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ABSTRACT
We describe an algorithm for converting linear support vec-
tor machines and any other arbitrary hyperplane-based lin-
ear classifiers into a set of non-overlapping rules that, un-
like the original classifier, can be easily interpreted by hu-
mans. Each iteration of the rule extraction algorithm is
formulated as a constrained optimization problem that is
computationally inexpensive to solve. We discuss various
properties of the algorithm and provide proof of convergence
for two different optimization criteria We demonstrate the
performance and the speed of the algorithm on linear clas-
sifiers learned from real-world datasets, including a medical
dataset on detection of lung cancer from medical images.
The ability to convert SVM’s and other “black-box” classi-
fiers into a set of human-understandable rules, is critical not
only for physician acceptance, but also to reducing the reg-
ulatory barrier for medical-decision support systems based
on such classifiers.

Categories and Subject Descriptors
I.5.m [Pattern Recognition]: Miscellaneous

General Terms
Algorithms

Keywords
Rule extraction, Linear classifiers, Mathematical program-
ming, medical decision-support.

1. INTRODUCTION
Support Vector Machines (SVMs) [22, 11] and other lin-

ear classifiers are popular methods for building hyperplane-
based classifiers from data sets, and have been shown to
have excellent generalization performance in a variety of
applications. These classifiers, however, are hard to inter-
pret by humans. For instance, when an unlabeled example
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is classified by the linear classifier as positive or negative,
the only explanation that can be provided is that some lin-
ear weighted sum of the variables of the example are lower
(higher) than some threshold; such an explanation is com-
pletely non-intuitive to human experts. Humans are more
comfortable dealing with rules that can be expressed as a
hypercube with axis-parallel surfaces in the variable space.

Previous work [20, 17] and more recent work [10] included
rule extraction for neural networks but very few work has
been done to extract rules from SVMs or any other kind
of hyperplane-based classifier. Recently Nunez et al [15]
proposed a method to extract rules from an SVM classi-
fier which involves applying a clustering algorithm first to
identify groups that later define the rules to be obtained.

We propose a methodology for converting any linear clas-
sifier into a set of such non-overlapping rules. This rule set
is (asymptotically) equivalent to the original linear classi-
fier, covers most of the training examples in the hyperplane
halfspace. Unlike [15] our method does not require compu-
tationally expensive data preprocessing steps (as clustering)
and the rule extraction is done in a very fast manner, typi-
cally it takes less than a second to extract rules from SVM’s
trained on thousands of samples. Our algorithm does not
required anything more complicated that solving simple lin-
ear programming problems in 2n variables where n is the
number of input features (after feature selection).

In the next section we briefly discuss the medical rele-
vance of this research. The ability to provide explanations
of decisions reached by “black-box” classifiers is not only im-
portant for physician acceptance, but it is also a vital step
in potentially reducing the regulatory requirements for in-
troducing a medical decision-support system based on such
a classifier into clinical practice. Section 3 then describes
the commonly used linear support vector machine classifier
and gives a linear program for it. Section 4 provides our rule
extraction algorithm; Each iteration of the rule extraction
algorithm is formulated as one of two possible optimization
problems based on different “optimal” rule criteria. The first
formulation, which seeks to maximize the volume covered by
each rule, is a constrained nonlinear optimization problem
whose solution can be found by obtaining the closed form
solution of a relaxed associated unconstrained problem. The
second formulation, which maximizes the number of samples
covered by each rule, requires us to solve a linear program-
ming problem. In Section 5 we discuss finite termination
and convergence conditions for our algorithm. Section 6
summarizes our results on 4 publicly available datasets, and
an additional medical dataset from our previous work [3] in



building a CAD system to detect lung cancer from computed
tomography volumes. We conclude in Section 7 with some
thoughts on further extensions and applications.

We now describe the notation used in this paper. The
notation A ∈ Rm×n will signify a real m × n matrix. For
such a matrix, A′ will denote the transpose of A and Ai

will denote the i-th row of A. All vectors will be column
vectors. For x ∈ Rn, ‖x‖p denotes the p-norm, p = 1, 2,∞.
A vector of ones in a real space of arbitrary dimension will
be denoted by e. Thus, for e ∈ Rm and y ∈ Rm, e′y is the
sum of the components of y. A vector of zeros in a real space
of arbitrary dimension will be denoted by 0. A separating
hyperplane, with respect to two given point sets A and B, is a
plane that attempts to separate Rn into two halfspaces such
that each open halfspace contains points mostly of A or B.
A bounding plane to the set A is a plane that places A in one
of the two closed halfspaces that the plane generates. The
symbol ∧ will denote the logical “and” and the symbol ∨ will
denote the logical “or”. The abbreviation “s.t.” stands for
“such that”. For a vector x ∈ Rn, the sign function sign(x)
is defined as sign(x)i = 1 if xi > 0 else sign(x)i = −1 if
xi ≤ 0, for i = 1, . . . , n.

2. MEDICAL RELEVANCE

From the earliest days of computing, physicians and sci-
entists have explored the use of artificial intelligence sys-
tems in medicine [18]. A long-standing area of research has
been building computer-aided diagnosis (CAD) systems for
the automated interpretation and analysis of medical im-
ages [16]. Despite the demonstrated success of many such
systems in research labs and clinical settings, these systems
were not widely used, or even available, in clinical practice.
The primary barrier to entry in the United States is the re-
luctance of the US Government to allow the use of “black
box” systems that could influence patient treatment.

Although the Food and Drug Administration (FDA) has
recently granted approval for CAD systems based on “black-
box” classifiers [19], the barrier to entry remains very high.
These systems may only be used as “second-readers”, to
offer advice after the initial physician diagnosis. More sig-
nificantly, these CAD systems must receive pre-market ap-
proval (PMA). A PMA is equivalent to a complete clinical
trial (similar to the ones used for new drugs), where the
CAD system must demonstrate statistically significant im-
provement in diagnostic performance when used by physi-
cians on a large number of completely new cases. This is
a obviously a key area of research in CAD, but not the fo-
cus of this paper. The FDA has indicated that the barrier
to entry for CAD systems that are able to explain their
conclusions, could be significantly lowered. Note, this will
not lower the barrier in terms of generalization performance
on unseen cases, but the FDA is potentially willing to con-
sider using performance on retrospective or previously seen
cases and significantly reduce the number of cases needed
for a prospective clinical trial. This is critical, because a
full-blown clinical trial can add several years delay to the
release of a CAD system into general clinical practice.

Much research in the field of artificial intelligence, and
now knowledge discovery and data mining has focused on
the endowing systems with the ability to explain their rea-
soning, both to make the consultation more acceptable to
the user, and to help the human expert more easily identify
errors in the conclusion reached by the system [4]. On the

other hand, when building classifiers from (medical) data
sets, the best performance is often achieved by “black-box”
systems, such as, Support Vector Machines (SVMs). The
research described in this paper will allow us to use the su-
perior generalization performance of SVM’s and other linear
hyperplane-based classifiers in CAD system, and using the
explanation features of the rule extraction algorithm to re-
duce the regulatory requirements for market introduction of
such systems into daily clinical practice.

3. HYPERPLANE CLASSIFIERS: 1-NORM

SUPPORT VECTOR MACHINES

We consider the problem of classifying m points in the
n-dimensional input space Rn, represented by the m × n
matrix A, according to membership of each point Ai in the
class A+ or A− as specified by a given m×m diagonal matrix
D with plus ones or minus ones along its diagonal. For
this problem, depicted in Figure 1, the linear programming
support vector machine [11, 5] with a linear kernel (this is a
variant of the standard SVM [22, 6]) is given by the following
linear program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0,

(1)

where ‖ · ‖1 denotes the 1-norm as defined in the Intro-
duction. That this problem is indeed a linear program, can
be easily seen from the equivalent formulation:

min
(w,γ,y,t)∈Rn+1+m

νe′y + e′t

s.t. D(Aw − eγ) + y ≥ e
t ≥ w ≥ −t

y ≥ 0.

(2)

For economy of notation we shall use the first formulation (1)
with the understanding that computational implementation
is via (2).

If the classes are linearly inseparable, which is often the
case in real-world datasets, then two planes bound the two
classes with a “soft margin” (i.e. bound approximately with
some error) determined by the nonnegative error variable y,
that is:

Aiw + yi ≥ γ + 1, for Dii = 1,
Aiw − yi ≤ γ − 1, for Dii = −1.

(3)

The 1-norm of the error variable y is minimized paramet-
rically with weight ν in (1), resulting in an approximate
separating plane. This plane classifies data as follows:

sign(x′w − γ )

(

= 1, then x ∈ A+,

= −1, then x ∈ A−,
(4)

where sign(·) is the sign function defined in the Introduc-
tion. Empirical evidence [5] indicates that the 1-norm for-
mulation has the advantage of generating very sparse solu-
tions. This results in the normal w to the separating plane
x′w = γ having many zero components, which implies that
many input space features do not play a role in determining
the linear classifier. This makes this approach suitable for
feature selection in classification problems. Since our rule
extraction algorithm depends directly on the features used



Figure 1: The LP-SVM classifier in the w-space of
Rn. The plane of equation (3) approximately sepa-
rating points in A+ from points in A−.
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Figure 2: Two-dimensional example where
the non-overlapping rules covering the halfspace
({x s.t. w′x < γ}) are represented as cyan rectangles

.

by the hyperplane classifier, sparser normal vectors w will
lead to rules depending on a fewer number of features.

4. RULE EXTRACTION FROM HYPERPLANE

CLASSIFIERS

In the previous section, we described a linear program-
ming SVM formulation to generate hyperplane classifiers.
We now present an algorithm to extract rules of the form:

∧n
i=1li ≤ xi < ui

to approximate these classifiers. Note that every rule form
defined above defines an hypercube in the n dimensional
space with edges parallel to the axis. Rule of this form are
very intuitive and can be easily interpreted by humans.

Our rule extraction approach can be applied to any linear
classifier regardless of the algorithm or criteria used to con-
struct the classifier, including Linear Fisher Discriminant
(LFD) [13], Least squares SVM’s (LS-SVMs) [21] or Proxi-
mal SVMs (PSVM) [7]. Denote by P−(w, γ, I) the problem
of constructing rules for the classifier for the region:

I = {x s.t. w′x < γ, li ≤ xi ≤ ui, 1 ≤ i ≤ n}

based on the classification hyperplane w′x = γ obtained by
solving problem (1). Note that the problem of rule extrac-
tion P+(w, γ, I ′) where

I ′ = {x s.t. w′x > γ, li ≤ xi ≤ ui, 1 ≤ i ≤ n}

is the same as P−(−w,−γ, I). We now establish that this is
equivalent to solving the problem with positive hyperplane
coefficients, γ = 1 and the feature domain being the unit
hypercube. Consider a diagonal matrix T constructed in
the following way:

Tii =
sign(wi)

ui − li
, i ∈ {1, . . . , n} (5)

and a vector b with components b = {ui if wi < 0, li if wi > 0}
We now define a transformation of coordinates such that
y = T (x− b). Note that

wi > 0⇒ 0 ≤ yi = Tii(xi − li) =
xi − li
ui − li

≤ 1

wi < 0⇒ 0 ≤ yi = Tii(xi − ui) =
−(xi − ui)

ui − li
=

(ui − xi)

ui − li
≤ 1

(6)
hence, I is transformed to [0, 1]n. Furthermore x = T−1y+b,
and hence, the hyperplane of interest becomes

w′T−1y = γ − w′b

which is equivalent to:

w̃y =

„

w′T−1

γ − w′b

«

y = 1 (7)

Thus the problem becomes P−(w̃, 1, I0) in the new domain,
where I0 = [0, 1]n. 1 Note that the components of w̃ are
positive as w′b < γ and wiTii > 0.

For the rest of this paper we will concentrate in finding
rules with the following properties:

1In mapping the original problem to the unit hypercube the
measure of volume is merely a scaled version of the original
problem, and thus the optimum remains the same.



• The hypercube defined by the extracted rule

∧n
i=1li ≤ xi < ui

is a subset of the bounded region I = {x s.t. w′x < γ}

• The resulting hypercube cube defined by the extracted
rule contains one vertex that lies in the separating hy-
perplane w′x − γ = 0. This assumption allows to ob-
tain set of disjoint rules that are easy to generate and
simplifies the problem considerable.

Figure 2 illustrates an example in two dimensions where
the halfspace w′x < γ is almost totally covered by rules
represented by hypercubes with a vertex in the hyperplane
w′x− γ = 0.

Given a region I we can define the “optimal” rule accord-
ing to different criteria, Next we present two of them.

4.1 Volume Maximization Criteria
An optimal rule can be defined as the rule that covers

the hypercube with axis-parallel faces with the largest pos-
sible volume. Since the log function is strictly increasing,
arg max f(x) = arg max log (f(x)), we can find the rule that
maximizes the log of the volume of the region that it en-
closes (instead of the volume). Assuming that the linear
transformation T was already applied and that one corner
of the region lies on the hyperplane, this rule can be found
by solving the following problem:

max
x∈Rn

log(
n

Y

i=1

xi) s.t.
n

X

i=1

wixi = γ, 0 ≤ x ≤ 1 (8)

The Lagrangian function for this nonlinear constrained op-
timization problem is:

L(x, λ, θ) = log(

n
Y

i=1

xi)−λ(w′x− γ)−
n

X

i=1

θi(x− 1)+

n
X

i=1

δix

(9)
The KKT optimality conditions for problem 8 are given

by:

1

xi
− λwi − θi + δi = 0 ∀i ∈ {1, . . . , n}

w′x = γ
0 ≤ xi ≤ 1, λ ≥ 0, θi ≥ 0, δi ≥ 0 ∀i ∈ {1, . . . , n}

θi(xi − 1) = 0 ∀i ∈ {1, . . . , n}
δixi = 0 ∀i ∈ {1, . . . , n}

(10)

In order to find a solution for problem (8) we will first
consider solutions for the relaxed equality constrained prob-
lem:

max
x∈Rn

log(
n

Y

i=1

xi) s.t.
n

X

i=1

wixi = γ, (11)

The KKT optimality conditions for problem (11) (which are
very similar to the KKT conditions of problem (8)) are given
by:

1

xi
− λwi = 0, i ∈ {1, . . . , n}, wx− γ = 0 (12)

From the KKT optimality conditions (12) we obtained the
following closed form solutions for the relaxed optimization
problem:

x̃i =
1

λwi
=

γ

nwi
i ∈ {1, . . . , n}, λ̃ =

n

γ
(13)

A solution x∗ of the original optimization problem (8)
can be obtained from the solution (13). Let’s define x∗ as
follows:

x∗
i =

( 1

λ∗wi
if x̃i ≤ 1, i ∈ {1, . . . , n}

1 otherwise

)

(14)

Where,

λ∗ =
nI

γ −
P

{i∈A} wi
(15)

where A = {i |x̃i > 1} and nI is n− |A|. with λ∗ defined as
above we have that:

wx∗ − γ =

n
X

i=1

wix
∗
i =

X

i∈I

wix
∗
i +

X

i∈A

wix
∗
i − γ

=
P

i∈I

wi

λ∗wi
+

X

i∈A

wi − γ

=
nI

λ∗
+

X

i∈A

wi − γ

= nI

γ −
P

i∈A wi

nI
+

X

i∈A

wi − γ

= γ − γ = 0

(16)

if 0 ≤ x∗
i ≤ 1,∀i ∈ {1, . . . , n} , then x∗ is the optimal

solution for problem 8, otherwise define x̃ = x∗ and recal-
culate x∗ until 0 ≤ x∗

i ≤ 1,∀i ∈ {1, . . . , n}. This iterative
procedure can be seen as a gradient projection method for
which convergence is well established [2, 1].

4.2 Point Coverage Maximization Criteria
Another optimal rule can be defined as the rule that covers

the hypercube with axis-parallel faces with that contains the
largest possible number of training points in the halfspace.
Given a transformed problem P−(w̃, 1, I0), we want to find
x∗ such that w′x∗ − γ = 0 and |C| (cardinality of C )is
maximal, where:

C = (A− ∩ {x| w
′x < 1}) ∩ {x| 0 ≤ x ≤ x∗}

The following Linear programming formulation is an approx-
imation to this problem :

min
x,y

e′y

s.t. w′x = 1
A.i − eyi ≤ xi , ∀i ∈ {1, . . . , n}

0 ≤ x ≤ 1
y ≥ 0.

(17)

Note that the variable y ≥ 0 acts as a slack or error vari-
able that is minimized in order in order for the rule to cover
the largest possible amount of points.

We can now use either one of the optimal rule definitions de-
scribed in subsections 4.1 and 4.2 to propose an iterative pro-
cedure that extract as many rules as we require to describe
adequately the region of interest. We first demonstrate that
in a n-dimensional feature space, extracting one such a rule
results in n new similar problems to solve. Let the first
rule extracted for the transformed problem P−(w̃, 1, I0) be
∧n

i=1(0 ≤ xi < x∗
i ). The remaining volume on this side of

the hyperplane that is not covered, is the union of n nonin-



tersecting regions similar to the original region, namely

Ii =

8

<

:

x ∈ Rn, s.t. 0 ≤ xj < x∗
j ∀1 ≤ j < i

x∗
i ≤ xi < 1
0 ≤ xj < 1 ∀j > i

(18)

that is, the rule inequalities for the first i−1 components of x
are satisfied, the inequality that relates to the ith component
is not satisfied, and the rest are free. Consider i, j with j > i.
For each x ∈ Ij , we have 0 ≤ xi < x∗

i and for each x ∈ Ii,
we have x∗

i ≤ xi < 1. Hence, Ii are nonintersecting, and the
rules that we arrive at for each Ii will be “independent”.
Now we extract the optimal rule for each of these regions
that contains a training data point using a depth first search.
Note that the problem for Ii is P−(w̃, 1, Ii), and we can now
use the same transformation as described in equations (5)-
(7) to transform each of the n subproblems P−(w̃, 1, Ii) to
problems equivalent to the original problem P−(w̃, 1, I0).

Next, we state our algorithm to obtain a set of rules R
that cover all the training points belonging to A− such that
w′x < γ. Let R be the set containing all the extracted
rules, and U be the set containing the indices of the points
uncovered by the rules in R. R and U are initialized to ∅ and
A− respectively, dmax (which bounds the maximum depth
of the depth first search, typically less than 20) is assigned,
and w, γ are obtained by solving the LP-SVM (1) before
ExtractRules is invoked for the first time.

Algorithm 4.1. ExtractRules(w,γ, I, d): Algorithm
for rule extraction from linear classifiers.

1. If d = dmax, stop.

2. Transform problem P−(w, γ, I) into P−(w̃, 1, I0) using
the linear transformation described in Section 5, equa-
tions (5)-(10).

3. Obtain y∗ by solving problem P−(w̃, 1, I0) using either
equations (14)-(15) or equation (17).

4. Calculate x∗ = T−1y∗ +b, get new rules R̃(x∗), update

R← R ∪ R̃(x∗).

5. Let C = {x ∈ U st. R̃(x∗) is true} = U ∩ R̃(x∗), this
is, a set containing the indices of the points in U that
are covered by the new obtained rule.

6. Update U ← U − C. If U = ∅, stop. Else d← d + 1.

7. for k = 1 to n do

• Calculate Îk = T−1Ik + b. If U ∩ Îk 6= ∅ apply
recursively ExtractRules(w, γ, Îk, d), where Îk is
one of the n remaining regions of interest uncov-
ered by rule R̃(x∗) as defined in (18).

5. ALGORITHM CONVERGENCE PROPERTIES

We now derive the rate at which the volume covered by the
rules extracted for P (w, 1, I0) converges to the total volume
of the region of interest.

Lemma: The volume of the region {x s.t. w′x < γ, xi ≥
0} is

Vn(w, γ) =

n
Y

i=1

γ

wi

n!

Proof: We show this by induction. For n = 2, this is the
area of a right-angled triangle with sides γ/w1 and γ/w2,
which is γ2/2w1w2. Now, assume that this is true for n = k.

Vk+1(w, γ) =

Z γ/w1

0

. . .

Z (γ−w1x1−...−wkxk)/wk+1

0

dx1dx2 . . . dxk+1

=

Z γ/w1

0

dx1

Z (γ−w1x1)/w2

0

dx2 . . .

Z (γ−w1x1...−wkxk)/wk+1

0

dxk+1

=

Z γ/w1

0

dx1Vk(w−1, γ −w1x1)

=

Z γ/w1

0

dx1
1

k!

k+1
Y

i=2

γ − w1x1

wi

=
1

k!

k+1
Y

i=2

1

wi

Z γ
w1

0

dx1(γ − w1x1)
k

=
1

k!
(

k+1
Y

i=2

1

wi
)

γk+1

(k + 1)w1
=

1

(k + 1)!

k+1
Y

i=1

γ

wi

where w−i contains all components of w except the i-th.
Lemma: For any S ⊆ {1, 2, . . . , n}, the volume of a re-

gion defined by w′x < 1 and 0 ≤ xi < 1, 1 ≤ i ≤ n is
bounded by

1

|S|!

Y

i∈S

1

wi

Proof: We can assume without loss of generality that S is
{1, 2, . . . , k} (if it is not, the coordinates may be permuted
so that it is). The volume of interest, say V is given by

V =

Z min(1,1/w1)

0

dx1

Z min(1,(1−w1x1)/w2)

0

dx2 . . .

. . .

Z min(1,(1−w1x1−...−wn−1xn−1)/wn)

0

dxn

≤

Z min(1,1/w1)

0

. . .

Z min(1,(1−w1x1−...−wk−1xk−1)/wk)

0

. . .

. . .

Z 1

0

. . .

Z 1

0

dx1dx2 . . . dxn

≤

Z 1/w1

0

. . .

Z (1−w1x1−...−wk−1xk−1)/wk

0

dx1dx2 . . . dxk

=
1

k!

k
Y

i=1

1

wi

where the first two inequalities are because the upper limit
in the integral is replaced by an upper bound, and the last
equality comes from the previous lemma with γ = 1.

Lemma: At each “stage”, the algorithm covers at least
α = n!

nn of the volume yet to be covered. Hence,the volume

remaining after k stages is at most (1− α)kV0.



Proof: The volume covered by the rule is given by

Vrule =
n

Y

i=1

x∗
i = (

Y

i/∈A

1

λ∗wi
)(

Y

i∈A

1)

=
Y

i/∈A

1

wi

1−
P

i∈A

wi

n− |A|

≥
Y

i/∈A

1

wi

1− |A|/n

n− |A|

=
Y

i/∈A

1

wi

1

n

where A as before is the set of active constraints, and the
inequality above comes from the fact that for i ∈ A, 1

nwi
> 1

(the original solution to the relaxed problem violates the
constraints). Using the result of the previous lemma, and
setting S = {1, . . . , n}\A, we have

Vrule

Vtotal
≥

Q

i/∈A

1

wi

1

n
1

(n−|A|)!

Q

i/∈A
1

wi

=
(n− |A|)!

nn−|A|
≥

n!

nn

the last inequality arises because the bound is monotonically
increasing in |A| with it being the smallest when |A| = 0.

Lemma: At each stage, the algorithm reduces the largest
distance from an interior point yet to be covered to the sep-
arating hyperplane by a factor of 1− 1/n.
Proof: We establish the lemma for one stage of P (w, 1, I0)
(a simple scaling argument would extend it to a general γ
and I , and hence to further stages of the problem as well).
The largest distance from the plane in I0

d0
max = sup

x∈I0,w′x<1

(1− w′x)/||w|| = 1/||w||

In region Ii, as xi ≥ x∗
i and w′x is monotonically increasing

in each coordinate

di
max = sup

x∈Ii,w′x<1

(1− w′x)/||w|| = (1− wixi∗)/||w||

When i ∈ A, then Ii has no interior points. When i /∈ A,
x̃i = wix

∗
i = 1/n. Hence,

di
max = (1− 1/n)/||w|| = (1− 1/n)d0

max

Theorem: After extracting t rules, the remaining vol-
ume is at most (1−α)logn t−1 of the original volume. More-
over, the rule extraction algorithm covers in finite time any
dataset that has all points in the interior of I .
Proof: As described before, each rule extraction leads to
n further “subproblems”. Hence, the number of rules to be
extracted in stage k is nk−1, and the number of rules ex-

tracted upto and including stage k is nk−1
n−1

. Hence, if t rules
have been extracted and k stages are complete,

t <
nk+1 − 1

n− 1
⇒ t < nk+1 ⇒ k > logn t− 1

Hence, at least logn t − 1 stages are complete, and hence,
by a previous lemma, at most (1− α)logn t−1 of the volume
remains (which converges to 0 as t→∞). Moreover, by the
previous lemma we have that at the end of stage k,

dmax = (1− 1/n)kγ/||w||

Hence, for a data point x, we have that x is covered when

(γ − w′x)/||w|| > (1− 1/n)kγ/||w||

i.e. when

k ≥ log(1−1/n) (1− w′x/γ)

Hence, the entire data set A− is covered when

k ≥ log(1−1/n) (1− max
x∈A−

(w′x)/γ)

i.e., when

t = n
1+log(1−1/n) (1−maxx∈A−

(w′x)/γ)

We now use this to establish termination of the algorithm
for a given data set in finite time. Let us assume the con-
trary, i.e. that there is a point x# such that w′x# < γ and
it is not covered in the rule extraction process. By the pre-
vious lemma, we have that y = x# + (γ − w′x#)w/2||w|| is
not covered (as it is greater than x). Moreover, any point

in the hypercuboid x#
i ≤ xi < yi is not covered by the

rules. Hence the volume of the uncovered region is at least
Qn

i=1 (yi − x#
i ), which is a contradiction of the previous part

of the theorem. Hence, the point x# gets covered after a fi-
nite number of iterations.

6. NUMERICAL TESTING

To show the effectiveness of our rule extraction algorithm,
we performed experiments in five real-world datasets. Three
of the datasets are publicly available datasets from the UCI
Machine Learning Repository [14]: Wisconsin Diagnosis Breast
Cancer (WDBC), Ionosphere, and Cleveland heart. The
fourth dataset is a dataset related to the nontraditional au-
thorship attribution problem related to the federalist papers
[9] and the fifth dataset is a dataset used for training in a
computer aided detection (CAD) lung nodule detection al-
gorithm, we refer to this set as the Lung CAD dataset. Ex-
periments for the five datasets were performed to test the
capability of algorithm 4.1 to cover training points correctly
classified by the SVM hyperplane. For each experiment,
we obtained a separating hyperplane using the 1−norm lin-
ear programming SVM (LP-SVM) formulation as described
in equation (1). The state of the art optimization software
CPLEX was used to solve the corresponding linear program-
ming problems. Ten-fold cross validation was used as a
tuning procedure to determine the SVM parameter ν. In
All the experiments, the resulting hyperplane classifier was
sparse, this means that the set {wi s.t. wi 6= 0, 1 ≤ i ≤ n}
was “small”, this was expected because of the effect of the
1−norm regularization term on the coefficients wi. Having
a sparse hyperplane implies that the dimensionality of the
training dataset can be reduced by discarding the features
corresponding to wi = 0 since they do not play any role in
the classification.
Once the hyperplane was obtained we applied algorithm 4.1
using one of the two criteria for optimal rules described in
subsections 4.1 and 4.2. The first criteria is based in find-
ing rules that maximizes the volume of the region covered
by the rule, we will refer to this variant of algorithm 4.1 as
Volume Maximization (VM). The second criteria is to find
rules that attempt to cover a many points of the training set
as possible. We will call this variant of algorithm 4.1 Point
Coverage Maximization (PCM).



Results for both VM and PCM are reported in Tables 1
and 2 including: total number of optimization problems
solved, total execution time, total number of extracted rules
and percentage of correctly classify points by the hyperplane
that were covered by the extracted rules.
It is important to note that the results reported included
only rules that covered more than one point. We consid-
ered that rules that covered only one point did not have any
generalization capability and therefore were discarded. In
general, the algorithm can be tuned to discard rules that do
not cover enough points according to a number predefined
by the user.

Empirical results on the five datasets as reported in Ta-
bles 1 and 2 show the effectiveness of both the VM and
PCM variants of our proposed algorithm. In most cases our
algorithms covered more of 90% of the training points using
only a few rules. As was expected, the VM variant seems to
solve more “easy” optimization problems and generate more
rules. On the other hand, the PCM variant solved fewer
optimizations problems (linear programming problems) but
that were slightly harder to solve, generating fewer rules.

Note that Tables 1 and 2 appear at the end of this paper
(after the references). Next, we will discuses in more detail
the results obtained for the WDBC dataset and the lung-
cad dataset since medical diagnosis applications is of special
interest to us.

6.1 WDBC dataset
The first experiment relates to the publicly available WDBC

dataset that consists of 683 patient data. The classification
task associated with this dataset is to diagnose breast masses
based solely on a Fine Needle Aspiration (FNA). Doctors
identified nine visually assessed characteristics or attributes
of an FNA sample which they considered relevant to diagno-
sis (for more detail please refer to [12]). After applying the
LP-SVM algorithm and discarding the features correspond-
ing to the wi = 0, we ended up with a hyperplane classifier in
5 dimensions that achieved 95.0% tenfold testing set correct-
ness. After applying our ExtractRules-PCM algorithm
to cover the 214 points in A− correctly classified by the hy-
perplane we obtained a total of 7 non empty, non-singleton
rules that cover 99.8% of the points. Similarly we obtained
a total of 3 non empty, non-singleton rules that cover 98.1%
of points in A+ correctly classified by the hyperplane. For
example after using the fact that all the features values are
integers between 1 and 10 we obtained the following rule
that covered 383 of the 435 positive training points:

(Cell Size ≤ 3) ∧ (Bare Nuclei ≤ 1)

∧ (Normal Nucleoli ≤ 7)

⇒ mass is benign

6.2 The Lung CAD dataset
The second experiment relates to a set of data used in

a computer aided detection (Lung CAD) system for pul-
monary nodule detection on thin slice multidetector CT
scans. The Lung CAD algorithm performs the following
processing steps: a) lung segmentation; b) candidate gener-
ation; c) feature calculation at each candidate location; d)
classification and e) presenting CAD findings to a physician
for review. The task of the candidate generation step, is to
reduce the search space by quickly generating a list of sus-
picious locations for different types of nodules at a high sen-

sitivity without considering the specificity. For this, shape
based characteristics are used to generate a candidate list.
For each candidate in the list a set of features is calculated.
Those features are based on the intensity, the shape, the cur-
vature, and the location. The goal of the last processing step
is to increase the specificity without decreasing the sensitiv-
ity by pruning the list of candidates. For this, a classifier
is used. Our dataset consists on 274 candidates represented
by 34 numerical features. Each datapoint corresponds to a
candidate labeled as a nodule or not a nodule. The LP-SVM
algorithm generated a classifier in only 5 features with 82.5%
tenfold testing set correctness. Our ExtractRules-PCM
algorithm extracted a total of 10 nonempty, non-singleton
rules that cover 94% of positive training points correctly
classified for the hyperplane, similarly we obtained a total
of only 5 nonempty, non-singleton rules that cover 98.4% of
the points in A+ correctly classified for the hyperplane.

7. CONCLUSION & FUTURE DIRECTIONS
We have described an efficient algorithm for converting

any arbitrary linear classifier into a rule set that can be eas-
ily interpreted by humans. We presented two variants of our
algorithm based on different criteria for selecting “optimal
rules”. One main advantage of our algorithm is that it only
involves solving relatively simple optimization problems in a
few variables. We also discussed various properties and pro-
vided a detailed convergence analysis of the algorithm. Em-
pirical results on several real-world data sets demonstrate
the efficacy and speed of our method.

We plan to extend our numerical results to include com-
parisons to other rule-based classification methods. We are
also considering other mathematical programming formula-
tions where the rules can overlap since overlapping rules may
have an advantage that may depend on the specific problem.

An interesting extension of this work would be to com-
bine our rule extraction algorithm with a recently proposed
Knowledge-based SVM [8] to design an incremental algo-
rithm to handle massive amounts of data. The algorithm
could “compress” training data in the form of rules obtained
form different “chunks” and then integrate all the obtained
rules into a Knowledge-based SVM.

The incorporation of the feature selection into the rule
extraction problem is also a possibility we are exploring at
this moment. This approach would generate rules that de-
pend on different features instead of depending on the same
preselected subset of features.

So far we have focused on developing rule sets that are hu-
man interpretable models that are equivalent to the original
linear classifier. An equally important use of our method
would be to provide an explanation of the classification for
a new unlabeled (test) example. The most obvious way is to
present the user with the specific rule that includes the test
example. For instance, when working with physicians, we
have found that an explanation of a classification label which
is in terms of a bounding hypercube, is far more understand-
able than “explaining” a label because some weighted sum
of the variables is less than some constant.
The interesting case arises when no rule covers the test ex-
ample. The obvious extension to execute ExtractRules on
the region I which contains the test example, until a cover-
ing rule is found. However, the resulting rule may cover a
very small volume around the test example, rendering the
explanation useless. An alternate approach is not to build



Table 1: Results using maximal area formulation, # of optimization
problems solved, total execution time (in seconds), Number of rules
and % of correctly classified points covered are shown for both classes
A− and A+ on six datasets

Data Set # prob. solved Time # of points # rules Coverage %
m× n, card(A−), card(A+) Â− Â− Â− Â− Â−

# of features Â+ Â+ Â+ Â+ Â+

Lung CAD 33 0.14 124 18 97.6 %
274× 34, 137, 137 43 0.17 102 20 100.0 %

5
WPBC 53 0.23 214 28 100.0%

683 × 9, 444, 239 12 0.11 435 9 100.0 %
5

Ionosphere 46 0.17 70 19 100.0 %
351× 34, 225, 126 29 0.19 224 11 100.0 %

6
Cleveland 102 0.30 53 10 79.3 %

297 × 13, 214, 83 68 0.20 195 22 98.4 %
6

Federalist 22 0.17 50 4 90.0 %
106 × 70, 50, 56 23 0.19 52 6 92.00 %

6

a rule set that is equivalent to the entire classifier, but in-
stead to revise the original problem defined in (8) to extract
just one rule – the largest possible hypercube (rule) which
contains the test example. Such a rule, however, may not
have much explanatory value because in most cases the test
example will lie on one of the surfaces of the hypercube.

A more satisfactory explanation for a test sample may
be provided by a rule where the example lies well within
the interior of the rule, far away from the bounding spaces.
The rule that provides the “optimal” explanation, can be
created by drawing a normal from the test sample to the
hyperplane, and the intersection of the normal with the hy-
perplane defines the corner of a uniquely defined bounding
hypercube (rule), which centrally contains the test sample.
Additionally, we can provide a confidence associated with
the explanation (rule); ideally the explanation rule should
cover all training examples in A+ (A−), contain only all
positive (negative) training samples, be as large as possible
(the volume ratio with respect to the rule created by Ex-
tractRules), and for the test sample to be as far from the
hyperplane. All these factors may be used to adjust the con-
fidence associated with the rule (for the specific test sample)
by weighting it using some scoring scheme. In general, these
criteria may be applied to any explanatory rule, not just the
“optimal” explanatory rules created as defined above.
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