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1 Smooth L1-norm aproximation

In order to deal with the non-differentiable penalty, we propose a smooth ap-
proximation to the L1 penalty based on the following:

(i) |x| = (x)+ + (−x)+, where the plus function is (x)+ = max {x, 0}
(ii) The plus function can be approximated (smoothly)[2], by the integral to a

smooth approximation of the sigmoid function:

(x)+ ≈ p(x, α) = x +
1

α
log(1 + exp(−αx)) (1)

Combinining these, we arrive to the following smooth approximation for the
absolute value function consisting of the sum of the integral of two sigmoid
functions (Fig. 1 plots this approximation near 0 for different values of α):

|x| = (x)+ + (−x)+ ≈ p(x, α) + p(−x, α)
= 1

α
[log(1 + exp(−αx)) + log(1 + exp(αx))]

= |x|
α

(2)

In practice, α = 106 yields results that are within some small tolerance of the
results produced by (optimal) constrained optimization methods. As opposed
to the L1-penalty, this approximation is amenable to standard unconstrained
optimization methods since it is twice-differentiable:

∇(|x|) ≈ (1 + exp(−αx))−1 − (1 + exp(αx))−1 (3)

∇2(|x|) ≈ 2α exp(αx)/(1 + exp(αx))2 (4)

This approximation can be used in conjuction with any general likelihood or loss
functions. Next we will show that for optimization problems derived from learn-
ing methods with L1 regularization, the solutions of the smooth approximated
problems approach the solution to the original problems when α approaches in-
finity. We will start by proposing and proving a simple lemma similar to one
proposed in [1] for the plus function. This gives us a bound relating |x| and |x|

α
.
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Fig. 1. Approximation near 0 for different settings of the parameter α
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Lemma 11 Approximation bound For any x ∈ ℜ and for any α > 0:

||x| − |x|
α
| ≤ 2

log 2

α
(5)

Proof:

Lets consider two cases. For x > 0,

p(x, α) − (x)+ = x +
1

α
log(1 + exp(−αx)) − x

=
1

α
log(1 + exp(−αx)) ≤

log 2

α
(6)

For x ≤ 0,

0 ≤ p(x, α) − (x)+ = p(x, α) ≤ p(0, α) =
log 2

α
, (7)

where the last inequality derives from the fact that p is a monotonically in-
cresing function. Hence, from equations (6) and (7) and because p(x, α) always
dominates (x)+, we conclude that:

|p(x, α) − (x)+| ≤
log 2

α
(8)

Since |x| = (x)+ + (−x)+, using equation (1) we have:

||x| − |x|
α
| = |p(x, α) + p(−x, α) − ((x)+ + (−x)+)|
≤ |p(x, α) − (x)+| + |p(−x, α) − (−x)+|

≤ log 2
α

+ log 2
α

= 2 log 2
α

.2
(9)

Let us now define ‖x‖(1,α) as a smooth approximation to the 1-norm function

‖x‖1 for a vector x ∈ ℜn in the following way: ‖x‖(1,α) =
∑n

i
|xi|α.

Then, using Lemma 11 we have that
∣

∣

∣
‖x‖(1,α) − ‖x‖1

∣

∣

∣
≤ 2n log 2

α
(10)

Hence, we can conclude that:

limα→∞ ‖x‖(1,α) = ‖x‖1 ∀x ∈ ℜn (11)

Letting L : ℜn → ℜ be any continuous loss function and defining f(x) = L(x) +
‖x‖1 and fα(x) = L(x) + ‖x‖(1,α). Let us also define x̄ = arg minx f(x) and

x̄α = arg minx fα(x). By the definition of f and fα and by equation (11), it
follows that:

limα→∞ fα(x) = f(x) ∀x ∈ ℜn (12)

In adition, we know that f(x̄) ≤ f(x), ∀x. In particular f(x̄) ≤ f(x̄α), then:

f(x̄) ≤ f(x̄α) = L(x̄α) + ‖x̄α‖1

= L(x̄α) + ‖x̄α‖1 + ‖x̄α‖(1,α) − ‖x̄α‖(1,α)

=
(

L(x̄α) + ‖x̄α‖(1,α)

)

+
(

‖x̄α‖1 − ‖x̄α‖(1,α)

)

= fα(x̄α) +
(

‖x̄α‖1 − ‖x̄α‖(1,α)

)

(13)
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This implies f(x̄) − fα(x̄α) ≥ −2n log 2
α

(using equation (10)). Similarly, we can

prove that f(x̄) − fα(x̄α) ≤ 2n log 2
α

, hence: limα→∞ fα(x̄α) = f(x̄).
Furthermore:

|f(x̄α) − f(x̄)| = |f(x̄α) − f(x̄) − fα(x̄α) + fα(x̄α)|
≤ |f(x̄α) − fα(x̄α)| + |fα(x̄α) − f(x̄)|

(14)

This implies that: limα→∞ f(x̄α) = f(x̄). Moreover, if L is stricly convex, it is
easy to proove that: limα→∞ xα = x̄
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