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1 Smooth L1-norm aproximation

In order to deal with the non-differentiable penalty, we propose a smooth ap-
proximation to the L1 penalty based on the following:

(i) |#| = ()4 + (=), where the plus function is (z)+ = max {z,0}
(ii) The plus function can be approximated (smoothly)[2], by the integral to a
smooth approximation of the sigmoid function:

1
(@)+ ~ p(z,0) =z + —log(1 + exp(~ax)) 1)
Combinining these, we arrive to the following smooth approximation for the

absolute value function consisting of the sum of the integral of two sigmoid
functions (Fig. 1 plots this approximation near 0 for different values of «):

2| = (z)+ + (—2)+ = p(z, @) + p(—2, Q)
= |i|[10g(1 + exp(—ax)) + log(1 + exp(ax))] (2)

In practice, o = 10° yields results that are within some small tolerance of the

results produced by (optimal) constrained optimization methods. As opposed
to the L1-penalty, this approximation is amenable to standard unconstrained
optimization methods since it is twice-differentiable:

V(Jz[) = (1 + exp(—az)) ™" — (1 + exp(az)) ™! (3)
V2(|z|) ~ 2a exp(az) /(1 + exp(ax))? (4)

This approximation can be used in conjuction with any general likelihood or loss
functions. Next we will show that for optimization problems derived from learn-
ing methods with L1 regularization, the solutions of the smooth approximated
problems approach the solution to the original problems when « approaches in-
finity. We will start by proposing and proving a simple lemma similar to one
proposed in [1] for the plus function. This gives us a bound relating |z| and ||, .
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Fig. 1. Approximation near 0 for different settings of the parameter a



Lemma 11 Approximation bound For any x € R and for any o > 0:

log 2
lz| = |z, | <2
@

Proof:
Lets consider two cases. For x > 0,

p(,a) ~ () =2+ - log(1 + exp(~ax)) ~ @

1 log 2
= —log(1 - <
5, log(1 + exp(—az)) < —> (6)
For z <0,
log 2
0 < p(z.a) = (2)4 = pla.@) < p(0,0) = ==, (7)

where the last inequality derives from the fact that p is a monotonically in-
cresing function. Hence, from equations (6) and (7) and because p(z, ) always
dominates (z)4, we conclude that:

log 2

(®)

p(z,0) = (@)+] < =2

Since |z| = ()4 + (—2)4, using equation (1) we have:
2| = |zl | = p(z, @) + p(—z, ) = ((2) + + (=2)1)]

< [p(z, @) — (@)4| + p(~2,0) — ()] (9)
S

Let us now define [|z[|, ., as a smooth approximation to the 1-norm function
[[z[|, for a vector z € R in the following way: [[z[|; ) = 27 [%il,-
Then, using Lemma 11 we have that

Hm”(l,a) = [lzlly| = th)% (10)

Hence, we can conclude that:
limg oo 2]y ) = 2], Vo € R (1)

Letting L : R™ — R be any continuous loss function and defining f(z) = L(z) +
|zl and fa(z) = L(z) + |2 o) Let us also define z = argmin, f(z) and
X = argmin, f(z). By the definition of f and f, and by equation (11), it
follows that:

limg oo fo(z) = f(x) Vo eR" (12)

In adition, we know that f(Z) < f(z), Va. In particular f(Z) < f(27,), then:

(@) < f(7a) = L(%a) + ||7al;
= L(7,) + ”fa”l + ||337a||(1,a) - ”fa“(La)
= (L@a) + 1allgay) + (I7al = I7allt.a)) (13)

= fa(@a) + ([Zally = 1Zall 1 0



This implies f(Z) — fo(2a) > —2711(?%2 (using equation (10)). Similarly, we can
prove that f(Z) — fo(2) < 2n1°§2, hence: limg—, 00 fo(70) = f(T).
Furthermore:

|f(Za) = f(2)| = [f(Za) = f(Z) = fa(Ta) + falZa)] (14)
< |f(@a) = fa(@a)| + | fal(@a) — f(2)]

This implies that: lim,—,o f(Za) = f(Z). Moreover, if L is stricly convex, it is
easy to proove that: limy oo xq =T
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