
SVM Feature Selection for Classification of SPECT Images of Alzheimer’s
Disease using Spatial Information

Jonathan Stoeckel
Siemens Medical Solutions USA

Computer Aided Diagnosis
Malvern, PA 19355

jonathan.stoeckel@siemens.com

Glenn Fung
Siemens Medical Solutions USA

Computer Aided Diagnosis
Malvern, PA 19355

glenn.fung@siemens.com

Abstract

Alzheimer’s disease is the most frequent type of demen-
tia for elderly patients. Due to aging populations the occur-
rence of this disease will increase in the next years. Early
diagnosis is crucial to be able to develop more powerful
treatments. Brain perfusion changes can be a marker for
Alzheimer’s disease. In this article we study the use of
SPECT perfusion imaging for the diagnosis of Alzheimer’s
disease differentiating between images from healthy sub-
jects and images from Alzheimer’s disease patients. Our
classification approach is based on a linear programming
formulation similar to the 1-norm support vector machines.
In contrast with other linear hyperplane-based methods that
perform simultaneous feature selection and classification,
our proposed formulation incorporates proximity informa-
tion about the features and generates a classifier that does
not just select the most relevant voxels but the most relevant
“areas” for classification resulting in more robust classi-
fiers that are better suitable for interpretation.

This approach is compared with the classical Fisher lin-
ear discriminant (FLD) classifier as well as with statistical
parametric mapping (SPM).

We tested our method on data from four European insti-
tutions. Our method achieved sensitivity of 84.4% at 90.9%
specificity, this is considerable better the human experts.
Our method also outperformed the FLD and SPM tech-
niques. We conclude that our approach has the potential
to be a useful help for clinicians.

1 Introduction

Alzheimer’s disease (AD) is the most frequent type of
dementia for elderly patients. Due to aging populations
its occurrence will still increase. Even though no defini-
tive cure has been found for this disease, reliable diagnosis

is useful for excluding other dementias, choosing the right
treatment and for the development of new treatments.

AD is diagnosed using the criteria from the National In-
stitute of Neurological and Communicative Disorders and
Stroke and Alzheimer’s Disease and Related Disorders As-
sociation (NINCDS-ADRDA) [1]. In practice the main tool
for evaluating patients are neuro-psychologic tests, thattest
abilities like memory and language. The Mini Mental State
Examination (MMSE) is the most widely used of these tests
[2].

Brain images can also provide some helpful indication
of AD. Magnetic resonance imaging (MRI) is used to study
possible anatomical changes of the brain [3]. Images show-
ing the local perfusion (amount of blood flow) of the brain
can be used for the diagnosis of AD because the perfusion
pattern is affected by the disease. In this article we will look
into the use of cerebral perfusion imaging acquired by sin-
gle photon emitting computer tomography (SPECT) using
technetium-99m hexamethylpropylene amine oxime (HM-
PAO) as the tracer. SPECT imaging is a largely accepted
clinical modality for AD diagnosis. Even though the perfu-
sion pattern and its evolution is not the same for all patients
some hypo-perfusion patterns seem to be typical for the dis-
ease. There are three main regions mentioned in literature
attained by hypo-perfusion[4], 1. the temporo-parietal re-
gion, 2. the posterior cingulate gyri and precunei, and 3.
the medial temporal lobe. The first region is known as the
predominant pattern for AD, however this region was not
found for early AD [5]. The second region is probably more
specific and more frequent in early AD [6]. Previous patho-
logical studies have suggested that the third region is the
first affected by the disease [7], however in practice it is
only observed in more advanced stages of the disease [6].

There is not one single perfusion pattern that differenti-
ates AD patients form healthy subjects. Thus it might be
useful to have tools that could assist physicians in this diffi-
cult task. In this article we will present a method that does



not need any explicit knowledge about the perfusion pattern
of AD patients.

Some approaches for a computer aided diagnosis (CAD)
system for the analysis of SPECT images for AD can be
found in literature. The first family is based on the anal-
ysis of regions of interest. The mean values for these re-
gions are analyzed using some discriminant functions (see
e.g. [8][9]).

The second approach is statistical parametric mapping
(SPM) and its numerous variants. Statistical parametric
mapping is widely used in the neuro-sciences. Its frame-
work was first developed for the analysis of SPECT and
PET studies, but is now mainly used for the analysis of func-
tional MRI data. It was not developed specifically to study a
single image, but for comparing groups of images. One can
use it for diagnostics by comparing the image under study
to a group of normal images.

Statistical parametric mapping consists of doing a voxel-
wise statistical test, in our case a t-test, comparing the val-
ues of the image under study to the mean values of the group
of normal images. Subsequently the significant voxels are
inferred by using random field theory (see e.g. [10] for a
full description of SPM). A largely used freely available im-
plementation called SPM99 [11] has been developed and is
used in this article as comparison to our approach.

In this article we will propose another approach using
as less a-priori information about the pathology as possible,
by obtaining it implicitly from image databases. Another
important aspect is that our approach is global. that all the
information in the image can be used at once in contrast
to more local approaches, e.g mono-variate methods like
SPM. A multi-variate approach generally increases sensi-
tivity at the price of loosing regional specificity (e.g. depict-
ing local hypo-perfusion regions). However in the approach
presented in this paper compared to our earlier work [12] we
use feature selection while trying to add spatial constraints
to the classification.

The following section first discusses the pre-processing
of the data, next we describe our proposed mathematical
programming formulation. Unlike the traditional SVM-like
formulations, spatial information about the feature (vox-
els) locations is incorporated into the optimization problem.
This leads to feature selection where the classifier depends
on regions in the brain instead of isolated non-connected
voxels. In section 3 we present the data we used for our ex-
periments. It consists of real brain SPECT images obtained
from four different institutions. The results on the data are
presented in section 4 and discussed in section 5.

1.1 Notation

We now describe the notation used in this paper. The
notationA ∈ Rm×n will signify a realm × n matrix. For

such a matrix,A′ will denote the transpose ofA andAi will
denote thei-th row ofA. All vectors will be column vectors.
For x ∈ Rn, ‖x‖p denotes thep-norm, p = 1, 2,∞. A
vector of ones in a real space of arbitrary dimension will be
denoted bye. Thus, fore ∈ Rm andy ∈ Rm, e′y is the sum
of the components ofy. A vector of zeros in a real space
of arbitrary dimension will be denoted by0. A separating
hyperplane, with respect to two given point setsA andB,
is a plane that attempts to separateRn into two halfspaces
such that each open halfspace contains points mostly ofA
orB.

2 Methods

2.1 Spatial Normalization

In the classifier based approach we need the assump-
tion that the same position in the volume coordinate system
within different volumes corresponds to the same anatomi-
cal position. This makes it possible to do meaningful voxel-
wise comparisons between images. However this assump-
tion is not met by the images without pre-processing: First
of all, the subject which is being imaged, is not always po-
sitioned at the same position in the reference frame of the
imaging device. This reference frame defines where e.g. the
brain is positioned in the image. Secondly the anatomy does
not always have the same shape and size between different
subjects. For example, the size and shape of the skull can
already be largely different between subjects. This means
that we need to spatially register the volumes. In our appli-
cation we do not have detailed knowledge of the anatomy
of our subjects as only HMPAO-SPECT images of the sub-
jects were available. These images are so-called functional
images. They only depict the regional blood flow of the
subject. The regional cerebral blood flow provides us of
course with some gross information about the anatomy, but
only based on the fact that there is a relationship between
the blood flow, and the underlying anatomy. Understanding
this characteristic of HMPAO SPECT images is fundamen-
tal for the choice of the registration method.

Because of the limited anatomical information available
in the volumes we chose to estimate affine transformations
between the volumes and not use transformations with a
larger number of degrees of freedom. We used the correla-
tion ratio as the similarity measure [13] that we minimized
using Powell optimization [14]. To obtain a more robust
result we used the following procedure. First of all, we reg-
istered all volumes to a single volume, then we calculated a
mean volume. This mean volume was first put on the mid-
sagittal plane by registering it with a flipped version (see
[15]). Subsequently it was made to be symmetrical by tak-
ing the mean of itself with a flipped version. Finally all
volumes were matched to this volume.



2.2 Intensity Normalization

HMPAO SPECT imaging generates volumes that only
give a relative measure of the blood flow. The blood flow
measure is relative to the blood flow in other regions of the
brain. Direct comparison, of the voxel intensities, between
images, even different acquisitions of the same subject, is
thus not possible without normalization of the intensities.

For all the experiments, we normalize the intensities by
applying an affine transformation to the intensities. The
transformation parameters are estimated on the training set
of each experiment such that the intensities for each voxel
position have zero mean and standard deviation of one for
all the training subjects. We choose this very common data
normalization since it provides numerical stability to theal-
gorithms involved.

2.3 Classification

Because the hypo-perfusion pattern for early AD is not
very well defined we choose to develop a method where we
do not use any explicit knowledge about the typical perfu-
sion patterns. We use implicit knowledge about the perfu-
sion patterns by using a database of images of AD patients
and normal subjects. To separate the images we use a classi-
fier using the voxel intensities as features and this database
to train the classifier. Using the voxel intensities as features
makes it possible not to introduce any particular knowledge
about the exact location of the hypo-perfusion area(s). Thus
by using a database of images and the voxel intensities we
circumvent the problem of the exact definition of the typ-
ical perfusion pattern for early AD. In general the number
of images available in the training databases is significantly
smaller (< 100) than the number of voxels (> 1000). Thus
the number of features (voxels) is much larger than the num-
ber of samples (training images). The number of samples
is considered to be small if it is about the same or smaller
than the number of dimensions. In this case we speak of al-
most empty spaces, the small sample size problem or the so
called curse of dimensionality. In classical pattern recogni-
tion it is believed that no good generalization could be ob-
tained for these cases when using the whole feature space
[16]. Generalization is the capacity of a classifier to rightly
classify a sample never seen before. In order to improve
generalization of our final classifier, minimal feature depen-
dency (small amount of features) of the classifier is desired.

2.3.1 The Linear Support Vector Machine

We consider the problem, depicted in Figure 1, of classi-
fying m points in then-dimensional real spaceRn, repre-
sented by them × n matrix A, according to membership
of each pointAi in the classA+ or A− as specified by a

givenm × m diagonal matrixD with plus ones or minus
ones along its diagonal. For this problem the standard sup-
port vector machine with a linear kernel [16] is given by the
following quadratic program with parameterν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(1)

Here, the planex′w = γ + 1 bounds the classA+ points,
while the planex′w = γ − 1 bounds the classA− points as
follows:

Aiw ≥ γ + 1, for Dii = 1
Aiw ≤ γ − 1, for Dii = −1.

(2)

The linear separating surface is the planex′w = γ midway
between the bounding planes (2). The quadratic term in (1)
maximizes the distance or “margin” between the bounding
planes. Maximizing the margin enhances the generalization
capability of a support vector machine [16]. In order to

Figure 1. The approximately bounding planes
of equation (2) with a soft (i.e. with some
error) margin 2

‖w‖1
, and the plane x′w = γ ap-

proximately separating A+ from A− are rep-
resented by the red, green and blue lines. In
this case, the support vectors are the points
that lie on the bounding planes.

make use of a faster linear programming based approach,
instead of the standard quadratic programming formulation
(1), we reformulate (1) by replacing the 2-norm by a 1-norm
as follows [17]:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1 = ν

m
∑

i=1

yi +

n
∑

j=1

|wj |

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.
(3)

This SVM‖ · ‖1 reformulation in effect maximizes the mar-
gin, the distance between the two bounding planes of Figure



1, using a different norm, the∞-norm, and results with a
margin in terms of the 1-norm, 2

‖w‖1
, instead of 2

‖w‖2
[18].

The mathematical program (3) is easily converted to a linear
program as follows:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v = ν

m
∑

i=1

yi +
n

∑

j=1

vj

s.t. D(Aw − eγ) + y ≥ e

v ≥ w ≥ −v

y ≥ 0,
(4)

Empirical evidence [17] indicates that the 1-norm formula-
tion has the advantage of generating very sparse solutions.
This results in the normalw to the separating planex′w = γ

having many zero components, which implies that many in-
put space features do not play a role in determining the lin-
ear classifier. This makes this approach suitable for feature
selection in classification problems. We note that in addi-
tion to the conventional interpretation of smallerν as em-
phasizing a larger margin between the bounding planes (2),
a smallerν here also results in a sparse solution. The “right”
value ofν is determined by a tuning procedure where the
performance is adjusted to the desired compromise between
the classification performance and the sparseness of the so-
lution. Next, we will revisit some regularization theory re-
sults that would motivate the SVM-like formulation we are
proposing in this paper.

2.4 Regularization Theory and SVMs

Let f : ℜn → ℜ with f(x) = w′x − γ the our predic-
tion or classification function. Then, Formulation (4) and
Support Vector Machine (SVM) formulations in general
can be seen as a particular case of regularization networks
[19] where the functionalRreg[f ] = Remp + λG(Pf)
that is often referred as the regularized risk, is minimized.
Rreg[f ] is equal to the empirical risk functionalRemp[f ]
plus a regularization termG(Pf) that is usually defined as
‖Pf‖

2. λ = 1
ν

is the regularization parameter andP is
a called the regularization operator.P maps the the clas-
sifier functionf into some dot product space [20]. For
example, in the case of SVMs, the type of regularization
and the class of functions that form the basis for the pre-
diction function are intimately related. The SVM algorithm
is equivalent to minimizingRreg[f ] on the family of func-
tionsf(x) =

∑

i αik(xi, x)+b provided that the kernelk is
chosen as a Green’s function ofP ∗P [20]. For example, in
Formulation (4) the regularization term isG(Pf) = ‖w‖1.
andK(xi, xj) = x′

ixj (the linear kernel). Our proposed
formulation also proposed to minimize the regularized risk
Rreg[f ] but for a very specific linear regularization opera-
tor P that encodes prior information (in the form of spatial
information) about the classification task at hand.

2.4.1 The Contiguous Linear SVM (CSVM)

There are two drawbacks related to standard SVM formu-
lations, especially when they are applied to imaging classi-
fication problems. The first drawback is related to the fact
that little or no spatial information about the imaging prob-
lem is incorporated into the optimization problem to solve,
discarding very valuable information that could lead to bet-
ter and more robust classifiers. In the case of imaging prob-
lems where the features are related to voxel/pixel intensities
a relation can be predefined among the voxels using spatial
information or previous knowledge about the problem. The
second drawback is related to the interpretability of the re-
sults. In several applications a feature selection scheme is
implemented not only to get sparse models but also to deter-
mine which of the input features are relevant for the classi-
fication task, leading to insights about the problem in ques-
tion. For example in the problem that we are addressing in
this article it is easier to interpret a final classifier depending
on contiguous voxels defining regions than a subset of inde-
pendent voxels with no apparent connection among them.
Our goal in this paper is to incorporate spatial information
about every voxel into the optimization problem in a man-
ner that the final obtained hyperplane classifier depends on
regions or clusters of features rather than on isolated voxels.
Let’s consider a similarity functionr that defines binary re-
lations among any two features (fi, fj) of any given training
datapoint. LetR be a matrix such that:

Rij = r(fi, fj) ∈ {0, 1}, i, j ∈ {1, . . . , n}

We define now,̂R = R − In×n, R̂ is the symmetric ad-
jacency matrix of an undirected graph representing the re-
lation among the features according to the relation function
r. R is a pseudo-adjacency matrix of a graph where every
node has a self-loop. For most problems in real lifeR is
based on local relations and therefore it is a very sparse ma-
trix (see e.g. Figure 2). The functionr could be defined in a
more general way, where instead of a binary relations it can
be a similarity function or any other kind of function encod-
ing extra information about the features or the datapoints in
the training set.

In our specific case we choose the relationr to be defined
by a 3 × 3 × 3 mask defining the 26-closest neighbors of
each voxel. Note that this very local simple mask allows
to encode the sense of contiguity among voxels in a global
sense across the whole volume. This mask size was chosen
because it provided excellent results while maintaining the
sparsity of the relationr A very simple but effective way
to incorporate this extra information about the features into
the1-norm SVM formulation (4) is to use the relationship
matrixR as a regularization operator and then minimize the
the regularized risk:

Rreg[f ] = Remp +
1

ν

∥

∥R−1w
∥

∥

1
(5)
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Figure 2. The sparse adjacency matrix R for
the mask defining the 26-closest neighbors of
each voxel.

This can be formulated as the following linear programming
problem:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v = ν

m
∑

i=1

yi +

n
∑

j=1

vj

s.t. D(Aw − eγ) + y ≥ e

Rv ≥ w ≥ −Rv

y ≥ 0,
(6)

At a solution of problem (4),v is the absolute value|w|
of w. This fact follows from the constraintsv ≥ w ≥ −v

which imply thatvi ≥ |wi|, i = 1 . . . , n. Hence at optimal-
ity, v = |w|, otherwise the objective function can be strictly
decreased without changing any variable exceptv. In this
new formulation (4) we have at optimality thatPv = |w|,
this is:

|wi| =

n
∑

j=1

Rijvj =
∑

{j|ri,j=1}

Rijvj (7)

In other words this means that the magnitude of the weight
wi of the related featurei, not only depends on itself but it
also depends on all the featuresj that are related toi ac-
cording to the relation functionr. MoreoverR can be in-
terpreted as a covariance matrix such that the prior over the
vector of weightsw is given byP (w) =∝ exp(

∥

∥R−1w
∥

∥

1
).

3 Materials

3.1 Subjects

The images we used for our experiments were taken
from a concurrent study investigating the use of SPECT

as a diagnostic tool for the early onset of AD. A detailed
description of this data can be found in [21]. Subjects of
four different centers, Edinburgh (Scotland), Nice (France),
Genoa (Italy), and Cologne (Germany) were included for
this study. In total 158 subjects participated, including 99
patients with AD, 28 patients suffering from depression (not
used in this article), and 31 healthy volunteers. An example
of this data is seen in figure 3. Confirmation of Alzheimer’s
disease was obtained by clinical follow-up. There was no
statistically significant age difference between the AD pa-
tients and the healthy subjects. For technical acquisitionre-
lated reasons images of 7 AD subjects had to be excluded.

3.1.1 Pre-processing

Applying the registration procedure as described above re-
sults in images of 128 by 128 by 89 voxels, with a voxelsize
of 1.71 mm by 1.71 mm by 1.88 mm for all four centers.
The SPECT images have an effective resolution of about 7
mm full width at half maximum (FWHM). Therefore we
can subsequently subsample the images a factor of two in
each dimension by taking the average value over the sub-
sampled areas without loosing much information. We only
use the voxel intensities for the voxels in the part of the
brain that has been imaged for all subjects. Applying this
procedure results in 3816 features per subject available for
classification/feature selection.

3.1.2 Experts

All real images were rated in four categories (very prob-
able, probably, probably not and very unlikely to have
AD) by sixteen European expert nuclear medicine physi-
cians. The possible ratings were as follows: very probably
Alzheimer’s disease, probably Alzheimer’s disease, proba-
bly not Alzheimer’s disease and very unlikely Alzheimer’s
disease. To be able to compare the data from the experts
with that of the automatic methods, we considered the first
two ratings as positive and the other two as negative.

4 Experiments

In all of our experiments we divided the data into two
disjoint training and testing sets. The idea is to tune the pa-
rameters in our model only using data from the training set,
once the final model is fixed, it is tested in the unseen test-
ing set. We used leave-one-out cross validation to tune the
model parameterν of the contiguous SVM. Performance
of our Contiguous SVM algorithm, in terms of generaliza-
tion ability, is compared with a Fisher’s Linear Discrimi-
nant (FLD) classifier as previously presented in [12]. The
FLD algorithm used here is based on the FLD mathematical
programming formulation introduced by Mika et al ([22]).



Figure 3. Examples of four volumes from Cologne after intens ity and spatial normalization. In each
column the first two small images show two normal subjects, th e last two images show slices of
AD subjects. The sets of slices are ordered from left to right and from top to bottom. Strong hypo-
perfusion can be seen for the first AD patient, whereas the hyp o-perfusion is more subtle for the
second patient.

For solving all the optimization problems involved in this
paper we used the widely used commercial solver CPLEX
6.5 [23]. Next, we outline the results of our comparative
testing. Two set of experiments were performed:

1. We randomly divided the 123 cases into 90 training ex-
amples and 33 testing examples, the goal of this exper-
iment is to approximately measure the generalization
capability of our proposed classifier.

2. In order to test the generalization performance of our
approach across institutions, we divided the data into
two different subsets according to the institution where
they were collected. The training set consists of 68
cases coming from Genoa (34 cases) and Cologne (34
cases) and the testing set consists of 55 cases coming
from Edinburgh (28 cases) and Nice (27 cases).

The first experiment resulted in a selection of 253 features
grouped in 7 connected areas. Figure 4 shows part of the
selected features (a subset that can easily be visualized in
2D). Most selected groups of features are in the ventricles.
This is consistent with the general atrophy of the brain ob-
served in Alzheimer’s disease patients which enlarges the
ventricles relative to the other parts of the brain. This result
shows the potential of the proposed approach at selecting
meaningful grouped features which can be interpreted more
easily than traditional feature selection approaches. The
experts had an average sensitivity of 56.6% and a specificity
of 82.4% for all 123 cases. In the SPM approach we use
SPM at a significance level of 0.1 at the cluster level. We
consider each image where some significant clusters were
found to be a positive result, this leads to a sensitivity of

Table 1. Results for the first experiment for
90 training cases and 33 testing cases ran-
domly sampled among the different institu-
tions. The training results are based on leave-
one out.

CSVM FLD
Sensitivity Sensitivity
Specificity Specificity

Training 86.7% 88.7%
80.0% 65.0%

Testing 84.4% 82.0%
90.9% 87.5%

55.9% and a specificity of 77.4% for SPM. Our classifica-
tion approach as shown in tables 1 and 2 outperforms both
the experts and the SPM approach. Results in table 2 show
that even if the performance decreases on the training set
due to differences in the way the images were aqcuired at
the different institutions the contiguous SVM approach still
shows good generalization capabilities.

5 Conclusion

Based on the experiments described in this article we
conclude that our automatic approach to the classification
of images performs at least as well as human observers. In
general our contiguous support vector machine is more sen-



Figure 4. A single axial image showing the
regions picked by the algorithm overlayed on
an image of an Alzheimer’s disease patient
SPECT image.

sitive and more specific. One would need more data, espe-
cially of control subjects to be able to state that automatic
methods always significantly outperform human observers
in clinical practice. We have shown that classification of im-
ages using the voxel values as features outperforms the lo-
cal SPM approach. We have shown that classification with-
out using any specific knowledge related to the pathology is
possible. The approach we propose in this article gives only
a global decision based on a specific image. However only
providing global information might not be sufficient for
clinicians. Therefore we proposed a method that might do
useful feature selection which might provide useful infor-
mation to the clinician, at least at the group level. A trained
classifier represents the group of images it was trained on,
it does not show which areas where discriminative for any
specific single image. Further research should focus on how
to obtain subject specific local information while still re-
taining the advantage of a global approach. For future work
one might want to try the presented approach for differen-
tial diagnosis (other dementias versus Alzheimer’s disease)
which might be an even more important clinical issue. ROC
analysis of the classifier as well as of the experts will be use-
ful to better compare performances. This will also provide
means to handle the differences in operating points for the
different experts (e.g. some experts are more specific while
others are more sensitive). Also an interesting future direc-
tion would be to extend the Contiguous SVM formulation,
where a relation among datapoints is considered instead of
a relation among the features. This approach can potentially

Table 2. Results for the second experiment.
The classifier was trained on the data from
Genoa (34 cases) and Cologne (34 cases),
and tested on the data from Edinburgh (28
cases) and Nice (27 cases). The training re-
sults are based on leave-one out.

CSVM FLD
Sensitivity Sensitivity
Specificity Specificity

Training 86.2% 84.6%
68.0% 62.5%

Testing 72.5% 45.0%
93.0% 100.0%

be used for a general semi-supervised SVM approach where
only some of the labels for the training data are available.
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