Geng Deng and Michael C. Ferris

Fig. 2. An example of the structure of a neural network mapping

The output scalars of the sigmoidal function are linearly mapped again to
generate one output value of the overall architecture,

J̃(x, r) =

P
∑

j=1

r(j)σ

(

L
∑

l=1

r(j, l)fl(x)

)

. (8)

Coefficients r(j) and r(j, l) in (7) are called the weights of the network.
The weights are obtained from the training process of the algorithm.

2. A feature extraction mapping. An alternative architecture directly com-
bines the feature vector f(x) in a linear fashion, without using a neu-
ral network. The output of the architecture involves coefficients r(l), l =
0, 1, 2, . . . , L,

J̃(x, r) = r(0) +

L
∑

l=1

r(l)fl(x). (9)

An application of NDP that deals with playing strategies in a Tetris game
involves such an architecture [2]. While this is attractive due to its simplic-
ity, we did not find this architecture effective in our setting. The principal
difficulty was that the iterative technique we used to determine r failed
to converge.

3. A heuristic mapping. A third way to construct the approximate struc-
ture is based on existing heuristic controls. Heuristic controls are easy
to implement and produce decent solutions in a reasonable amount of
time. Although not optimal, some of the heuristic costs Hu(x) are likely
to be fairly close to the optimal cost function J(x). Hu(x) is evaluated
by averaging results of simulations, in which policy u is applied in every

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 9

stage. In the heuristic mapping architecture, the heuristic costs are suit-
ably weighted to obtain a good approximation of J . Given a state x and
heuristic controls ui, i = 1, 2, . . . , I, the approximate form of J is

J̃(x, r) = r(0) +

I
∑

i=1

r(i)Hui
(x), (10)

where r is the overall tunable parameter vector of the architecture.
The more heuristic policies that are included in the training, the more
accurate the approximation is expected to be. With proper tuning of the
parameter vector r, we hope to obtain a policy that performs better than
all of the heuristic policies. However, each evaluation of Hui

(x) is poten-
tially expensive.

3.3 Approximate Policy Iteration Using Monte-Carlo Simulation.

The method we consider in this subsection is an approximate version of pol-
icy iteration. A sequence of policies {uk} is generated and the corresponding
approximate cost functions J̃(x, r) are used in place of J(x). The NDP al-
gorithms are based on the architectures described previously. The training of
the parameter vector r for the architecture is performed using a combination
of Monte-Carlo simulation and least squares fitting.

The NDP algorithm we use is called approximate policy iteration (API)
using Monte-Carlo simulation. API alternates between approximate policy
evaluation steps (simulation) and policy improvement steps (training). Poli-
cies are iteratively updated from the outcomes of simulation. We expect the
policies will converge after several iterations, but there is no theoretical guar-
antee of the convergence. Such an iteration process is illustrated in Fig. 3.

Simulation Step
Simulating sample trajectories starts with an initial state x0 = 0, corre-

sponding to no dose delivery. At the kth stage, an approximate cost-to-go
function J̃k+1(xk+1, rk+1) for the next stage determines the policy ûk via the
equation (6), using the knowledge of the transition probabilities. We can then
simulate xk+1 using the calculated ûk and a realization of ωk. This process can
be repeated to generate a collection of sample trajectories. In this simulation
step, the parameter vectors rk, k = 0, 1, . . . , N − 1, (which induce the policy
ûk) remain fixed as all the sample trajectories are generated.

Simulation generates sample trajectories {x0,i = 0, x1,i, . . . , xN,i}, i =
1, 2, . . . , M . The corresponding sample cost-to-go for every transition state
is equal to the cumulative instantaneous costs plus a final cost,

c(xk,i) =

N−1
∑

j=k

g(xj,i, xj+1,i, ûj) + JN (xNi
).

10 Geng Deng and Michael C. Ferris

Fig. 3. Simulation and training in API. Starting with an initial policy, the Monte-
Carlo simulation generates a number of sample trajectories. The sample costs at
each stage are input into the training unit in which rk’s are updated by minimizing
the least squares error. New sample trajectories are simulated using the policy based
on the approximate structure J̃(·, rk) and (6). This process is repeated.

Training Step
In the training process, we evaluate the cost, and update the rk by solving

a least squares problem at each stage k = 0, 1, . . . , N − 1,

min
rk

1

2

M
∑

i=1

|J̃k(xk,i, rk) − c(xk,i)|
2. (11)

The least squares problem (11) penalizes the difference of approximate cost-
to-go estimation J̃k(xk,i, rk) and sample cost-to-go value c(xk,i). It can be
solved in various ways.

In practice, we divide the M generated trajectories into M1 batches, with
each batch containing M2 trajectories.

M = M1 ∗ M2.

The least squares formulation (11) is equivalently written as

min
rk

M1
∑

m=1





1

2

∑

xk,i∈Batchm

|J̃k(xk,i, rk) − c(xk,i)|
2



 . (12)

We use a gradient-like method that processes each least squares term

1

2

∑

xk,i∈Batchm

|J̃k(xk,i, rk) − c(xk,i)|
2 (13)

incrementally. The algorithm works as follows: Given a batch of sample state
trajectories (M2 trajectories), the parameter vector rk is updated by

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 11

rk := rk − γ
∑

xk,i∈Batchm

∇J̃k(xk,i, rk)
(

J̃(xk,i, rk) − c(xk,i)
)

,

k = 0, 1, . . . , N − 1. (14)

Here γ is a stepsize length that should decrease monotonically as the number
of batches used increases (see Proposition 3.8 in [3]). A suitable step length
choice is γ = α/m, m = 1, 2, . . . , M1, in the mth batch, where α is a constant
scalar. The summation in the right-hand side of (14) is a gradient evaluation
corresponding to (13) in the least squares formulation. The parametric vec-
tors rk are updated via the iteration (14), as a batch of trajectories become
available. The incremental updating scheme is motivated by the stochastic
gradient algorithm (more details are given in [3]).

In API, the rk’s are kept fixed until all the M sample trajectories are
generated. In contrast to this, another form of the NDP algorithm, called
optimistic policy iteration (OPI), updates the rk more frequently, immediately
after a batch of trajectories are generated. The intuition behind OPI is that
the new changes on policies are incorporated rapidly. This ‘optimistic’ way of
updating rk is subject to further investigation.

Ferris and Voelker [10] applied a rollout policy to solve this same problem.
The approximation is built by applying the particular control u at stage k
and a control (base) policy at all future stages. This procedure ignores the
training part of our algorithm. The rollout policy essentially suggests a simple
form of

J̃(x) = Hbase(x).

The simplification results in a biased estimation of J(x), because the optimal
cost-to-go function strictly satisfies: J(x) ≤ Hbase(x). In our new approach,
we use an approximate functional architecture for the cost-to-go function, and
the training process will determine the parameters in the architecture.

4 Computational Experimentation

4.1 A Simple Example

We first experiment on a simple one dimensional fractionation problem with
several variations of the approximating architectures described in the preced-
ing section. The setting consists of a total of 15 voxels {1, 2, . . . , 15}, where the
target voxel set, T = {3, 4, . . . , 13} is located in the center. Dose is delivered
to the target voxels, and due to the random positioning error of the patient,
a portion of dose is delivered outside of the target. We assume a maximum
shift of 2 voxels to the left or right.

In describing the cost function, our weighting scheme assigns relatively
high weights on the target, and low weights elsewhere:

12 Geng Deng and Michael C. Ferris

Fig. 4. A simple one-dimension problem. xk is the dose distribution over voxels in
the target: voxels 3, 4, . . . , 13.

p(i) =







10, i ∈ T ;

1, i /∈ T .

Definitions of final error and one step error refer to (4) and (5).
For the target volume above, we also consider two different probability

distributions for the random shift ωk. In the low volatility examples, we have

ωk =







































−2, with probability 0.02

−1, with probability 0.08

0, with probability 0.8

1, with probability 0.08

2, with probability 0.02,

for every stage k. The high volatility examples have

ωk =







































−2, with probability 0.05

−1, with probability 0.25

0, with probability 0.4

1, with probability 0.25

2, with probability 0.05,

for every stage k. While it is hard to estimate the volatilities present in the
given application, the results are fairly insensitive to these choices.

To apply the NDP approach, we should provide a rich collection of policies
for the set U(xk). In our case, U(xk) consists of a total number of A modified

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 13

reactive policies,

U(xk) = {uk,1, uk,2, . . . , uk,A| uk,i = ai · max(0, T − xk)/(N − k)}, (15)

where ai is a numerical scalar indicating an augmentation level to the standard
reactive policy delivery; here A = 5 and

aaa = {1, 1.4, 1.8, 2.2, 2.6}.

We apply two of the approximation architectures in Sect. 3.2, the neu-
ral network/multilayer (NN) perceptron architecture, and linear architecture
using a heuristic mapping. The details follow.

1. API using Monte-Carlo simulation and neural network architecture.
For the NN architecture, after experimentation with several different sets
of features, we used the following six features fj(x), j = 1, 2, . . . , 6:
a) Average dose distribution in the left rind of the target organ:

mean of {x(i), i = 3, 4, 5}.

b) Average dose distribution in the center of the target organ:

mean of {x(i), i = 6, 7, . . . , 10}.

c) Average dose distribution in the right rind of the target organ:

mean of {x(i), i = 11, 12, 13}.

d) Standard deviation of the overall dose distribution in the target.
e) Curvature of the dose distribution. The curvature is obtained by fitting

a quadratic curve over the values {xi, i = 3, 4, . . . , 13}, and extracting
the curvature.

f) A constant feature f6(x) = 1.
In features (a)–(c), we distinguish the average dose on different parts of the
structure, because the edges commonly have both underdose and overdose
issues, while the center is delivered more accurately.
In the construction of neural network formulation, a hyperbolic tangent
function was used as the sigmoidal mapping function. The neural network
has 6 inputs (6 features), 8 hidden sigmoidal units, and 1 output, such
that weight of neural network rk is a vector of length 56.
In each simulation, a total of 10 policy iterations were performed. Running
more policy iterations did not show further improvement. The initial pol-
icy used was the standard reactive policy uuu: uk = max(0, T −xk)/(N −k).
Each iteration involved M1 = 15 batches of sample trajectories, with
M2 = 20 trajectories in each batch to train the neural network.
To train the rk in this approximate architecture, we started with rk,0 as
a vector of ones, and used an initial step length γ = 0.5.

14 Geng Deng and Michael C. Ferris

2. API using Monte-Carlo simulation and the linear architecture of heuristic
mapping.
Three heuristic policies were involved as base policies: (1) constant pol-
icy uuu1: u1,k = T/N, for all k; (2) standard reactive policy uuu2: u2,k =
max(0, T − xk)/(N − k), for all k; (3) modified reactive policy uuu3 with
the amplifying parameter a = 2 applied at all stages except the last one.
For the stage k = N − 1, it simply delivers the residual dose:

u3,k =







2 · max(0, T − xk)/(N − k), k = 0, 1, . . . , N − 2,

max(0, T − xk)/(N − k), k = N − 1.

This third choice facilitates a more aggressive treatment in early stages.
To evaluate the heuristic cost Hui

(xk), i = 1, 2, 3, 100 sub-trajectories
starting with xk were generated for periods k to N . The training scheme
was analogous to above method. A total of 10 policy iterations were per-
formed. The policy used in the first iteration was the standard reactive
policy. All iterations involved M1 = 15 batches of sample trajectories,
with M2 = 20 trajectories in each batch, a total of 300 trajectories.
Running the heuristic mapping architecture requires a great deal of
computation, because it requires evaluating the heuristic costs by sub-
simulations.

The fractionation radiotherapy problem is solved using both techniques
with N = 3, 4, 5, 10, 14 and 20 stages. Fig. 5 shows performance of API using
a heuristic mapping architecture, in a low volatility case. The starting policy
is the standard reactive policy, that has expected error (cost) of 0.48 (over
M = 300 sample trajectories). The policies uk converge after around 7 policy
iterations, taking around 20 minutes on a PIII 1.4GHz machine. After the
training, the expected error decreases to 0.30, which is reduced by about 40%
compared to the standard reactive policy.

The main results of training and simulation with two probability distri-
butions are plotted in Fig. 6. This one-dimension example is small, but the
revealed patterns are informative. For each plot, the results of the constant
policy, reactive policy and NDP policy are displayed. Due to the significant
randomness in the high volatility case, it is more likely to induce underdose in
the rind of target, which is penalized heavily with our weighting scheme. Thus
as volatility increases, so does the error. Note that in this one-dimensional
problem, an ideal total amount of dose delivered to target is 11, which can
be compared with the values on the vertical axes of the plots (which are
multiplied by the vector p).

Comparing the figures, we note the remarkable similarities. Common to
all examples is the poor performance of the constant policy. The reactive
policy performs better than the constant policy, but not as well as the NDP
policy in either architecture. The constant policy does not change much with
number of total fractions. The level of improvement depends upon which NDP

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 15

approximate structure to use. The NN architecture performs better than the
heuristic mapping architecture, when N is small. While N is large, they do
not show significant difference.

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Policy Iteration Number

F
in

al
 E

ro
r

Fig. 5. Performance of API using heuristic cost mapping architecture, N = 20. For
every iteration, we plot the average (over M2 = 20 trajectories) of each of M1 = 15
batches. The broken line represents the mean cost in each iteration.

4.2 A Real Patient Example: Head & Neck Tumor

In this subsection, we apply our NDP techniques to a real patient problem
– a head & neck tumor. In the head & neck tumor scenario, the tumor vol-
ume covers a total of 984 voxels in space. As noted in Fig. 7, the tumor is
circumscribed by two critical organs: the mandible and the spinal cord. We
will perform analogous techniques as in the above simple example. The weight
setting is the same:

p(i) =







10, i ∈ T ;

1, i /∈ T .

In our problem setting, we do not distinguish between critical organs and
other normal tissue. In reality, a physician also takes in account radiation
damage to the surrounding critical organs. For this reason, a higher penalty
weight is usually assigned on these organs.

16 Geng Deng and Michael C. Ferris

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(a) NN architecture in low volatility

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(b) NN architecture in high volatility

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(c) Heuristic mapping architecture in
low volatility

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(d) Heuristic mapping architecture in
high volatility

Fig. 6. Comparing the constant, reactive and NDP policies in low and high volatility
cases

ωk are now three-dimension random vectors. By assumption of indepen-
dence of each component direction, we have

Pr(ωk = [i, j, k]) = Pr(ωk,x = i) · Pr(ωk,y = j) · Pr(ωk,z = k) (16)

In the low and high volatility cases, each component of ωk follows a discrete
distribution (also with a maximum shift of two voxels),

ωk,i =







































−2, with probability 0.01

−1, with probability 0.06

0, with probability 0.86

1, with probability 0.06

2, with probability 0.01,

and

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 17

Fig. 7. Target tumor, cord and mandible in the head & neck problem scenario

ωk,i =







































−2, with probability 0.05

−1, with probability 0.1

0, with probability 0.7

1, with probability 0.1

2, with probability 0.05,

We adjust the ωk,i by smaller amounts than in the one dimension problem,
because the overall probability is the product of each component (16); the
resulting volatility therefore grows.

For each stage, U(xk) is a set of modified reactive policies, whose augmen-
tation levels include

aaa = {1, 1.5, 2, 2.5, 3}.

For the stage k = N − 1 (when there are two stages to go), setting the
augmentation level a > 2 is equivalent to delivering more than the residual
dose, which is unnecessary for treatment. In fact, the NDP algorithm will
ignore these choices.

The approximate policy iteration algorithm uses the same two architec-
tures as in Sect. 4.1. However, for the neural network architecture we need an
extended 12 dimensional input feature space:

18 Geng Deng and Michael C. Ferris

(a) Features 1–7 are the mean value of the dose distribution of the left, right,
up, down, front, back and center part of the tumor.

(b) Feature 8 is the standard deviation of dose distribution in the tumor
volume.

(c) Feature 9–11. We extract the dose distribution on 3 lines through center of
the tumor. Lines are from left to right, from up to down, and from front to
back. Features 9–11 are the estimated curvature of the dose distribution
on the three lines.

(d) Feature 12 is a constant feature, set as 1.

In the neural network architecture, we build 1 hidden layer, with 16 hidden
sigmoidal units. Therefore, each rk for J̃(x, rk) is of length 208.

We still use 10 policy iterations. (Later experimentation shows that 5 pol-
icy iterations are enough for policy convergence.) In each iteration, simulation
generates a total of 300 sample trajectories, that are grouped in M1 = 15
batches of sample trajectories, with M2 = 20 in each batch, to train the
parameter rk.

One thing worth mentioning here is, the initial step length scaler γ in (14)
is set to a much smaller value in the 3D problem. In the head & neck case,
we set γ = 0.00005 as compared to γ = 0.5 in the one dimension example.
A plot, Fig. 8, shows the reduction of expected error as the number of policy
iteration increases.

The alternative architecture for J̃(x, r) using a linear combination of
heuristic costs is implemented precisely as in the one dimension example.

The overall performance of this second architecture is very slow, due to
the large amount of work in evaluation of the heuristic costs. It spends a
considerable time in the simulation process generating sample sub-trajectories.
To save computation time, we propose an approximate way of evaluating each
candidate policy in (6). The expected cost associated with policy uk is

E[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)]

=
2
∑

ωk,1=−2

2
∑

ωk,2=−2

2
∑

ωk,2=−2
Pr(ωk)[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)].

For a large portion of ωk, the value of Pr(ωk) almost vanishes to zero when
it makes a two-voxel shift in each direction. Thus, we only compute the sum
of cost over a subset of possible ωk,

1
∑

ωk,1=−1

1
∑

ωk,2=−1

1
∑

ωk,2=−1

Pr(ωk)[g(xk, xk+1, uk) + J̃k+1(xk+1, rk+1)].

A straightforward calculation shows that we reduce a total of 125(= 53) eval-
uations of state xk+1 to 27(= 33). The final time involved in training the
architecture is around 10 hours.

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 19

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

Policy Iteration Number

E
xp

ec
te

d
E

rr
or

Fig. 8. Performance of API using neural-network architecture, N = 11. For every
iteration, we plot the average (over M2 = 20 trajectories) of each of M1 = 15
batches. The broken line represents the mean cost in each policy iteration.

Again, we plot the results of constant policy, reactive policy and NDP
policy in the same figure. We still investigate on the cases where N =
3, 4, 5, 14, 20. As we can observe in all sub-figures in Fig. 9, the constant pol-
icy still performs the worst in both high and low volatility cases. The reactive
policy is better and the best policy is the NDP policy. As the total number
of stages increases, the constant policy remains almost at the same level, but
the reactive and NDP continue to improve. The poor constant policy is a
consequence of significant underdose near the edge of the target.

The two approximating architectures perform more or less the same,
though the heuristic mapping architecture takes significantly more time to
train. Focusing on the low volatility cases, Fig. 9 (a) and (c), we see the
heuristic mapping architecture outperforms the NN architecture when N is
small, i.e. N = 3, 4, 5, 10. When N = 20, the expected error is reduced to
the lowest, about 50% from reactive policy to NDP policy. When N is small,
the improvement ranges from 30% to 50%. When the volatility is high, it
undoubtedly induces more error than in low volatility. Not only the expected
error, but the variance escalates to a large value as well.

For the early fractions of the treatment, the NDP algorithm intends to
select aggressive policies, i.e., the augmentation level a > 2, while in the later
stage time, it intends to choose more conservative polices. As the weighting

20 Geng Deng and Michael C. Ferris

2 4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

800

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(a) NN architecture in low volatility

2 4 6 8 10 12 14 16 18 20
400

600

800

1000

1200

1400

1600

1800

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(b) NN architecture in high volatility

2 4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

800

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(c) Heuristic mapping architecture in
low volatility

2 4 6 8 10 12 14 16 18 20
400

600

800

1000

1200

1400

1600

1800

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

(d) Heuristic mapping architecture in
high volatility

Fig. 9. Head & neck problem – comparing constant, reactive and NDP policies in
two probability distributions

factor for target voxels is 10, aggressive policies are preferred in the early stage
because it leaves room to correct the delivery error on the target in the later
stages. However, it may be more likely to cause delivery error on the normal
tissue.

4.3 Discussion

The number of candidate policies used in training is small. Once we have the
optimal rk after simulation and training procedures, we can select uk from
an extended set of policies U(xk) (via (6)) using the approximate cost-to-go
functions J̃(x, rk), improving upon the current results.

For instance, we can introduce a new class of policies that cover a wider
delivery region. This class of clinically favored policies include a safety margin
around the target. The policies deliver the same dose to voxels in the margin
as that delivered to the nearest voxels in the target. As an example policy
in the class, a constant-w1 policy (where ‘w1’ means ‘1 voxel wider’) is an

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 21

extension of the constant policy, covering a 1-voxel thick margin around the
target. As in the one-dimensional example in Sect. 4.1, the constant-w1 policy
is defined as:

uk(i) =















T (i)/N, for i ∈ T ,

T (3)/N = T (13)/N, for i = 2 or 14,

0, elsewhere,

where the voxel set {2, 14} represents the margin of the target. The reactive-
w1 policies and the modified reactive-w1 policies are defined accordingly. (We
prefer to use ‘w1’ policies rather than ‘w2’ policies because ‘w1’ policies are
observed to be uniformly better.)

The class of ‘w1’ policies are preferable to apply in the high volatility case,
but not in the low volatility case (see Fig. 10). For the high volatility case, the
policies reduce the underdose error significantly, which is penalized 10 times
as heavy as the overdose error, easily compensating for the overdose error they
introduce outside of the target. In the low volatility case, when the underdose
is not as severe, they inevitably introduce redundant overdose error.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Total Number of Stages

E
xp

ec
te

d
E

rr
or Constant Policy

Reactive Policy
Constant−w1 Policy
Reactive−w1 Policy
NDP Policy

(a) Heuristic mapping architecture in
low volatility

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
Constant−w1 Policy
Reactive−w1 Policy
NDP Policy

(b) Heuristic mapping architecture in
high volatility

Fig. 10. In the one-dimensional problem, NDP policies with extended policy set
U(xk)

The NDP technique was applied to an enriched policy set U(xk), including
the constant, constant-w1, reactive, reactive-w1, modified reactive and mod-
ified reactive-w1 policies. It automatically selected an appropriate policy at
each stage based on the approximated cost-to-go function, and outperformed
every component policy in the policy set. In Fig. 10, we show the result of the
one-dimensional example using the heuristic mapping architecture for NDP.
As we have observed, in the low volatility case, the NDP policy tends to be

22 Geng Deng and Michael C. Ferris

the reactive or the modified reactive policy, while in the high volatility case, it
is more likely to be the reactive-w1 or the modified reactive-w1 policy. Com-
paring to the NDP policies in Fig. 6, we see that increasing the choices of
policies in U(xk), the NDP policy generates lower expected error.

Another question concerns about how much difference occurs when switch-
ing to another weighting scheme. Setting a high weighting factor on the target
is rather arbitrary. This will also influence the NDP in selecting policies. In
addition, we changed the setting of weighting scheme to

p(i) =







1, i ∈ T ;

1, i /∈ T .

and ran the experiment on the real example (Sect. 4.2) again. In Fig. 11, we
discovered the same pattern of results, while this time, all the error curves
were scaled down accordingly. The difference between constant and reactive
policy decreased. The NDP policy showed an improvement of around 12%
over the reactive policy when N = 10.

We even tested the weighting scheme

p(i) =







1, i ∈ T ;

10, i /∈ T ,

which reverted the importance of the target and the surrounding tissue. It
resulted in a very small amount of delivered dose in the earlier stages, and at
the end the target was severely underdosed. The result was reasonable because
the NDP policy was cautious to deliver any dose outside of the target at each
stage.

5 Conclusion

Solving an optimal on-line planning strategy in fractionated radiation treat-
ment is quite complex. In this paper, we set up a dynamic model for the
day-to-day planning problem. We assume that the probability distribution of
patient motion can be estimated by means of prior inspection. In fact, our
experimentation on both high and low volatility cases display very similar
patterns.

Although methods such as dynamic programming obtain exact solutions,
the computation is intractable. We exploit neuro-dynamic programming tools
to derive approximate DP solutions, that can be solved with much fewer
computational resources. The API algorithm we apply iteratively switches
between Monte-Carlo simulation steps and training steps, whereby the feature
based approximating architectures of the cost-to-go function are enhanced as

Neuro-Dynamic Programming for Fractionated Radiotherapy Planning 23

2 4 6 8 10 12 14 16 18 20
80

90

100

110

120

130

140

150

Total Number of Stages

E
xp

ec
te

d
E

rr
or

Constant Policy
Reactive Policy
NDP Policy

Fig. 11. Head & neck problem. Using API with a neural network architecture, in a
low volatility case, with identical weight on the target and normal tissue.

the algorithm proceeds. The computational results are based on a finite policy
set for training. In fact, the final approximate cost-to-go structures can be used
to facilitate selecting from a larger set of candidate policies, extended from
the training set.

We jointly compare the on-line policies with an off-line constant policy,
that simply delivers a fixed dose amount in each fraction of treatment. The
on-line policies are shown to be significantly better than the constant policy,
in terms of total expected delivery error. In most of the cases, the expected
error is reduced more than a half. The NDP policy performs preferentially,
enhancing the reactive policy for all our tests. Future work needs to address
further timing improvement.

We have tested two approximation architectures. One uses a neural net-
work and the other is based on existing heuristic policies, both of which per-
form similarly. The heuristic mapping architecture is slightly better than the
neural network based architecture, but it takes significantly more computa-
tional time to evaluate. As these examples have demonstrated, neuro-dynamic
programming is a promising supplement to heuristics in discrete dynamic op-
timization.

References

1. D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont MA, 1995.

2. D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and
applications in neuro-dynamic programming. Report LIDS-P-2349, Lab. for

Information and Decision Systems, MIT, 1996.
3. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena

Scientific, Belmont, Massachusetts, 1996.

24 Geng Deng and Michael C. Ferris

4. J. R. Birge and R. Louveaux. Introduction to Stochastic Programming. Springer,
New York, 1997.

5. M. Birkner, D. Yan, M. Alber, J. Liang, and F. Nusslin. Adapting inverse plan-
ning to patient and organ geometrical variation: Algorithm and implementation.
Medical Physics, 30(10):2822–31, 2003.

6. Th. Bortfeld. Current status of IMRT: physical and technological aspects. Ra-

diotherapy and Oncology, 61(2):291–304, 2001.
7. C. L. Creutzberg, G. V. Althof, M. de Hooh, A. G. Visser, H. Huizenga, A. Wijn-

maalen, and P. C. Levendag. A quality control study of the accuracy of patient
positioning in irradiation of pelvic fields. International Journal of Radiation

Oncology, Biology and Physics, 34:697–708, 1996.
8. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Optimization approaches for

treatment planning on a Gamma Knife. SIAM Journal on Optimization, 13:921–
937, 2003.

9. M. C. Ferris, J.-H. Lim, and D. M. Shepard. Radiosurgery treatment planning
via nonlinear programming. Annals of Operations Research, 119:247–260, 2003.

10. M. C. Ferris and M. M. Voelker. Fractionation in radiation treatment planning.
Mathematical Programming B, 102:387–413, 2004.

11. A. Gosavi. Simulation-Based Optimization: Parametric Optimization Tech-

niques and Reinforcement Learning. Kluwer Academic Publishers, Norwell, MA,
USA, 2003.

12. M. A. Hunt, T. E. Schultheiss, G. E. Desobry, M Hakki, and G. E. Hanks. An
evaluation of setup uncertainties for patients treated to pelvic fields. Interna-

tional Journal of Radiation Oncology, Biology and Physics, 32:227–33, 1995.
13. P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons,

Chichester, 1994.
14. K. M. Langen and T. L. Jones. Organ motion and its management. International

Journal of Radiation Oncology, Biology and Physics, 50:265–278, 2001.
15. J. G. Li and L. Xing. Inverse planning incorporating organ motion. Medical

Physics, 27(7):1573–1578, July 2000.
16. A. Niemierko. Optimization of 3D radiation therapy with both physical and bio-

logical end points and constraints. International Journal of Radiation Oncology,

Biology and Physics, 23:99–108, 1992.
17. W. Schlegel and A. Mahr, editors. 3D Conformal Radiation Therapy - A Mul-

timedia Introduction to Methods and Techniques. Springer-Verlag, Berlin, 2001.
18. D. M. Shepard, M. C. Ferris, G. Olivera, and T. R. Mackie. Optimizing the

delivery of radiation to cancer patients. SIAM Review, 41:721–744, 1999.
19. J. Unkelback and U. Oelfke. Inclusion of organ movements in IMRT treatment

planning via inverse planning based on probability distributions. Institute of

Physics Publishing, Physics in Medicine and Biology, 49:4005–4029, 2004.
20. J. Unkelback and U. Oelfke. Incorporating organ movements in inverse plan-

ning: Assessing dose uncertainties by Bayesian inference. Institute of Physics

Publishing, Physics in Medicine and Biology, 50:121–139, 2005.
21. L. J. Verhey. Immobilizing and positioning patients for radiotherapy. Seminars

in Radiation Oncology, 5(2):100–113, 1995.
22. M. M. Voelker. Optimization of Slice Models. PhD thesis, University of Wis-

consin, Madison, Wisconsin, December 2002.
23. S. Webb. The Physics of Conformal Radiotherapy: Advances in Technology.

Institute of Physics Publishing Ltd., 1997.

