
Scalable Cores in Chip Multiprocessors

by

Dan Gibson

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

2010

© Copyright by Dan Gibson 2010

All Rights Reserved

iAbstract

Chip design is at an inflection point. It is now clear that chip multiprocessors (CMPs) will dom-

inate product offerings for the forseeable future. Such designs integrate many processing cores

onto a single chip. However, debate remains about the relative merits of explicit software threading

necesary to use these designs. At the same time, the pursuit of improved performance for single

threads must continue, as legacy applications and hard-to-parallelize codes will remain important.

These concerns lead computer architects to a quandary with each new design. Too much focus

on per-core performance will fail to encourage software (and software developers) to migrate pro-

grams toward explicit concurrency; too little focus on cores will hurt performance of vital existing

applications. Furthermore, because future chips will be constrained by power, it may not be possi-

ble to deploy both aggressive cores and many hardware threads in the same chip.

To address the need for chips delivering both high single-thread performance and many hard-

ware threads, this thesis evaluates Scalable Cores in Chip Multiprocessors: CMPs equipped with

cores that deliver high-performance (at high per-core power) when the situation merits, but can

also operate at lower-power modes, to enable concurrent execution of many threads. Toward this

vision, I make several contributions. First, I discuss a method for representing inter-instruction

dependences, leading to more-efficient individual core designs. Next, I develop a new scalable core

design, Forwardflow. Third, I evaluate policies by which to use Forwardflow cores in a scalable

CMP. And lastly, I outline methods by which future researchers can pursue the performance char-

acteristics of scalable cores without extensive simulation, paving the way for evaluation of system-

level considerations.

iiAcknowledgments

Without question or hesitation, I dedicate this thesis to my beautiful and loving wife, Megan. Megan

has been my support—emotional and financial—for all the years in which I have been enrolled in graduate

school. In so many ways, she has implicitly and explicitly prioritized my education over her own life goals,

such that I dare not dream of ever repaying her this kindness. I surely would have failed, early and often,

without her unwavering support.

Naturally, thanks are due to my PhD committee: Dr. Mark D. Hill, Dr. Benjamin Liblit, Dr. Mikko

Lipasti, Dr. Gurindar Sohi, and Dr. David A. Wood, my advisor. Of course, I especially wish to thank David

(Wood, advisor), who oversaw my transformation from a fresh, naive, and optimistic first-year graduate

student into a realistic, introspective, and objective (or perhaps more popularly, “jaded”) scientist. The

transformation was not easy, and quite honestly, David’s management style is not suited to all students.

Kevin Moore is fond of saying that “David’s students must be self-motivating” (possibly not an exact quote),

as David seldom micro-manages his students’ daily activities. Working with David is a sink-or-swim opera-

tion: overall, a good proxy for life in general.

Like most who meet him, I found David immediately appealing for his personal charisma, and only

over the course of many interactions did I come to realize the depth of recall he commands. On many occa-

sions, I sat in (silent) awe of his ability to traverse layers of abstraction. I wonder if this gradual exposure is

intentional on David’s part—a method of appearing more approachable to mortals? It seems plausible. Most

of all, I respect David as, certainly, the deepest fount of intellect that I have ever had the privilege to know.

I’m honored to have been his student.

It is impossible to mention David without also mentioning Mark Hill (my “academic uncle”, to adopt

his parlance). In 2005, I was a lowly graduate student in Mark’s CS 757 class. My interests at that time were

in VLSI, and I was happily and gainfully involved in a research group in ECE, studying that area. Unfortu-

iii
nately, that arrangement began to disintegrate, for political reasons beyond my control (and beyond my

understanding at the time). It would be inaccurate to say that I was desperate to find another advisor, but I

was certainly worried, and at that time strongly considered leaving graduate study. It was then that Mark

recruited me to work for David, albeit on a temporary basis, who was away on sabbatical at the time and

unable to recruit students of his own. In essence, I owe my career in architecture to Mark’s successful

recruitment effort. During my time with the Multifacet group, Mark’s advice on presentations, writing, and

human interaction in general was useful beyond measure.

Aside from my committee, several others belonging to the Wisconsin faculty deserve thanks, for their

outstanding efforts at teaching, and enlightening conversations over the years. There are too many to list

exhaustively, but certainly I wish to thank explicitly Mike Swift and Mary Vernon, from whom I learned a

great deal. I also was the recipient of much technical help and assistance from the lab, CSL, to whom I am

very grateful. In particular, I wish to thank John Perkins for explaining many details of practical Solaris

administration to a wide-eyed newbie, and Tim Czerwonka for volunteering (more than once) to service

cluster nodes on weekends and holidays, when deadlines loomed.

Many past student colleagues served as positive role models, helping to tune my ever-changing expec-

tations. Wisconsin PhDs Bradford Beckmann, Alaa Alameldeen, Kevin Moore, Min Xu, Natalie D. Enright

Jerger, Mike Marty, Phillip Wells, Luke Yen, Jayaram Bobba, and Matthew Allen, in their various capacities,

encouraged me to stay the course and follow their superb examples. I am humbled to join that elite crowd.

From them, I learned not to allow simulators, papers, and deadlines to dominate my life (at least not at all

times), and how to handle the frequent rejections, ever-present in this field, with grace. Thank you, every-

one.

I’ve also had the pleasure of working with concurrently with others who I don’t consider to be “more

senior” than myself; it would be more accurate to say that I consider them contemporaries. These certainly

include Derek Hower, Spyros Blanas, Haris Volos, and Marc DeKruijf. Each of these students represent the

iv
best of what science and engineering can make, in their various areas of expertise. I thank them for chal-

lenging my views, as they are quick to harden and difficult to change. I’m also very glad that my immediate

employment does not take me away from Madison, as I can continue to pursue my relationships with these

most excellent friends.

Among all my peers, I’ve had the chance to interact most closely with Yasuko Watanabe, collaborating

together on common infrastructure and a common research project. I will miss those collaborations, as it is

a very, very rare thing to find so able a collaborator as she. Research in our particular sub-area is a mind-

numbing, unrewarding, and difficult process, and we have suffered through its pitfalls together. I’m glad to

have had the company, and I happily entrust the future of our somewhat-conjoined work to her keeping.

I see a great deal of myself in my junior colleagues, Somayeh Sardashti, Arkaprava Basu, Rathijit Sen,

and Matt Sinclair. I’ve tried to help them as others have helped me, to continue the chain of graduate stu-

dent wisdom as best I can. Of course, I wish them the best and will watch their progress—hopefully my

example will be as useful to them as my senior graduate student mentors were to me.

In the next chapter of my life, I have the privilege of joining an excellent group of people at Google’s

Madison office. In the course of two internships, I came to greatly respect my past-and-future colleagues,

for their technical prowess and awesome degrees of confidence. I especially wish to thank Dennis Abts,

Peter Klausler, Jim Laudon, Florentina Popovici, Kyle Nesbit, Andy Phelps, Mike Marty (again), Phillip

Wells (again), and Polina Dudnik, for an experience that convinced me to spend at least the next few years

working with them again.

Without a doubt, the comforts of friends, in and out of this field, made the PhD experience more toler-

able. Jake Adriaens and I commiserated on many occasions over our many trials, and despite our lives hav-

ing taken different paths for the moment, I am eager to see them reconverge in the coming year. I can think

of no one living person with whom I would rather work, on any project, at any time. I wish him the best of

luck finishing his own thesis, as I’m sure he has his hands rather full, with his two newborn daughters. I also

v
wish to specifically thank Tim Dagel, my oldest friend, for the many years of amusement past and to come.

Tim knows there were times at which the only force holding me together was his friendship, and I am for-

ever indebted to him for it.

I wish to acknowledge my family (blood relatives and otherwise). Chief among them is my mother, who

I hope will read this acknowledgment with pride. Mom: You may want to skip the rest of the thesis—this is

the good part. To my dear sister, Jamey, and my brother, Dean, I thank you for your encouragement, sup-

port, advice, and affections. I ask only that you not frequently call me “Dr. Gibson”, as I reserve that title for-

ever in my memory for our father.

Lastly, I acknowledge my father, who always encouraged me to be a lifelong student (so far, this has liter-

ally been the case). When he passed away in 2009, I discovered just how much of my own motivation was

derived from a personal need to inspire his feelings of pride in my accomplishments. For a time after his

death, I doubted whether I had any desire of my own to pursue a PhD. Somehow, my wife, family, and

friends managed to convince me to persevere.

In some of my darkest and most unsure moments, I would read from two of his research papers1 2, hop-

ing to draw inspiration from that connection. Though our chosen fields of study are very different, an occa-

sional reminder of a family legacy grounded in science was comforting in the face of many trials. Thank

you, sir, for encouraging me to pursue a challenging and interesting field, for supporting me when I needed

it, for setting a lofty example to follow, and for being a friend and a father.

1. Thompson, Carter, Gibson, Reiswig, and Hinshaw. Acute Idiopathic Retroperitoneal Fibrosis. From the Department of Surgery,
College of Medical Evangelists School of Medicine and the Los Angeles County General Hospital. 1960.

2. Gaspar and Gibson, Herniotomy for Umbilical Hernia in the Bad-Risk Patient: Report of 16 Cases. From the Department of
Surgery, College of Medical Evangelists and the Los Angeles County General Hospital. 1959.

vi

Table of Contents

Abstract. i

Acknowledgments. ii

Table of Contents . vi

List of Figures. xi

List of Tables . xix

Chapter 1 Introduction . 1

1.1 The Emergence of Chip Multiprocessors . 2

1.1.1 Moore’s Law . 3

1.2 The Challenge of CMPs . 5

1.2.1 The Utilization Wall . 5

1.2.2 Finding Parallelism . 6

1.2.3 Amdahl’s Law . 8

1.2.4 Of Walls, Laws, and Threads . 9

1.3 Core Design for ILP and TLP: Scalable Cores . 9

1.4 Contributions . 11

1.4.1 Forwardflow: A Statically- and Dynamically-Scalable Core . 12

1.4.2 Scalable Cores in CMPs . 13

1.5 Thesis Organization . 14

Chapter 2 Scalable Cores, Background, and Related Work . 15

2.1 A Vision for Scalable Cores . 15

2.1.1 Dynamic Voltage and Frequency Scaling (DVFS) . 17

2.1.2 Scalable Microarchitecture . 19

vii

2.1.3 Realizing the Vision . 21

2.2 Background . 21

2.2.1 A Canonical Out-of-Order Superscalar Core . 22

2.3 Related Work . 27

2.3.1 Large-Window Machines and Complexity-Effective Designs . 27

2.3.2 Instruction Schedulers . 30

2.3.3 Designs Exploiting Memory-Level Parallelism . 32

2.3.4 Distributed Designs . 35

2.3.5 Dynamic Microarchitectural Scaling . 36

2.4 Summary . 36

Chapter 3 Evaluation Methodology . 38

3.1 Performance Evaluation Methodology . 38

3.1.1 Full-System Simulation Implications . 39

3.2 Power Evaluation Methodology . 41

3.3 Energy-Efficiency . 45

3.4 Area Evaluation Methodology . 47

3.5 Target Architecture Model . 48

3.6 Target Microarchitectural Machine Models . 49

3.6.1 Common Microarchitectural Structures . 50

3.6.2 CMP Organization . 52

3.6.3 RUU . 54

3.6.4 OoO . 54

3.6.5 Runahead . 55

3.6.6 Continual Flow Pipeline (CFP) . 57

3.6.7 OoO-SSR . 58

3.7 Benchmarks . 59

viii

Chapter 4 Serialized Successor Representation . 62

4.1 Naming in Out-of-Order Microarchitectures . 62

4.2 Serialized Successor Representation (SSR) . 65

4.2.1 SSR in Finite Hardware . 67

4.2.2 SSR for Memory Dependences . 69

4.3 Performance Implications of SSR . 72

4.3.1 Quantitative Evaluation . 73

Chapter 5 Forwardflow Core Microarchitecture . 85

5.1 Core Design Goals . 85

5.2 Forwardflow Overview . 87

5.3 Forwardflow Detailed Operation . 89

5.3.1 Decode to SSR . 90

5.3.2 Dispatch . 92

5.3.3 Pipelined Wakeup . 96

5.3.4 Commit Pipeline . 100

5.3.5 Control Misprediction . 102

5.3.6 Speculative Disambiguation . 107

5.3.7 Bank Group Internal Organization . 109

5.3.8 Operand Network . 115

5.4 Comparison to Other Core Microarchitectures . 117

5.4.1 Forwardflow Comparison to an Idealized Window . 120

5.4.2 Forwardflow Comparison to a Traditional Out-of-Order Core 125

5.4.3 Forwardflow Power Consumption by Window Size . 129

5.4.4 Forwardflow Comparison to Runahead and CFP . 134

5.4.5 Outlier Discussion . 138

ix

5.4.6 Evaluation Conclusion . 140

5.4.7 Unabridged Data . 141

Chapter 6 Scalable Cores in CMPs. .154

6.1 Leveraging Forwardflow for Core Scaling . 157

6.1.1 Modifications to Forwardflow Design to Accommodate Scaling 158

6.2 Overprovisioning versus Borrowing . 166

6.3 Measuring Per-Core Power Consumption . 173

6.4 Fine-Grained Scaling for Single-Threaded Workloads . 181

6.4.1 Single-Thread Scaling Heuristics . 182

6.4.2 Heuristic Evaluation . 191

6.4.3 Fine-Grained Single-Thread Scaling Summary . 197

6.5 Scaling for Multi-Threaded Workloads . 198

6.5.1 Scalable Cores and Amdahl’s Law . 198

6.5.2 Identifying Sequential Bottlenecks . 202

6.5.3 Evaluation of Multi-thread Scaling Policies . 207

6.6 DVFS as a Proxy for Microarchitectural Scaling . 219

6.6.1 Estimating Window-Scaling Performance with DVFS . 220

6.6.2 Estimating Window-Scaling Power with DVFS . 225

6.7 Summary of Key Results . 228

Chapter 7 Conclusions and Future Work .231

7.1 Conclusions . 231

7.2 Areas of Possible Future Work . 232

7.3 Reflections . 234

References. 237

x

Appendix A Supplements for Chapter 3 .251

A.1 Inlined SPARCv9 Exceptions . 251

A.2 Hardware-Assisted D-TLB Fill . 252

A.3 Hardware-Assisted Inlined Register Spill, Fill, and Clean . 254

A.4 Results . 258

Appendix B Supplements for Chapter 6 .260

B.1 Power-Aware Microarchitecture . 260

B.1.2 Platform Assumptions and Requirements . 260

B.1.3 Power-Aware Architecture and Instruction Sequence . 261

Appendix C Supplements for Chapter 5 .266

xi

List of Figures
1-1 Gordon Moore’s plot of the number of components (log scale) in a fixed area per year, courtesy of

Intel®’s press kit. 2

1-2 Clock frequency (logarithmic scale) versus year of product release from 1989 through 2007. . . 3

1-3 Thermal design power (TDP) (logarithmic scale) versus year of product release from 1989 through

2007 (Intel® products only). 4

1-4 Core count versus year of product release from 1989 through 2007. . 5

1-5 Speedup as a function of the number of cores N, as predicted by Amdahl’s Law. 8

1-6 CMP equipped with scalable cores: Scaled up to run few threads quickly (left), and scaled down to

run many threads in parallel (right). . 10

1-7 Dataflow Queue Example . 12

2-1 Scalable CMP (left), one core fully scaled-up to maximize single-thread performance. Traditional

CMP, operating one core. 16

2-2 Scalable CMP (left), all cores fully scaled-down to conserve energy while running many threads.

Traditional CMP, operating all cores. 17

2-3 Operating voltage range over time. . 18

2-4 Resource-borrowing scalable CMP (left) and resource-overprovisioned CMP (right). 20

2-5 “Canonical” out-of-order microarchitecture. 22

2-6 Out-of-order microarchitecture augmented with a Waiting Instruction Buffer (WIB). 30

2-7 Out-of-order microarchitecture augmented Continual Flow-style Deferred Queues. 32

2-8 Out-of-order microarchitecture augmented with Runahead Execution. 34

3-1 8-Way CMP Target . 53

4-1 Simple pseudo-assembly sequence with SSR pointers superimposed . 66

4-2 Store-to-Load Forwarding represented in SSR. . 71

4-3 Normalized runtime, SPEC INT 2006, 128-entry instruction windows . 74

4-4 Normalized runtime, SPEC INT 2006, 256-entry instruction windows . 75

4-5 Normalized runtime, SPEC INT 2006, 512-entry instruction windows . 76

4-6 Normalized runtime, SPEC INT 2006, 1024-entry instruction windows 77

4-7 (a) Long-dependence chain microbenchmark long, (b) a simple compiler optimization split,

breaking the chain into two chains of half length (%l3 and %g1), and (c) a better optimization

repeating the ld operation to reduce the length of the critical %g1 chain, crit. 78

xii
4-8 Runtime of long, split, and crit, normalized to that of RUU on long . 79

4-9 Normalized runtime, SPEC FP 2006, 128-entry instruction windows . 80

4-10 Normalized runtime, SPEC FP 2006, 256-entry instruction windows . 80

4-11 Normalized runtime, SPEC FP 2006, 512-entry instruction windows . 81

4-12 Normalized runtime, SPEC FP 2006, 1024-entry instruction windows . 81

4-13 Normalized runtime, Commercial Workloads, 128-entry instruction windows 82

4-14 Normalized runtime, Commercial Workloads, 256-entry instruction windows 82

4-15 Normalized runtime, Commercial Workloads, 512-entry instruction windows 83

4-16 Normalized runtime, Commercial Workloads, 1024-entry instruction windows 83

5-1 Pipeline diagram of the Forwardflow architecture. Forwardflow-specific structures are shaded. .

88

5-2 Dataflow Queue Example . 89

5-3 Floorplan of a four-wide Forwardflow frontend in 32nm . 91

5-4 Dispatch Example . 93

5-5 Two-group (eight-bank) conceptual DQ floorplan . 94

5-6 Dispatch Bus over Four Bank Groups . 95

5-7 Wakeup Example . 97

5-8 Pointer Chasing Hardware and Algorithm . 99

5-9 Access time (ns) versus port count for a single value array in a DQ bank group 110

5-10 Area (mm2) versus port count for a single value array in a DQ bank group 110

5-11 Energy per access (pJ) versus port count for a single value array in a DQ bank group 111

5-12 Wire delay (ns) versus port count to cross a DQ value array . 112

5-13 DQ bank consisting of 32 entries and valid bit checkpoints . 113

5-14 Floorplan of a 128-entry DQ bank group for use with a four-wide frontend 114

5-15 CDF of pointer distance for three representative benchmarks . 116

5-16 Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and Wisconsin Commercial

Workloads (COM), over four window sizes . 120

5-17 Normalized memory-level parallelism (MLP) of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and

Wisconsin Commercial Workloads (COM), over four window sizes . 122

5-18 Categorized window occupancy (Completed (bottom), Executing (middle), and Waiting (top)

instructions), SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial Workloads

(COM), over four window sizes . 123

xiii
5-19 Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and Wisconsin Commercial

Workloads (COM), OoO and Forwardflow configurations with similar power consumption 126

5-20 Window Occupancy of OoO and comparable Forwardflow configuration 127

5-21 Categorized power consumption of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and Wisconsin

Commercial Workloads (COM), OoO and Forwardflow configurations with similar power

consumption . 128

5-22 Efficiency of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial Workloads

(COM), OoO and Forwardflow configurations with similar power consumption 128

5-23 Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial

Workloads (COM), Forwardflow designs, 32- through 1024-entry windows 130

5-24 Categorized power consumption of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin

Commercial Workloads (COM), Forwardflow designs, 32- through 1024-entry windows . . 130

5-25 Normalized component power for DQ and Fetch pipelines, SPEC INT 2006, over six different

Forwardflow configurations . 131

5-26 Normalized component power for memory subsystem, SPEC INT 2006, over six different

Forwardflow configurations . 132

5-27 Normalized component power, static sources, SPEC INT 2006, over six different Forwardflow

configurations . 133

5-28 Efficiency of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial Workloads

(COM), over six different Forwardflow configurations . 134

5-29 Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial

Workloads (COM), Forwardflow designs, Runahead, and CFP. . 135

5-30 Categorized power of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and Wisconsin Commercial

Workloads (COM), Forwardflow designs, Runahead, and CFP . 137

5-31 Normalized runtime, benchmarks astar, bzip2, gcc, gobmk, h264ref, and hmmer (from SPEC INT

2006), all designs . 142

5-32 Normalized runtime, benchmarks libquantum, mcf, omnetpp, perlbench, sjeng, and xalancbmk

(from SPEC INT 2006), all designs . 142

5-33 Normalized runtime, benchmarks bwaves, cactusADM, calculix, dealII, gamess, and GemsFDTD

(from SPEC FP 2006), all designs . 143

5-34 Normalized runtime, benchmarks gromacs, lbm, leslie3d, milc, namd, povray, soplex, and sphinx3

(from SPEC FP 2006), all designs . 143

xiv
5-35 Normalized runtime, benchmarks tonto, wrf, zeusmp (from SPEC FP 2006), apache, jbb, oltp, and

zeus (from Wisconsin Commercial Workloads), all designs . 144

5-36 Categorized power, benchmarks astar, bzip2, gcc, gobmk, h264ref, and hmmer (from SPEC INT

2006), all designs . 145

5-37 Categorized power, benchmarks libquantum, mcf, omnetpp, perlbench, sjeng, and xalancbmk

(from SPEC INT 2006), all designs . 145

5-38 Categorized power, benchmarks bwaves, cactusADM, calculix, dealII, gamess, and GemsFDTD

(from SPEC FP 2006), all designs . 146

5-39 Categorized power, benchmarks gromacs, lbm, leslie3d, milc, namd, povray, soplex, and sphinx3

(from SPEC FP 2006), all designs . 146

5-40 Categorized power, benchmarks tonto, wrf, zeusmp (from SPEC FP 2006), apache, jbb, oltp, and

zeus (from Wisconsin Commercial Workloads), all designs . 147

5-41 Normalized efficiency, benchmarks astar, bzip2, gcc, gobmk, h264ref, and hmmer (from SPEC INT

2006), all designs . 148

5-42 Normalized efficiency, benchmarks libquantum, mcf, omnetpp, perlbench, sjeng, and xalancbmk

(from SPEC INT 2006), all designs . 148

5-43 Normalized efficiency, benchmarks bwaves, cactusADM, calculix, dealII, gamess, and GemsFDTD

(from SPEC FP 2006), all designs . 149

5-44 Normalized efficiency, benchmarks gromacs, lbm, leslie3d, milc, namd, povray, soplex, and

sphinx3 (from SPEC FP 2006), all designs . 149

5-45 Normalized efficiency, benchmarks tonto, wrf, zeusmp (from SPEC FP 2006), apache, jbb, oltp, and

zeus (from Wisconsin Commercial Workloads), all designs . 150

5-46 Normalized efficiency, benchmarks libquantum, mcf, omnetpp, perlbench, sjeng, and xalancbmk

(from SPEC INT 2006), all designs . 151

5-47 Normalized efficiency, benchmarks astar, bzip2, gcc, gobmk, h264ref, and hmmer (from SPEC INT

2006), all designs . 151

5-48 Normalized efficiency, benchmarks bwaves, cactusADM, calculix, dealII, gamess, and GemsFDTD

(from SPEC FP 2006), all designs . 152

5-49 Normalized efficiency, benchmarks gromacs, lbm, leslie3d, milc, namd, povray, soplex, and

sphinx3 (from SPEC FP 2006), all designs . 152

5-50 Normalized efficiency, benchmarks tonto, wrf, zeusmp (from SPEC FP 2006), apache, jbb, oltp, and

zeus (from Wisconsin Commercial Workloads), all designs . 153

xv
6-1 Logical connections between physical bank groups (PBG), 128-entry through 1024-entry

Forwardflow windows, and associated logical bank group (LBG) mapping 160

6-2 Dynamically circuit-switched unidirectional ring operand network . 162

6-3 (a) Circuit-switched interconnect harness for a single bank group, and (b) circuit symbol for

harness and BG, connected to LBUS and RBUS . 163

6-4 256-, 512-, and 1024-entry window configurations of the dynamically-scalable interconnect, and

associated values of RBUS/LBUS control words . 164

6-5 Forwardflow floorplans for core resource borrowing (a), per-core overprovisioning (c), a resource-

borrowing CMP (c), and an overprovisioned CMP (d) . 168

6-6 Runtime of Borrowing F-1024 (grey) and No-Borrowing F-512 (dark grey), normalized to that of

the Overprovisioned F-1024 design. . 170

6-7 Executing occupancy of Borrowing F-1024 (grey) and No-Borrowing F-512 (dark grey),

normalized to that of the Overprovisioned F-1024 design . 171

6-8 Energy efficiency of Borrowing F-1024 (grey) and No-Borrowing F-512 (dark grey), normalized to

that of the Overprovisioned F-1024 design . 172

6-9 Normalized Residuals, power estimation versus observed power for configuration F-128 over SPEC

CPU 2006 benchmarks. Benchmarks are ordered as follows: SPEC INT (alphabetical), SPEC FP

(alphabetical) . 179

6-10 Efficiency of POSg, normalized to POS$, SPEC INT 2006 . 185

6-11 Efficiency of POSg, normalized to POS$, SPEC INT 2006 . 185

6-12 Profiling flow for MLP estimation. . 188

6-13 Configuration decisions over position, MLP heuristic with allowed down-scaling (UpDown) and

disallowed down-scaling (UpOnly) . 190

6-14 Normalized runtime, , and , MLP heuristic with allowed down-scaling (UpDown) and disallowed

down-scaling (UpOnly), and best static configuration . 190

6-15 a) Scaling decision over position, POS optimizing and , leslie3d . 192

6-16 Normalized efficiency, SPEC INT 2006, dynamic scaling heuristics and best overall static

configuration, normalized to F-1024 . 193

6-17 Normalized efficiency, SPEC FP 2006, dynamic scaling heuristics and best overall static

configuration, normalized to F-1024 . 193

6-18 Normalized efficiency, Commercial Workloads, dynamic scaling heuristics and best static

configuration, normalized to F-1024 . 194

xvi
6-19 Normalized efficiency, SPEC INT 2006, dynamic scaling heuristics and best static configuration,

normalized to F-1024 . 195

6-20 Normalized efficiency, SPEC FP 2006, dynamic scaling heuristics and best static configuration,

normalized to F-1024 . 195

6-21 Normalized efficiency, Commercial Workloads, dynamic scaling heuristics and best static

configuration, normalized to F-1024 . 196

6-22 Predicted runtimes from Amdahl’s Law (N=8), for static cores (Amdahl’s Law), and scalable cores

running integer (SC, INT), floating point (SC, FP), or commercial (SC, COM) workloads . . 200

6-23 Four iterations of Amdahl microbenchmark, parallel phase of length f, sequential phase of length

1-f. 201

6-24 Runtime of Amdahl on 8-processor SunFire v880, normalized to , and runtime predicted by

Amdahl’s Law . 202

6-25 sc_hint instruction example . 203

6-26 Runtime of Amdahl with varied parallel fraction f, all multithreaded heuristics (normalized to

static configuration F-128 for all cores) . 208

6-27 Power consumption of Amdahl with varied parallel fraction f, all multithreaded heuristics

(normalized to static configuration F-128 for all cores) . 208

6-28 Efficiency, normalized to F-1024, Amdahl microbenchmark, across all scaling heuristics . . . 209

6-29 Efficiency, normalized to F-1024, Amdahl microbenchmark, across all scaling heuristics . . . 209

6-30 Scaling decisions over time, Amdahl , programmer-guided heuristic . 210

6-31 Scaling decisions over time, Amdahl , spin-based heuristic . 211

6-32 Scaling decisions over time, Amdahl , critical-section boost heuristic . 212

6-33 Scaling decisions over time, Amdahl , critical-section boost/spin-based scale-down heuristic . . .

214

6-34 Scaling decisions over time, Amdahl , all-other-threads-spin heuristic 215

6-35 Normalized runtime per transaction, commercial workloads . 216

6-36 Efficiency, normalized to F-1024, Commercial Workloads . 217

6-37 Efficiency, normalized to F-1024, Commercial Workloads . 217

6-38 Scaling decisions over time, oltp-8, CSpin policy . 218

6-39 Scaling decisions over time, apache-8, ASpin policy . 219

6-40 DVFS domain consisting of core and private cache hierarchy. . 221

xvii
6-41 Normalized runtime, SPEC INT 2006, baseline Forwardflow core (F-128), partially-scaled

Forwardflow core (F-256), and F-128 accelerated by DVFS (@3.6GHz) 222

6-42 Normalized runtime, SPEC FP 2006, baseline Forwardflow core (F-128), partially-scaled

Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz) . 222

6-43 Normalized runtime, Commercial Workloads, baseline Forwardflow core (F-128), partially-scaled

Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz) . 223

6-44 Relative runtime difference between DVFS-based scaling and window-based scaling 224

6-45 Normalized power consumption, SPEC INT 2006, baseline Forwardflow core (F-128), partially-

scaled Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz) 226

6-46 Normalized power consumption, SPEC FP 2006, baseline Forwardflow core (F-128), partially-

scaled Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz) 227

6-47 Normalized power consumption, Commercial Workloads, baseline Forwardflow core (F-128),

partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz) 228

A-1 TLB misses in Commercial Workloads. . 253

A-2 Register window exceptions by type, over all simulations. 255

A-3 Spills and Fills in SPEC INT 2006. 256

A-4 Spills and Fills in 100M instruction runs of the Wisconsin Commercial Workload suite. . . . 257

A-5 Success rate of TLB-fill inlining mechanism, commercial workloads. 258

A-6 Normalized IPC across machine configurations, SPEC INT 2006 (INT), SPEC FP 2006 (FP), and

Wisconsin Commercial Workloads (COM-1). 258

xix

List of Tables
3-1 Summary of Power Models . 43

3-2 Common Configuration Parameters . 50

3-3 Single-Threaded Workload Descriptions . 59

3-4 Descriptions of Multi-Threaded Workloads . 61

4-1 Summary of Configurations for SSR Evaluation. 74

5-1 Machine configurations used for quantitative evaluation. . 119

5-2 Coefficient of determination , as determined by univariate and bivariate linear regression across

Forwardflow and RUU-based designs. 125

6-1 Forwardflow Dynamic Scaling Configurations . 166

6-2 Microarchitectural events in a Forwardflow core (candidates for set) . 176

6-3 Goodness of fit to actual power consumption of SPEC CPU 2006 and Wisconsin Commercial

Workloads for six Forwardflow configurations. 178

6-4 Runtimes of power estimation algorithm on six Forwardflow configurations. 180

B-1 Data tables .266

1

Chapter 1

Introduction

Computer architecture is now facing the “Fundamental Turn Towards Concurrency” [162].

After years of dramatic improvements in single-thread performance, chip manufacturers’ race to

increase processor clock frequency has hit a wall—the so-called Power Wall. Now, Chip Multi-

processors (CMPs) are emerging as the dominant product for most major manufacturers, signal-

ling the start of the multicore era. Architects hope to reap future performance improvements

through explicit software-level concurrency (i.e., multi-threading). But if future chips do not

address the needs of today’s single-threaded software, designers may never realize the vision of

highly-threaded CMPs.

Architects cannot afford to ignore single-thread performance. Some effort must be devoted to

improving individual cores, despite power and thermal limitations. However, if the eventual

vision of highly-parallel software is ever to come to fruition, future CMPs must also deliver more

hardware concurrency, to encourage software designers to specify parallelism explicitly. Together,

these demands motivate Scalable Cores, cores than can easily adapt to single- and multi-threaded

workloads, according to the current system-wide demand. This work considers the design of scal-

able cores, and the tradeoffs involved in their deployment in future CMPs.

I begin this work with a brief discussion of the chip manufacturing landscape leading to the

widespread adoption of CMPs, and the potential problems to be expected in future chip genera-

tions. I demonstrate how the needs of future CMPs can be addressed with scalable cores—cores

2

that can trade off power and performance as the situation merits to best suit a particular workload.

The design of such cores and the policies surrounding their design and use are the principal foci of

my work in this thesis. I briefly outline the main contributions of this work, and conclude this

chapter with a roadmap of the remainder of the document.

1.1 The Emergence of Chip Multiprocessors

The last several years have witnessed a paradigm shift in the microprocessor industry, from

chips holding one increasingly complex out-of-order core to chips holding a handful of simpler

cores [84, 167]—Chip Multiprocessors (CMPs). Despite the promise of more transistors [51],

power and thermal concerns have driven the industry to focus on more power-efficient multicore

designs. Microarchitects hope to improve applications’ overall efficiency by focussing on thread-

level parallelism (TLP), rather than instruction-level parallelism (ILP) within a single thread.

Some researchers project that this trend will continue until chips have a thousand cores [15].

FIGURE 1-1. Gordon Moore’s plot of the number of components (log scale) in a fixed are
per year, courtesy of Intel®’s press kit.

3

1.1.1 Moore’s Law

Gordon Moore introduced in his 1965 article in Electronics [116] a trend that would shape the

computing industry for decades to come. Commonly called Moore’s Law, Moore observed that

per-transistor manufacturing cost would fall predictably for at least the coming years, resulting in

a great increase in the number of transistors feasible to include in a single integrated circuit (illus-

trated by Moore’s own plot in Figure 1-1). Moore’s predictions held for decades, and rapid litho-

graphic improvements yielded an exponential increase in the number of transistors on a die. Chip

manufacturers leveraged smaller and more numerous devices to deliver a commensurate improve-

ment in single-thread performance (sometimes called “Popular Moore’s Law”), driven in part by

increasing processor clock frequency. Figure 1-2 plots the growth of clock frequency across major

FIGURE 1-2. Clock frequency (logarithmic scale) versus year of product release
from 1989 through 2007.

4

chip manufacturers’ mainstream product offerings [138, 11, 83, 48]. Until recently, clock fre-

quency grew dramatically and quickly for all major manufacturers.

This rapid growth in frequency all but halted when chips hit what has been dubbed the Power

Wall. As frequencies rose, so too did dynamic operating power, driven by the dual effect of more

devices (Moore’s Law) and faster clock frequency (Popular Moore’s Law). Rising dynamic power

consumption meant that chips started to reach the practical limits of cost-effective cooling tech-

nologies. The heat produced by a chip is it’s thermal design point (TDP), plotted in Figure 1-3 for

Intel® mainstream offerings. As a result of the Power Wall, growth in clock rate stagnated, TDP

has remained in the vicinity of 100 watts, and frequency has held near 3 GHz for the last several

years.

Unable to leverage further increases in frequency to drive performance improvements for sin-

gle threads, architects instead sought to deliver additional computation throughput through the

FIGURE 1-3. Thermal design power (TDP) (logarithmic scale) versus year of product
release from 1989 through 2007 (Intel® products only).

5

incorporation of multiple processing cores on a single die. Figure 1-4 plots this trend for the same

products used in Figure 1-2. By the end of 2007, Chip Multiprocessors (CMPs) were mainstream

product offerings of all major chip manufacturers.

1.2 The Challenge of CMPs

At least two fundamental problems undermine widespread success of CMPs. First, the Power

Wall remains, and though the era of aggressive increases in frequency appears to be over, Moore’s

Law endures and future chips will be severely power-constrained. Second, CMPs rely on explicit

software parallelism, which is not (yet) pervasive in the software industry.

1.2.1 The Utilization Wall

The physical limits on power delivery and heat dissipation that led to the Power Wall still

exist. In the long term, to maintain fixed power and area budgets as technology scales, the fraction

FIGURE 1-4. Core count versus year of product release from 1989 through 2007.

6
of active transistors must decrease with each technology generation [32, 1, 173], a trend Ahn et al.

coin the Utilization Wall.

The most important implication of the Utilization Wall is that the Simultaneously Active Frac-

tion (SAF)—“the fraction of the entire chip resources that can be active simultaneously” [31]—is

already less than one1 and will diminish further in future technology generations. Designers of

future CMPs must consider falling SAF as a first-order design constraint, in addition to other low-

power design considerations. In particular, future chips must expect to opportunistically power-off

unused resources (e.g., cores, caches, hardware accelerators, etc.).

Ultimately, future chips may simply consume more power than those of today—it is electri-

cally and mechanically possible to build such chips with current technologies, albeit at greater

costs than current systems incur for power distribution and heat removal. However, for every pin

on the packaging used to deliver current to the chip or remove current from the chip, available off-

package bandwidth for communication is potentially reduced. Improved technology will grow

memory bandwidth (e.g., with high-speed differential signalling [76] or FB-DIMM [57]), but

intuitively, as CMPs deliver more and more execution contexts, they will require more off-pack-

age bandwidth to service memory and I/O demand.

1.2.2 Finding Parallelism

The second trend undermining the vision for CMPs is the lack of abundant parallel software.

In the short term, both servers and client machines have been successful markets for CMPs,

because contemporary CMPs integrate only a handful of cores per die. To some extent, both cli-

1. For example, in the Nehalem CPU, not all cores can operate simultaneously at full speed [170].

7
ent- and server-class machines can scale-out. That is, they can leverage additional cores in CMPs

to perform independent work with greater computational throughput, without the expectation or

requirement of actually decreasing request latency or improving perceived single-thread perfor-

mance. This is related to weak scaling, from the high-performance computing community, in

which additional processors can be used to solve larger instances of the same problem in the same

overall runtime.

Scale-out contrasts with strong scaling, in which runtime shrinks with the addition of addi-

tional computation resources. The performance improvements during the era of rapid frequency

growth (enjoyed by clients and servers alike) behaved more like strong scaling than weak. As

such, the degree of success to be expected from the scale-out approach is yet to be seen. While

some applications scale out with enormous success [21, 59, 42], important classes of workloads

remain that scale-out poorly or not at all (e.g., legacy single-threaded applications).

Ultimately, the effectiveness of server scale-out will endure so long as computational needs

are insufficient to saturate other resources (e.g., main memory bandwidth)—and provided inde-

pendent work can be efficiently routed to available thread contexts. Client scale-out is a more

pressing concern, as client-side processing is thought to exhibit less task-level parallelism than do

servers.

Further complicating the problem, CMP vendors can expect little help from entirely new soft-

ware. Despite decades of research on parallel programming and abstractions, including renewed

interest in recent years [e.g., 117, 102, 66, 110, 13, 188, 36, 131, 189, 115, 77, 10], commonplace

parallel programming remains unrealized, and continues to be a largely unsolved problem for a

variety of difficult-to-parallelize applications.

8

1.2.3 Amdahl’s Law

Regardless of the approach used to find parallelism, Amdahl’s Law [12] still applies: The

speedup of a parallel execution is determined by the fraction of the total work that can be executed

in parallel, , and the degree of parallelism, (Equation 1.1).

 (1.1)

Even well-parallelized applications have sequential bottlenecks that limit their parallel

speedup (and many applications are not currently parallel at all, i.e.,). Figure 1-5 plots

expected speedup as a function of core count (i.e.,), over four values of . As evidenced by the

f N

Speedup
tnew

told

----------- 1

1 f–() f

N
----+

----------------------------= =

f 0=

FIGURE 1-5. Speedup as a function of the number of cores N, as predicted by
Amdahl’s Law.

N f

9
plot of , sequential bottlenecks eventually dominate overall performance, even with a

huge degree of available hardware parallelism (e.g., a paltry speedup of 20x is observed even on a

thousand cores). In other words, a thousand simple cores may maximize performance in an appli-

cation’s parallel section, but simple cores exacerbate sequential bottlenecks by providing limited

instruction-level parallelism (ILP). Hill and Marty [73] argue that Amdahl’s Law leads to the con-

clusion that “researchers should seek methods of increasing core performance even at high cost.”

In other words, architects must not focus only on increasing thread-level parallelism (TLP), but

should seek a balance between TLP and ILP.

1.2.4 Of Walls, Laws, and Threads

Amidst all these trends, interesting times lie ahead for architects. Technology improvements

will continue to yield more transistors (Moore’s Law), but power and thermal constraints will pre-

vent architects from using all of those devices at the same time (Utilization Wall). CMPs offer the

promise of increased computation throughput, but single-threaded applications and serial bottle-

necks threaten to limit parallel speedup (Amdahl’s Law). Architects cannot entirely avoid such

bottlenecks, because imprudent exploitation of ILP may cause TDP to rise beyond the heat-dissi-

pation capability of cost-effective cooling techniques (Power Wall).

1.3 Core Design for ILP and TLP: Scalable Cores

Together, ample transistors, flat power budgets, and demand for both threading and single-

thread performance motivate scalable cores: cores that can trade off power and performance as

the situation merits. Concretely, scalable cores have multiple operating configurations at varied

power/performance points: they can scale up, allowing single-threaded applications to aggres-

f 0.95=

10

sively exploit ILP and memory-level parallelism (MLP) to the limits of available power, or can

scale down to exploit TLP with more modest (and less power-hungry) single-thread performance.

Figure 1-6 illustrates a conceptual CMP equipped with scalable cores under two different

operating scenarios. On the left, the CMP is shown with two cores fully scaled up, indicated by

greyed (powered-on) processors and components. Under this configuration, the CMP runs only

one thread at a time2, but at maximum single-thread performance. On the right, the CMP has acti-

vated the other processing cores, and may now run many more threads. But, in order to keep the

chip-wide power budget within acceptable bounds, each processor is individually scaled down by

powering-off a subset of its available resources.

Heterogeneous CMPs approach this vision by scaling cores statically, provisioning some

cores with more resources and some with less [99]. Composable core designs scale power and

performance by dynamically merging two or more cores into a larger core [94, 86], but incur sub-

stantial latency penalties when interacting with distant resources (i.e., those that reside in the

2. Effectively, a scaled-up CMP becomes an overprovisioned multi-core system [31].

D$

P4

FIGURE 1-6. CMP equipped with scalable cores: Scaled up to run few threads quickly
(left), and scaled down to run many threads in parallel (right).

D$

P1

D$

P5

D$

P2

D$

P3

D$

P7

D$

P0

D$

P4

D$

P1

D$

P5

D$

P2

D$

P6

D$

P3

D$

P7

Many Threads:

Scale Down

Few Threads:

Scale Up

D$

P0

D$

P7

11
opposite core). By appropriately mapping threads and enabling cores, both approaches represent

initial steps towards a truly scalable core design.

On the other hand, dynamic voltage and frequency scaling (DVFS) techniques deliver behav-

ior similar to what might be expected from a scalable core, as typified by designs like Intel’s ®

Nehalem [85]. However, dwindling operating voltage suggests the effectiveness of DVFS will be

limited in future chip generations [191, 180]. In the post-DVFS regime, scaling core performance

means scaling core resources to extract additional ILP and MLP—either by statically provision-

ing cores differently or by dynamically (de)allocating core resources.

Therefore, in a scalable core, resource allocation changes over time. Cores must not rely on

powered-off components to function correctly when scaled down, and must not wastefully broad-

cast across large structures when scaled up. Conventional microarchitectures, evolved in the

domain of core-private and always-available resources, present significant challenges with respect

to dynamic core scaling. Designers of scalable cores should avoid structures that are difficult to

scale, like centralized register files and bypassing networks. Instead, they should focus on struc-

tures that can be easily disaggregated, and powered-on or off incrementally to adjust core perfor-

mance independent of other structures.

1.4 Contributions

This thesis makes contributions in two major areas: a new core scalable core design (Forward-

flow, Section 1.4.1), and an investigation of policies suitable for deployment of scalable cores in

future CMPs (Section 1.4.2).

12
1.4.1 Forwardflow: A Statically- and Dynamically-Scalable Core

Conventional core microarchitectures have

evolved largely in the uniprocessor domain,

and scaling their microarchitectural struc-

tures in the CMP domain poses significant

complexity and power challenges. The first main contribution to this work presents a method for

representing inter-instruction data dependences, called Serialized Successor Representation (SSR,

Chapter 4). SSR represents inter-instruction dependences via a linked list of forward pointers

[132, 136, 176]. Chapter 5 follows with a discussion of a core design leveraging SSR, the For-

wardflow Architecture. Forwardflow is a scalable core design targeted at power-constrained CMPs

leveraging a modular instruction window. Instructions, values, and data dependences reside in a

distributed Dataflow Queue (DQ), as illustrated in Figure 1-7. The DQ is comprised of indepen-

dent banks and pipelines, which can be activated or de-activated by system software to scale a

core’s execution resources to implement core scaling.

Forwardflow cores are highly energy-efficient—they are the most efficient design overall in

greater than 90% of studied benchmarks. With respect to a traditional microarchitecture, a For-

wardflow core offers comparable performance at a given window size, but at reduced per-core

power consumption. For instance, in a 128-entry instruction window design, Forwardflow cores

consume about 12% less chip-wide power, compared to a traditional out-of-order microarchitec-

ture (a substantial decrease in per-core power), while maintaining about the same performance.

Larger Forwardflow cores (i.e., 256-entry windows) reduce runtime by 14% on average, requiring

��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������
����������������
	�
��������������
�����������������

FIGURE 1-7. Dataflow Queue Example

13
no more power than that consumed by a traditional microarchitecture. Forwardflow cores scale

further still, delivering about 10% runtime reduction for each doubling of window size.

1.4.2 Scalable Cores in CMPs

This thesis also investigates policies for designing and using scalable cores, in which the For-

wardflow core microarchitecture serves as a vehicle for evaluation. In Chapter 6, I discuss

tradeoffs between borrowing designs, in which cores scale up by borrowing scalable resources

from nearby cores, and overprovisioned designs, in which all scalable resources are core-private

and provisioned for the largest possible configuration. I show that scalable Forwardflow cores are

cheap to overprovision (i.e., 7% increase in die area), and that borrowing can lead to performance

problems if borrowed resources are only slightly slower than overprovisioned resources. The wis-

dom of “Loose Loops Sink(ing) Chips” [23] holds for scalable cores.

Next, I propose and evaluate several hardware scaling policies, for operation below the level

of the operating system scheduling slice. I demonstrate a simple mechanism which can be used by

system software to approximate the most energy-efficient core configuration when running single

threads. When running many threads, I show that previously-proposed spin-detection hardware

[182] can be used as an indicator to dynamically scale cores down, thereby increasing the overall

efficiency of the execution. I also show that programmer-guided scaling is a simple means by

which sequential bottlenecks can be identified. Scalable cores can use programmer-supplied

annotations to trigger scaling decisions.

Lastly, I lay the groundwork for future software-driven policy work, by showing that DVFS

adequately models the performance of a scalable core, provided a sufficiently wide group of

benchmarks are studied. Though DVFS does not model the same power consumption, I show that

14
per-configuration energy consumption can be estimated accurately using correlated event counts,

e.g., hardware event counters. This final contribution indicates that future researchers need not be

burdened by the development time, long run times, and frustrations of simulation-based evalua-

tion, paving the way for future work in software policies for scalable CMPs.

1.5 Thesis Organization

Chapter 2 discusses background material, trends, further motivation, and prior work in the

area of scalable core design. Chapter 3 details the quantitative evaluation methods used in this dis-

sertation, including details of simulation infrastructure, workloads, and other modeling methods.

Chapter 4 introduces SSR, and Chapter 5 discusses the Forwardflow core implementation. I dis-

cuss and evaluate policies for implementing core scaling decisions in Chapter 6, and conclude this

dissertation in Chapter 7 with a re-summarization of content, key results, possible future work,

and reflections.

The material of Chapters 4 and 5 differs from my other published work in detail and organiza-

tion. Chapter 4 considers the implications of pointer-based representation in isolation, and Chap-

ter 5 gives a great deal of detail on the Forwardflow design itself, with less emphasis on placing

that design in a wider CMP setting. Chapter 5 also gives many more details of the Forwardflow

implementation used in this dissertation, which is similar to but not identical to that of the ISCA

2010 paper [60].

15

Chapter 2

Scalable Cores, Background, and Related Work

This chapter outlines vision for scalable cores and gives an overview of related work. I begin by

introducing microarchitecturally-scaled cores. Next, I explain why dynamic voltage and frequency

scaling (DVFS) will not suffice to provide scalable core functionality—instead, microarchitecture

must scale. I discuss high-level tradeoffs inherent in the design of scalable cores. I then present rel-

evant background on contemporary microarchitectures, leading to a general discussion of related

work.

2.1 A Vision for Scalable Cores

A scalable core is a processor capable of operating in several different configurations, each

offering a varied power/performance point. A configuration may constitute an operating fre-

quency, an active set of microarchitectural resources, or some combination of both. Scalable cores

are compelling because, when the power to do so is available, scalable cores can scale up, allow-

ing single-threaded applications to aggressively exploit ILP and MLP. Or, when power is con-

strained, scalable cores can scale down to conserve per-core energy, e.g., to exploit TLP with

more modest (and less power-hungry) single-thread performance. In other words, scalable cores

have the potential to adapt their behavior to best match their current workload and operating con-

ditions. Figures 2-1 and 2-2 illustrate two operating extremes (single- and highly-threaded), along

with the approach to each operating scenario used by today’s CMPs.

16

In the first case, a single-threaded application, the scalable CMP in Figure 2-1 (left) adapts to

its current workload by scaling up one core (indicated by gray shading), and halting other unused

cores to conserve energy (indicated by white backgrounds). The traditional CMP (right) halts

unused cores, but with no scalable components, it has no microarchitectural ability to address sin-

gle-threaded performance.

In the second case, a multi-threaded application (or collection of single-threaded applica-

tions), the scalable CMP in Figure 2-2 scales down all cores. Scaling down causes individual

cores to consume less power, and also reduces their demands on the memory subsystem. As a

result, overall chip-wide power consumption is reduced, as compared to scaled-up configurations.

The traditional CMP (right) has no scale-down mechanism and therefore runs the risk of drawing

too much power when operating at full load. Consequences of sustained operation above the

D$

P0

D$

P4

FIGURE 2-1. Scalable CMP (left), one core fully scaled-up to maximize single-thread
performance. Traditional CMP, operating one core.

D$

P1

D$

P5

D$

P2

D$

P6

D$

P3

D$

P7

One Thread:
Scale Up One Core,

Turn Off Other Cores

D$

P0

D$

P1

D$

P2

D$

P3

D$

P4

D$

P5

D$

P6

D$

P7

Single-thread performance
improved.

Operate One Core,

Turn Off Other Cores
Single-thread performance

unchanged.

17

power budget include circuit instability (e.g., from insufficient current supply affecting rail volt-

age) and overheating concerns.

2.1.1 Dynamic Voltage and Frequency Scaling (DVFS)

Intel’s Nehalem already exhibits some of the desired behaviors of a scalable core, using its fre-

quency scaling “turbo mode” to accelerate single threads [34, 170]. By using a faster clock for turbo

mode, computational throughput from a single thread is increased. Nehalem’s turbo mode is an

example of the more general dynamic frequency and voltage scaling (DVFS) technique.

DVFS techniques for increasing frequency rely on the fact that, in CMOS, the rate at which

logic circuits operate is determined by the rate at which capacitances (i.e., transistor gates and par-

asitic capacitances) charge (to logic “1”) or discharge (to logic “0”). One can approximate the time

required to charge or discharge these capacitances as proportional to the inverse of the operating

voltage [145]. Therefore, by increasing operating voltage, a circuit’s switching speed can be

D$

P0

FIGURE 2-2. Scalable CMP (left), all cores fully scaled-down to conserve energy while
running many threads. Traditional CMP, operating all cores.

Many Threads:
Scale Down All Cores

D$

P0

Conserves per-core power:
all cores can operate within

Operate All Cores
May exceed available power.

power budget.

D$

P1

D$

P2

D$

P3

D$

P4

D$

P5

D$

P6

D$

P7

D$

P4

D$

P1

D$

P5

D$

P2

D$

P6

D$

P3

D$

P7

18
increased proportionately. In other words, increase in voltage enables a linear increase in operating

frequency.

However, architects cannot simply rely

on DVFS to implement the scale-up func-

tionality of scalable cores in future product

generations. Figure 2-3 plots the recent

trend of operating voltages. As technology

scales, the dynamic operating voltage range in each technology generation shrinks [52, 180]. This

trend arises because, while minimum supply voltage, , has decreased only slightly, maxi-

mum supply voltage, has dropped steadily.

One overarching concern leads to limits on dynamic voltage range: power consumption. The

drive to reduce is derived from its quadratic relation to dynamic switching power.

Reductions in yield square reductions in switching power. On the other hand, increasing

supply voltage scales up dynamic power, again quadratically. When this voltage increase is paired

with a frequency increase (e.g., under DVFS turbo mode), the increase in dynamic power is cubic.

Leakage concerns constrain : leakage current increases an order of magnitude for each

100mV decrease in device threshold voltage. In order for devices to operate at all, designers must

maintain (preferably by a healthy margin, to maintain clean signalling levels [191]).

In other words: device manufacturers cannot afford to further lower threshold voltage, to make

room for lower . Effectively, circuit designers are stuck between a rock (inability to lower

) and a hard place (the necessity to lower). Together, these trends suggest that

FIGURE 2-3. Operating voltage range over
time.

V DD m– in

V DD m– ax

V DD m– ax

V DD m– ax

V DD m– in

V DD m– in V t>

V DD m– in

V DD m– in V DD m– ax

19
total operating voltage range will be fairly limited as technology scales.1 With reasonable operating

voltage ranges diminishing, the amount of upward scaling possible from DVFS will shrink as well.

It is important to note, however, that operating frequency can be safely scaled down without

changing operating voltage (i.e., DFS). Future designs will likely continue to rely on frequency

scaling to conserve dynamic energy. However, one must consider that DFS does not affect static

power—clocks can be scaled down arbitrarily, but leakage remains unchanged.

2.1.2 Scalable Microarchitecture

Without DVFS, scaling core performance means scaling core resources to extract more instruc-

tion-level and memory-level parallelism from a given workload (ILP and MLP, respectively).

Therefore, in a scalable core, resource allocation changes over time—determining exactly which

resources scale depends on the details of a particular implementation. In general, cores must not

rely on powered-off components to function correctly when scaled down, and must not wastefully

broadcast signals across large structures when scaled up. Designers of scalable cores should avoid

structures that are difficult to scale, like centralized register files and bypassing networks. Instead,

they should focus on structures that can be easily disaggregated, and powered-on incrementally to

improve core performance independent of other structures.

To compete with traditional designs, a scalable core should have a nominal operating point at

which it delivers performance comparable to a traditional out-of-order core at comparable power,

and should offer more aggressive configurations when scaled up. That is, performance itself

should not be sacrificed for performance scaling. A wide performance/power range is desirable,

1. Deepaksubramanyan and Nunez offer a useful analysis of leakage current’s relationship to technology parameters and operating

conditions [43].

20

but scaling up should be emphasized over scaling down (as the latter can be easily accomplished

with DFS).

Canonical work towards scalable CMPs, Core Fusion [86] and Composable Lightweight Pro-

cessors [94], compose entire cores to scale all pipeline resources at the same rate. These designs

adopt an implicit philosophy of resource borrowing—composed or fused cores aggregate

resources from other cores to implement scale-up. This approach is sensible, so long as area cost

of scalable components is high (i.e., it is worthwhile to amortize area cost via sharing). However,

borrowed resources are more likely to lengthen wire delay, as borrowed resources reside within

the boundaries of other cores. As an alternative to borrowing, scalable cores can be individually

overprovisioned, assigning additional per-core (private) resources to each scalable core, which are

never shared with other cores during scale-up. When scaled down, cores simply leave these extra

resources unutilized (or unpowered, if static consumption is a concern). This resource overprovi-

sioning philosophy makes sense if scalable core components consume small on-die areas (i.e.,

cost of overprovisioning is small, compared to the latency cost of communication with other

cores). Figure 2-4 illustrates the differences between the borrowing (left) and overprovisioning

(right) philosophies: Borrowing potentially brings more chip area to bear when operating in a sin-

D$

P1

D$

P0

D$

P4

D$

P5

D$

P2

D$

P6

D$

P3

D$

P7

D$

P0

D$

P4

D$

P5

D$

P2

D$

P6

D$

P3

D$

P7

D$

FIGURE 2-4. Resource-borrowing scalable CMP (left) and resource-overprovisioned CMP
(right).

Resource Borrowing Resource Overprovisioning

21
gle- or lightly-threaded mode, but requires sharing of resources to do so. Overprovisioning poten-

tially wastes area when scaled down (e.g., P1 in the figure), but each core can scale independently

of others.

2.1.3 Realizing the Vision

The foci of this work is the realization of the above vision: how to build an efficient, high-per-

formance scalable core, and how to effectively use such a core in a scalable CMP. Before I discuss

the technical content of this thesis, I first provide background information detailing the current

microarchitectures in CMPs. I also take the opportunity to discuss prior work by others.

2.2 Background

Little’s Law suggests that a core must maintain enough instructions in flight to match the prod-

uct of fetch width and the average time between dispatch and commit (or squash). These buffered

instructions constitute an instruction window—the predicted future execution path. As memory

latencies increase, cores require large windows to fully exploit even modest fetch bandwidth. Much

prior work has built on this observation by focusing on scaling window size, e.g., to expose paral-

lelism in memory-intensive workloads.

However, not all instructions in the window are alike. In a typical out-of-order design, instruc-

tions not yet eligible for execution reside in an instruction scheduler. The scheduler determines

when an instruction is ready to execute (wakeup) and when to actually execute it (selection),

based on operand availability. In general, instruction windows are easily scalable because they are

SRAM-based, while many instruction schedulers are not because they rely on CAM-based [190]

or matrix-based [70, 144] broadcast for wakeup and priority encoders for selection.

22

2.2.1 A Canonical Out-of-Order Superscalar Core

Figure 2-5 is a basic block diagram of (what I call) a “canonical out-of-order superscalar core.”

In relation to the microarchitectures of industrial designs, it is most similar to the DEC/Alpha

product offerings, e.g., the Alpha 21264 and 21364 (EV6 and EV8, respectively) [88, 41], but the

general pipeline format is widely applicable. Though the diagram suggests a seven-cycle pipeline,

each enumerated pipeline stage is typically itself pipelined. In other words, this discussion consid-

ers a seven-stage pipeline, and attempts to be agnostic of the precise number of cycles required by

each.

To begin, Fetch anticipates the future set of instructions (i.e., branch prediction) and retrieves

these instructions from instruction memory, in predicted program order. In a superscalar core,

Fetch aims to deliver W instructions per cycle to the decode pipeline, where W is the overall fron-

I-ALU

F-ALU

L1-D

PRF
Scheduler

Instr.
Decode
Tables

Register
Rename

Table

L1-I

Branch
Predictor

FIGURE 2-5. “Canonical” out-of-order microarchitecture.

FETCH
DECODE &

RENAME DISPATCH
WAKEUP &

EXECUTION
WB &

COMMIT

ROB

SELECTION

23
tend2 pipeline width (it is a common practice for all pipeline stages’ widths to match, preventing

any one stage from becoming a bottleneck). Because cache line widths tend to be larger than W

(when measured in instructions), Fetch is implemented via a bubble-fetch process, in which the

L1-I cache is read only frequently enough to deliver new instructions. During contiguous fetch

operations, the previously-read line is buffered, and sources the next instruction in predicted pro-

gram order. During non-contiguous fetch operations (i.e., in the presence of branching, very com-

mon), instructions from a single cache line may appear out of order with respect to memory

address (e.g., in the case of a followed back-branch) in a given cycle’s W instructions, or even

redundantly (e.g., within a tight loop). In short, the fetch logic is responsible for properly sequenc-

ing instructions, according to the rules set forth for doing so by the ISA3.

Occasionally, conditions arise that prevent Fetch from flowing all W instructions to Decode.

For instance, an instruction fetch operation may incur a miss, during which Fetch makes no

progress. Similarly, a miss in the I-TLB, filled in software, causes a stall. Additionally, port counts

on the L1-I cache may prevent Fetch from following arbitrary code sequences in a single cycle—

even if they are perfectly predicted.

Once fetched, instructions propagate to the Decode & Rename sections of the pipeline. These

operations identify inter-instruction data dependencies, translate instruction opcodes to appropri-

ate control signals and metadata, and resolve write-after-write dependences via Register Renam-

ing4. Though Figure 2-5 suggests instruction decode and register renaming are independent, it is

2. I.e., Fetch, Decode & Rename, and Dispatch.

3. For instance, in SPARCv9, Fetch must handle branch delay slots, by fetching the instruction following some branches, and flow-

ing the delay-slot instruction to the decode stage immediately behind its corresponding branch.

4. Sima gives an overview of renaming techniques in a 2000 IEEE Computer article [150].

24
valuable to precede rename with non-speculative register identification, to reduce port and specu-

lation requirement on the renamer itself.

The Register Rename Table (“renamer,” sometimes called the Register Alias Table [e.g., 26]) is a

critically-constrained resource in an out-of-order core. The renamer translates architectural regis-

ter names into physical register identifiers, allowing independent work to proceed independent of

the register names used for intermediate values. In general, a fully-previsioned renamer requires

two read ports and one write port per renamed instruction per cycle, for the case of three-address

form instructions. As such, it is a highly-specialized RAM-based structure. Furthermore, renam-

ers usually also maintain a freelist of unbound physical registers. Instructions return registers to

the freelist when they commit new architectural values for the associated architectural register.

Instructions consume registers from the freelist when they define new values for architectural reg-

isters, at rename-time. As a consequence of the current access requirements, neither renamer nor

freelist scales well in W.

Renaming assumes the use of a Physical Register File (PRF). The number of registers in the

PRF needed to prevent rename stalls due to register insufficiency, in the worst case, is

, the sum of the number of renamed architectural registers and the number of

instructions in flight (i.e., renamed but non-committed instructions). This bound arises because

architectural registers must always have an assigned value (hence), and each in-flight

instruction can define a new speculative value for an architectural register (hence). As a

result, the number of registers needed in the PRF grows with the window size.

Decode & Rename5 flows W instructions per cycle to the Dispatch stage. To this point, instruc-

tions have flowed in predicted program order, and Dispatch will insert instructions into the out-of-

Narchregs N flight+

Narchregs

N flight

25
order components of the pipeline. In particular, at Dispatch each instruction is allocated an entry

in a Re-Order Buffer (ROB). The contents of each ROB entry are implementation-specific, but its

purpose is to recover true program order in the midst of actual out-of-order execution. Enough

information about each instruction is stored in the ROB to suit this purpose.

Concurrent to ROB entry allocation, Dispatch also inserts instructions into the instruction

scheduling hardware (variously called the issue queue(s) (IQ), scheduler, scheduling window, etc.),

which is typically smaller in total size than the ROB. The scheduler gives rise to out-of-order exe-

cution. By examining data dependences and register availability, the scheduler determines which

instructions are ready to execute, independent of the order in which those instructions appear.

During Wakeup & Selection, instructions with ready source operands are identified, irrespective of

program order, and issued to functional pipelines. The scheduler is typically aware of effective

pipeline latencies in the datapaths, and schedules instruction issue accordingly. For example, suc-

cessors of a register value can often issue on the cycle after their predecessors, as execution datap-

aths usually implement full bypassing.

The scheduler constitutes another critically-constrained structure in the out-of-order microar-

chitecture. The scheduler must accept W instructions per cycle from Dispatch (depending on the

scheduler implementation, dispatch into the scheduler may not be contiguous, requiring special-

ized logic to manage scheduler space), and must select some number of instructions each cycle for

issue (typically , to account for differences in instruction type). Scheduling is com-

5. In the out-of-order design used in this study, NoSQ [146] implements its memory disambiguation predictions at the conclusion

of Decode & Rename. I omit thorough discussion of traditional snooping memory disambiguation, as it is not used in this thesis.

Wissue W≥

26
monly accomplished with associative search over register identifiers in a content-addressable

memory (CAM) [190], or with a per-physical-register matrix [70, 144].

The functional units (datapaths) themselves constitute the Execution stage of the pipeline. At

this point, instructions are out of program order. During Execution, arithmetic computations are

performed, and memory is accessed (i.e., the L1-D is consulted, or a miss is handled by allocating

a Miss Status Holding Register (MSHR) and accessing the appropriate element of the memory

hierarchy). Physical register tags for input and output operands accompany instructions through

the functional pipelines. When the input operand tag of a functional pipe matches an output oper-

and’s tag, a bypass network is triggered to forward the result value to the successor instruction as

appropriate, to maintain the illusion of program order. Overall, complexity of the bypass network

scales quadratically in the number of functional units [68].

After instructions complete execution, they write any results into the PRF during the Write-

Back (WB) pipeline stage. After write-back, instructions reside only in the ROB, until Commit

determines that a particular instruction is now the eldest such instruction in flight. Commit logic

updates the architectural program counter (aka, instruction pointer), writes any stored values to

memory (or a store buffer), releases physical registers to the freelist, and triggers any latent precise

exceptions associated with the committing instruction.

On the whole, the canonical out-of-order core is a product of the era in which it was devel-

oped. In several areas, non-scalable structures are employed because, in previous technology gen-

erations, energy-efficiency was not an overarching consideration. For instance, schedulers

broadcast over large structures, full bypass networks incur complexity, and register files areN
2

27
centralized. However, the research and industrial community recognized these obstacles. Many

proposals emerged targeting these challenges individually, or on the whole.

2.3 Related Work

Out-of-order design has been refined over the course of decades. Textbooks have been written

on the subject. Instead of attempting to cover all aspects of prior work in core microarchitecture, I

discuss a pertinent subset of work, often representative of other similar proposals. Briefly, I catego-

rize related work into five principal categories: static scalability (Section 2.3.1), scalable instruction

scheduling (Section 2.3.2), optimizations pursuing performance through MLP (Section 2.3.3), dis-

tributed microarchitectures (Section 2.3.4), and lastly, dynamic microarchitecture scaling (Section

2.3.5).

2.3.1 Large-Window Machines and Complexity-Effective Designs

There have been many proposals for implementation of large-window machines. Split Window

Processing [54] sought to construct (effectively) a large instruction window by constructing several

smaller windows. Smaller windows limit the inherent delays in searching for independent opera-

tions, and limit the scope of some data dependences (e.g., to reduce demand for broadcasts).

Instead of addressing only the individual scalability problems of single cores, Multiscalar Pro-

cessing [152, 53, 55, 118, 174, 24] takes another approach altogether: use many processing units6 to

accelerate a single thread. Broadly speaking, the Multiscalar approach divided an execution into

tasks, and each task would execute independently, subject to true data dependences.

6. In the Multiscalar parlance, “cores” in context were not complete processors, but “Processing Units,” capable of executing

instructions but relying on an external entity for other “core” functionality, like the handling of memory ordering.

28
Multiscalar raised the bar on exploitation of ILP by challenging latent assumptions. For exam-

ple, control-independence can be exploited even after mispredictions within, but limited to, an

individual task. Moreover, by replicating processing units, Multiscalar demonstrated the utility of

multiple, distributed schedulers, thereby bounding scheduler complexity. Lastly, its decoupled

handling of memory dependences showed that scalable disambiguation was achievable, with rea-

sonable hardware, even for large-window machines.

Complexity-Effective Superscalar Processors [126] sought to address the individual non-scal-

able core components, and approached the problem of the statically-scalable core by clustering

reduced-complexity microarchitectural structures. By leveraging instruction steering, simple in-

order scheduling components can take the place of associative-based out-of-order components.

Clustering coupled with effective steering also limits the scope over which bypassing networks and

register files must operate. However, in clustered designs, broadcast operations are commonly

used as a fallback operation, when in-cluster resources cannot satisfy a demand (e.g., an inter-clus-

ter data dependence).

The Multicluster Architecture [49] leveraged clustering with explicitly copy-in/copy-out

queues between clusters to implement a statically-scalable core. The same approach was subse-

quently used in the Core Fusion [86] work for dynamically scalable cores (more details below).

Gonzalez et al. propose an asymmetric clustered architecture [62], in which individual elements of

the cluster are optimized for a particular workload characteristic. For example, they suggest that

individual cluster complexity can be reduced by using dynamically narrower datapaths, which in

turn affects the size of bypass networks, as well as power consumption and wakeup latency. The

authors later investigate dynamic cluster resizing [63].

29
Several studies have been made investigating appropriate steering metrics for clusters [30, 20,

141]. In general, cluster steering algorithms seek to make the common case local (i.e., fast) and the

uncommon case correct (e.g., via a broadcast). However, because the design in this work focuses

on lookahead rather than peak IPC, optimizing instruction issue width is not prioritized, and the

demands on steering to produce efficient communication are lessened.

Cherry [107], “Checkpointed Early Resource Recycling”, and follow-on work Cherry MP [113]

for multiprocessors, re-evaluates the need for all in-flight instructions to retain resources (nomi-

nally, physical registers) until commit-time. Early resource recycling speculatively commits values,

and recycles stale physical registers, enabling large-window machines to use smaller physical regis-

ter files. In the uncommon case of a misspeculation, correct state can be restored from a check-

point. CPR [4, 3] takes a similar approach to Cherry, with an emphasis instruction ordering. CPR

requires no ROB in order to ensure in-order retirement. Instead, ordering is maintained through a

set of register state checkpoints.

KILO-instruction processing [40, 39] combine these ideas to create ROB-free checkpoint-

based instruction windows, with reduced demands on the size of the physical file. Decoupled

KILO-instruction processing [128] further innovates on designs using conventional hardware, and

divides computation into two general categories: those instructions that can be serviced from in-

cache data, assigned to a Cache Processor, and those that depend on in-memory (out-of-cache)

data, assigned to a Memory Processor. Each processor is then individually optimized to best suit the

need of its assigned instruction type, e.g., by optimizing the cache processor for high execution

locality.

30

2.3.2 Instruction Schedulers

Because many workloads are limited by latency to memory, it is important for high-perfor-

mance cores—and scalable cores when scaled up—to service as many memory accesses concur-

rently as possible. However, a non-scalable instruction scheduler limits how much MLP a core

can exploit, due to a phenomenon called IQ (scheduler) clog [168], in which the scheduler fills

with instructions dependent on a long-latency operation (such as a cache miss). Optimizations

exist to attack this problem, e.g., by steering dependent instructions into queues [126], moving

dependent instructions to a separate buffer [101, 143], and tracking dependences on only one

source operand [95]—all of which allow the construction of larger schedulers, less prone to clog.

These proposals ameliorate, but do not eliminate, the poor scalability of traditional instruction

schedulers.

FIGURE 2-6. Out-of-order microarchitecture augmented with a Waiting Instruction
Buffer (WIB).

I-ALU

F-ALU

L1-D

PRF
Scheduler

Instr.
Decode
Tables

Register
Rename

Table

L1-I

Branch
Predictor

FETCH
DECODE &

RENAME DISPATCH
WAKEUP &

EXECUTION
WB &

COMMIT

ROB

SELECTION

WIB

Reschedule

Defer

31
Direct Wakeup [136] and Hybrid Wakeup [78] both use a single dependence pointer to desig-

nate the first successor of each instruction producing a value, but fall back on a full-scheduler

broadcast in the case of multiple successors, with different broadcast implementations. By using a

broadcast mechanism as a fallback, these schedulers are still cycle-limited by the worst-case broad-

cast time. The Matrix Reloaded scheduler [144] re-evaluates the traditional organization of a

broadcast-based matrix scheduler by filtering broadcasts of register availability to a handful of

entries in a much larger aggregate scheduler.

The Half-Price Architecture [95] attacks the scheduling problem by observing that most oper-

ations dynamically wait for only one operand, and implements “half ” of a traditional scheduler for

most operations. Literally, this leads to a half-as-costly implementation of scheduling logic (e.g.,

with one half the number of entries in a scheduling CAM).

Some might argue that the Waiting Instruction Buffer (WIB) [101] approach is more suited to

the next section (exploitation of MLP). Lebeck et al. suggest that IQ clog can be avoided by drain-

ing instructions doomed to wait on a long-latency event (e.g., a cache miss) from the scheduler,

and storing them in a simple buffer. By draining the scheduler, independent instructions can flow

into scheduling logic and be considered for execution. When the long-latency event completes,

instructions can be re-dispatched into the scheduler, ready to execute. Figure 2-6 shows the modi-

fication necessary to the canonical out-of-order core to include a WIB (bolded).

I include the WIB as a scheduler optimization because the microarchitectural changes needed

to incorporate WIBs are largely limited to the scheduler, though a similar design (Continual Flow

Pipelines) is discussed below.

32

2.3.3 Designs Exploiting Memory-Level Parallelism

Two main proposals in the area of MLP-optimized design have sparked a gamut of related

projects. Like the WIB, both Runahead Execution and Continual Flow Pipelines address the

scheduler problem by draining a scheduler of non-ready instructions (e.g., by buffering instruc-

tions [156] or by simply discarding them [46, 122]).

Continual Flow Pipelines (CFP) [156], and similar designs such as iCFP (in-order CFP) [74]

and Sun’s ill-fated Rock project [97, 35], combine the observations of checkpoint-based microar-

chitectures, early resource release, and instruction deferral to further advance the state of the art.

Instruction deferral alone exposes MLP, but deferred instructions hold critical processor

resources, e.g., physical registers. This places great demands on the PRF organization, as well as

the rename logic. However, deferred instructions are guaranteed not to actually make use of the

resources held on their behalf—CFP innovates by releasing resources held by deferred instruc-

FIGURE 2-7. Out-of-order microarchitecture augmented Continual Flow-style Deferred
Queues.

Defer

I-ALU

F-ALU

L1-D

PRF
Scheduler

Instr.
Decode
Tables

Register
Rename

Table

L1-I

Branch
Predictor

FETCH
DECODE &

RENAME DISPATCH
WAKEUP &

EXECUTION
WB &

COMMIT

ROB

SELECTION

Deferred Queue
Re-Rename

33
tions, and then re-acquiring them at the end of a deferral period. Figure 2-7 shows the microarchi-

tectural changes7 necessary to do so: the addition of Deferred Queues (DQs)—specialized

hardware for retaining deferred instructions, similar to a WIB. Deferred instructions release their

physical registers upon deferral, and the underlying hardware can re-use those registers for subse-

quent (ready) instructions. When leaving a DQ, instructions re-acquire a physical register, and

subsequent successors of that register undergo re-renaming to ensure correct dataflow depen-

dences are established.

Like the WIB approach, CFP makes more efficient use of traditional scheduling hardware, by

preventing non-ready instructions from clogging the scheduler. However, re-dispatch and re-

renaming operations are fairly expensive, and places additional demand on those structures.

Worse still, depending on inter-instruction dependences, instructions may defer and subsequently

re-rename and re-dispatch several times before they are finally executed. CFPs literally flow contin-

uously, i.e., the activity factors on pipeline structures tend to be much higher than a pipeline that

stalls on long-latency events (I evaluate CFP quantitatively in Chapter 5), thereby raising power

consumption concerns.

7. CFP is based on CPR [4], which uses checkpoints in lieu of a ROB. Hence, I show the ROB outline dotted, to indicate that the

CFP proposal uses another mechanism in its place.

34
Runahead Execution follows a similar vein as CFP, but implements instruction deferral by

completely discarding deferred instructions. When a load miss is encountered, a runahead proces-

sor enters runahead mode, a form of deep speculation. The goal of runahead is to locate and pre-

execute independent memory misses, initiating data movement in a long-latency memory hierar-

chy well in advance of the time at which a traditional architecture would execute the same instruc-

tions. By redundantly pre-executing memory instructions, runahead effectively prefetches data

into nearby caches, which can then be used quickly once runahead mode terminates.

During runahead mode, the processor discards operations dependent on long-latency misses,

draining them from the scheduler and allowing independent work to proceed. All instructions

that “commit” during runahead mode are discarded, and do not update architectural state. Stores

executed under runahead store their values into a special-purpose runahead cache, snooped in

parallel with the L1-D cache for loads in runahead mode to maintain store-to-load dependences.

I-ALU

F-ALU

L1-D

Scheduler

Instr.
Decode
Tables

Register
Rename

Table

L1-I

Branch
Predictor

FIGURE 2-8. Out-of-order microarchitecture augmented with Runahead Execution.

FETCH
DECODE &

RENAME DISPATCH
WAKEUP &

EXECUTION
WB &

COMMIT

ROB

SELECTION

PRFPRF
Runahead

Cache

35
Runahead mode ends when the long-latency operation that initiated runahead mode com-

pletes. At that time, a checkpoint of the PRF (or a logical checkpoint, using the renamer) is

restored (indicated in bold in Figure 2-8), eliminating any updates to register state incurred during

runahead mode. The end of runahead mode also clears the runahead cache.

Runahead execution is a popular topic. There have been at least two runahead-related patents

[186, 130]. Multu et al. study runahead efficiency [120]. Ramirez et al. proposal runahead for

simultaneously-multithreaded cores [137]. Xekalakis et al. advocate runahead helper threads

[187], and IBM produced a commercial implementation, the IBM POWER6 [28].

Among CFP and Runahead-like proposals, the critically-constrained resources are, again, the

physical register file, and the scheduler. Rather than attempt to make conventional microarchitec-

tural structures more efficient, the work in Chapters 4 and 5 decouples the register file from the

number of in-flight instructions, and builds a scheduler in which space is not constrained, by

implementing a scalable, distributed scheduler.

2.3.4 Distributed Designs

The TRIPS project [123, 142, 92, 64] represents an ambitions top-to-bottom effort to rethink

the organization of a CPU, leveraging a new ISA and distributed, heterogeneous execution tiles.

Rare among project in academia, the TRIPS project culminated in a hardware implementation.

After recompilation, many single-thread applications show significant speedup. However, the

promise of TRIPS-like designs is coupled with the requirement of a fundamentally new execution

model, a substantial obstacle to widespread adoption. Nonetheless, the TRIPS architecture’s

explicit use of forward pointers inspired some of the innovations in this work. So, too, did WaveS-

36
calar [163], which like TRIPS takes a holistic approach, distributing processing and memory

across a chip, but again relies on a novel ISA and compiler support to realize its vision.

The Composable Lightweight Cores (CLP) [94] proposal also leverages a novel ISA, but distrib-

utes essentially homogeneous simple tiles on a single chip, which can be dynamically composed to

produce configurations with better single-thread performance, and dynamically fissioned to revert

to a configuration more suitable to large thread counts. CLP represents an extreme of the resource

borrowing philosophy, discussed in Section 2.1.2. Core Fusion [86] also composes whole cores,

though the individual cores themselves are more substantial than those of CLP.

2.3.5 Dynamic Microarchitectural Scaling

David Albonesi’s work on dynamic microarchitectural scaling inspired some of the work in

this thesis [8, 18, 27]. Albonesi et al. consider dynamically tuning pipeline width, cache sizes, and

instruction queues, to optimize a variety of metrics. This work differs structurally from Albonesi’s

in that I pursue a modular approach to core scaling, rather than attempt to scale individual struc-

tures in unison. Modularity gives rise to more efficient designs, and effectively decouples scaled

components from difficult-to-scale resources, like bypassing networks. Huang et al. [81] and Iyer

and Marculescu [87] both propose general approaches by which to scale core resources. These

(and other) proposals are discussed more fully in Chapter 6, as they constitute baselines for com-

parison.

2.4 Summary

Scalable cores have the potential to ease the transition from mostly-sequential to mostly-paral-

lel software. However, challenges remain in the design of such cores, and the proper methods for

37
using them in a chip multiprocessor. In this chapter, I have outlined a vision for scalable cores in

the era of multicores, detailed pertinent background material, and discussed the prior work that

led to or inspired the work in this dissertation.

The next chapter will detail the methods I use for quantitative evaluation in this dissertation.

The subsequent three chapters detail the novel contributions of this work, and Chapter 7 con-

cludes.

38

Chapter 3

Evaluation Methodology

This chapter details the methods used to evaluate the proposals in this dissertation. I present

details of the timing-first simulation infrastructure used in the evaluation, a discussion of power

and area estimation, and discuss metrics for energy-efficiency. Following the general infrastruc-

ture and methods discussion, I outline salient details of several different machine configurations

used in this study. Lastly, I provide a description of benchmarks used in this study.

3.1 Performance Evaluation Methodology

This research focuses on processor core design. This work would not have been possible with-

out a simulation platform capable of simulating all of the different microarchitectures used this

work. Therefore, the development of the simulation infrastructure was motivated by the require-

ment that all target microarchitectures share common underlying design assumptions—especially

in the structures not specific to a given target. For example all machines operate with precisely the

same model of instruction fetch, branch prediction, etc. The purpose of this homogenization to

ensure fair, apples-to-apples quantitative comparison between designs.

During the initial exploration of the research leading to this dissertation, I used trace-based

simulation to prototype early designs. While the traced-based framework bore sufficient fidelity to

evaluate tradeoffs early in the design process, traces fail to capture the timing-dependent behavior

possible in threaded executions [5]. In order to fully capture these effects, the performance evalua-

39
tions in this thesis used full-system timing-first simulation. In this infrastructure, Virtutech Simics

[103, 104, 175], a commercial full-system functional simulator provides a correct execution for the

target machine. The remainder of the infrastructure consists of two timing-first simulators: the

memory subsystem is modeled using the Ruby memory timing module from Multifacet’s GEMS

simulator [106, 185], and I and one other student developed a new processor simulator to model

the various core microarchitectures used in this dissertation, consisting of approximately 100,000

lines of C++.

Much of the focus of this research is the design of processor core pipelines. Therefore, these

pipelines are modeled in great detail. As a result of the level of detail, pipeline stages exhibit signif-

icant inter-dependence in their behavior. For instance, between two simulations with slightly dif-

ferent configurations of the instruction window, one might observe a slightly different branch

predictor accuracy. Changes in instruction window size affect the timing of branch resolution,

which in turn affects predictor training, yielding a slightly different prediction accuracy when

window size varies. This example is illustrative—other second-order interdependences exist, as

well.

When I report performance results from the simulation, in most cases results are presented as

runtime normalized to a baseline design. Runtime is an intuitive metric for both single-threaded

and multi-threaded benchmarks, whereas measures like IPC can misrepresent performance for

some workloads [6, 7].

3.1.1 Full-System Simulation Implications

Benchmark suites comprised mostly of user-level CPU workloads are widely used in the evalu-

ation of microarchitectures proposed in both academia and industry [172, 146, 87, 86, 79, 168, and

40
many others]. However, there are several merits in simulating the complete system, including OS

interaction and device behavior. Many workload behaviors are only observable via full-system

simulation, including system-intensive workloads, which spend substantial time running privi-

leged code. Furthermore, detailed modeling of system activity exposes the performance implica-

tions of traps, interrupts, and system calls. Lastly, interactions with devices enables more realistic

OS scheduler behavior.

Unfortunately, significant complexity arises in the implementation of timing-accurate simula-

tion of full systems. This complexity is not manageable by single researchers. Timing-first simula-

tion addresses some of this complexity, by modeling only common-case behavior. Uncommon

cases are left unimplemented (or implemented in a manner that does not cover all corner cases),

and the always-correct functional model is used to re-bootstrap the simulation should the timing-

first simulation err. Instead of affecting the correctness of the simulation, these errors manifest as

timing transients in the reported performance. I monitor the frequency of this class of errors

closely, to ensure these transients do not unexpectedly influence performance results.

Occasional interference from the target’s operating system is another consequence of full-sys-

tem simulation. In particular, though only one process is actively running on the target in most

cases, many other processes exist in sleep states, and these processes will occasionally wake and

perform background tasks. The target’s operating system will also service interrupts at unpredict-

able and unexpected points in the simulation. These events reflect the operation of real systems,

but add noise to data attributed to a given workload. When viewing results for a given benchmark,

the reader should be aware that those results are obtained on a machine running not only the

objective workload, but also actively servicing interrupts and other background processes in the

41
manner of actual hardware. To the extent possible, this behavior has been minimized by killing

background processes on the target prior to simulation. However, not all interference justly falls

into the category of noise. Some system-level behaviors are intentionally invoked by the objective

workload (e.g., sending packets on a simulated network), and others occur as implicit side effects

of execution (e.g., software-handled TLB fill).

3.2 Power Evaluation Methodology

Power consumption is modeled using the methodology of Wattch [25], with contributions

from CACTI [149] and Orion [179] (also based on Wattch). Brooks et al. validated Wattch versus

the reported power consumption of a contemporary out-of-order superscalar core, and found that

Wattch’s power estimates deviate approximately 10% from the predicted estimates from layout-

level power estimation tools at the 0.35um feature size.

The basic premise of Wattch assigns a fixed energy cost to microarchitectural events (e.g., a

read from a physical register file, or a write into a re-order buffer). In other words:

 (3.1)

where is the set of all microarchitectural components, represents the number of

activations of each component in an execution, is the energy consumed by each activation of

component , and is the total energy consumed during the execution. The energy cost

of each microarchitectural event (i.e.,) is derived from other tools (e.g., CACTI [184, 165, 149]),

or from first principles of CMOS logic [e.g., 133].

Wattch models four different circuit types:

Eexecution Activationsi Ei⋅
i A∈
∑=

A Activationsi

i Ei

i Eexecution

Ei

42
• Array Structures: Caches, register files, tables, and other non-associative memories.

• Associative Memories / Content-Addressable Memories: TLBs, LSQs, schedulers, and other

associative structures.

• Combinational logic: ALUs, selection logic, comparators, and other combinational compo-

nents, and

• Clocking: Clock routing, buffering, and loads.

Event types and counts are recorded in the course of simulation, yielding a total energy cost,

from which power consumption can be derived. Wattch also models conditional clocking (i.e.,

clock-gating) by assigning a configurable portion of the nominal energy cost when the unit is

under-utilized or not used at all. Unfortunately, the available Wattch implementation models a

technology node (0.35um) that no longer reflects reasonable modern power considerations in

state-of-the-art CMOS (e.g., 32nm), and does so by scaling linearly from an even older node

(0.8um). Therefore, I adopted the premise of Wattch, but with new implementation details in more

recent technologies (90nm, 65nm, 45nm, and 32nm).

CACTI [184, 165, 149], a memory layout and power design tool, has been actively developed

and improved since its initial release (unlike Wattch). In keeping with the original methodology of

Wattch, I elected to use CACTI as a baseline from which to derive estimates of activation energy

and leakage power. CACTI was modified to output a more detailed breakdown of energy estimates

of individual components (e.g., decoders, arrays, tags, etc.) rather than aggregate estimations. In

this manner, it is possible to use CACTI to estimate power consumed by simple arrays, associative

structures, and some logic structures, within a common set of design assumptions.

43

TABLE 3-1. Summary of Power Models (continued)

Structure Circuit Type Methodology

BTB Tagged RAM CACTI

Bypassing Networks Logic/Wire Wattch

Checkpoint Arrays RAM CACTI

Clock Distribution and Genera-

tion
Logic/Wire Wattch

Deferred Queue [156] RAM CACTI

DQ Bank Crossbar Wire Wattch

DQ Bank Group Crossbar Wire Wattch

DQ Operand Arrays RAM CACTI

DQ Pointer Arrays RAM CACTI

DQ Update Logic Logic Wattch/Zlatanovici et al. [192]

DQ Valid/Empty-Full BIts Logic, Flip-flops Wattch/Markovic et al. [105]

D-TLB Tagged RAM CACTI

Flip Flop Logic Wattch/Markovic et al. [105]

Floating Point Datapaths Logic Oh et al. [125]

I-TLB Tagged RAM CACTI

Integer Datapaths Logic Matthew et al. [109]

L1-D Cache CACTI

L1-I Cache CACTI

L2 Cache CACTI

L3 (Bank) Cache CACTI

Microcode Tables RAM (PROM) CACTI

Network Links Wire Orion [179]

NoSQ

Tagged RAM (Predictor and Store

Sequence Bloom Filter); Logic,

Flip-flops (Store vulnerability fil-

ter)

CACTI; Wattch/Markovic et al.

[105]

Parallel Prefix Decoding Logic Wattch

Queue Head/Tail Logic Logic Wattch/Zlatanovici et al. [192]

Random Logic Logic Zlatanovici et al. [192]

44

Unfortunately, not all elements of the original Wattch model can be derived entirely from

CACTI. Selection logic, high-performance CAMs, and other core-specific circuitry do not appear

in any design produced by CACTI. For some structures, I made use of the original Wattch formu-

lae, after modernizing technology-specific constants from newer technology generations. Esti-

mates for energy consumption of functional units are derived from published designs

implementing the appropriate functionality [125, 109]. Estimates for random logic are derived

from the carry-lookahead adder presented by Zlatanovici et al. [192], assumed to have similar

energy per area. Pipeline latches are modeled to be similar to those presented by Markovic et al.

[105].Table 3-1 summarizes the power models used in this work, the type of circuit modeled, and

the methodology used to determine activation energy for each.

The power modeling infrastructure uses the most aggressive clock-gating model from the

original Wattch proposal. This model assumes that under-utilized logic consumes energy in linear

proportion with its utilization. Hence, a three-ported register file, on which two ports are active in

a particular cycle, is assumed to consume two-thirds of its peak dynamic power during the

observed cycle.

Register Consumer Table (RCT) RAM CACTI

Register Files RAM CACTI

Register Freelist Logic, Flip-flops Wattch/Markovic et al. [105]

Register Renamer RAM CACTI

Re-Order Buffer (ROB) RAM CACTI

Return Address Stack (RAS) RAM CACTI

Runahead Cache [122] Cache CACTI

Scheduler (Hybrid Wakeup) [78]
RAM (Pointer Array); CAM (Fall-

back Broadcast Network)
CACTI; Wattch

Slice Rename Filter [156] Tagged RAM CACTI

YAGS Branch Predictor Tagged RAMs CACTI

TABLE 3-1. Summary of Power Models (continued)

Structure Circuit Type Methodology

45
A collaborative effort with Yasuko Watanabe was made to quantitatively verify the power esti-

mates produced by the above power models. This evaluation was performed with respect to three

commercial products: Sun’s Niagara 2 [124], Intel’s Atom [58], and Intel’s Xeon (Tulsa) [164].

Nawathe et al. provide a detailed breakdown of power consumed by individual processor compo-

nents in the Niagara 2 core when operating at full speed. We compared this breakdown with the

data obtained from a simulation of a similar microarchitecture, accounting for differences in core

count and functional units. Unfortunately, Gerosa et al. (Atom) and Tam et al. (Tulsa) do not pro-

vide similar breakdowns at the level of individual microarchitectural components, however, we

were able to validate end-to-end core power consumption.

Not all power models were included in the validation studies. At the time of this writing, no

existing products are available as comparison points for the proposed microarchitectures or for

some power models used only by non-traditional pipeline designs (e.g., Forwardflow’s Dataflow

Queue, the slice buffer used by the CFP model, etc.). However, these models were derived with the

same methodology used by the verified models, and we expect them exhibit a similar degree of

fidelity.

3.3 Energy-Efficiency

This dissertation uses and as measures of

energy efficiency. Minimizing is equivalent to maximization of 1 for a single-

threaded workload, as revealed by simple dimensional analysis in Equation 3.2. Assume I is the

1. is ratio of the cube of instruction throughput (billions of instructions per second) and power. It is commonly used

in publications from IBM.

Energy Delay⋅ E D⋅= Energy Delay
2⋅ E D

2⋅=

E D
2⋅ BIPS

3
W⁄

BIPS
3

W⁄

46
instruction count of some objective execution, D is the time required to complete the execution on

the target machine, and E is the energy consumed during execution.

 (3.2)

Hartstein and Puzak [67] study and with an analytical model of optimal

pipeline depth, and observe that the choice () as metric argues for a pipeline depth

less than one (i.e., a design without any pipelining). This finding also holds for when

static power contributions are negligible, but that is not the case in this study. Since this research

addresses high-performance, and hence, pipelined, processor designs, and

(more generally, and , respectively) are the logical choices to compare efficiency of

designs in this research. I expect Hartstein and Puzak’s analysis to hold in this area, as comparison

of different microarchitectures will vary similar parameters as those that appear in [67]2.

Srinivasan et al. [157] point out that is also an intuitive choice of metric, because it

follows the same energy/performance curve as DVFS (dynamic voltage and frequency scaling).

They observe that, to first order, DVFS trades off performance in linear proportion for a cubic

delta in (dynamic) power. That is, since dynamic power in CMOS , and when

operating under DVFS, becomes a property of the underlying circuit, not the current

2. E.g., microarchitectural comparisons vary effective pipeline length p, total logic delay of the processor , the number of pipe-

line hazards , the average degree of superscalar processing , the weighted average of the fraction of the pipeline stalled by

hazards , and of course, the runtime, T., all of which are variables of the Hartstein/Puzak models.

BIPS
3

W

I
3

D
3

E

D

------∼

1

D
2

E

1

E D
2⋅

-------------= =

BIPS
2

W⁄ BIPS
3

W⁄

BIPS W⁄ E I⁄

BIPS
2

W⁄

BIPS
2

W⁄ BIPS
3

W⁄

E D⋅ E D
2⋅

t p

NH α

γ

BIPS
3

W⁄

PD f V
2⋅∼ f V∼

BIPS
3

W⁄

47
voltage and frequency settings. This argument applies directly to , of course. However, for

completeness, I also include a discussion of .

3.4 Area Evaluation Methodology

Area estimates for proposed designs are derived via a combination of automated and manual

floorplanning. An automated heuristic-driven genetic floorplanner [140] was developed to pro-

vide estimates of area and communication latency from area estimates and qualitative netlists of

primitive components. The process was bootstrapped from area estimates produced by CACTI, or

from published designs [109, 192], as in Section 3.2.

The floorplanner itself explores multiple frontiers of slicing-tree-based floorplans using a

genetic hill-climbing algorithm. The slicing-tree approach can represent horizontal and vertical

juxtaposition of adjacent elements, and each element is assumed to rotate arbitrarily in increments

of ninety degrees, and to mirror arbitrarily. The floorplanning itself conservatively over-assigns

individual unit area, preserving aspect ratio, and uses a Manhattan distance heuristic to estimate

interconnect fitness. The methodology assumes that unused area can be partially occupied by

unmodeled control logic (assumed to be small relative to major components) or can be used as

buffer capacitance for the on-chip power supply. Fitness criteria heavily weight area minimization

over routing fitness (elements involved in floorplanning are implicitly assumed to be somewhat

insensitive to inter-element communication latency).

The automated floorplanning process was applied hierarchically on progressively larger input

blocks, with manual partitioning of input nodes at each stage. The partitioning process itself was

ad-hoc; primitive and aggregate units were selected for floorplanning in the same stage when they

had (subjectively) similar area and were likely to share common nets, to avoid long searches of

designs with little practical impact on overall design area.

The topmost two levels of the floorplanning hierarchy, core and chip floorplans, were com-

pleted with manual floorplanning. The principal reason to prefer manual floorplanning at these

E D
2⋅

E D⋅

48
levels was to ensure that tiles (consisting of a core, an L2 cache, and a bank of a shared L3

cache—see Section 3.6.2) could be easily replicated and mirrored to build a CMP. To ease the

manual floorplanning process, the final stage of automatic floorplanning was augmented to prefer

a particular aspect ratio, even at the expense of area efficiency, for selected circuit partitions.

3.5 Target Architecture Model

In the timing-first simulator, the functional authority (Virtutech Simics) fully models an

UltraSPARC-III+-based [75] server. However, it is desirable for microarchitectural research to be

broadly applicable to a variety of ISAs and architectures. Therefore, I evaluate SPARCv9 [181] with

optimizations to SPARC-specific TLB fill and register windowing, motivated by a closer resem-

blance to the behavior of commodity x86 and x64 ISAs. In particular, the infrastructure models

hardware extensions for common-case TLB fill (normally handled with a fast trap in SPARCv9),

and speculative inlining of many register window exceptions. These extensions help to decouple

the results in this dissertation from the SPARCv9 ISA and its successors, and also improve perfor-

mance of the target machines. Appendix A quantitatively evaluates the effect of these optimiza-

tions on some of the target machines used in this work.

All targets share a common memory consistency model: Sequential Consistency (SC) [100,

72]. Four arguments support the use of SC in this research. First, SC is extremely restrictive of the

legal ordering of memory operations with respect to program order (i.e., SC allows no visible reor-

derings). It is desirable that the microarchitectures studied in this research be widely applicable,

and by ensuring that no proposal violates the most restrictive memory consistency model, it fol-

lows that all weaker models consistency models are also respected.

49
Secondly, SC greatly simplifies debugging the simulation itself. Third, the functional authority

(Simics) abstracts each CPU with the capability to single-step through an instruction stream. This

abstraction effectively forces the functional authority to observe an SC execution. Even if the tim-

ing target observed a weaker execution (e.g., a forwarded value from a store buffer, as in TSO), it

would violate the correctness criteria of the infrastructure to force the same execution on the func-

tional authority.

Lastly, NoSQ [146] is used throughout all target models to disambiguate multiple in-flight

memory references. While NoSQ is speculative in nature, and requires load replay when vulnera-

ble loads are committed. New, original research would be required to adapt NoSQ to weaker mem-

ory models, and since this dissertation focuses on the microarchitecture of the instruction

window, I leave that work for others. Instead, each target aims to deliver an aggressive SC imple-

mentation [61].

3.6 Target Microarchitectural Machine Models

Several instruction window designs are evaluated in this dissertation. These microarchitec-

tures can be broadly dichotomized as either realistic or idealized models:

• Realistic Models represent a complete timing abstraction for the given target. The effects of

bank interleaving, wire delay, arbitration, contention, and buffering are fully modeled, as they

would be in hardware. Power is modeled with equal rigor. All designs proposed in this research

are classified as Realistic Models.

50
• Idealized Models leverage simplified abstractions of functionality that would require original

research to bring to full fruition as a realistic model, or have already been explored in prior

work, and the details have been simplified for ease of implementation. Idealized models are

employed as baselines for comparison, and as thought experiments, and are not usually paired

with an accurate power model.

3.6.1 Common Microarchitectural Structures

Many target models share common infrastructure in the areas of the pipeline not directly

affected by the microarchitecture of the instruction window. These commonalities are summa-

rized in Table 3-2.

TABLE 3-2. Common Configuration Parameters

Component Configuration

Branch Predictor
YAGS [47], 4K Prediction History Table, 3K Exception Table, 2KB BTB, 16-entry

RAS

Disambiguation
NoSQ [146], 1024-entry predictor, 1024-entry double-buffered store sequence

bloom filter (SSBF)

Fetch-Dispatch Time 7 Cycles, plus I-Cache miss if applicable

L1-I Cache 32KB, 4-way, 64B line, 4-cycle, pipelined, 2 lines per cycle, 2 processor-side ports

L1-D Cache
32KB, 4-way, 64B line, 4-cycle LTU, write-through, write-invalidate, included by

L2, parity, private

L2 Cache 1MB, 8-way, 4 banks, 64B line, 11 cycle latency, write-back, SECDED ECC, private

L3 Cache 8MB, 16-way, 8 banks, 64B line, 24 cycle latency, SECDED ECC, shared

Main Memory 2 QPI-like links [91] (Up to 64 GB/s), 300 cycle mean latency (uncontended)

Coherence MOESI-based Directory Protocol

On-Chip Interconnect
2D Mesh, 16B bidirectional links, one transfer per cycle, 1-cycle 5-ary routers, 5 vir-

tual channels per link

Consistency Model Sequential consistency

Store Issue Policy Stores issue permissions prefetch at Execute

Feature Size 32nm

Clock Frequency 3.0 GHz

51
All microarchitectural models operate on instructions consisting of 3-tuples. Each tuple con-

sists of up to two input operands (registers or immediate values), and up to one output operand

(typically, a register). Not all instructions in the target ISA (SPARCv9) meet this abstraction, and a

common layer of micro-operation decoding decomposes instructions that exceed this abstraction

into a stream of multiple, 3-tuple instructions. Each micro-operation is allowed to dispatch, issue,

and execute independently, and all window models must honor dataflow dependences micro-

operations as though they were regular instructions. Two additional logical registers are added for

use solely by the instruction decode hardware, for this purpose. The decomposition circuitry pre-

cedes model-specific decoding operations in the decode pipeline (e.g., register renaming).

All target models use a NoSQ-like [146] memory disambiguation scheme (subsequently,

“NoSQ,” referring to the general technique). As proposed by Sha et al., NoSQ (subsequently,

“Canonical NoSQ,” referring to the specific implementation suggested by Sha et al.) leverages spec-

ulative memory bypassing, and identifies loads likely to forward from earlier stores in program

order. This speculation is verified through a combination of store vulnerability filtering [139] and

commit-time load replay. Misspeculations are used to train predictive structures, and are resolved

with pipeline flushes. Canonical NoSQ anticipates DEF-STORE-LOAD-USE chains, and manipu-

lates register rename tables to short-circuit these chains into DEF-USE chains. Sha et al. show that

Canonical NoSQ can outperform reasonably-sized associative store queues.

NoSQ is well-suited to large window designs for several reasons. First, it can handle all in-

flight instructions in a large window without the need for any fully-associative structures, which

have limited scalability. Second, when properly warmed, NoSQ’s predictors exhibit very low false

positive (improper predicted store-to-load dependence) and false negative (unanticipated store-

52
to-load dependence) rates. Third, NoSQ can easily handle cases in which a single store bypasses to

several dependent loads (though it does not handle the case of loads bypassing from multiple elder

stores). Unfortunately, Canonical NoSQ is deeply tied to a traditional out-of-order pipeline, as it

relies on register renaming. The more general model of NoSQ employed in this work instead uses

mechanisms specific to each target model to represent (predicted) store-to-load dependences. The

precise mechanism used is described in subsequent target-specific sections.

Furthermore, the correctness-checking mechanism in the infrastructure does not easily allow

outright cancellation of loads and stores, as advocated in Canonical NoSQ. Hence, the NoSQ

model leveraged in the simulation allows loads predicted to bypass to flow through the pipeline

normally. These loads are subject to injected dependences that prevent the loads from issuing until

their forwarding store completes execution.

3.6.2 CMP Organization

This thesis evaluates a hypothetical 8-core CMP. Singe-threaded evaluation is carried out as

though only one core of this target CMP was active: other cores are assumed to be in a halted state

(or off), in which the core and private caches consume no power and perform no work. Contem-

porary CMPs already use a similar paradigm to conserve sufficient energy in order to run some

cores at increased speed via DVFS [85].

Figure 3-1 depicts this dissertation’s 8-way CMP target machine. On each tile resides a single

core, a private L1-I cache (32KB), a private write-through write-invalidate L1-D cache (32KB), a

private L2 cache (1MB) which manages coherency in the L1-D via inclusion, and one bank of a

shared L3 cache. It is assumed that cores and private caches can be powered off without affecting

the shared L3—i.e., the L3 operates in its own voltage domain. The interconnect between tiles is a

53
2D mesh, which supports a 5-state MOESI directory-based coherence protocol. Two memory con-

trollers provide 32 GB/s of bandwidth to DRAM (each).

The figure expands the core-private resources (left), indicating the detailed floorplan of a core

in the specific case of a Forwardflow core, provisioned with four bank groups. Though individual

core microarchitectures vary somewhat in area, the performance model assumes that each target

core’s area and aspect ratio are not substantially different to warrant a different CMP floorplan, nor

does area/aspect ratio differences affect timing of common structures.

Subsequent subsections detail each target CPU class: RUU (Section 3.6.3), OoO (Section 3.6.4),

Runahead (Section 3.6.5), CFP (Section 3.6.6), and OoO-SSR (Section 3.6.7).

Frontend

L1-D

L2

BGBGBGBG L3B0

L2

P0

L2

P4

FIGURE 3-1. 8-Way CMP Target

L3B4

L3B1

L2

P1

L2

P5

L3B5

L3B2

L2

P2

L2

P6

L3B6

L3B3

L2

P3

L2

P7

L3B7

54

3.6.3 RUU

The RUU machine configuration is an idealized model, representing an approximate upper

bound on performance for a given window size. The overall operation of RUU is similar to the

design described by Sohi and Vajapeyam [154, 153]. This baseline is idealized in several ways:

• All RUU configurations are able to schedule any instruction in their window, regardless of

window size. That is, RUU never suffers from scheduler clog [168].

• All RUU configurations are amply provisioned with functional units, up to the maximum used

by any other configuration of the same window size (the largest configuration, RUU-1024,

includes 40 functional pipelines).

• All RUU configurations’ register files are provisioned to never cause stall conditions (i.e., read/

write port provisioning). RUU uses an architectural register file (ARF).

RUU approximately represents the maximum attainable performance for a fixed window size,

frontend configuration, and ALU budget. RUU is an approximate upper bound because its sched-

uling does not account for instruction criticality [169]. While not the focus of this work, some

other designs can coincidentally exploit instruction criticality at scheduling-time.

Because of the idealized nature of the RUU model, power estimates for RUU are not provided.

3.6.4 OoO

The OoO target represents a contemporary out-of-order superscalar processor core, typified by

the Alpha 21364 (EV7) [88, 41]. OoO is a realistic model, in that most microarchitectural struc-

tures are constrained to reasonable sizes, are subject to wire delay, and have constrained band-

width.

55
OoO uses the scalable CAM-based scheduler described by Huang, Renau, and Torrellas,

Hybrid Wakeup [78]. This scheduler uses a forward pointer to designate the first successor of an

operand, and resorts to a broadcast-based mechanism in the case of multiple successors. The com-

mon case of a singleton successor is handled in this scheduler without a broadcast, reducing its

power consumption. However, because this scheduler relies on a CAM as a fallback mechanism, it

is assumed in this dissertation that OoO’s scheduler does not scale to full-window size.

OoO uses a centralized, renamed physical register file (PRF). The PRF contains sufficient reg-

isters such that a stall condition never arises. Furthermore, ports on the PRF are fully provisioned

to allow uninterrupted issue and writeback operations. To handle writeback races, all read ports in

the PRF are fully bypassed to all write ports. Fully provisioning both capacity and port count yields

a large PRF design, which is assumed to require only a single cycle to access. This latency is feasible

in a hierarchical register file design (e.g., the register file used in the UltraSPARC III [98]), though

internal details of this register file are not modeled.

3.6.5 Runahead

The Runahead model is a realistic model, based on OoO, that implements Runahead Execution

[46, 122]. Runahead Execution attempts to expose additional memory-level parallelism when ser-

vicing cache misses by checkpointing processor state and entering a speculative (runahead) mode.

In runahead mode, a core discards instructions dependant on long-latency operations, such as a

cache miss, and continues execution well ahead of the current commit point. When the long-

latency operation that triggered runahead mode is resolved, processor state is restored from a

checkpoint and execution resumes.

56
The principal benefit of runahead execution is its ability to prefetch cache lines that will be

accessed in the near future by the target instruction stream. Though all work in runahead mode is

effectively discarded, merely by issuing requests to the memory hierarchy, Runahead is able to gen-

erate useful prefetches for some workloads, enabling those access to hit in a nearby cache when

they are re-executed non-speculatively. However, the utility of runahead mode is strongly depen-

dent on workload.

Runahead mode comes at a disadvantage of discarding potentially useful work, potentially in

the course of many distinct invocations of runahead mode. In particular, because uncommitted

values are squashed without retirement in runahead mode, completed data-independent instruc-

tions that follow the long-latency triggering event must be redundantly executed, requiring addi-

tional execution energy, and also incurring opportunity cost in the form of additional functional

unit utilization and a repeat traversal of the frontend structures by the redundantly-executed

instructions.

Runahead is a variant of OoO. To enable runahead mode, OoO’s physical register file is aug-

mented with poison bits, to identify values not available in runahead mode. Initially, only the reg-

ister designated as output from the initiating load is poisoned. Poison bits propagate to other

registers when, instead of executing, instructions with one or more poisoned operands skip execu-

tion, poison their output register, and are discarded. Furthermore, to accommodate additional reg-

isters constituting the checkpoint of architectural state need at the end of runahead mode, the PRF

is augmented with additional registers.

Lastly, Runahead is augmented with a runahead cache [122], which is used to buffer the values

of speculative stores while in runahead mode. The runahead cache is flash-cleared at the end of

57
runahead mode, is filled by runahead stores, and is snooped to service every load instruction in

runahead mode.

3.6.6 Continual Flow Pipeline (CFP)

The CFP model is a partially idealized model based on the Continual Flow Pipeline design pro-

posed by Srinivasan et al. [156] and on Sun’s Rock [35]. Like Runahead Execution, CFP pursues

increased memory-level parallelism, but instead of discarding instructions dependant on long-

latency operation, CFP defers instructions into scalable buffers, called Deferred Queues (DQs).

In a Continual Flow Pipeline, the frontend should never stall due to IQ clog or similar phe-

nomenon. Whenever the scheduler is filled, the oldest outstanding non-deferred load operation is

marked as deferred, its output register is poisoned, and instructions dependant on that register are

drained from the scheduling logic into an available Deferred Queue. When an instruction enters a

DQ, it releases its physical registers for immediate re-use by other instructions. Instructions in

Deferred Queues wait until the load that caused their initial deferral completes execution, and

then re-enter the pipeline at the Rename stage, re-Renaming and re-acquiring physical registers as

needed.

CFP is a compelling design because it conserves valuable space in scheduling logic by buffer-

ing instructions that would normally clog the scheduler in easily-scalable SRAM-based DQs.

However, once a DQ begins to drain it must drain completely, lest the scheduler re-fill with

instructions that occur later in the predicted instruction stream than the oldest non-deferred load.

Should such a condition arise, subsequent deferral of outstanding load operations is not sufficient

to guarantee that the scheduler will ever issue another instruction, thereby risking deadlock.

Therefore, though CFP will never re-execute an instruction, it may necessarily (and by design) re-

58
defer an instruction many times before it is finally executed, incurring energy overhead on each

such occasion.

The CFP model is based on OoO. In addition to the structures present in OoO, all CFP models

are augmented with one or more Deferred Queues and accompanying deferral logic, including

poison bits in the register file and logic to associate deferred slices with register live-outs. Because

physical registers are not held by deferred instructions, CFP requires no additional space in the

physical register file. However, to implement re-Renaming and re-dispatch, CFP utilizes a renam-

ing filter, as described by Srinivasan et al., which facilitates register re-acquisition as DQs are emp-

tied.

Unlike CFP, which uses Checkpoint Processing and Recovery (CPR) [3] to implement commit

sequencing, CFP (i.e., the model) uses a traditional re-order buffer to maintain correct program

order for all instructions. This is a departure from Srinivasan et al., however, unlike schedulers,

ROBs are easily scaled to large sizes, such that CFP is not often starved for window space.

Because the ROB effectively bounds the number of in-flight instructions in the CFP model, the

DQs themselves have unbounded capacity. This idealizes CFP somewhat, as unbounded DQs

allow any or all available DQs to grow to arbitrary size (less than or equal to that of the ROB) with-

out penalty. This idealization simplifies the deferral-time steering logic, which selects the DQ to

which an instruction will be deferred, as DQ resource constraints do not interfere with optimal

dataflow-based instruction steering.

3.6.7 OoO-SSR

OoO-SSR (Out of Order, Serialized Successor Representation—see Chapter 4) is an idealized

model of a traditional out-of-order core that uses a scheduler similar to the pointer-based schedul-

59
ing of Forwardflow. Though nearly all aspect of OoO-SSR are realistic, its scheduler is idealized to

behave identically to the scheduling of a Forwardflow core. OoO-SSR is useful in understanding

the performance impact of serialized wakeup in particular, and SSR in general, as compared to the

performance achieve by an RUU configuration of identical size.

3.7 Benchmarks

The evaluation in this thesis uses a variety of single-threaded and multi-threaded workloads.

SPEC CPU 2006 [69] constitutes the majority of the single-threaded benchmarks. A complete

issue of Computer Architecture News3 is devoted to analysis of SPEC CPU 2006. I also include sin-

gle-threaded versions of the Wisconsin Commercial Workload Suite [5]. Descriptions of each of

these workloads are provided in Table 3-3.

3. Computer Architecture News Vol. 35, No. 1 - March 2007

TABLE 3-3. Single-Threaded Workload Descriptions (continued)

Benchmark Suite Language Description

astar SPEC INT 2006 C++ AI: Pathfinding

bzip2
SPEC INT 2006 C

Burrows-Wheeler transform compression,

combined input set.

gcc
SPEC INT 2006 C

C-language optimizing compiler. 200.i

input.

gobmk SPEC INT 2006 C AI: Game of Go

h264ref SPEC INT 2006 C Video compression codec

hmmer SPEC INT 2006 C Gene sequence search

libquantum SPEC INT 2006 C Quantum computer simulation

mcf SPEC INT 2006 C Combinatorial optimization

omnetpp SPEC INT 2006 C++ Discrete event simulation

perlbench SPEC INT 2006 C Perl v5.8.7, running SpamAssassin

sjeng SPEC INT 2006 C AI: Chess

xalancbmk SPEC INT 2006 C++ XML to HTML transformation

bwaves
SPEC FP 2006 F77

Computational fluid dynamics, 3d transonic

transient laminar viscous flows

60

cactusADM SPEC FP 2006 C, F90 Numerical relativity solver

calculix SPEC FP 2006 C, F90 Structural mechanics

dealII SPEC FP 2006 C++ Finite element estimation

gamess SPEC FP 2006 F90 Quantum chemical computations

GemsFDTD SPEC FP 2006 F90 Computational electromagnetics

gromacs SPEC FP 2006 C, F Molecular dynamics

lbm
SPEC FP 2006 C

Computational fluid dynamics, Lattice-Bolt-

zmann method

leslie3d
SPEC FP 2006 F90

Computational fluid dynamics, finite-vol-

ume MacCormack Predictor-Corrector

milc SPEC FP 2006 C Quantum chromodynamics

namd SPEC FP 2006 C++ Structural biology simulation

povray SPEC FP 2006 C++ Ray-tracing

soplex SPEC FP 2006 C++ Linear program solver

sphinx3 SPEC FP 2006 C Speech recognition

tonto SPEC FP 2006 F95 Quantum crystallography

wrf SPEC FP 2006 C, F90 Weather forecast modeling

zeusmp SPEC FP 2006 F77 Magnetohydrodynamics

apache-1 Wisconsin Commer-

cial Workloads
N/A Static web server

jbb-1 Wisconsin Commer-

cial Workloads
N/A

specJBB-like middleware transaction pro-

cessing

oltp-1 Wisconsin Commer-

cial Workloads
N/A TPC-C-like OLTP

zeus-1 Wisconsin Commer-

cial Workloads
N/A Static web server

TABLE 3-3. Single-Threaded Workload Descriptions (continued)

Benchmark Suite Language Description

61
Eight-way threaded Commercial Workloads [5] and microbenchmarks (described in Chapter

6) are used in this thesis to evaluate proposals in the context of multi-threaded workloads, summa-

rized in Table 3-4.

Unless otherwise noted, all benchmarks are run for a minimum of 100 million instructions.

Before the run, workloads are fast-forwarded past their initialization phases. Caches, TLBs, and

predictors are warmed before profiling begins. Multiple runs are used to achieve tight 95% confi-

dence intervals for multi-threaded runs; single-threaded runs show little variability—differences

in initial conditions affect only branch predictor state and is almost entirely homogenized by the

warmup process, and random latencies added to memory latencies do not affect average latency.

In other words, divergence between runs is rare in single-threaded workloads, and accounted for

via multiple runs in multi-threaded workloads [6].

TABLE 3-4. Descriptions of Multi-Threaded Workloads

Benchmark Suite Description

apache-8 Wisconsin Commercial

Workloads
Static web server

jbb-8 Wisconsin Commercial

Workloads
specJBB-like middleware transaction processing

oltp-8 Wisconsin Commercial

Workloads
TPC-C-like OLTP

zeus-8 Wisconsin Commercial

Workloads
Static web server

62

Chapter 4

Serialized Successor Representation

This chapter discusses Serialized Successor Representation (SSR), a graph-based, name-free

dataflow dependence representation for register dependences. In this chapter, SSR is treated in iso-

lation of any hardware artifacts present in a particular core implementation—instead, the evalua-

tion in this chapter focuses on the principal tradeoffs of SSR: a larger scheduler at the cost of

serialized wakeup of multi-successor values.

Initially, SSR is described in the abstract case of an unbounded computation (Section 4.2). I

then present arguments detailing how SSR can be used to guide arbitrary-length out-of-order exe-

cutions using a finite instruction window (Section 4.2.1), and how to use SSR to represent depen-

dences between memory operations (4.2.2).

I also consider the performance implications of SSR on cores that use this dependence repre-

sentation, idealizing hardware as necessary to demonstrate the potential performance advantages

of the schedulers made possible by SSR (Section 4.3).

4.1 Naming in Out-of-Order Microarchitectures

Named architectural state has been a part of computer architecture at least since the earliest so-

called von Neumann machines, e.g., Harvard Mark I [2], the EDVAC [177], and others. Names

have taken the forms of register identifiers—explicitly in enumerated register files (e.g., eax in

x86, %l0 in SPARC, $R9 in MIPS, etc.), as well as the form of implicit registers (e.g., accumula-

63
tors)—and as addresses in architected memories (each addressable location has a name, and occa-

sionally, more than one name). Initially, these names referred to individual locations in the

machine’s storage systems, but as computers become more sophisticated and ISAs remained

mostly unchanged, various optimizations changed the meaning of these names—in particular, the

introduction of physical register files and cache hierarchies broke the abstraction that a name cor-

responds to unique location in a given design. Instead, the state retains the name, but its location

may change over time. For instance, register renaming1 arose in order to resolve WAW depen-

dences on individual architectural register names, by associating different dynamic values with

different physical register names.

Named state has indirectly lead to poor scalability of several key components of modern

microarchitectures, largely out of the need to reconcile an architectural name with its (current)

physical location. In particular,

• The Physical Register File (PRF) implements the namespace of physical registers in a modern

CPU. Physical register names are associated in the microarchitecture with dynamic values. The

PRF is typically on the critical path of instruction issue; it is read after instruction selection,

and before bypassing. All functional pipes must access a global register space at issue-time, to

ensure the correct input operand values are read. This is troublesome in a large core design,

because the PRF must service reads and writes from several functional units, which may not be

near one another on the die. Distributing the PRF, e.g., in a clustered design [126, 30, 20], gives

rise to significant complexity.

1. Arguably, Tjaden and Flynn were the first to introduce the concept of renaming [166], though the name was coined by R. M.

Keller five years later [93]. Dezsõ Sima gives an overview of renaming techniques [150].

64
• ALU bypassing relies on broadcasting a physical register identifier, along with an associated

value, to all other ALU input ports in the processor core that could potentially consume the

value. It is well known that this approach is not scalable, as the complexity of routing and regis-

ter tag comparison quickly grows prohibitive as the number of endpoints increases (e.g., the

number of comparisons and the number of wires grows quadratically in the number of end-

points in the bypassing network [68]).

• Instruction scheduling commonly relies on CAM-based [190] or matrix-based [70, 144]

associative search, limiting the scalability of the traditional instruction scheduler. Physical reg-

ister identifiers are associated with successor instruction operands; a search for dependent

operands is performed on the scheduler whenever physical registers are written.

• Memory disambiguation is typically implemented with a combination of dependence predic-

tion [119, 38, 159] and associative search of a load/store queue [56, 127, 158]. The latter consti-

tutes a search of memory target addresses belonging to all other in-flight memory operations.

Similar to the previous microarchitectural components, which operated on physical register

identifiers, the disambiguation subsystem must identify memory locations with identical (or

overlapping) addresses (i.e., memory names).

Some of these shortcomings have been the focus of prior work in the specific areas mentioned.

For instance, prior work in instruction schedulers [78, 136] using a single first-successor pointer

make the key insight that explicit successor representation can reduce the frequency of broadcast

operations, limiting the associated dynamic power cost as well. NoSQ [146], which relies entirely

on prediction for disambiguation, ameliorates the need for a costly centralized LSQ altogether.

65
However, NoSQ still relies on naming register values with physical register IDs, which again gives

rise to associative search in schedulers, and these register values reside in a centralized PRF.

In all of the above structures, values are associated with name—either a physical register iden-

tifier, or a memory address—and this “name” accompanies the value throughout the pipeline. This

association tends to give rise to broadcast and centralization, which in turn limit scalability of the

underlying microarchitecture. It is the need to eliminate broadcast operations and centralization

that motivates a new abstraction for representing inter-instruction data dependences.

4.2 Serialized Successor Representation (SSR)

Fundamentally, the notion of a broadcast is unnecessary. In practice, it is also wasteful, as

dynamic values tend to have few successor operations [136, 144]. Though some prior schedulers

have leveraged this observation by implementing pointer-based schedulers [132, 136, 176] to opti-

mize the common case, this work is used pointers to handle all cases.

Serialized Successor Representation (SSR) is a method of representing inter-instruction data

dependences without any association. Instead of maintaining value names, SSR describes values’

relationships to operands of other instructions. In SSR, distributed chains of pointers designate suc-

cessors of a particular value. Instructions in SSR are represented as three-operand tuples (i.e.,

instructions are in three address form): SOURCE1, SOURCE2, and DESTINATION, abbreviated

as S1, S2, and D. Each operand consists of a value and a successor pointer. This pointer can desig-

nate any other operand, belonging to some subsequent instruction (either S1, S2, or D), or can be

NULL.

66
Operand pointers are used to represent data dependences. In particular, register dependences

are represented as pointers from the producer operand to the first node of a linked list of successor

operands. The pointer field of the producing instruction’s D-operand designates the first successor

operand, belonging to a subsequent successor—usually the S1- or S2-operand of a later instruc-

tion. If a second successor exists, the pointer field at the first successor operand will be used to des-

ignate the location of the second successor operand. Similarly, the locations of subsequent

operands can be encoded in a linked-list fashion, relying on the pointer at successor i to designate

the location of successor i+1. The last successor is marked by a NULL pointer field. Figure 4-1

illustrates SSR over a simple sequence of pseudo-assembly code (note, destination registers are on

the right-hand side of the figure).

A topological sort of all instructions in a SSR graph yields an out-of-order execution that

respects data dependences between registers. The executions yielded by topological sorts in SSR

are a subset of those arising from true dataflow, as SSR will impose program order on instructions

load R1 16 -> R1

load R1 10 -> R3

load R1 16 -> R1

mult R3 44 -> R4

addl R4 14 -> R2

addl R5 R4 -> R5

breq R1 88

load R1 10 -> R3

FIGURE 4-1. Simple pseudo-assembly
sequence with SSR pointers superimposed.

67
that consume the same value, whereas a true dataflow graph will not. Importantly, program order

is always a correct topological sort of an SSR graph.

SSR is similar to dataflow representations like those used in the MIT Tagged Token Machine

[14] and in the EDGE ISA [142, 94], in that it is a pointer-based dataflow representation. How-

ever, unlike proposals requiring software, ISA, or compiler changes, SSR is intended to be derived

dynamically in hardware from a conventional von Neumann (mainstream) ISA, using a process

similar to contemporary register renamers. However, the advantage of SSR is not in renaming, but

rather in de-naming.

SSR’s pointer-based representation of dependences never requires a search or broadcast oper-

ation to locate a successor for any dynamic value—successor operands are always explicitly and

unambiguously identified. Dynamic values in SSR no longer have a single name (e.g., architec-

tural register R4 or physical register P9)—instead, multiple instances of the same static value

reside at each producer or successor operand. The implication of explicit representation to hard-

ware is that an SSR-based scheduler is not associative: it can be built from simple SRAMs, thereby

reducing complexity, saving power, and enabling the scheduler to scale to large sizes.

4.2.1 SSR in Finite Hardware

SSR applied to an entire computation produces a DAG, which can be topologically sorted to

yield an execution respecting in-program-order register semantics. However, it is not possible to

implement hardware capable of capturing a complete SSR representation for an arbitrary compu-

tation. In particular, a modern computer system can be viewed as a particular instance of the halt-

ing problem [171]—the entire computation of a modern system might, in theory, never terminate.

Capturing the entire SSR representation would require unbounded hardware.

68
Therefore, in order to realize SSR as a practical means to represent dependences, it must be

argued that SSR-based cores can generate a correct execution even if the entire computation can-

not be simultaneously represented in bounded hardware. The argument addressing finite hard-

ware is inductive in nature, and is based on a two simple premises: First, the class of computations

representable by SSR are those that produce transformations on a state space consisting of discrete

registers, nominally represented as a set of register name/value pairs. This discussion will assume

these registers are organized into a register file (RF), and therefore SSR computations map register

file states to other register file states through a set of transformations, e.g., . Second,

these transformations obey transitivity.

Consider the architectural register state of a machine, after executing instructions. Call this

state (i.e., “architectural register file after instructions”). An unbounded number of instruc-

tions may follow the instruction—call these following instructions , as instruction num-

bering starts at zero. Suppose an SSR DAG is constructed for the instructions following the

instruction—such a DAG represents the dependences on the interval . If this DAG was

used to guide an execution, the resulting transformation on the register space would be

. Once an execution has determined the definition of , the process could

be repeated for interval , and so on for an arbitrary number of subsequent instruc-

tion intervals.

The above argument still holds even if the actual instructions constitute a sliding window

over . Consider again an SSR DAG over instructions , representing transforma-

tion . The complete transformation can be represented as

SSR computations over and , yielding , by

RFA RFB→

i

ARFi i

i
th

i[∞),

W i
th

i[i W+),

ARFi ARFi W+→ ARFi W+

i W+[i 2 W⋅+),

W

0[∞), W i[i W+),

ARFi ARFi W+→ ARFi ARFi W 1+ +→

i[i 1+), i 1+[i W 1+ +), ARFi ARFi 1+ ARFi W 1+ +→ →

69
transitivity. In other words, removing one instruction from and appending instruction

yields another valid SSR DAG of size over instructions , representing the

transformation . Again, this process can continue arbitrarily, never requir-

ing simultaneous representation of more than instructions at a time, by leveraging finite regis-

ter state.

The implication of this argument is that it is possible to construct an SSR-based instruction

window in bounded hardware, because only a subset of dependencies must be retained if a correct

record of prior register transformations (i.e., an architectural register file) is maintained. All subse-

quent instructions must represent transformations over this state.

4.2.2 SSR for Memory Dependences

Thus far, this discussion has considered only the representation of register dependences with

SSR—store-to-load dependences through memory have received no treatment. However, proces-

sor microarchitectures maintaining more than a handful of in-flight instructions must provide a

mechanism to identify load operations that address the same memory as prior in-flight store oper-

ations, and must ensure those loads observe the correct value in predicted program order. This is

the conventional role of the memory disambiguation subsystem, commonly implemented with a

CAM-based load/store queue, augmented with dependence prediction [119, 38, 159, 56, 127, 158].

At least two proposals in the literature present a complete alternative to associative search:

NoSQ [146] (literally No Store Queue) and Fire-and-Forget [160]. This work adopts a solution

based on the former. Sha et al. propose NoSQ as an implementation of uniprocessor memory dis-

ambiguation for a conventional core microarchitecture, relying on register renaming. The premise

behind NoSQ is that store-to-load forwarding is easily predictable, based on past behavior. After

i i[i W+),

i W+ W i 1+[i W 1+ +),

ARFi 1+ ARFi W 1+ +→

W

70
training, NoSQ’s predictor identifies store/load pairs likely to forward, and dynamically adjusts the

dataflow dependences of the load such that, instead of accessing memory, the load operation reads

the physical register specified by the store as its data operand. Because NoSQ is a form of specula-

tive memory bypassing, its predictions require verification prior to commit. In most cases, predic-

tions can be verified by comparing store sequence numbers (SSNs) between prior (committed)

stores and committing loads, which retain the SSN of the store from which they forward data. Cor-

ner cases in NoSQ are handled by commit-time value replay [29], in which vulnerable loads re-

read their values from the L1-D cache at commit-time. Loads improperly disambiguated observe a

value different than that present in their destination register. Resolution of incorrect disambigua-

tion is implemented via a pipeline flush.

Two obstacles present themselves when adapting the NoSQ approach to an SSR-based core.

First, aside from control prediction, SSR is a non-speculative representation of inter-instruction

dependences. However, given that NoSQ includes a mechanism to verify predictions (load vulner-

ability filtering, and load replay when necessary), as well as a mechanism to handle mispredictions

(full pipeline squash), false predictions can be guaranteed never to affect architectural state

(though the SSR graph must be rebuilt or otherwise purged of incorrect dependences). Second,

SSR-based cores have no register renamer—nor even a register namespace in the SSR-equipped

portion of the core—hence, another means is required to establish store-to-load dependence.

The latter is accomplished by leveraging the fact that operations in SSR must be represented in

three-address form. Though contemporary ISAs include mechanisms to write memory that do not

conform to three-address form [82, 181], these store operations can be represented as a separate

address calculation and store to memory, which are each three-address-form operations. The key

71
exploitable property of a three-address form store operation is that it has no destination operand,

as the store does not cause a register write.

It is possible to establish a (speculative) dependence between a store and a subsequent predic-

tion load operation in SSR by establishing a pointer from the store’s destination operand (guaran-

teed by construction to be unused) to the destination operand of the (predicted) dependent load

operation. The load itself should be marked as cancelled, such that it does not actually execute

when its source operands are made available—instead the load appears to execute as soon as the

forwarding store’s address and data are known. Establishing a possibly false dependence between a

store’s destination operand and a subsequent load’s destination operand manifests the predicted

data dependence between the operations, and yet still preserves the data required to replay the

load, if necessary, at commit-time in order to validate the prediction (i.e., the load maintains its

original input operands, hence the load address can still be calculated). Figure 4-2 illustrates this

process with a simple example, in which the store-data operation (stwd) forwards to a subsequent

load (load) into R3. It would be possible to use the data operand of the store operation instead of

stwa R1 16 -> R1

stwd R2 R1 ->[]

subl R8 22 -> R8

mult R9 99 -> R9

load R1 00 -> R3

addl R5 R4 -> R5

FIGURE 4-2. Store-to-Load Forwarding
represented in SSR.

72
the destination operand for the same purpose, provided non-speculative successors are handled,

but leveraging the store’s data operand register is more intuitive.

Cores implementing NoSQ inherit the disadvantages of the original NoSQ proposal. In partic-

ular, loads that forward from multiple prior stores cannot be represented within the framework of

a single register dependence (though stores that forward to several subsequent loads in predicted

program order can be represented by a linked list of successor operations). Furthermore, stores

that only partially overlap later loads cannot be adequately represented. All unhandled cases man-

ifest as pipeline squashes, as these cases are naturally detected by vulnerability filtering [139] and

replay.

4.3 Performance Implications of SSR

SSR serializes instructions that consume the same dynamic value. Prior work has shown that

values with multiple successors are uncommon [136, 144]. I have performed a similar analysis on

the workloads used in this thesis, and arrived at a similar conclusion: most dynamic values

(approximately 80%) have one or zero nearby successors (e.g., within 500 committed dynamic

instructions). Despite the relative rarity of multi-successor values, there is nonetheless a perfor-

mance loss incurred due to serialized wakeup, to a degree that varies by workload. For instance,

integer benchmark bzip2 includes an inner loop with a high-fanout value, which degrades per-

formance of SSR scheduling (shown in Section 4.3.1).

However, SSR-based cores can leverage the scalability of explicit successor representations—in

particular, because SSR-based cores are free of broadcast, there are fewer inherent constraints on

the size of the core’s scheduler than in a CAM-limited microarchitecture. Large instruction sched-

ulers are important because they expose lookahead—the ability to examine an instruction stream

73
and identify independent instructions for concurrent, out-of-order execution, thereby improving

core performance.

4.3.1 Quantitative Evaluation

In order to fully understand the inherent overheads of SSR, I augment of two conventional

architectures with SSR—a conventional out-of-order core, similar to the Alpha 21364 [88, 41] and

an RUU-based [154, 153] design (nominally OoO and RUU, respectively, from Chapter 3).

Changes to implement SSR are idealized, such that only the scheduling window is affected. In

order to minimize the microarchitectural changes (to isolate, to the extent possible, the effect of

SSR from other side effects from microarchitectural changes), no other areas of the design are

changed.

An SSR-based scheduler has two effects on the baseline core designs:

• The principal motivator behind SSR is to enable a scalable representation of scheduling infor-

mation. SSR-equipped cores’ schedulers span the entire instruction window, enabling

improved performance through lookahead. The value of increased lookahead will vary by

workload, depending on how much instruction-level parallelism is available.

• SSR serializes wakeup of successors for a given value. Serialized wakeup reduces performance,

to a degree that varies by workload—codes exhibiting larger degrees of value re-use will expe-

rience greater performance degradation from serialized wakeup than codes with little re-use.

74

TABLE 4-1. Summary of Configurations for SSR Evaluation.

Configuration Description

RUU

Idealized RUU-based [154] microarchitecture. Renamed, fully-provisioned phys-

ical register file, 4-wide, no scheduling delays, full-window broadcast-based

scheduler. Loose performance upper-bound for a given window size.

OoO

Alpha-style out-of-order microarchitecture. Renamed fully-provisioned physical

file, 4-wide, broadcast-based unified scheduler size is one quarter the size of the

ROB (ROB and scheduler size varied by experiment).

RUU+SSR

RUU, using an SSR-based scheduling representation instead of broadcast.

RUU+SSR suffers sequential wakeup hazards as a consequence of SSR-based

dependence representation, but has no resource constraints.

OoO+SSR

OoO, replacing the broadcast-based scheduler with a larger, full-window SSR

scheduler. OoO+SSR has greater lookahead than OoO, but must wake multiple

successors one per cycle. Subject to the same resource constraints as OoO: finite

bandwidth, realistic forwarding, etc.

FIGURE 4-3. Normalized runtime, SPEC INT 2006, 128-entry instruction windows.

0.0

0.5

1.0

1.5

N
or

m
. R

un
tim

e

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

as
tar

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

bz
ip2

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

gc
c

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

go
bm

k

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

h2
64

ref

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

hm
mer

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

lib
qu

an
tum

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

mcf

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

om
ne

tpp

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

pe
rlb

en
ch

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

sje
ng

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

xa
lan

cb
mk

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

75

SSR-based scheduling is practical if the performance gained by the increase in scheduling loo-

kahead exceeds the performance lost due to serialized wakeup. This tradeoff motivates the base-

line architectures used in this study. OoO, augmented with SSR (OoO+SSR), is able to reap the

benefit of increased scheduler size, but also suffers from a minor performance degradation due to

serialized wakeup. A comparison between OoO and OoO+SSR demonstrates the practical perfor-

mance advantage of SSR. The performance lost due to serial wakeup is obvious from a comparison

between OoO+SSR and RUU—RUU’s scheduler is sized identically, but has no serial wakeup.

Because RUU and OoO differ in their degrees of idealization, especially in the organization of the

functional pipelines, the RUU+SSR configuration represents an optimistic design without most of

the resource constraints that might be expected in an actual implementation (e.g., OoO imple-

ments realistic issue arbitration, branch resolution, etc.). Table 4-1 summarizes the configurations

used in this evaluation.

FIGURE 4-4. Normalized runtime, SPEC INT 2006, 256-entry instruction windows.

0.0

0.5

1.0

1.5

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

as
tar

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bz
ip2

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gc
c

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

go
bm

k

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

h2
64

ref

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

hm
mer

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lib
qu

an
tum

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

mcf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

om
ne

tpp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

pe
rlb

en
ch

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sje
ng

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

xa
lan

cb
mk

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

76

Figure 4-3 plots runtime of these four microarchitectures, normalized to that of RUU for SPEC

INT 2006 with 128-entry instruction windows. Figures 4-4, 4-5, and 4-6, plot normalized runtime

for the same experiment with 256-entry, 512-entry, and 1024-entry windows, respectively. OoO

does not appear on plots for window sizes greater than 128, as the scheduler does not easily scale

to those sizes with realistic timing assumptions. However, the key performance arguments are sup-

ported by data in the 128-entry window case (Figure 4-3). As expected, RUU tends to exhibit the

best overall performance—it has the largest scheduling window, and suffers no wakeup latency

penalties. OoO usually performs noticeable worse than RUU—though it also implements a fast

wakeup, its lookahead is limited by a 32-entry scheduler. In most cases, substituting a full-window

SSR-based scheduler into the OoO microarchitecture (i.e., OoO+SSR) yields a performance

improvement, bringing OoO+SSR’s performance closer to that of the idealized RUU. The perfor-

mance difference between OoO+SSR and RUU+SSR arises in the assumptions of the RUU model—

FIGURE 4-5. Normalized runtime, SPEC INT 2006, 512-entry instruction windows.

0.0

0.5

1.0

1.5

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

as
tar

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bz
ip2

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gc
c

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

go
bm

k

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

h2
64

ref

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

hm
mer

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lib
qu

an
tum

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

mcf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

om
ne

tpp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

pe
rlb

en
ch

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sje
ng

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

xa
lan

cb
mk

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

77

RUU idealizes several areas of the microarchitecture, e.g., branch resolution, register file access,

etc.—and from fundamental differences in microarchitectural organization (e.g., RUU’s ARF ver-

sus OoO’s PRF).

OoO+SSR degrades performance with respect to OoO in only two benchmarks from the SPEC

INT 2006 suite: bzip2 and hmmer. In the first case (bzip2), the data suggests the performance

improvement derived from increased lookahead does not exceed the performance degradation of

serialized wakeup—e.g., even RUU+SSR shows substantial performance degradation. In the sec-

ond case, hmmer, is somewhat anomalous in this benchmark suite as the execution is write-band-

width-limited, rather than window-limited. hmmer exhibits one of the highest IPCs of any

examined workload (architectural IPC for hmmer on RUU is approximately 2.6—IPC including

micro-operations is higher still). Most operations write an output register, which in turn saturates

the write bandwidth of OoO’s physical register file.

FIGURE 4-6. Normalized runtime, SPEC INT 2006, 1024-entry instruction windows.

0.0

0.5

1.0

1.5

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

as
tar

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bz
ip2

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gc
c

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

go
bm

k

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

h2
64

ref

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

hm
mer

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lib
qu

an
tum

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

mcf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

om
ne

tpp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

pe
rlb

en
ch

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sje
ng

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

xa
lan

cb
mk

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

78

At least some of bzip2’s performance problems arise because of repeated use of the same

architectural register, leading to a long chain of pointers and resulting in serialized wakeup. A

repeated register is specifically desirable in some microarchitectures, including the UltraSPARC-

III+, for which the compiler was optimizing when the SPEC INT benchmarks were compiled. In

light of this, I briefly consider three microbenchmarks, evaluating possible compile-time optimi-

zations to attack this problem in an SSR-based core. Figure 4-7 presents their assembly-level oper-

ations for these microbenchmarks. In the first case, long, a load operation produces register %g1,

and ten intervening and operations consume %g1 before %g1 is used in the next address calcula-

tion. This leads to a long pointer chain dynamically on %g1 in an SSR-based core.

Figure 4-7 also presents two software-level optimizations to this problem. The first, split,

requires no software knowledge other than the detection of the long pointer chain. split simply

reproduces another explicit instance of the same value in a different register, %l3 (by inserting the

FIGURE 4-7. (a) Long-dependence chain microbenchmark long, (b) a simple compiler
optimization split, breaking the chain into two chains of half length (%l3 and %g1), and
(c) a better optimization repeating the ld operation to reduce the length of the critical %g1
chain, crit..

L1:
ld [%i0+%i5], %g1
and %g1, %g0, %l2
and %g1, %g0, %l2
...10 ands total
add %g1, %i5, %i5
cmp %i5, %i1
bl L1

(a) long

L1:
ld [%i0+%i5], %g1
xor %g1, %g0, %l3
and %l3, %g0, %l2
and %g1, %g0, %l2
and %l3, %g0, %l2
and %g1, %g0, %l2
...10 ands total
add %g1, %i5, %i5
cmp %i5, %i1
bl L1

(b) split

L1:
ld [%i0+%i5], %g1
ld [%i0+%i5], %l3
and %l3, %g0, %l2
and %l3, %g0, %l2
...10 ands total
add %g1, %i5, %i5
cmp %i5, %i1
bl L1

(c) crit

79

xor), and reassigns half of the successors of %g1 to read %l3 instead. With very little effort, this

roughly halves the length of the value chain, by splitting it into two parallel paths.

More sophisticated analysis could reveal that the next address calculation, the add, is critical

to overall performance, and choose to specifically optimize that execution path. The crit micro-

benchmark emulates this optimization, by repeating the ld operation with two different output

registers. One output register is used only for the critical path (i.e., the add successor), and the

other register is used for all non-critical successors (i.e., the ands).

Figure 4-8 plots the runtime of each microbenchmark, normalized to that of RUU running

long. RUU always performs best, and crit improves RUU’s performance, by increasing the like-

lihood that the critical path will execute first. The split optimization hurts the performance of

both OoO and RUU slightly by inserting an extra instruction, but reduces the runtime of SSR-

based cores. crit further reduces SSR runtime, by prioritizing the critical path with its own

exclusive pointer chain.

FIGURE 4-8. Runtime of long, split, and crit, normalized to that of RUU on
long.

80

FIGURE 4-9. Normalized runtime, SPEC FP 2006, 128-entry instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

bw
av

es

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ca
ctu

s

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ca
lcu

lix

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

de
alI

I

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ga
mes

s

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ge
ms

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

gr
om

ac
s

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

lbm

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

les
lie

3d
R

U
U

O
oO

O
oO

+
SS

R
R

U
U

+
SS

R
milc

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

na
md

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

po
vr

ay

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

so
ple

x

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

sp
hin

x3

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ton
to

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

wrf

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

mp

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

FIGURE 4-10. Normalized runtime, SPEC FP 2006, 256-entry instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bw
av

es

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
ctu

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
lcu

lix

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

de
alI

I

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ga
mes

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ge
ms

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gr
om

ac
s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lbm

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

les
lie

3d

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

milc

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

na
md

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

po
vr

ay

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

so
ple

x

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sp
hin

x3

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ton
to

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

wrf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

mp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

81

FIGURE 4-11. Normalized runtime, SPEC FP 2006, 512-entry instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bw
av

es

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
ctu

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
lcu

lix

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

de
alI

I

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ga
mes

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ge
ms

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gr
om

ac
s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lbm

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

les
lie

3d
R

U
U

O
oO

+
SS

R
R

U
U

+
SS

R
milc

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

na
md

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

po
vr

ay

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

so
ple

x

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sp
hin

x3

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ton
to

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

wrf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

mp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

FIGURE 4-12. Normalized runtime, SPEC FP 2006, 1024-entry instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

bw
av

es

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
ctu

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ca
lcu

lix

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

de
alI

I

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ga
mes

s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ge
ms

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

gr
om

ac
s

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

lbm

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

les
lie

3d

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

milc

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

na
md

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

po
vr

ay

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

so
ple

x

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

sp
hin

x3

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ton
to

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

wrf

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

mp

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

82

The remaining graphs for SPEC INT show similar trends to those observed in the 128-entry

case. However, as the window size scales, the performance degradation from serialized wakeup

shrinks. This is an intuitive result: because most operations have few successors, larger windows

should not necessarily imply longer dependence chains. The trend of RUU+SSR to remain close to

the performance of RUU supports this claim.

Data from SPEC FP 2006 (Figures 4-9, 4-10, 4-11, and 4-12) shows similar general trends to

those of SPEC INT 2006. However, two anomalous cases are present in the 128-entry window

experiments: gromacs and lbm (Figure 4-9). For these two benchmarks, the OoO core slightly

outperforms the RUU core. Though unusual, this small performance gap is not impossible. The

RUU model assumes a small number of buffers are available at the head of each functional pipe-

line. Wakeup occurs in RUU when new results are available, and selection stalls only when these

FIGURE 4-13. Normalized runtime,
Commercial Workloads, 128-entry
instruction windows.

FIGURE 4-14. Normalized runtime,
Commercial Workloads, 256-entry
instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ap
ac

he
-1

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

jbb
-1

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

olt
p-

1

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

-1

R
U

U
O

oO
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ap
ac

he
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

jbb
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

olt
p-

1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

83

buffers are full. The implementation of pipelined wakeup in RUU is prescient, in that it is assumed

wakeup and selection has oracular knowledge of instruction completion events (the mechanisms

to queue instructions at functional units introduces variable delay on otherwise fixed-duration

operations). However, OoO uses no such idealization. OoO instead implements issue arbitration

concurrent to selection: Instructions do not pass selection and leave the scheduler until issue arbi-

tration is successful (i.e., there are no queues associated with functional pipelines—variable queu-

ing delay would significantly complicate pipelined wakeup in the OoO design). Under most

workloads, this more-realistic set of assumptions degrades performance slightly, as scheduler

space is usually a precious resource. However, for benchmarks that are not scheduler-bound, e.g.,

gromacs from SPEC FP 2006, selection inhibition can lead to better overall scheduling, by queu-

ing instructions in the scheduler. Functional units are assumed to be pipelined and unordered (i.e.,

FIGURE 4-15. Normalized runtime,
Commercial Workloads, 512-entry
instruction windows.

FIGURE 4-16. Normalized runtime,
Commercial Workloads, 1024-entry
instruction windows.

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ap
ac

he
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

jbb
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

olt
p-

1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

0.0

0.5

1.0

N
or

m
. R

un
tim

e

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ap
ac

he
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

jbb
-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

olt
p-

1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

ze
us

-1

R
U

U
O

oO
+

SS
R

R
U

U
+

SS
R

GM
ea

n

84
instructions of shorter latency can pass instructions of longer latency, if they use different physical

resources). However, pipelines are subject to resource hazards, which make some schedules

implicitly more efficient than others. In OoO, the scheduler acts as a global queue for all functional

units, whereas RUU effectively employs one queue for each functional unit. Use of a single instruc-

tion queue allows OoO to occasionally exceed RUU’s performance due to OoO’s ability to dynami-

cally generate instruction schedulers closer to optimal. However, this performance boon only

appears on workloads that are not highly sensitive to scheduling space.

Lastly, for completeness, Figures 4-13 through 4-16 plot the same experiment for the Wiscon-

sin Commercial Workload Suite. The noteworthy result from this data is that previous observa-

tions from SPEC CPU 2006 also hold for these commercial workloads.

In closing, the results above show that, for most workloads, the potential performance advan-

tage of a large, SSR-based scheduler outweighs the performance loss incurred due to serialized

wakeup of multi-successor operations, at least when considering idealized implementations of

SSR-based scheduling. Chapter 5 will consider the design of a complete SSR-based core, Forward-

flow, without idealization, in order to ascertain the effects of realistic resource constraints in con-

junction with the performance characteristics of SSR.

85

Chapter 5

Forwardflow Core Microarchitecture

This chapter details the design of the Forwardflow Core Microarchitecture, and evaluates the

performance of Forwardflow compared to several other core microarchitectures. This discussion

provides the details of the microarchitecture underlying the scalable core implementation lever-

aged in Chapter 6, in a static setting, independent of the effects of scaling mechanisms and poli-

cies.

The quantitative evaluation of the Forwardflow design is fairly lengthy. I conclude this chapter

briefly in Section 5.4.6, for clarity and conciseness. I then present all available data in a final sec-

tion of the chapter, merely for completeness. Most readers will be satisfied with the discussion pre-

ceding the final section of this chapter.

5.1 Core Design Goals

The evolution of superscalar processing led to many studies on the available parallelism within

instruction streams, arising from instruction-level parallelism (ILP) (e.g., [178, 90, 151, 166]).

These studies have shown, albeit with some exceptions, that average ILP tends to be fairly low—

“rarely exceed(ing) 3 or 4” (David Wall) [178]. Wall further observes that “...the payoff of high peak

parallelism is low if the average is still small” (emphasis added). Low average ILP, despite occa-

sional high peak ILP, argues that there is a practical limit to the useful width of a processing pipe-

line, and that architects will see diminishing returns from very wide pipelines for all but a handful

86
of workloads. This follows intuitively from the Forced Flow Law [96] as applied to the processor

pipeline: if instructions can only retire from a pipeline at a fixed rate (the ILP limit), widening the

intermediate pipeline stages (e.g., the issue width) will not change average instruction commit rate.

In other words, for many workloads, peak issue rate is not a bottleneck in a superscalar core.

Instead, architects should focus on improving average ILP.

One approach to this goal seeks to reduce the likelihood that a processor will stall, waiting for

latency memory operations. Large-window exemplify this approach, by focussing not peak issue

width but on locating ILP in the first place, by increasing lookahead. A core’s lookahead deter-

mines the number of instructions the core examines concurrently to identify those suitable for

parallel execution [37]. Increasing lookahead improves average ILP by looking farther into the

future instruction stream to find independent work.

The pursuit of increased lookahead eventually led to designs optimized for exposing memory-

level parallelism (MLP), the concurrent servicing of long-latency load misses. Proposals like

Runahead Execution [46, 122] and Continual Flow Pipelines [156] exploit MLP by discarding or

deferring dependent instructions in pursuit of independent work (even to the detriment of peak

ILP, e.g., with instruction deferral or extra pipeline squashes), in order to better amortize the cost

of long-latency misses.

The principal goal of the Forwardflow Core Microarchitecture is to achieve the memory loo-

kahead of Runahead-like and CFP-like designs, without sacrificing the ILP capabilities of conven-

tional large-window machines. To do so, the design must be capable of examining many

instructions concurrently for execution (to find ILP and MLP), and must be able to issue instruc-

tions at fine granularity (i.e., instructions should wake and issue quickly, once their dependences

87
are resolved). However, the ability to deliver very high peak (or sustained) ILP is an explicit non-

goal. Instead, this work seeks further performance gains through increased lookahead, without

seeking to improve pipeline width.

Secondary to the goal of improved performance, Forwardflow cores must be more energy-effi-

cient than traditional microarchitectures, to motivate the additional costs of aggressive cores.

Power constraints now dominate chip design, and consequently, new core designs for CMPs must

employ energy-efficient microarchitectural structures. A key guiding principle of this work was to

avoid associative structures and wasteful broadcasts whenever possible—in part made possible by

leveraging SSR—and in part made possible with disaggregated and modular instruction window

design.

5.2 Forwardflow Overview

Chapter 4 detailed Serialized Successor Representation (SSR), an explicit successor representa-

tion enabling the construction of cores with both large windows and simple execution manage-

ment logic. The Forwardflow Core Microarchitecture is one such implementation of an SSR-based

core, which focuses on the core design goals outlined above (Section 5.1). Notably, Forwardflow’s

microarchitecture emphasizes the principles of locality, by avoiding centralized structures in the

execution management logic. Forwardflow requires no centralized register file, no LSQ, and no

global bypassing networks.

As an SSR-based core, dependences in Forwardflow are represented as linked lists of forward

pointers [132, 136, 176], instead of using physical register identifiers to label values. These point-

ers, along with values for each operand, are stored in the Dataflow Queue (DQ), shown in Figure

5-1, which takes the place of the traditional scheduler and centralized physical register file. Instead

88

of broadcasting physical register tags, DQ update hardware chases pointers to implement instruc-

tion wakeup (an example is provided in Figure 5-7 on page 97). Though most dependence lists are

short, serializing wakeup causes some slowdown. However, the use of pointers throughout the

design enables a large, multi-banked DQ implementation, in which independent lists are chased

concurrently.

At the highest level, the Forwardflow pipeline (Figure 5-1) is not unlike traditional out-of-

order microarchitectures. The Fetch stage fetches instructions on a predicted execution path, and

Decode detects and handles potential data dependences, analogous to traditional renaming. Dis-

patch inserts instructions into the Dataflow Queue (DQ) and instructions issue when their oper-

ands become available. When instructions complete, scheduling logic wakes and selects dependent

instructions for execution. Instructions commit in-order from the DQ.

Since the DQ is built entirely of small SRAMs, it can scale to much larger aggregate sizes than a

traditional instruction scheduler, yet is accessed at finer granularity than a ROB. Each entry in the

DQ requires an estimated bits of storage. This encompasses up to three 64-bit

data values, pointers to represent dependences, and control bits.

DQ

Decode

L1-I

Fetch

RCTRCTRCT

B
Pr

ed
UUUUCtrl

Issue Execute CommitDispatch

FIGURE 5-1. Pipeline diagram of the Forwardflow architecture. Forwardflow-specific
structures are shaded.

ARF

200 3 N2 DQEntrieslog⋅+

89

5.3 Forwardflow Detailed Operation

In this section, I discuss the operation of each stage of the Forwardflow pipeline in detail. The

Forwardflow microarchitecture differs from a canonical out-of-order microarchitecture (e.g., Sec-

tion 2.2.1) in many ways. Though the discussion herein generally refers to pipeline stages by their

function, e.g., “Decode” or “Execute”, these operations themselves are, in general, pipelined. The

discussion here discusses the operations performed in each stage, without detailing how these

operations are decomposed into individual clock cycles.

The Dataflow Queue (DQ), is the heart of the

Forwardflow architecture, and is illustrated

in Figure 5-2. It is involved in instruction dis-

patch, issue, completion, and commit. The

DQ is essentially a CAM-free Register Update Unit [154], in that it schedules and orders instruc-

tions, but also maintains operand values. Each entry in the DQ holds an instruction’s metadata

(e.g., opcode, ALU control signals, destination architectural register name), three data values, and

three forward pointers, representing up to two source operands and one destination operand per

instruction. Value and pointer fields have empty/full and valid bits, respectively, to indicate

whether they contain valid information. Dispatching an instruction allocates a DQ entry, but

updates the pointer fields of previously dispatched instructions. Specifically, an instruction’s DQ

insertion will update zero, one, or two pointers belonging to earlier instructions in the DQ to

establish correct forward dependences.

Much of this discussion focuses on the detailed operation of the DQ, as it is the most promi-

nent component in the Forwardflow design. Importantly, the DQ is disaggregated—decomposed

��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������
����������������
	�
��������������
�����������������

FIGURE 5-2. Dataflow Queue Example.

90
into multiple, banked SRAMs, coupled with nearby functional datapaths, and organized into dis-

crete units, called bank groups. Bank groups each implement a contiguous subsection of DQ space.

Pipeline width is determined by the throughput of an individual bank group. Aggregate window size

is a function of the number of bank groups.

Disaggregated design optimizes local operations, and bounds access time of the SRAMs con-

stituting the DQ as a whole. Bank groups operate collectively during dispatch, wakeup, and com-

mit operations. Each bank group corresponds to a different adjacent subset of DQ space (i.e., high-

order bits of the DQ entry number determine the corresponding bank group). Within a group, DQ

space is divided in an interleaved fashion among individual DQ banks. The details underlying this

design is more fully discussed in Section 5.3.7.

5.3.1 Decode to SSR

In a Forwardflow core, the fetch pipeline (i.e., Fetch in Figure 5-1) operates no differently than

that of other high-performance microarchitectures. Decode produces all information needed for

Dispatch, which inserts the instruction into the DQ and updates the forward pointer chains. The

decode process must determine to which pointer chains, if any, each instruction belongs. It does

this using the Register Consumer Table (RCT), which tracks the tails of all active pointer chains in

the DQ. Indexed by the architectural register name, the RCT resembles a traditional rename table

except that it records the most-recent instruction (and operand slot) to reference a given architec-

tural register. Each instruction that writes a register begins a new value chain, but instructions that

read registers also update the RCT to maintain the forward pointer chain for subsequent succes-

sors. The RCT also identifies registers last written by a committed instruction, and thus which val-

ues can be read at the conclusion of the decode pipeline from the Architectural Register File

91
(ARF). Values read from the ARF are written into the DQ’s value arrays during dispatch. A com-

plete example of the RCT’s operation, as well as that of the dispatch logic, is provided in Section

5.3.2.

The RCT is implemented as an SRAM-based table. Since the port requirements of the RCT are

significant, it must be implemented aggressively and with some internal duplication of its data

arrays. Fortunately, the RCT itself is small: each entry requires only bits. Fur-

thermore, the RCT is checkpointed in its entirety on each branch prediction, for later possible

FIGURE 5-3. Floorplan of a four-wide Forwardflow frontend in 32nm.

RCT & Checkpoints

Architectural Register File

I-TLB

L1-I
Cache

2 N2 DQEntrieslog⋅ 4+

92
recovery (details in Section 5.3.5). These checkpoints account for most of the area of a Forward-

flow frontend, as evident from the plot in Figure 5-3. Together with the L1-I cache, RCTs, the ARF,

and decode logic, the total area of a Forwardflow frontend is approximately 4 mm2 in 32nm tech-

nology.

5.3.2 Dispatch

The dispatch process in Forwardflow differs from a conventional microarchitecture in several

ways. Notably, large DQ designs are physically disaggregated—the dispatch logic must be aware of

the physical characteristics of the DQ and operate accordingly. Figure 5-5 (on page 94) exemplifies

a disaggregated DQ design, consisting of two bank groups, each in turn consisting of four DQ

banks and associated control circuitry. For simplicity, I begin this discussion with a high-level

description of the logical dispatch operation, followed by the details needed to implement dispatch

in a disaggregated DQ.

Logical Behavior. To implement dispatch, Forwardflow’s dispatch logic performs two basic

operations:

•DQ Entry Allocation: Dispatching instructions write instruction metadata and available oper-

and values into their assigned DQ entry. During this process, valid bits on pointer arrays are

cleared, empty/full bits on value arrays are set or cleared as appropriate. The DQ tail pointer is

updated to reflect the number of instructions that dispatch in a given cycle.

•Dependence Annotation: Dispatching instructions with register dependences require writes to

the DQ’s pointer arrays. Specifically, the contents of the RCT identify immediate predecessor

instructions for each source register operand belonging to each dispatching instruction (i.e.,

93
DQ pointer fields of up to two prior

instructions in the predicted instruction

stream).

Figure 5-4 exemplifies the logical behavior

of the dispatch process for a simple code

sequence, highlighting both the common case

of a single successor (the R4 chain) and the

uncommon case of multiple successors (the R3

chain). Fields read are bordered with thick

lines; fields written are shaded. The bottom

symbol (⊥) is used to indicate NULL pointers

(i.e., cleared pointer valid bits) and cleared

empty/full bits.

In the example, Decode determines that

the ld instruction is ready to issue at Dispatch

because both source operands are available

(R1’s value, 88, is available in the ARF, since its

busy bit in the RCT is zero, and the immediate

operand, 44, is extracted from the instruc-

tion). Decode updates the RCT to indicate that

ld produces R3 (but does not add the ld to

R1’s value chain, as R1 remains available in the

��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����
����
����

���
����

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������
����������������������� �����
	�
��������������������� �����
���������������		 !��"��#��

��� ���� ���	

�
�
�
�

������

������	�
�
�������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����
����
����

���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������
����������������������� �����

��������������� !��"��#��
�����������������

��� ���� ���	

�
�
�
�

������

������

���������
�������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

���
����
����

���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������
��������������� !��"��#��
	�
��������������
�����������������

��������	
����
��� ���� ���	

�
�
�
�

������

������

������

��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

��

���
���

����
���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ !��"��#��$���������
����������������
	�
��������������
�����������������

FIGURE 5-4. Dispatch Example.

94

ARF). Dispatch reads the ARF to obtain R1’s value, writes both operands into the DQ, and issues

the ld immediately. When the add is decoded, it consults the RCT and finds that R3’s previous

use was as the ld’s destination field, and thus Dispatch updates the pointer from ld’s destination

to the add’s first source operand. Like the ld, the add’s immediate operand (55) is written into

the DQ at dispatch. Dispatching the add also reads the ld’s result empty/full bit. Had the ld’s

value been present in the DQ, the dispatch of the add would stall while reading the value array.

The mult’s decode consults the RCT, and discovers that both operands, R3 and R4, are not

yet available and were last referenced by the add’s source 1 operand and the add’s destination

operand, respectively. Dispatch of the mult therefore checks for available results in both the add’s

source 1 value array and destination value array, and appends the mult to R3’s and R4’s pointer

chains. Finally, like the add, the sub appends itself to the R3 pointer chain, and writes its dis-

patch-time ready operand (66) into the DQ.

Disaggregated DQ Implementation. DQ entry allocation and dependence annotation place

distinct requirements on the underlying hardware. DQ allocation is contiguous and requires sub-

stantial bandwidth. In particular, instruction metadata (approximately 12 bits) and operand values

(64 bits per value) must be transferred from the dispatch logic to the destination bank group via a

CTL

DQ B0

CTL

DQ B1

CTL

DQ B2

CTL

DQ B3

CTL

DQ B4

CTL

DQ B5

CTL

DQ B6

CTL

DQ B7

FIGURE 5-5. Two-group (eight-bank) conceptual DQ floorplan.

Bank Group 0 Bank Group 1

95
dispatch bus. To optimize dependence annotation (described below), the bus also carries

bits describing inter-instruction register dependences. A four-wide

dispatch pipeline for a 1024-entry DQ requires a dispatch bus width of 684 bits, accounting for sig-

nals to indicate operand validity and actual dispatch count. A comparable conventional design’s

pipeline width is approximately 704 bits, at the same point.

For simplicity, dispatch hardware will operate on only one bank group in a given cycle. The

group active for dispatch can be signalled with a group dispatch enable line. Figure 5-6 illustrates

the dispatch bus, routed to each bank group. The bus is driven only by the dispatch logic and is

ignored by bank groups for which the group dispatch enable line is not asserted.

The other function of the dispatch logic, dependence annotation, requires pointer-write oper-

ations to predecessor instructions in the DQ to establish forward dependence pointers. Com-

monly, instructions dispatch to the same bank group as their most recent predecessor (in fact, very

often dependant instructions dispatch concurrently). These dependences are communicated to

the dispatching DQ bank group though additional signalling on the dispatch bus via pointer pairs,

enumerating predecessors and their successor operands. However, in the general case, instructions

2 Width N2 DQEntrieslog 2+()⋅ ⋅

G0_EN
G1_EN

G2_EN
G3_EN

DISPATCH_BUS

FIGURE 5-6. Dispatch Bus over Four Bank Groups.

96
may depend on any prior instruction in the DQ, not only those instructions previously dispatched

to the bank group. To facilitate dependence annotation between instructions in separate groups,

the dispatch logic encodes an explicit pointer write message onto the Forwardflow operand net-

work. This message traverses the inter-bank-group operand network in a manner similar to that of

a wakeup message (Section 5.3.8).

Upon receipt of a pointer-write message, update hardware actually performs the write of the

DQ pointer array. Whenever a pointer field is written, the owning bank group forwards the value

of the local operand, if the value array’s empty/full bit is set. This facilitates forwarding of values

from already-completed instructions to newly dispatched operations. The forwarding operation

proceeds independently of DQ entry allocation, allowing both operations to execute concurrently

and without ordering constraints.

5.3.3 Pipelined Wakeup

Once an instruction has been dispatched into the DQ, the instruction waits until its unavail-

able source operands are delivered by the execution management logic. Each instruction’s DQ

entry number (i.e., its address in the RAM) accompanies the instruction though the execution

pipeline. When an instruction nears completion, pointer chasing hardware reads the instruction’s

destination value pointer. This pointer defines the value chain for the result value, and, in a distrib-

uted manner, locations of all successors through transitive pointer chasing. The complete traversal

of a chain is a multi-cycle operation, and successors beyond the first will wakeup (and potentially

issue) with delay linearly proportional to their position in the successor chain.

The wakeup process is illustrated in Figure 5-7. Upon completion of the ld, the memory value

(99) is written into the DQ, and the ld’s destination pointer is followed to the first successor, the

97
add. Whenever a pointer is followed to a new

DQ entry, available source operands and

instruction metadata are read speculatively,

anticipating that the arriving value will enable

the current instruction to issue (a common

case [95]). Thus, in the next cycle, the add’s

metadata and source 2 value are read, and,

coupled with the arriving value of 99, the

add may now be issued. Concurrently, the

update hardware reads the add’s source 1

pointer, discovering the mult as the next suc-

cessor.

As with the add, the mult’s metadata,

other source operand, and next pointer field

are read. In this case, the source 1 operand is

unavailable, and the mult will issue at a later

time (when the add’s destination pointer

chain is traversed). Finally, following the

mult’s source 2 pointer to the sub delivers

99 to the sub’s first operand, enabling the

sub to issue. At this point, a NULL pointer is

discovered at the sub instruction, indicating

the end of the value chain.

��� ���� ���	

�
�
�
�

����������
�����	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������� %��"�&�'����
	�
��������������������� �����
������������������������ �����

��
����

�
�

�����

���!(�������

��� ���� ���	

�
�
�
�

����������
������	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������������������������

��������������� %��"�)���*��'����+
������������������������ �����

��
����

�
�

��� ���� ���	

�
�
�
�

�����������
������	�
�

��������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
��������������������������������
	�
��������������������� �����
���������������		 %��"�&�'����

��
����

�
�

�����

����!(����,��

FIGURE 5-7. Wakeup Example.

��������	
����
��� ���� ���	

�
�
�
�

����������
�����	�
�

�������
��������
�

�

�����

�

�����

�

�����

��	
���
����

��
�

����

������������������ ��������
����������������������� �����
	�
��������������������� �����
������������������������ �����

��
����

�
�

������	��

98
Risk of Deadlock. As stated above, the pointer chasing hardware is responsible for issuing

instructions to functional units during traversal. Should a particular instruction be unable to issue

because of a structural hazard (i.e., all functional units are busy), the pointer chase must stall until

the instruction can issue normally. Nominally, this condition is only a minor performance over-

head. Rarely, a second structural hazard can arise when a pointer chain that would normally begin

its chase requires the use of stalled pointer-chasing control circuitry. This forms a circular depen-

dence, as the functional unit cannot accept a new operation (i.e., the current result must first be

collected from the functional unit) and the pointer-chasing hardware must stall until it can issue

the current instruction, resulting in deadlock. The intersection of these two control hazards is rare,

and can be made rarer still by modest of buffering instructions or results at functional pipelines (in

practice, 14-entry buffers prevent all deadlocks). Should deadlock still arise, the circular depen-

dence is easily detected (i.e., a local functional unit is stalled and the update hardware is stalled),

and can be resolved with a pipeline flush. Ordering properties of functional units guarantee for-

ward progress of at least one instruction after a pipeline squash.

Banking the DQ. Wakeup logic is associated with each bank of the DQ. Briefly, the DQ is sub-

banked on low-order bits of the DQ entry number to support concurrent access to contiguous ele-

ments. Sub-banking delivers ample bandwidth to dispatch and commit logic—which access the

DQ contiguously—without adding additional ports. Each field of the DQ is implemented as a sep-

arate SRAM (e.g., value fields are separate from each pointer field, etc.), to enable greater concur-

rency in the DQ management logic.

Each bank of the DQ is serviced by an independent instance of the pointer chasing hardware

shown in Figure 5-8, consisting of a next pointer register, a current value register, a pending

99
queue of pointer/value pairs, and buffered ports to the interconnect between the banks of the DQ.

The behavior of the wakeup logic is described in the accompanying algorithm, which runs every

cycle. Since DQ entry numbers accompany instructions through functional pipelines, pointers to

destination fields can be inferred as instructions complete execution.

During a given cycle, the update hardware

for a particular bank will attempt to follow

exactly one pointer. If no pointer is available

(line 8), the DQ is not accessed by the update

hardware, thereby conserving power. Other-

wise, if next designates a non-destination

field (i.e., one of the two source operands of a

successor operation), the remaining source

operand (if present) and instruction opcode

are read from the DQ, and the instruction is

passed to issue arbitration (line 15). If arbitra-

tion for issue fails, the update hardware stalls

on the current next pointer and will issue

again on the following cycle.

The update hardware writes the arriving

value into the DQ (line 18) and reads the

pointer at next (line 19), following the list to the next successor. If the pointer designates a DQ

entry assigned to a different bank, the pair <next,value> is placed in the bank transfer queue

FIGURE 5-8. Pointer Chasing Hardware and
Algorithm.

pt
r

va
l

pt
r

va
l

pt
r

va
l

ptr
val

ptr
val

next

value Pending Queue

Bank Transfer Queue

To
/F

ro
m

 D
Q

1 // Handle pending queue
2 if next == NULL:
3 next = in.ptr
4 value = in.val
5 in.pop()
6
7 if next == NULL:
8 return // No work to do
9
10 // Try to issue, if possible
11 if type(next) != Dest &&
12 dq[next].otherval.isPresent:
13 val2 = dq[next].otherval
14 opcode = dq[next].meta
15 if !Issue(opcode, val, val2):
16 return // Stall
17
18 dq[next].val = value
19 next = dq[next].ptr
20
21 // Handle DQ bank transfer
22 if bank(next) != bank(this):
23 out.push(next,value)
24 next = NULL

100
(line 23). This queue empties into an intra-bank-group crossbar, from which pointer/value pairs

are routed to other banks, or to the inter-bank-group router, if necessary.

5.3.4 Commit Pipeline

Forwardflow implements a pipelined commit operation, in order to resolve writeback races to

the ARF and implement speculative disambiguation (the latter is described in Section 5.3.6).

After instructions have been executed (i.e., when the empty/full bit on the destination oper-

and’s field has been set), instructions are removed from the head of the DQ and committed in pro-

gram order. Commit logic removes the head instruction from the DQ by updating the DQ’s head

pointer and writes to the ARF where applicable. If the RCT’s last writer field matches the commit-

ting DQ entry, the RCT’s busy bit is cleared and subsequent successors may read the value directly

from the ARF. The commit logic is not on the critical path of instruction execution, and the write

to the ARF is not timing critical as long as space is not needed in the DQ for instruction dispatch.

Decode and dispatch are temporally decoupled in the Forwardflow pipeline, potentially by

many cycles, which leads to a vulnerability window between the read of the RCT and a subsequent

write to the ARF. As a result, there is a risk that a committing producer may write the ARF and

leave the DQ after a successor has read the RCT but before the successor can establish a forward

pointer from the producer. In other words, it is possible for the dependence information read from

the RCT to become stale after it is read. To prevent this case, Forwardflow implements a two-phase

pipelined commit, in which predecessors retain their DQ entries until dependent decoded instruc-

tions successfully establish their dependences on the committing operation.

101
Two-phase pipelined commit proceeds as follows. To begin, only one bank group constituting

the DQ may commit in a given cycle (this bank group effectively holds a commit token). Use of a

commit token does not substantially reduce performance because instructions are contiguous in

program order within a bank group. Consequently, a bank group can trivially predict when to

relinquish the token as well as the next bank group requiring the token.

In a given cycle, the bank group holding the commit token may elect to begin retirement of

some number of contiguous instructions, depending on the number of local instructions that have

completed execution. The committing group communicates the architectural register names, DQ

entry numbers, and produced values of the retiring instructions to the ARF, via a dedicated inter-

connect (this is implemented as a circuit-switched bus between all possible bank groups and the

ARF control logic). Pipelining arises naturally from his procedure, as the ARF may not reside

within single-cycle communication distance, depending on which bank group currently holds the

token. The committing group does not recycle the DQ space associated with committing instruc-

tions until an acknowledgement has been received from the ARF (which resides in the centralized

dispatch logic). This acknowledgement is ordered with respect to instructions that had already

passed the RCT upon the commit request’s receipt at the ARF. Therefore, the committing group

may infer that, upon receipt of the acknowledgement signal, all subsequent instructions that may

have sent a pointer write operation to the committing DQ entries have already completed their

dispatch operations.

Note that pipelining this operation allows the bank group to commit at full bandwidth, with

depth determined by the round-trip latency between the bank group and the ARF.

102

5.3.5 Control Misprediction

Like other out-of-order machines, Forwardflow relies on dynamic branch and target predic-

tion to increase lookahead. The misprediction recovery strategy used in this work is a checkpoint-

restore approach, inspired by checkpoint-based processing techniques [155, 3, 190], in which a

snapshot (i.e., a checkpoint) of microarchitectural state is recorded at speculation points. This

checkpoint can be restored at a later time if the associated control transfer instruction is discov-

ered to have been a misprediction, thereby restoring the checkpointed pipeline structure to an ear-

lier state without explicitly walking or scanning any (potentially large) structures. Prior work in

checkpoint-based architectures has evaluated techniques to reduce checkpoint space and time

overheads through aggressive checkpoint recycling, coarse-grain speculation, and other tech-

niques. However, checkpoint optimization is not a foci of this work, and I made no effort to inno-

vate in this space, nor to significantly optimize checkpoint overheads. Overall, the power and area

overheads of unoptimized checkpoints are manageable.

However, not all forms of recovery can be handled by restoring from checkpoints. When

exceptions, interrupts, or disambiguation mispredictions occur, correct recovery is implemented

as a flush of all instructions that follow the excepting instruction. Since these events are handled at

commit-time, the flush constitutes the entire instruction window (i.e., selective squash is not nec-

essary in this case). After a complete flush, decode resumes with an empty RCT, as no instructions

are in-flight. The performance impact of these squashes is determined by their frequency: so long

as they are sufficiently rare, they will not constitute a performance bottleneck. However, prior

work [183], as well as my own empirical observations, indicate that the effect of these flushes can

be substantial in the target ISA (SPARCv9) due to frequency of register window and TLB traps

103
(these traps are odious to any ILP-intensive implementation of SPARCv9). This observation moti-

vated hardware support for trap handling, discussed in Appendix A.

For all checkpointed state in Forwardflow, it is assumed that checkpointing logic is optimized

for fast checkpoint creation, as this operation is on the critical path of branch dispatch. Checkpoint

restoration is not highly optimized, and is a fairly expensive operation. Dispatch of new instruc-

tions cannot resume until all checkpoints have been properly restored. However, so long as check-

point restoration time is less than the combined latencies of the frontend pipeline and L1-I cache,

checkpoint restoration time plays no role in performance, as it incurs no additional overhead.

In Forwardflow pipelines, three key operations underlie correct misprediction recovery. In

particular, recovery mechanisms must:

•Restore the RCT’s state as it was before the instructions following the branch were decoded,

• Invalidate all false-path instructions, ensuring that no false-path instructions ever update

architectural state, and,

•Ensure no values generated on the mispredicted path ever affect true-path instructions.

Restoration of RCT state is accomplished by checkpointing the RCT on predicted branches, a

technique identical to the checkpointing of a register rename table [190]. This work assumes that

the RCT is specifically architected at the circuit level to accommodate this checkpoint capture/

restore operation, and that checkpoints themselves reside in a flattened SRAM array. This array

need not have single-cycle access time, so long as writes to the array can be pipelined. Restorations

of RCT checkpoints from the array are the most performance-critical checkpoint-restore opera-

tion in the microarchitecture, and must be accomplished no slower than the L1-I access latency, in

104
order to keep RCT recovery off of the critical path of misspeculation recovery. Estimates of array

access times from CACTI corroborate this expectation as feasible.

Invalidation of false-path instructions is trivial in the Forwardflow microarchitecture. Like

other microarchitectures, the front-end pipeline is completely (i.e., non-selectively) squashed on

any misprediction. Because the DQ is managed as a FIFO, simple manipulation of the FIFO’s tail

register is sufficient to reclaim DQ space occupied by false-path instructions, effectively invalidat-

ing the instructions themselves and ensuring they will not commit (i.e., the DQ’s tail register is set

to the DQ index following the branch instruction, modulo the DQ size). In SPARCv9, this carries

the consequence of also flushing the branch delay slot, but the benefit of salvaging the delay slot

does not motivate additional complexity to do so (the delay slot can, for instance, modify registers,

which would affect the timing of checkpoint capture mechanisms in earlier pipe stages).

The insulation of all true-path instructions from false-path values, is more subtle than the pre-

vious two requirements. Because Forwardflow has no mechanism to re-schedule cancelled

instructions, it is not feasible to squash functional pipelines on mispredictions (in the general

case—some exceptions exist and are described subsequently). Instead, functional pipelines must

be allowed to drain normally (i.e., quiesced), and values belonging to false-path instructions must

be discarded as part of the recovery process. This prevents any previously-scheduled false-path

instruction from propagating its value to later true-path instructions, which otherwise would

occur due to DQ space reclamation.

Lastly, in order to cancel dependences already established at misprediction-time from true-

path instructions to false-path instructions, we augment the pointer fields with valid bits, stored in

a separate flip-flop-based array. Pointer valid bits are checkpointed on control predictions, as was

105
the case with the RCT. This operation was originally proposed for use in pointer-based schedulers

[136], and is not a novel contribution of this work.

Single Bank Group Branch Misprediction Procedure. As previously described, Forward-

flow’s execution logic is organized into DQ bank groups, each backing a subset of the DQ’s aggre-

gate storage space, integer, floating point, and memory datapaths, and associated control logic.

Bank group size is bounded largely by wire and logic delay—a group defines the single-cycle com-

munication boundary. Small Forwardflow cores may contain only one bank group; larger cores

may encompass several bank groups.

When mispredictions occur during single-group operation, recovery is initiated as previously

described: functional pipes are quiesced, checkpoints are restored as appropriate, and the tail

pointer is reset to the instruction following the misprediction event. This operation requires no

communication with other bank groups, and the recovery process described above is sufficient to

restore proper pipeline operation.

Branch Misprediction Spanning Multiple Bank Groups. Larger Forwardflow cores encom-

passing multiple bank groups require additional hardware to support inter-group control misspec-

ulation. In particular, bank groups must notify one another of misspeculations. Consider a

Forwardflow core consisting of many bank groups. Suppose bank group A detects a misprediction

event of control instruction I (note that I must reside in A). With respect to a given misprediction,

for all possible A, bank group B relates to A in one of four ways:

•Local: When B = A, the misprediction event is local to bank group B.

106
•Downstream: B is considered to be downstream of a A (and therefore, downstream of I) when

all instructions currently resident in B follow the misprediction event in the previously-pre-

dicted program order.

•Upstream: B is considered to be upstream of a A (and therefore, upstream of I) when all

instructions currently resident in B precede the misprediction event in the previously-pre-

dicted program order.

•Mixed Stream: B is neither upstream nor downstream of A (nor is B local), because B contains

both the DQ’s head and the DQ’s tail (i.e., the DQ is nearly full).

Note that it is always possible for B to identify its relationship to A, because state local to B

determines the head and tail pointers, the immediate (static) downstream and upstream groups

(i.e., determined by core floorplan), and obviously B can detect the B = A case (Local).

Recovery actions from the misprediction vary according to B’s relation to A.

•Local: B = A follows the procedure outlined above to recover from a single-bank-group

misprediction. The local bank group still informs all other bank groups of the misprediction,

as other bank groups must restore still pointer valid bits. The local bank group assumes control

of dispatch, which will resume when instructions are available from the frontend.

•Downstream: All instructions in B are false-path instructions. Therefore, B invalidates all local

instructions. Pipelines can be squashed if desired, or quiesced as normal, discarding all results.

If B currently controls dispatch, this control is relinquished to A.

107
•Upstream: No instructions in B are false-path with respect to I. Therefore, B need not invali-

date any instructions, but B must restore its checkpoint of local pointer valid bits, as B may still

contain pointers to the invalid region following I. Local pipelines need neither be squashed (or

quiesced).

•Mixed Stream: B invalidates all instructions preceding the DQ head pointer. Local pipelines

must be quiesced. B restores the appropriate checkpoint of local pointer valid bits.

Because bank groups in general do not reside within single-cycle communication range of

other groups, it is possible for more than one branch misprediction to be detected in a single cycle.

However, only one such misprediction is the eldest, and because groups are able to ascertain

upstream/downstream relationships with other groups, they are similarly able to identify the eldest

misprediction. Of course, recovery must always reflect the eldest misprediction in flight. Note that

the actions detailed in this section for recovery from a misprediction never precludes a bank

group’s ability to recover from misprediction of an elder branch, which may be dynamically

resolved in subsequent cycles.

5.3.6 Speculative Disambiguation

Forwardflow leverages NoSQ [146] to implement memory disambiguation. The general opera-

tion of NoSQ in the context of an SSR-based core is detailed in Chapter 4—briefly, store-to-load

dependences are represented with inter-instruction pointers, as though they were register depen-

dences. The NoSQ set-associative dependence predictor is consulted at decode time: stores pre-

dicted to forward record their DQ entry numbers in the NoSQ hardware. Subsequent loads

predicted to forward from a particular store establish a dependence on this write operation. The

108
store-to-load dependence is then resolved as a phantom register dependence by the Forwardflow

pipeline.

However, the speculative nature of NoSQ requires verification of speculative disambiguation.

This is accomplished in two ways, based on Sha et al. First, a store sequence bloom filter (SSBF)

records the store sequence number (SSN) of the last store operation to write the subset of the

address space represented by each SSBF entry. All loads consult the SSBF to verify correct forward-

ing. NoSQ annotates dependent loads with the SSN from which they forward. Loads that for-

warded from earlier stores compare their recorded SSNs to those in the SSBF: a mismatch indicates

a possible misprediction (i.e., a possible NoSQ false positive, a predicted forwarding that did not

occur). Loads speculated as independent are guaranteed to be independent of earlier in-flight

stores, if they observe an SSN in the SSBF lower than the SSN observed by the load at dispatch-

time (i.e., —this data is retained by the NoSQ hardware). If the SSN retained in the

SSBF is larger than the load’s , a misprediction is possible (i.e., a NoSQ false negative,

the failure to predict a store-to-load forward event).

When the SSBF indicates a possible mispredict (either false-negative or false-positive), the

committing bank group forced to replay the vulnerable load in the L1-D. The value originally

observed by the load is compared to the value observed by the load’s replay—if the values differ, a

misspeculation is triggered and the pipeline is flushed.

In order to handle races with remote threads concurrently accessing a shared block, the SSBF is

updated with a sentinel value whenever a cache line is invalidated in the L1-D due to a remote

exclusive access request. A load observing the sentinel value in the SSBF at commit-time always

replays, thereby preventing a load from ever committing a value not allowable under the memory

SSNDispatch

SSNDispatch

109
consistency model (in this work: sequential consistency). Replayed loads are instead forced to

observe the correctly-sequenced value from memory. This mechanism overall is conservative of

when to require replays (e.g., due to false sharing and SSBF conflicts), but does not squash unnec-

essarily (hence the value comparison). The use of a sentinel in the SSBF represents a small exten-

sion to NoSQ to make it suitable for multiprocessors.

5.3.7 Bank Group Internal Organization

DQ bank groups implement a contiguous subsection of DQ space. Therefore, a DQ bank

group must match dispatch bandwidth with that of the frontend pipeline (peak 4 instructions per

cycle). Within a bank group, instructions can be interleaved among separate banks (thereby inter-

leaving DQ space on low-order bits within a bank group), or dispatched to a single structure. The

former approach places constraints on the wakeup and execution logic (i.e., the logic must operate

across independent banks), and the latter requires multiple ports on a single RAM, increasing its

area, power, and delay. Furthermore, execution and commit logic will place additional demand on

the DQ bank groups—both roughly comparable to the throughput demands of dispatch logic.

110

FIGURE 5-9. Access time (ns) versus port count for a single value array in a DQ bank
group.

FIGURE 5-10. Area (mm2) versus port count for a single value array in a DQ bank group.

111

To more fully understand how these overheads scale in port count, Figure 5-10 plots area ver-

sus port count for the value array component of a DQ bank group of size 128 (details of evaluation

can be found in Chapter 3—briefly, these estimates are derived from CACTI). Further, Figures 5-9

and 5-11 plot access time and energy consumption, respectively. Trend lines are provided where

.

Area (Figure 5-10) grows (approximately) with the cube of ports on the array. This trend is due

to the need for internal duplication of data arrays to meet growing port demand (the actual degree

of duplication required is technology-dependent). As area grows, access time (Figure 5-9) grows

exponentially in the port count. This accounts for internal routing within the multi-ported array,

requiring successively longer RC-dominated wires to traverse the duplicate arrays, and to imple-

ment write-to-read port bypassing. Access energy (Figure 5-11) is approximately piecewise linear

in the number of ports. Therefore, the power consumed by multi-ported arrays is at least quadratic

R
2

0.9>

FIGURE 5-11. Energy per access (pJ) versus port count for a single value array in a DQ
bank group.

112
in the number of ports (i.e., energy consumed in one cycle, . The number of

accesses, , is linear in port count; is also linear). Together, these trends argue for low

port counts on high-performance SRAM arrays, like those used in the DQ bank groups.

Area affects not only the access time of the DQ, but also wire delay within a DQ bank group,

and between bank groups. Figure 5-12 plots the wire delay (assuming optimal repeater placement)

to traverse a linear distance equal to the square-root of the corresponding array area—the hypo-

thetical delay of a wire traversing the array, assuming an aspect ratio of one. This delay and the DQ

access time are a rough bound on cycle time, assuming little or no logic delay.

These trends make a case for interleaved bank groups. Interleaving enables a single port to be

used for both dispatch and commit logic, as both of these operations operate on contiguous DQ

entries: dispatch and commit accesses are guaranteed to access separate banks if interleaved on

low-order bits of the SRAM address (DQ entry number). Dispatch and commit logic can easily

Ecycle naccess Eaccess⋅=

naccess Eaccess

FIGURE 5-12. Wire delay (ns) versus port count to cross a DQ value array.

113
arbitrate for use of ports: if different bank groups are active for dispatch and commit, both can

observe full bandwidth and use all banks. When dispatch and commit target the same group, each

predictably stride through the DQ space, allowing these processes to share banks in an alternating

pattern, switching port ownership predictably on each cycle.

DQ wakeup operations are less predictable

than dispatch and commit. The behavior of

wakeup is determined by inter-instruction data

dependences rather than adjacency of instruc-

tions in predicted program order. To accommo-

date the unpredictable access patterns of wakeup

accesses, a port is dedicated to these accesses.

Whereas arbitration between commit and dis-

patch logic is straightforward, it is difficult to pre-

dict when update hardware will access the DQ.

Hence, each bank within a group has a port dedi-

cated only to the update hardware.

Assigning a single port to dispatch/commit and a second port to update hardware, DQ struc-

tures are only two-ported. In other words, the actual devices used in the implementation represent

the lowest ends of the trends presented in the figures above—moreover, four-way bank interleav-

ing (i.e., the degree of interleaving to service a frontend of width four) implies that the actual size

of the individual DQ banks is even smaller than those used in the figures above (though larger

than one quarter size, as SRAM sense amplifiers tend not to scale linearly in array size).

FIGURE 5-13. DQ bank consisting of 32
entries and valid bit checkpoints.

114
Assuming an overall two-ported, four-way interleaved design, Figure 5-13 shows a floorplan of

a single bank of the DQ, decomposed into seven DQ fields (three 64-bit value arrays, three 12-bit

pointer arrays, a 16-bit metadata array) and a 256-entry checkpoint array for pointer valid bits.

The total area of a DQ bank with the above design requirements is 0.033 mm2. Manhattan distance

is 0.36 mm, and each bank has an access time of approximately 90 ps in 32 nm technology.

Using Figure 5-13’s plot of a DQ bank layout, Figure 5-14 plots a complete floorplan of a DQ

bank group. The bank group design is 0.87 mm2 and has an internal area efficiency of 87%. Maxi-

FIGURE 5-14. Floorplan of a 128-entry DQ bank group for use with a four-wide frontend.

115
mum Manhattan distance is 1.2 mm between banks. I estimate maximum intra-group signalling

delay at 0.24 ns.

Within a bank group, the logic implementing the bank transfer logic consists of a five-way

crossbar, 72-bits wide. The inter-group router and individual DQ banks are endpoints on the

crossbar. The router is responsible for sending non-local pointer/value pairs to other bank groups,

and for delivering pointer/value pairs and pointer write operations to the local bank group.

5.3.8 Operand Network

A dedicated scalar operand network routes pointer/value pairs and pointer write messages

(used in dispatch, Section 5.3.2) between DQ bank groups. Abstractly, the role of this interconnect

is to deliver small data payloads (i.e., 64-bits) to a DQ bank group corresponding to a particular

data pointer.

Intuition suggests that intra-bank group communication would be performance-critical: triv-

ial experimentation shows this to indeed be the case. The importance of inter-bank group commu-

nication, facilitated by the scalar operand network, is less clear. If one assumes pointer distance—

the number of instructions between endpoints of a given pointer—is independent of DQ entry

number, some insight can be gained by an analysis of pointer distance. Figure 5-15 plots the cumu-

lative distribution function of pointer distance of three typical benchmarks: astar and sjeng

from SPEC INT 2006, and jbb from the Wisconsin Commercial Workload Suite. Other bench-

marks typically exhibit similar behavior.

Overall, pointer distance tends to be short. Over 90% of pointers have a distance of eight or

fewer, indicating that producers and successors tend to dispatch near one another in the DQ at

116
run-time. Nearly all pointers (greater than 95%) have a pointer distance less than or equal to six-

teen (one eighth the size of a DQ bank group). The general trend of short pointers suggests that

the utilization of the operand network will be low under most workloads, as most data depen-

dences are local.

Experimentation reveals this intuition to be accurate. Among the 33 single-threaded bench-

marks used in this chapter’s evaluation, there is no significant performance loss incurred from use

of a single-cycle unidirectional ring interconnect, as compared to a perfect, zero-latency inter-

bank group interconnect (i.e., performance differences are easily within the margin of error of the

evaluation methodology). Performance differences become significant for more latent intercon-

nects, but given the size of a DQ bank group (i.e., 0.87 mm2), inter-group latency should be small.

The fact that a simple, unidirectional ring topology works nearly as well as an idealized inter-

connect results from the distribution of traffic classes within a Forwardflow core. Communication

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pointer Length CDFs

C
D

F

Pointer Length

astar

sjeng

jbb

FIGURE 5-15. CDF of pointer distance for three representative benchmarks.

C
D

F

Pointer Distance

117
within a single bank group is, by far, the most common class of traffic, arising from pointers

between instructions within the same bank group (about 95% of all traffic). Such traffic traverses

only the local crossbars within a bank group—it does not rely on the inter-bank-group operand

network at all. Of the remaining traffic, about 3% consists either of pointer write operations, which

are fairly insensitive to latency, as they only affect the commit pipeline. Pointers crossing from one

bank group to the next account for about 2% of traffic, and pointers spanning multiple bank

groups are rare (less than 1%).

Given that Forwardflow cores operate well with simple operand networks (unidirectional

ring), I did not investigate other topologies. After initial experiments, it became clear that the prin-

cipal area of gain in operand networks was to simplify resource requirements, by employing fewer

wires (e.g., with fewer links in the topology) and simpler routers (e.g., three-port ring-based rout-

ing). A ring already comes close to minimizing the number of required links in a connected net-

work, and requires only the simplest of routers. Further exploration of this area of the

microarchitecture does not seem warranted, given the small potential gains to be made.

5.4 Comparison to Other Core Microarchitectures

The evaluation of the Forwardflow microarchitecture focuses on four main areas. First, For-

wardflow aims to deliver improved performance through greater exploitation of MLP. Intuition

suggests that, in the shadow of a load miss, there is ample time available to discover and execute

independent operations. This added parallelism should overcome the overheads of serial wakeup

and resource conflicts, and deliver increased performance at larger Forwardflow DQ sizes. To

evaluate the effectiveness of the Forwardflow window overall, I compare it against a hypothetical,

118
idealized RUU-like machine (RUU from Chapter 3), and consider how well each of several For-

wardflow designs exploits ILP and MLP, compared to this baseline.

Second, the Forwardflow microarchitecture exhibits some improvements over a canonical out-

of-order microarchitecture, but also suffers from some drawbacks as well. To justify a new core

design, a Forwardflow core should, at least, exceed a traditional microachitecture’s performance at

the same power, or match its performance at lower power. The second area of evaluation considers

how the Forwardflow design compares to a traditional out-of-order data point, with respect to

performance, power, and efficiency metrics.

Third, intuition and prior work suggest that greater performance will be delivered through

exploitation of larger instruction windows. To better exploit ILP and MLP, designers should build

the largest possible window for a given power budget. I present experiments detailing the power/

performance tradeoffs of Forwardflow windows, from very small sizes (e.g., 32 entries) to very

large windows (e.g., 1024 entries).

Lastly, Forwardflow is not the only core microarchitecture to explicitly emphasize MLP. The

final area of evaluation addresses how a Forwardflow core compares against two previous MLP-

aware microarchitectures, Runahead and CFP (cf Chapter 2 for details on these proposals, Chapter

3 for details of implementation of these designs in this study). I evaluate Forwardflow in the con-

text of these other techniques.

A following subsection addresses each of these four areas. I present aggregated data in most

cases, to focus on general trends across many individual benchmarks. For completeness, figures

detailing each individual benchmark are available at the conclusion of the chapter (Section 5.4.7),

preceded by brief discussion of interesting outliers (Section 5.4.5).

119

Table 5-1 details the machine configurations used in this study. More details of the individual

machine models can be found in Chapter 3’s description of the simulation methodology.

The single-threaded benchmarks used in this study are assumed to run on one core of an 8-

core CMP (cf Chapter 3). The full L3 capacity is available to the single operating cores—other

cores are assumed to have been shut down to conserve power. Note that all power estimates reflect

chip-wide consumption.

TABLE 5-1. Machine configurations used for quantitative evaluation.

Configuration Description

F-32 through F-1024

Forwardflow processors equipped with various DQ sizes. Each DQ bank

group backs 128 entries of the DQ, and includes two integer and two float-

ing point datapaths. DQ sizes smaller than 128 use a subset of banks

within the bank group, which reduces bandwidth for dispatch, issue, and

commit (i.e., F-32 is one-wide, F-64 is two-wide).

RUU-32 through RUU-1024

RUU-based processors, with varied RUU size. Equipped with the same

number of integer and floating point pipelines as the corresponding For-

wardflow core of the same size, though issue and writeback operations are

idealized.

OoO

A canonical out-of-order core with a 32-entry scheduler and a 128-entry

ROB. OoO’s functional pipelines are equivalent to a single Forwardflow

bank group (i.e., F-128).

CFP

An out-of-order processor equipped with deferred queues for continual

flow. CFP uses a ROB instead of checkpoints. This ROB can buffer the

same number of instructions as the largest Forwardflow configuration

used (i.e., 1024 instructions).

Runahead
The OoO configuration equipped with Runahead Execution, including a

4KB Runahead Cache (dirty runahead values only).

120

5.4.1 Forwardflow Comparison to an Idealized Window

To begin, I frame the performance capabilities of the Forwardflow design in the context of an

idealized design with respect to a variety of window sizes. I remind the reader that the effective

issue width and functional unit resources of a Forwardflow design varies with the number of DQ

bank groups—I vary the baselines used in this section in the same manner as those of a Forward-

flow core.

The baseline used in this section is RUU, based on Sohi’s Register Update Unit [153]. The com-

plete details of RUU are available in Chapter 3; briefly, RUU can schedule any instruction in its

window as soon as that instruction’s dataflow dependences are satisfied. Moreover, it uses oracular

issue logic to ensure minimum possible functional delay for all issued instructions, regardless of

locality. In this respect, RUU functions as a performance upper-bound for a given window size.

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

IN
T

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

FP
R

U
U

-1
28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

COM

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

GM
ea

n

FIGURE 5-16. Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and
Wisconsin Commercial Workloads (COM), over four window sizes.

121
This section seeks to address two general questions about the Forwardflow design. First, how

closely does the Forwardflow design approach the idealized upper bound on performance? Sec-

ond, to what degree does the Forwardflow core successfully exploit available MLP and ILP to

improve performance? In both of these cases, comparison to RUU enables a limit study.

Figure 5-16 plots normalized runtime across single-threaded benchmarks from SPEC INT

2006, SPEC FP 2006, and the Wisconsin Commercial Workload suite. Runtimes are normalized to

that of RUU-128, an RUU-based design utilizing a 128-entry instruction window. The rightmost

stack, in this and subsequent graphs, is an average (in this case, geometric mean) over all bench-

marks with equal weight (i.e., the figures do not weight each benchmark group equally).

Not surprisingly, performance trends better with larger window sizes, on average. Forwardflow

designs trail the performance of idealized windows by 10-20% on average. I demonstrated in

Chapter 4 that some performance degradation is expected with respect to an idealized window,

merely from the use of SSR to represent dependences. However, this overhead is usually less than

10%. The remainder of the performance degradation observed in the Forwardflow designs arises

from resource constraints within the microarchitecture itself—the effects of finite port counts,

bank-interleaving, operand networks, etc.

Despite trailing RUU, Forwardflow performance scales with window size. The degree to which

particular benchmarks scale is workload-dependent, as some workloads exhibit naturally higher

or lower ILP and MLP than others—e.g., commercial workloads tend to scale less well with win-

dow size than do the integer and floating point codes. On average, each doubling of the Forward-

flow aggregate DQ size reduces runtime by a further 10% (with respect to the performance of F-

128—the effect is not compounded).

122
The reasons for Forwardflow’s performance scaling are twofold. First, despite a slower overall

window operation, Forwardflow is able to expose more than 85% of the MLP exposed by a compa-

rable RUU design, as illustrated in Figure 5-17. For the purpose of this figure, I adopt a definition

of memory-level parallelism similar to that suggested by Chou, Fahs, and Abraham [37]: “We

(Chou, Fahs, and Abraham) define average MLP, MLP [sic] as the average number of useful long-

latency off-chip accesses outstanding when there is at least one such access outstanding.” I alter

this definition slightly: accesses to instruction memory from the fetch pipeline are not included

(arguably, the context of Chou et al. excludes instruction accesses). Unfortunately, this metric is

nearly impossible to measure precisely. Instead, the method I use to approximate observed MLP

tracks when committed load misses begin execution, and when they are completely serviced. Con-

current accesses to the same cache line are discarded (identified by dependence on the same

MSHR). There are several minor flaws with this approach—for instance, the beneficial effects of

0

1

2

3

4

N
or

m
al

iz
ed

 M
L

P

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

IN
T

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

FP

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

COM

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

GM
ea

n

FIGURE 5-17. Normalized memory-level parallelism (MLP) of SPEC INT 2006 (INT),
SPEC FP 2006 (FP) and Wisconsin Commercial Workloads (COM), over four window

sizes.

123

false-path loads are not considered, and loads executed under Runahead (Section 5.4.4) cannot be

profiled, as they never commit. Moreover, this definition is sensitive to second-order effects, e.g.,

order of branch resolution determines whether loads actually execute concurrently, or not, yield-

ing a supra-linear MLP estimate in one SPEC FP workload in the F-1024 and RUU-1024 cases

(GemsFDTD exhibits 10x more estimated MLP over 128-entry windows). Overall, however, this

approach seems a good approximation of the Chou et al. definition.

To gain further insight into Forwardflow’s operation with respect to an idealized window, I

classify in-flight instructions into three possible states (Figure 5-18). Waiting (top-most) instruc-

tions have dispatched, but have not yet been selected for execution: these instructions are either

waiting for predecessor operations to complete, or (in the Forwardflow case only) are waiting for

update hardware to traverse the appropriate dependence list. Executing (middle) instructions have

been issued to functional pipelines or the memory subsystem, but have not yet produced an output

0

50

100

150

200

250
W

in
do

w
 O

cc
up

an
cy

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

IN
T

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24
FP

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

COM

R
U

U
-1

28

F-
12

8

R
U

U
-2

56

F-
25

6

R
U

U
-5

12

F-
51

2

R
U

U
-1

02
4

F-
10

24

Agg
reg

ate

FIGURE 5-18. Categorized window occupancy (Completed (bottom), Executing
(middle), and Waiting (top) instructions), SPEC INT 2006 (INT), SPEC FP 2006 (FP),

and Wisconsin Commercial Workloads (COM), over four window sizes.

124
value (or completed execution, if they do not produce a value). Lastly, Completed (bottom-most)

instructions have successfully executed, but have not yet committed—either an earlier non-com-

pleted instruction precedes the completed instruction in program order, or the commit logic has

simply not yet reached the instruction in question.

Each of these instruction states places varying demands on the underlying microarchitecture.

Waiting instructions must be scheduler-resident. Executing instructions occupy execution

resources. Completed instructions must simply be buffered until commit. Overall, Forwardflow’s

occupancy for a given window size tends to be slightly larger than that of RUU, but Executing

occupancy is lower on average. Both of these phenomenon occur for the same reason: Forward-

flow’s SSR-based value-delivery mechanisms are not instantaneous. This reduces mean Executing

occupancy, because successors of the same value do not wake in the same cycle. This also increases

mean window occupancy, by delaying branch misprediction discovery and handling (i.e., there is

additional occupancy of false-path instructions).

Both Forwardflow and RUU expose ILP and MLP to achieve high performance. To approxi-

mate a measure of the former, I use Executing occupancy as a measure of the workload’s underly-

ing instruction-level parallelism1. The degree to which ILP and MLP predict the performance

across machine configurations is presented in Table 5-2, based on linear regression of runtime

with respect to ILP and MLP. Overall, the RUU design, with a greater degree of idealization, tends

to have more predictable performance than Forwardflow, which suffers from a few performance

1. This is an approximation in several ways. First, occupancy includes the effects of false-path instructions. Consequently, the

measure is subject to the accuracy of branch prediction. Second, executing occupancy includes contributions from load misses,

and is therefore not independent of the measure of memory-level parallelism.

125

artifacts specific to the microarchitecture (e.g., the sensitivity of bzip2 to the effects of SSR).

Overall, however, Forwardflow’s performance tends to follow the available ILP and MLP.

5.4.2 Forwardflow Comparison to a Traditional Out-of-Order Core

I next discuss Forwardflow’s behavior in the context of a more realistic design, a contemporary

out-of-order core (OoO). This section focuses only on Forwardflow configurations exhibiting sim-

ilar performance or power with respect to OoO—in particular F-32, F-64, and F-1024 are not con-

sidered in this discussion.

Figure 5-19 plots normalized runtime of OoO, F-128, F-256, and F-512 across single-threaded

benchmarks. I find that F-128’s performance closely approximates that of OoO, and is in fact

slightly better on average (about 4%). Chapter 4 demonstrated how an SSR-based core, or a hypo-

thetical out-of-order core using a full-window SSR scheduler, can overcome the serialized wakeup

effects by leveraging a larger instruction scheduler. As evident from Figure 5-19, Forwardflow, too,

is able to successfully leverage a larger effective scheduler size and improve performance with

TABLE 5-2. Coefficient of determination , as determined by univariate and bivariate
linear regression across Forwardflow and RUU-based designs.

Machine Model Variables Considered Mean Median

RUU MLP 0.82 0.89

RUU ILP 0.69 0.85

RUU MLP and ILP 0.96 0.98

Forwardflow MLP 0.79 0.93

Forwardflow ILP 0.79 0.88

Forwardflow MLP and ILP 0.95 0.97

R
2

R
2

R
2

126

respect to OoO. This trend is further evidenced by the plot of window occupancy between OoO

and F-128 (Figure 5-20—both designs have identically-sized windows, but the latter has a full-

window scheduler). With a 32-entry scheduler and a 128-entry ROB, OoO suffers from scheduler

clog (cf Chapter 2), yielding poorer overall performance as compared to F-128. On average, F-256

reduces runtime 14% with respect to OoO; F-512 reduces runtime by 22%.

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 R

un
tim

e

O
oO

F-
12

8

F-
25

6

F-
51

2

IN
T

O
oO

F-
12

8

F-
25

6

F-
51

2

FP

O
oO

F-
12

8

F-
25

6

F-
51

2

COM

O
oO

F-
12

8

F-
25

6

F-
51

2

GM
ea

n

FIGURE 5-19. Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP) and
Wisconsin Commercial Workloads (COM), OoO and Forwardflow configurations with

similar power consumption.

127
Figure 5-21 plots categorized power con-

sumption of each design point. Each group

(INT, FP, and COM) is normalized with

respect to the average power consumed by

OoO on that benchmark suite. I categorize

power consumption into twelve areas. Of

those not self-explanatory, “Sched/UH”

encompasses power consumption of the

OoO scheduler [78] and Forwardflow’s

update hardware, “Bypass/ON” represents

the power consumed in bypass networks

and operating networks (the latter is Forwardflow-specific), “DMEM” includes contributions from

L1-D caches and D-TLBs, “Network” refers to the on-chip network between caches and the mem-

ory controllers, and “Other” includes NoSQ, commit logic, and miscellaneous registers not suit-

able for other categories. Lastly, “Static/Clk” represent leakage power and contributions from other

constant sources, such as the chip’s clock signal generators and distribution network. Static power

consumption is fairly significant by percentage, as this work assumes only one core of an 8-core

CMP operates, but the whole of the large L3 cache is active (details in Chapter 3).

Figure 5-21 yields several interesting findings. First, compared to OoO, Forwardflow cores dra-

matically reduce scheduling, register file, and bypass power. Second, progressively larger Forward-

flow cores require more power to operate, but not all additional power is consumed by additional

window components: significant increases in power consumption of on-chip caches, register files,

and the fetch logic are evident. The physical designs of these elements are unchanged across all

0

50

100

W
in

do
w

 O
cc

up
an

cy

O
oO

F-
12

8

IN
T

O
oO

F-
12

8

FP

O
oO

F-
12

8

COM

O
oO

F-
12

8

GM
ea

n

FIGURE 5-20. Window Occupancy of OoO
and comparable Forwardflow

configuration.

128

Forwardflow configurations in this study: the increase in their power consumption is due to addi-

tional demand placed on these structures by larger-window configurations2.

2. The trends behind Forwardflow’s power scaling in relation to window size are more fully discussed in Section 5.4.3.

0.0

0.5

1.0
Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

O
oO

F
-1

28

F
-2

56

F
-5

12

INT

O
oO

F
-1

28

F
-2

56

F
-5

12

FP

O
oO

F
-1

28

F
-2

56

F
-5

12

COM

FIGURE 5-21. Categorized power consumption of SPEC INT 2006 (INT), SPEC FP 2006
(FP) and Wisconsin Commercial Workloads (COM), OoO and Forwardflow

configurations with similar power consumption.

0.0

0.2

0.4

0.6

0.8

1.0

E
*D

O
oO

F-
12

8
F-

25
6

F-
51

2

IN
T

O
oO

F-
12

8
F-

25
6

F-
51

2

FP

O
oO

F-
12

8
F-

25
6

F-
51

2

COM

O
oO

F-
12

8
F-

25
6

F-
51

2

GM
ea

n

0.0

0.2

0.4

0.6

0.8

1.0

E
*D

^2

O
oO

F-
12

8
F-

25
6

F-
51

2

IN
T

O
oO

F-
12

8
F-

25
6

F-
51

2

FP

O
oO

F-
12

8
F-

25
6

F-
51

2

COM

O
oO

F-
12

8
F-

25
6

F-
51

2

GM
ea

n

FIGURE 5-22. (left) and (right) of SPEC INT 2006 (INT), SPEC FP 2006 (FP),
and Wisconsin Commercial Workloads (COM), OoO and Forwardflow configurations with
similar power consumption.

E D⋅ E D
2⋅

129
As a consequence of Forwardflow’s reduction in core power requirements, the performance of

F-256 (or even F-512) is usually attainable in power comparable to that of OoO. This trend varies

somewhat by workload—full data is available in Figures 5-37 through 5-40.

Figure 5-22 plots energy efficiency (i.e., , left, and , right) over OoO and comparable

Forwardflow designs. On average, all Forwardflow configurations are more efficient (by either

metric) than OoO. In most cases, either the performance gains of larger windows justify the addi-

tional power consumption (significant reduction in D), or the power savings justify any small per-

formance degradation (significant reduction in E). When individual benchmarks are considered,

OoO is - and -optimal in only three cases: bzip2, gromacs, and povray. Among

the remaining 30 benchmarks, F-128 is most -optimal once (tonto), and either F-256 or F-

512 are most optimal for other workloads.

5.4.3 Forwardflow Power Consumption by Window Size

Sections 5.4.1 and 5.4.2 placed the normalized runtime and power estimates in context of pre-

vious designs. This section considers how much power/performance range is possible within the

Forwardflow design space. To foreshadow subsequent work, this analysis will be important when

considering Forwardflow’s utility as a scalable core (i.e., Chapter 6).

Figure 5-23 plots normalized runtime across a wide gamut of Forwardflow configurations,

ranging from F-32 to F-1024. The two leftmost configurations, F-32 and F-64 (hashed in the fig-

E D⋅ E D
2⋅

E D⋅ E D
2⋅

E D⋅

130

ure), implement their small instruction windows by provisioning only one or two DQ banks,

respectively, to a singleton DQ bank group. Therefore, these machines have reduced dispatch,

issue, and commit width of 1 and 2, respectively (in addition to smaller windows). The adjective

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 R
un

tim
e

F-
32

F-
64

F-
12

8

F-
25

6

F-
51

2

F-
10

24

IN
T

F-
32

F-
64

F-
12

8

F-
25

6

F-
51

2

F-
10

24

FP
F-

32

F-
64

F-
12

8

F-
25

6

F-
51

2

F-
10

24

COM

F-
32

F-
64

F-
12

8

F-
25

6

F-
51

2

F-
10

24

GM
ea

n

FIGURE 5-23. Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and
Wisconsin Commercial Workloads (COM), Forwardflow designs, 32- through 1024-entry
windows.

0.0

0.5

1.0

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2

F
-6

4

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

INT

F
-3

2

F
-6

4

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

FP

F
-3

2

F
-6

4

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

COM

FIGURE 5-24. Categorized power consumption of SPEC INT 2006 (INT), SPEC FP 2006
(FP), and Wisconsin Commercial Workloads (COM), Forwardflow designs, 32- through
1024-entry windows.

131
“smaller” in this prose refers, of course, to the instruction window size, but the actual area of these

designs are all comparable—recall that each individual DQ bank group occupies an area smaller

than 1 mm2 (Section 5.3.7). Figure 5-24 plots the corresponding power consumption of each

design, normalized to F-128.

Between F-32 and F-1024, there is a substantial power (e.g., -25% power for F-32, +25% power

for F-1024) and performance (e.g., +65% runtime for F-32, -28% runtime for F-1024) range avail-

able. Scalable CMPs desire scalable cores with a wide power/performance range—Forwardflow

fulfills this requirement (Chapter 6).

Figure 5-25 examines Forwardflow’s power scaling more closely, by plotting the normalized

power consumed by the DQ itself and the fetch logic. Note for this and the subsequent graphs in

this section that the x-axis of Figures 5-25 through 5-27 have logarithmic scale.

FIGURE 5-25. Normalized component power for DQ and Fetch pipelines, SPEC INT 2006,
over six different Forwardflow configurations.

132

Overall, DQ power grows linearly in window size. This follows from intuition: DQ area grows

linearly in window size, and assuming a constant activity factor, one would expect power to grow

linearly as well. The growth in window size places additional demand on the frontend: in order to

maintain a full window, the frontend must provide instructions at greater rates to higher-perform-

ing configurations. The fit to the fetch logic in Figure 5-25 indicates that the resulting increase in

power consumption is roughly logarithmic in window size.

I observe similar trends in Figure 5-26, which plots self-normalized power consumption of

DMEM and L2/L3 components. As with Fetch, demand on the upper-level caches grows roughly

logarithmically with window size. DMEM would likely show a similar trend, if F-32 and F-64 had

maintained the same number of ports on the L1-D cache and D-TLB as F-128 and larger designs

(since the leftmost designs are narrower, fewer ports are provisioned).

FIGURE 5-26. Normalized component power for memory subsystem, SPEC INT 2006,
over six different Forwardflow configurations.

133

Figure 5-27 considers the growth of static power in progressively larger Forwardflow designs.

Additional static power is consumed by the addition of DQ bank groups (recall that each group

consists of SRAM arrays, bit vectors, logic, and functional pipelines). There is also a small change

in overall chip area as additional bank groups are added to the design, which may affect the power

consumed by the clock distribution network (however, recall that DQ bank groups are very small

with respect to die area). The estimate of static power consumed by DQ bank groups is plotted on

Figure 5-27 as DQ Est, which fits very tightly to a linear curve. The line Bias DQ is the sum of all

other static components (almost unchanged across Forwardflow designs) and DQ Est. As evident

from the graph, Bias DQ closely approximates actual static consumption.

Lastly, overall energy efficiency is plotted in Figure 5-28. Several worthwhile findings present

themselves. First, efficiency is not monotonic in window size. E.g., F-1024 is less efficient (both

and) than smaller designs for commercial benchmarks. These benchmarks derive the

FIGURE 5-27. Normalized component power, static sources, SPEC INT 2006, over six
different Forwardflow configurations.

E D⋅ E D
2⋅

134

least benefit from larger windows, but still suffer power overheads commensurate with window

size.

Second, neither F-32 or F-64 are ever optimal (either or) over the intervals I have

examined. Complete data (Section 5.4.7) shows that, for individual workloads, all other Forward-

flow sizes are occasionally optimal. Of course, it is possible to construct workloads for which the

smallest configurations are optimal, but for these workloads the great reduction in performance

observed by reducing the effective dispatch/commit width does not justify the modest power

reduction of F-32 and F-64.

5.4.4 Forwardflow Comparison to Runahead and CFP

I next evaluate the Forwardflow design point against two prior MLP-aware microarchitectural

enhancements: Runahead Execution [46, 122], typified by the Runahead model, and Continual

E D⋅ E D
2⋅

0

1

2

E
*D

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

IN
T

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

FP

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

COM

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

GM
ea

n

0

1

2

3

E
*D

^2

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

IN
T

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

FP

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

COM

F-
32

F-
64

F-
12

8
F-

25
6

F-
51

2
F-

10
24

GM
ea

n

FIGURE 5-28. (left) and (right) of SPEC INT 2006 (INT), SPEC FP 2006
(FP), and Wisconsin Commercial Workloads (COM), over six different Forwardflow
configurations.

E D⋅ E D
2⋅

135

Flow Pipelines [156], typified by CFP. Figure 5-29 plots normalized runtime of full-width Forward-

flow configurations, compared to that of Runahead and CFP models (details of these models are in

Chapter 3). Overall, performance of Runahead is not far from that reported by Mutlu et al. for a

similar benchmark suite (the majority of results in that work show better performance for bench-

marks with higher overall IPC than those used in this study). Looking ahead to Figures 5-31

through 5-35, Runahead tends to outperform OoO, as expected (OoO does not appear on Figure 5-

29). Observed results for CFP are slightly better than those reported by Srinivasan et al., likely due

to some degree of idealization in the CFP model.

Overall, Runahead is not able to issue enough useful prefetches in the integer and floating

point codes to make up for the performance loss due to end-of-runahead pipeline squashes. In the

case of the latter, the opportunity loss of delaying throughput-critical floating point operations

yields a slight performance loss, compared to F-128. As indicated by Figure 5-17, even large-win-

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

F-
12

8

F-
25

6

F-
51

2

F-
10

24

R
un

ah
ea

d

C
FP

IN
T

F-
12

8

F-
25

6

F-
51

2

F-
10

24

R
un

ah
ea

d

C
FP

FP
F-

12
8

F-
25

6

F-
51

2

F-
10

24

R
un

ah
ea

d

C
FP

COM

F-
12

8

F-
25

6

F-
51

2

F-
10

24

R
un

ah
ea

d

C
FP

GM
ea

n

FIGURE 5-29. Normalized runtime of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and
Wisconsin Commercial Workloads (COM), Forwardflow designs, Runahead, and CFP.

136
dow RUU configurations do not expose as much MLP in the integer suite as in SPEC FP. However,

Runahead performs well for two of the four commercial workloads (apache and zeus). Both of

these workloads exhibit more complicated data dependences than does the SPEC suite, and fairly

low IPC overall. However, in runahead mode, these dependences quickly evaporate as Runahead

discards dependant instructions. As a result, Runahead is able to achieve a runahead-mode IPC3

much higher than that implied by the dataflow limits of the benchmark themselves. Runahead

effectively discards instructions that tend to limit IPC in these workloads, e.g., faulting instruc-

tions and improperly-disambiguated loads. Furthermore, the Runahead implementation can

totally discard serializing events, such as speculatively-inlined exceptions. Though these events

usually do not trigger a pipeline flush, they cannot be safely executed until they reach the eldest

position in the DQ (or ROB, depending on the microarchitectural model).

These two effects enable the Runahead model to issue memory requests thousands of instruc-

tions apart—whereas microarchitectures that do not discard dependent instructions are eventually

limited by squashes, and maintain only about 190 instructions in-flight on average, even with

thousand-entry windows (cf Figure 5-18). In other words, apache and zeus do exhibit inde-

pendence, but the limitations of control prediction and serialization can inhibit some microarchi-

tectures’ ability to discover independent instructions.

CFP, on the other hand, improves performance by making better use of a small scheduler

(through instruction deferral and re-dispatch). Without end-of-runahead squashes, CFP outper-

forms Runahead in most cases, reaching a performance level roughly comparable to F-256.

3. Runahead-mode IPC is the rate at which instructions are discarded during runahead mode. It is distinct from IPC, which is the

rate at which instructions commit. IPC is zero during Runahead mode.

137

Figure 5-30 plots the power consumption of Runahead and CFP in the context of comparable

Forwardflow design points. Power consumed by CFP’s deferred queues are added to the “ROB/

DQ” category (note: “DQ” in this context abbreviates “Dataflow Queue,” referring to the instruc-

tion window in Forwardflow). Runahead’s runahead cache is added to the consumption of the

“DMEM” category, as it is accessed in parallel to the L1-D.

Overall, Runahead and CFP operate at power consumption comparable to or greater than the

largest Forwardflow configurations. In addition the inefficiencies of the underlying OoO design,

Runahead tends to increase the overall activity factor of the core, by eliminating memory stall peri-

ods. Similarly, CFP’s DQs are in near-constant operation, deferring up to a thousand instructions

at a time in search of ILP. Unlike a Forwardflow DQ, which has predictable access patterns for dis-

patch and commit, CFP’s DQs access patterns are more random, as slice resolution opportunisti-

cally defers, and potentially, multiply re-defers, instructions. As such, CFP’s DQs are harder to

decompose into independent banks than Forwardflow’s DQ. CFP exhibits substantially higher

0.0

0.5

1.0

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

R
un

ah
ea

d

C
F

P

INT

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

R
un

ah
ea

d

C
F

P

FP

F
-1

28

F
-2

56

F
-5

12

F
-1

02
4

R
un

ah
ea

d

C
F

P

COM

FIGURE 5-30. Categorized power of SPEC INT 2006 (INT), SPEC FP 2006 (FP), and
Wisconsin Commercial Workloads (COM), Forwardflow designs, Runahead, and CFP.

138
“ROB/DQ” power than other designs, due to the dual effect of higher activity factor (e.g., from

multiple deferral) and from implementation using larger overall SRAMs.

Interestingly, Runahead’s power does not reach that of F-1024 on the floating point bench-

marks, though it does significantly exceed the power of OoO (nearly the same as F-256). This is a

result of power-saving techniques applied in the Runahead model, suggested by Mutlu et al. [121].

Runahead discards instructions not likely to be related to address calculation (e.g., floating point

operations), and attempts to identify short runahead periods and simply stall the pipeline instead

of entering runahead mode. These effects are observable in “ALU” and “DMEM” power consump-

tion more comparable to F-128 than F-1024.

5.4.5 Outlier Discussion

In this final section of the quantitative evaluation of Forwardflow, I address atypical Forward-

flow behaviors. Much of the data explained in this section refers to the unabridged graphs in Sec-

tion 5.4.7, following this chapter’s conclusion. This evaluation’s main points are easier to follow if

these graphs are deferred until the end of the chapter.

Excellent performance outliers: libquantum, GemsFDTD, milc, and to a lesser extent,

bwaves. libquantum and benchmarks like it are extremely sensitive to lookahead, and fairly

computationally sparse. In other words, they are near-ideal benchmarks for microarchitectures

optimizing MLP, like Forwardflow. CFP also tends to perform well on these benchmarks. Each of

these benchmarks consists of a simple inner loop, with loop-invariant address calculations. A

strided prefetcher would likely be very effective for these workloads, though I have not quantified

this potential.

139
Poor performance outliers: bzip2, povray, hmmer, and, to a lesser extent, gromacs. Just

as the inherent characteristics of some benchmarks are well-suited to Forwardflow, others are less

so. Chapter 4 grants some insight into this pathological behavior: bzip2 and hmmer, for

instance, suffer from performance loss due to serialized wakeup, inherent in an SSR core. Still

other benchmarks (e.g., povray, and some listed below) saturate a particular resource in For-

wardflow, such as ARF write bandwidth.

Non-scalable benchmarks: gcc, gobmk, omnetpp. Some workloads are simply insensitive

to lookahead, as they exhibit relatively little instruction- or memory-level parallelism. omnetpp

is a prime example of this behavior: much of the portion of this benchmark used in this study is a

traversal of a large linked list. A dependence exists between loop iterations, and very little inde-

pendent work can be discovered. Similarly, gcc performs optimizations on an abstract syntax

tree, with similar graph-traversal limitations. Still other benchmarks (e.g., commercial workloads)

exhibit control flow patterns too difficult even for the aggressive branch predictor used in this

study—the expected number of true-path in-flight instructions is low compared to the window

size, and false-path instructions do not often issue useful prefetches.

Low power outliers: libquantum, mcf, lbm, milc. At first glance at Figures 5-37 through

5-40, some of these outliers seem more like “High power” outliers. This is an artifact of per-bench-

mark normalization. This evaluation assumes future chip generations will employ fairly aggressive

clock gating of unused components. In other words, benchmarks exhibiting long stalls will con-

sume relatively little (dynamic) power during these events. This effect is evidenced on individu-

ally-normalized power graphs (e.g., Figure 5-37, benchmark libquantum) as a high static-to-

140
dynamic power ratio. All models assume this same assumption, resulting in lower power com-

pared to that of other benchmarks.

5.4.6 Evaluation Conclusion

I conclude this evaluation with a brief summary of key findings relating to the performance

and power characteristics of Forwardflow:

•Forwardflow derives improved performance as window size scales up. Much of this benefit

varies with exposed MLP (e.g., median).

•Overall, Forwardflow’s performance is comparable to that of a similarly-sized traditional out-

of-order core. However, Forwardflow’s window scales gracefully to larger sizes, through simple

replication of DQ bank groups.

•The Forwardflow design is highly energy-efficient, by and metrics. However,

reducing effective dispatch/commit width is seldom efficient.

•As the Forwardflow window scales, window power increases linearly, but energy demand from

other resources scales as well (approximately logarithmically in window size), demonstrating

that scaling window size can scale overall chip power consumption.

•Forwardflow’s scalable window approach to MLP exploration often allows it to exceed the per-

formance of Runahead Execution and Continual Flow Pipelines.

These key findings will be used in Chapter 6, as I consider the utility of Forwardflow as a

dynamically scalable core.

R
2

0.93=

E D⋅ E D
2⋅

141

5.4.7 Unabridged Data

This final section of Chapter 5 presents complete data (i.e., runtime, power, efficiency) from all

benchmarks in SPEC CPU 2006 and the Wisconsin Commercial Workload Suite. Note that tabular

data can be found in Appendix C.

142

0

1

2

N
or

m
al

iz
ed

 R
un

tim
e

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

as
tar

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bz
ip2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

gc
c

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

go
bm

k

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

h2
64

ref

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

hm
mer

FIGURE 5-31. Normalized runtime, benchmarks astar, bzip2, gcc, gobmk, h264ref,
and hmmer (from SPEC INT 2006), all designs.

FIGURE 5-32. Normalized runtime, benchmarks libquantum, mcf, omnetpp,
perlbench, sjeng, and xalancbmk (from SPEC INT 2006), all designs.

0

1

2

N
or

m
al

iz
ed

 R
un

tim
e

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lib
qu

an
tum

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

mcf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

om
ne

tpp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

pe
rlb

en
ch

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sje
ng

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

xa
lan

cb
mk

143

FIGURE 5-33. Normalized runtime, benchmarks bwaves, cactusADM, calculix,
dealII, gamess, and GemsFDTD (from SPEC FP 2006), all designs.

0

1

2

N
or

m
al

iz
ed

 R
un

tim
e

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bw
av

es

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
ctu

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
lcu

lix
F-

32
F-

64
O

oO
F-

12
8

F-
25

6
F-

51
2

F-
10

24
R

un
ah

ea
d

C
FP

de
alI

I

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ga
mes

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ge
ms

FIGURE 5-34. Normalized runtime, benchmarks gromacs, lbm, leslie3d, milc,
namd, povray, soplex, and sphinx3 (from SPEC FP 2006), all designs.

0

1

2

N
or

m
al

iz
ed

 R
un

tim
e

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

gr
om

ac
s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lbm

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

les
lie

3d

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

milc

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

na
md

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

po
vr

ay

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

so
ple

x

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sp
hin

x3

144

FIGURE 5-35. Normalized runtime, benchmarks tonto, wrf, zeusmp (from SPEC FP
2006), apache, jbb, oltp, and zeus (from Wisconsin Commercial Workloads), all
designs.

0

1

2
N

or
m

al
iz

ed
 R

un
tim

e

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ton
to

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

wrf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

mp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ap
ac

he
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

jbb
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

olt
p-

1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

-1

145

FIGURE 5-36. Categorized power, benchmarks astar, bzip2, gcc, gobmk, h264ref,
and hmmer (from SPEC INT 2006), all designs.

0.0

0.5

1.0

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

astar

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

bzip2

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

gcc

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

gobmk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

h264ref

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

hmmer

FIGURE 5-37. Categorized power, benchmarks libquantum, mcf, omnetpp,
perlbench, sjeng, and xalancbmk (from SPEC INT 2006), all designs.

0

1

2
Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

libquantum

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

mcf

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

omnetpp

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

perlbench

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

sjeng

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

xalancbmk

146

FIGURE 5-38. Categorized power, benchmarks bwaves, cactusADM, calculix,
dealII, gamess, and GemsFDTD (from SPEC FP 2006), all designs.

0.0

0.5

1.0

1.5

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

bwaves

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

cactus

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

calculix

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

dealII

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

gamess

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

gems

FIGURE 5-39. Categorized power, benchmarks gromacs, lbm, leslie3d, milc, namd,
povray, soplex, and sphinx3 (from SPEC FP 2006), all designs.

0

1

2

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

gromacs

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

lbm

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

leslie3d

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

milc

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

namd

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

povray

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

soplex

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

sphinx3

147

FIGURE 5-40. Categorized power, benchmarks tonto, wrf, zeusmp (from SPEC FP
2006), apache, jbb, oltp, and zeus (from Wisconsin Commercial Workloads), all
designs.

0.0

0.5

1.0

1.5
Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

tonto

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

wrf

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

zeusmp
F

-3
2

F
-6

4
O

oO
F

-1
28

F
-2

56
F

-5
12

F
-1

02
4

R
un

ah
ea

d
C

F
P

apache-1

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

jbb-1

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

oltp-1

F
-3

2
F

-6
4

O
oO

F
-1

28
F

-2
56

F
-5

12
F

-1
02

4
R

un
ah

ea
d

C
F

P

zeus-1

148

FIGURE 5-41. Normalized , benchmarks astar, bzip2, gcc, gobmk, h264ref,
and hmmer (from SPEC INT 2006), all designs.

E D⋅

0

1

2

3

N
or

m
al

iz
ed

 E
*D

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

as
tar

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bz
ip2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP
gc

c
F-

32
F-

64
O

oO
F-

12
8

F-
25

6
F-

51
2

F-
10

24
R

un
ah

ea
d

C
FP

go
bm

k

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

h2
64

ref

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

hm
mer

FIGURE 5-42. Normalized , benchmarks libquantum, mcf, omnetpp,
perlbench, sjeng, and xalancbmk (from SPEC INT 2006), all designs.

E D⋅

0

1

2

3

4

N
or

m
al

iz
ed

 E
*D

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lib
qu

an
tum

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

mcf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

om
ne

tpp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

pe
rlb

en
ch

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sje
ng

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

xa
lan

cb
mk

149

FIGURE 5-43. Normalized , benchmarks bwaves, cactusADM, calculix,
dealII, gamess, and GemsFDTD (from SPEC FP 2006), all designs.

E D⋅

0

1

2

3

4

N
or

m
al

iz
ed

 E
*D

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bw
av

es

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
ctu

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
lcu

lix
F-

32
F-

64
O

oO
F-

12
8

F-
25

6
F-

51
2

F-
10

24
R

un
ah

ea
d

C
FP

de
alI

I

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ga
mes

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ge
ms

FIGURE 5-44. Normalized , benchmarks gromacs, lbm, leslie3d, milc, namd,
povray, soplex, and sphinx3 (from SPEC FP 2006), all designs.

E D⋅

0

1

2

3

N
or

m
al

iz
ed

 E
*D

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

gr
om

ac
s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lbm

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

les
lie

3d

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

milc

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

na
md

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

po
vr

ay

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

so
ple

x

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sp
hin

x3

150

FIGURE 5-45. Normalized , benchmarks tonto, wrf, zeusmp (from SPEC FP
2006), apache, jbb, oltp, and zeus (from Wisconsin Commercial Workloads), all
designs.

E D⋅

0

1

2

N
or

m
al

iz
ed

 E
*D

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ton
to

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

wrf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

mp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ap
ac

he
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

jbb
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

olt
p-

1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

-1

151

FIGURE 5-46. Normalized , benchmarks libquantum, mcf, omnetpp,
perlbench, sjeng, and xalancbmk (from SPEC INT 2006), all designs.

E D
2⋅

0

2

4

6

8

N
or

m
al

iz
ed

 E
*D

^2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

as
tar

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bz
ip2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

gc
c

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

go
bm

k

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

h2
64

ref

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

hm
mer

FIGURE 5-47. Normalized , benchmarks astar, bzip2, gcc, gobmk, h264ref,
and hmmer (from SPEC INT 2006), all designs.

E D
2⋅

0

2

4

6

8

10

N
or

m
al

iz
ed

 E
*D

^2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lib
qu

an
tum

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

mcf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

om
ne

tpp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

pe
rlb

en
ch

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sje
ng

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

xa
lan

cb
mk

152

FIGURE 5-48. Normalized , benchmarks bwaves, cactusADM, calculix,
dealII, gamess, and GemsFDTD (from SPEC FP 2006), all designs.

E D
2⋅

0

5

10

N
or

m
al

iz
ed

 E
*D

^2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

bw
av

es

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
ctu

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ca
lcu

lix
F-

32
F-

64
O

oO
F-

12
8

F-
25

6
F-

51
2

F-
10

24
R

un
ah

ea
d

C
FP

de
alI

I

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ga
mes

s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ge
ms

FIGURE 5-49. Normalized , benchmarks gromacs, lbm, leslie3d, milc, namd,
povray, soplex, and sphinx3 (from SPEC FP 2006), all designs.

E D
2⋅

0

2

4

6

N
or

m
al

iz
ed

 E
*D

^2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

gr
om

ac
s

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

lbm

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

les
lie

3d

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

milc

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

na
md

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

po
vr

ay

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

so
ple

x

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

sp
hin

x3

153

FIGURE 5-50. Normalized , benchmarks tonto, wrf, zeusmp (from SPEC FP
2006), apache, jbb, oltp, and zeus (from Wisconsin Commercial Workloads), all
designs.

E D
2⋅

0

1

2

3

4

5

N
or

m
al

iz
ed

 E
*D

^2

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ton
to

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

wrf

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

mp

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ap
ac

he
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

jbb
-1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

olt
p-

1

F-
32

F-
64

O
oO

F-
12

8
F-

25
6

F-
51

2
F-

10
24

R
un

ah
ea

d
C

FP

ze
us

-1

154

Chapter 6

Scalable Cores in CMPs

Chapters 4 and 5 developed the foundations for a statically-scalable core, Forwardflow. Chap-

ter 6 discusses how to use Forwardflow cores effectively in a scalable chip multiprocessor (CMP). I

begin this discussion with a review of the tradeoffs of scalable CMPs. In particular, the workloads

of future chips will be varied: new highly-concurrent codes will emerge, and today’s mostly-

sequential codes will likely endure as well. Between these two extremes, there will be a variety of

partially-parallel executions, hobbled by occasional sequential bottlenecks. A scalable CMP seeks

to address all of these workloads.

First, when running highly-threaded applications, all cores should scale down, each reducing

its power/performance point, to afford the power necessary to operate all cores simultaneously. At

the other end of the workload spectrum, a single thread, an individual core should scale up, and

pursue single-thread performance aggressively, at the cost of increased core power. Ultimately, to

what extent cores should scale is a subjective decision: if performance is the only metric of value,

cores should scale up fully. On the other hand, optimizing energy-efficiency may also be a moti-

vating concern. Unfortunately, the most energy-efficient configuration is not immediately obvi-

ous, before runtime and energy profiling reveals which power/performance point is most suited to

a particular workload. A hardware scaling policy can help to identify the most-efficient configura-

tion (Section 6.4).

155
There are also workloads near the middle of the spectrum—e.g., those with significant paral-

lelism but also occasional sequential bottlenecks. Scalable CMPs can optimize these executions in

at least two ways. First, if sequential bottlenecks can be identified, scaling up the appropriate core

can be used to partially ameliorate the bottleneck. Second, scaling down cores that spin or other-

wise perform no useful work can improve efficiency by wasting less energy.

In pursuit of these optimizations, this chapter discusses several experiments concerning the

design and use of scalable cores in chip multiprocessors. First, I describe how to leverage the For-

wardflow core to implement dynamic scaling. Next, I consider from where cores should acquire

their additional resources to implement scale up—e.g., from core-private resource pools (a

resource overprovisioning philosophy) or from resources shared with other cores (a resource bor-

rowing philosophy). I find that resource overprovisioning is preferable to borrowing, as cost of

overprovisioning can be small (e.g., a 7% increase in chip area), and slowdown from borrowing

resources from other cores can be significant (e.g., 9% on average). Overprovisioning also places

fewer additional demands on system software, as cores can be scaled independently of one another

without coordination.

Next, I consider the means by which hardware scaling policies, operating systems, and soft-

ware can evaluate energy consumption (e.g., to make more informed efficiency-based scaling

decisions). Section 6.3 presents a method by which to estimate the power consumed by a scalable

core, with accuracy comparable to that of an architectural simulation [25]. This technique enables

profiling across configurations, showing that scalable core policies can measure the power consump-

tion of each configuration on a per-benchmark basis, with low overhead. Future software explora-

156
tion of policies for scalable CMPs can use simple models based on these findings to estimate per-

configuration power consumption for a given workload.

After discussing how to scale cores, I next consider when to scale cores. Section 6.4 evaluates

hardware scaling policies, which aim to optimize energy-efficiency of single-threaded applica-

tions. Section 6.5 proposes scaling policies in the context of multithreaded workloads. I find that

programmer-guided scaling (e.g., in new applications) is highly effective at identifying and ame-

liorating sequential bottlenecks. When no programmer annotations are possible, spin-detection

hardware often improves energy-efficiency when used to opportunistically scale-down spinning

cores, thereby saving power at little or no performance cost. Lastly, I find that, though scale-up

policies are often energy-efficient in Forwardflow, heuristics based on lock acquisition do not

behave as intuition might suggest, for two reasons. First, critical sections do not necessarily consti-

tute sequential bottlenecks. Second, hardware may be subject to false positives, leading to inaccu-

rate identification of critical sections.

Lastly, this work explores methods by which future researchers can evaluate scalable CMPs

without time-consuming simulation. In Section 6.6, I discuss the conditions under which dynamic

voltage and frequency scaling (DVFS) can be used to approximate the general behavior of a For-

wardflow scalable core. Together with the work on power estimation, this lays the groundwork for

software-scale policies for future scalable CMPs.

Granularity. This work considers dynamic core scaling at fine time granularity, i.e., more fre-

quent than timer interrupts implementing an operating system’s time slice. Two underlying con-

siderations motivate this choice. First, this work makes the initial contributions necessary to use

non-simulation techniques to evaluate scalable cores at coarser granularity (e.g., by using DVFS

157
for performance, Section 6.6, and simple models for power, Section 6.3). Second, practical limita-

tions of simulation-based evaluation limit the scope of this evaluation to what can be simulated in

reasonable time. This constitutes approximately one scheduling slice for a modern OS, about 10ms

of target machine time. I believe future work in this area should investigate policies for scalable

work at coarser granularity, using other means.

Power Consumption. I have explicitly chosen not to set a fixed power budget for the simulated

CMP used in this study. Instead, I evaluate power and performance in the context of efficiency

metrics, and . These metrics implicitly consider power: is the energy cost of an exe-

cution, and represents its runtime. The relative importance of and are represented as geo-

metric weights in the measures—other weights are possible. Generally, I assume that a sufficient

performance gain will motivate additional energy costs (i.e., power supply and heat dissipation).

6.1 Leveraging Forwardflow for Core Scaling

Chapter 5 discussed how to build a Forwardflow core with a statically-sized instruction win-

dow (in Forwardflow parlance, a Dataflow Queue, or DQ). This section addresses how to build a

dynamically scalable core, using the Forwardflow static design as a starting point. Not every detail

of Forwardflow core operation is pertinent to this discussion. Importantly, larger (or smaller) For-

wardflow cores can be built simply by statically provisioning more (or less) DQ capacity, with no

change to the remainder of the pipeline. In other words, enabling (or disabling) portions of the DQ

effectively scales a Forwardflow core.

Three features of the Forwardflow design make it amenable to dynamic scaling. Firstly, the DQ

is already disaggregated and organized into discrete subsections, DQ bank groups (BGs). The num-

ber of BGs in each design is the principal difference between the static design points presented in

E D⋅ E D
2⋅ E

D E D

158
Chapter 5, e.g., F-128 is built from one group, F-1024 uses 81. Because window scaling affects core-

wide (indeed, chip-wide) power consumption, scaling the DQ can be used to manage overall core

power/performance. In other words, scaling up means dynamically adding more bank groups to a

computation.

Secondly, the use of pointers throughout the design enables Forwardflow’s control logic to

handle window size reconfiguration gracefully—pointers are already oblivious of the physical

characteristics of the structure to which they point. Since the DQ is managed as a FIFO, it is a sim-

ple matter to modify the head and tail pointer wraparound logic to accommodate variable DQ

capacities that are powers of two, using modulo-2N logic.

This leads to the third attractive feature, that Forwardflow-based scalable cores can be recon-

figured relatively quickly—on the order of the time required to resolve a branch misprediction.

Forwardflow offers a highly scalable window, and by altering head/tail wraparound conditions, the

effective size of this window effectively scaled, affecting the behavior of the whole core. All that is

needed to implement a change in window size is a pipeline flush.

6.1.1 Modifications to Forwardflow Design to Accommodate Scaling

When scaled up, a dynamically scalable Forwardflow core uses many bank groups to imple-

ment a larger instruction window. When scaled down, fewer BGs operate, thereby throttling over-

all core performance and power consumption. Because many possible operating ranges exist, the

interconnect between dispatch/commit logic and the BGs, and between BGs themselves (i.e., the

operand network) must be constructed with dynamic scaling in mind.

1. The number of checkpoints for the Register Consumer Table (RCT) varies per design as well, in support of larger windows.

159
To conserve leakage power, each bank group could be placed in a separate voltage plane,

enabling an entire BG to be completely powered down. However, recall from Chapter 5 than indi-

vidual bank groups are fairly small (less than 1mm2), and account for a relatively small amount of

chip-wide leakage power (about 12% of chip-wide static power, or about 4% of power overall).

Therefore, to enable greater flexibility in fine-grain scaling control, I assume unused BGs are qui-

esced (i.e., consume no dynamic power) but remain powered, so that they can resume operation

quickly when scaling up.

Scaling Down. Scaling down is simple by comparison to scaling up. One could rely on simply

bounding DQ allocation to a few entries, effectively constraining total window size. However, an

opportunity exists to also scale down the effective pipeline width—offering a wider power/perfor-

mance range (e.g., F-32 in Chapter 5). To implement a power-performance point similar to that of

the smallest static Forwardflow configurations (e.g., F-32), execution logic need only restrict the

number of active banks within a single bank group.

Banks within a bank group are interleaved on low-order bits of the DQ identifier. I exploit this

fact to dynamically scale down pipeline width. Instead of constraining DQ entry allocation when

scaled down, dispatch logic instead advances the tail pointer by two, instead of one, after each allo-

cation. Doing so “skips” individual DQ banks, effectively disabling one half of the DQ banks

within a group (i.e., F-64), and forcing a dynamically narrower pipeline and a smaller window. The

same approach can be applied to disable 75% of the DQ banks, by advancing the tail pointer by

four entries on each allocation (i.e., F-32).

160

Scaling Up. Implementing dynamic scale-up requires some additional hardware, compared to

a static Forwardflow core. This hardware involves the intra-core interconnects, which must be

designed with the expectation that not all endpoints will be operating at a time. In particular:

•The dispatch bus must be routed to any BGs capable of operating with the dispatch logic (one

at a time), though not all bank groups will actually operate when scaled down.

PBG0

LBG0

PBG1

OFF

PBG2

OFF

PBG3

OFF

PBG4

OFF

PBG5

OFF

PBG6

OFF

PBG7

OFF

PBG0

LBG0

PBG1

LBG1

PBG2

OFF

PBG3

OFF

PBG4

OFF

PBG5

OFF

PBG6

OFF

PBG7

OFF

PBG0

LBG0

PBG1

LBG7

PBG2

LBG1

PBG3

LBG6

PBG4

LBG2

PBG5

LBG5

PBG6

LBG3

PBG7

LBG4

PBG0

LBG0

PBG1

LBG3

PBG2

LBG1

PBG3

LBG2

PBG4

OFF

PBG5

OFF

PBG6

OFF

PBG7

OFF

(a) 128-entry window

(b) 256-entry window

(c) 512-entry window

(d) 1024-entry window

FIGURE 6-1. Logical connections between physical bank groups (PBG), 128-entry through
1024-entry Forwardflow windows, and associated logical bank group (LBG) mapping.

161
• Similarly, the commit bus must be routed from all BGs to the ARF control logic. As with the

dispatch bus, only one group will commit at a time, and not all BGs will operate when scaled

down (this bounds reconfiguration time to a few cycles).

•As was the case with large static cores, bank groups must operate collectively to resolve branch

mispredictions.

•The operand network between BGs should bypass unused bank groups when not fully scaled

up, to minimize inter-BG latency (on the critical path of instruction wakeup in Forwardflow).

Importantly, proper manipulation of DQ head and tail pointers’ wraparound logic solves the

first two considerations. In particular, if physical DQ entries backed by unused BGs are never

actually allocated to instructions in the first place, window size is effectively constrained, requiring

no change to the dispatch and commit logic used in Chapter 5. The remaining two interconnects

are addressed with circuit-switched interconnects (a narrow hierarchical crossbar for mispredic-

tions, not discussed in further detail, and a wider ring interconnect for the operand network, dis-

cussed below).

Implementing a Dynamically-Scalable Unidirectional Ring. When fully scaled up (i.e., to a

1024-entry DQ), a core uses eight BGs (each backing 128 contiguous DQ entries). Static Forward-

flow uses a unidirectional ring between bank groups to implement inter-BG communication.

Skipping every other BG in the ring homogenizes per-link latency2 by avoiding a costly wrap-

around link. To implement this topology dynamically, the hardware implementing a particular

bank group, i.e., the Physical Bank Group (PBG), is disassociated from the Logical Bank Group

(LBG), the subset of the logical DQ space backed by a particular bank group. Figure 6-1 illustrates

2. Recall that each bank group is less than 1mm square. Each link incurs approximately 0.l9 ns signalling time.

162

the interconnect between bank groups, and corresponding PBG-to-LBG mappings for (a) 128-

entry, (b) 256-entry, (c) 512-entry, (d) and 1024-entry windows.

I first considered simply statically implementing the 1024-entry case, and requiring unmapped

LBGs to repeat all messages when scaled down. However, this practice effectively introduces a

longer-latency wraparound link, consisting of unused PBGs, to complete the ring, thereby overly

penalizing operand transfers from the last LBG the first. To address this problem, I propose a

dynamically circuit-switched operand network, illustrated at a high level Figure 6-2, with per-BG

connections in Figure 6-3. This interconnect consists of two unidirectional circuit-switched seg-

mented busses: RBUS, propagating signals left-to-right, and LBUS, propagating signals right-to-

left. Physical bank groups selectively connect to RBUS and LBUS, according to the contents of bus

control words governing connections. In particular, each bus has a drive control word (i.e., RD0,

“right drive zero”, through RD7 and LD0, “left drive zero”, through LD7) and a snoop control word

(i.e., RS[7:0] and LS[7:0]). Figure 6-3 depicts the logic to implement circuit switching for

one bank group, omitting repeater logic for clarity3.

3. The aforementioned 0.19ns delay used two repeaters per link.

PBG0 PBG1 PBG2 PBG3 PBG4 PBG5 PBG6 PBG7

RBUS

LBUS

RD
0

RS
1

RD
1

RS
2

RD
2

RS
3

RD
3

RS
4

RD
4

RS
5

RD
5

RS
6

RD
6

RS
7

LS
0

LD
1

LS
1

LD
2

LS
2

LD
3

LS
3

LD
4

LS
4

LD
5

LS
5

LD
6

LS
6

LD
7

FIGURE 6-2. Dynamically circuit-switched unidirectional ring operand network.

163

Under this organization, asserted bits in a bus’s drive control word multiplex signals from the

local bank group onto the bus. In other words, setting bit xDi connects segment i of bus x to the

output port of bank group i, masking any signal behind position i such that it no longer propa-

gates on bus x. Similarly, asserted snoop bits connect a bus to a local bank group’s input port.

The LBUS/RBUS interconnect enables a variety of topologies, including those depicted logi-

cally in Figure 6-1. Figure 6-4 shows the interconnect scaled to the 256-, 512-, and 1024-entry

design points, along with the associated control words for RBUS and LBUS connectivity. Single-

PBG operation (for F-128 and smaller configurations) is handled as a special case, in which the

operand network does not operate at all. Greyed components are de-activated, dotted components

are activated but unused. The most-significant bits of RD and LS are X, as PGB7 has no right-hand

connections to RBUS or LBUS, and similarly the least significant bits of RS and LD are X, as PGB0

has no left-hand connections. Note that, because only a few unidirectional ring configurations are

needed, the full generality of the LBUS/RBUS approach is not strictly necessary (e.g., several bits

BG

RD[i]

LD[i]

RS[i]
LS[i]

LBUS
LBUS

RBUS
RBUS

PBGi

RBUS

LBUS

RS
i

RD
i

LD
i

LS
i

(a) (b)

FIGURE 6-3. (a) Circuit-switched interconnect harness for a single bank group, and (b)
circuit symbol for harness and BG, connected to LBUS and RBUS.

164

of the above matrixes are constant). However, implementing these optimizations would require

custom logic at each PBG. It is simpler to implement all PBGs identically, and never activate

unneeded paths during normal operation.

Lastly, note that the RBUS/LBUS implementation above is valid for either the resource borrow-

ing or resource overprovisioning case (Section 6.2). In the former case, the RBUS/LBUS control

words are shared between a collection of cores that could potentially share PBGs, potentially com-

plicating the process by which control words are updated during reconfiguration.

The effective timing of the RBUS/LBUS implementation is no different than that of a static

core, once circuit-switched paths are established. Unless otherwise noted, I assume wire delay (not

logic delay) dominates the interconnect.

PBG0 PBG1 PBG2 PBG3 PBG4 PBG5 PBG6 PBG7

RBUS

LBUS

PBG0 PBG1 PBG2 PBG3 PBG4 PBG5 PBG6 PBG7

RBUS

LBUS

PBG0 PBG1 PBG2 PBG3 PBG4 PBG5 PBG6 PBG7

RBUS

LBUS

RD[7:0] = X 0 0 0 0 0 0 1 2
RS[7:0] = 0 0 0 0 0 0 1 X 2
LD[7:0] = 0 0 0 0 0 0 1 X 2
LS[7:0] = X 0 0 0 0 0 0 1 2

256-entry Window

RD[7:0] = X 1 0 1 0 1 0 1 2
RS[7:0] = 1 1 0 1 0 1 0 X 2
LD[7:0] = 1 0 1 0 1 0 1 X 2
LS[7:0] = X 0 1 0 1 0 1 1 2

1024-entry Window

RD[7:0] = X 0 0 0 0 1 0 1 2
RS[7:0] = 0 0 0 0 1 1 0 X 2
LD[7:0] = 0 0 0 0 1 0 1 X 2
LS[7:0] = X 0 0 0 0 0 1 1 2

512-entry Window

FIGURE 6-4. 256-, 512-, and 1024-entry window configurations of the dynamically-
scalable interconnect, and associated values of RBUS/LBUS control words.

165
Software Considerations. The details of the underlying microarchitecture should not be

exposed to software, as the next hardware generation’s implementation may differ. Instead, there

are several abstractions by which a scalable Forwardflow core could be presented to the system

software. For instance, scalable core configurations can be abstracted as a power-control state [85]

(e.g., in ACPI, a negative C-state). The precise mechanism used will depend on a variety of factors,

e.g., whether cores scale dynamically in hardware (Sections 6.4 and 6.5), or strictly under software

control. In the former, it seems reasonable for software policies to determine base and bound con-

figurations, which can be easily abstracted as privileged registers. In the latter, a single register

could be used to determine overall core configuration.

Reconfiguration. A reconfiguration operation should require only a few cycles to complete,

given the above assumptions (circuit-switched operand network, DQ head and tail pointer manip-

ulation to control allocation, and quiesced, but powered, bank groups). Reconfiguration latency

should be only slightly longer than the recovery time from a branch or disambiguation mispredic-

tion. During reconfiguration operations, architectural state (i.e., the ARF, PC, and NPC) remains

unchanged, all in-flight instructions are flushed, and instruction fetch is halted until reconfigura-

tion is complete.

166

Configuration Space. The remaining sections of this chapter assume six possible configura-

tions in their Forwardflow scalable cores. These configurations are summarized in Table 6-1.

6.2 Overprovisioning versus Borrowing

The first area of evaluation in this chapter addresses the means by which individual cores

acquire additional resources to implement scale-up. Broadly speaking, these additional resources

can either be overprovisioned, on a per-core basis for exclusive use, or borrowed from other cores

dynamically. The high-level tradeoffs of borrowing versus overprovisioning are more fully dis-

cussed in Chapter 2. In this section, I address the quantifiable costs of overprovisioning and bor-

rowing as they pertain to a scalable Forwardflow-based CMP.

At the heart of this dichotomy is a simple tradeoff. Intuitively, per-core overprovisioning

requires additional chip area, which is unused when individual cores are scaled down. On the

other hand, resource borrowing may waste less area, but may also incur longer delays between

scaled components, due to global wiring (e.g., when communicating with resources nominally

TABLE 6-1. Forwardflow Dynamic Scaling Configurations

Configuration Description

F-32 Fully scaled-down. Single-issue Forwardflow core, 32-entry DQ bank.

F-64 Dual-issue Forwardflow core with a 64-entry DQ (two 32-entry DQ banks).

F-128 Nominal operating point. Quad-issue Forwardflow core with a 128-entry DQ.

F-256
Quad-issue Forwardflow core with a 256-entry DQ (two F-128-style DQs, orga-

nized into two bank group)

F-512 Quad-issue Forwardflow core with a 512-entry DQ (four bank groups).

F-1024 Fully scaled-up. Quad-issue Forwardflow core with a 1024-entry DQ.

167
belonging to other cores). Borrowing may also complicate scale-up, as individual core scale-up

must be coordinated among cores within the borrowing domain.

The Forwardflow design is amenable both to borrowing and overprovisioning. Since not all

parts of a Forwardflow core scale dynamically (i.e., only the bank groups), overprovisioning cost is

smaller than that of some prior work [86]. However, borrowing is also simplified, because only

bank groups must reside near one another in the floorplans of neighboring cores (e.g., in Figure 6-

5). No other components of the Forwardflow design scale up, so only bank groups must incur the

complexities of borrowing.

Area Cost of Overprovisioning. Scaling all components of a core requires significant area [86,

94]. However, Forwardflow, and at least one other scalable core [180], implement scale-up using

small, modular components. For these designs, the on-chip area occupied by scalable components

is small in context of the entire die area.

In Forwardflow, the unit of scaling is a DQ bank group (BG). Each BG occupies about 0.9 mm2

in 32nm (Chapter 5). In context of other core components, the unscaled Forwardflow frontend

and ARF occupies about 4 mm2, and the L1-D cache occupies about 4.7 mm2 [149]. The smallest

Forwardflow cores used in this study occupy about 10.5 mm2, the largest 16.7 mm2. This suggests

about 6 mm2 of unused area when a fully (over-)provisioned core is scaled down, about 35% of the

total per-core area.

When these overheads are considered at the scale of a complete CMP, the area cost of overpro-

visioning is less significant. Each bank of an 8MB shared L3 cache is 2.33x4.15 mm. Per-core pri-

168

vate L1-D and L2 caches are 1.55x3.00 mm (4.7 mm2)and 2.12x3.63 mm (7.7 mm2), respectively.

Figure 6-5 plots these elements at scale (for core floorplans, for

CMPs). “FE” indicates a core frontend. Floorplans a) and c) assume that each individual core

includes enough bank groups to scale to F-512, and scaling to F-1024 is implemented with borrow-

ing. Floorplans b) and d) are fully overprovisioned—each core can scale to F-1024 without bor-

rowing resources. Greyed areas indicate powered components when one (logical) core is fully

scaled up.

Per tile-area is about 8% larger in the overprovisioning case (37.2 mm2, as opposed to 34.5

mm2 in the borrowing case). This in turn leads to a slightly larger die size from an overprovisioned

L2

L
1

-D

FE

L3B

L
1

-D

FE

L3B

L
2

L2

L
1

-D

FE

L3B

4.15mm
4.15mm

1
6

.6
m

m

8
.9

6
m

m

L
1

-
D

FE

L3B

L
2

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L
1

-
D

FE

L3B

L
2

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L2

L
1

-D

FE

L3B

L
1

-
D

FE

L3B

L
2

L
1

-
D

FE

L3B

L
2

L
1

-
D

FE

L3B

L
2

L
1

-
D

FE

L3B

L
2

L
1

-
D

FE

L3B

L
2

L
1

-
D

FE

L3B

L
2

16.6mm 16.6mm

1
7

.9
m

m

8
.3

1
m

m
a) Borrowing Floorplan b) Overprovisioned Floorplan

c) Borrowing CMP d) Overprovisioned CMP

FIGURE 6-5. Forwardflow floorplans for core resource borrowing (a), per-core
overprovisioning (c), a resource-borrowing CMP (c), and an overprovisioned CMP (d).

1mm 0.2in= 1mm 0.05in=

169
design—the overprovisioned CMP is 298 mm2, whereas the borrowing-based CMP is 276 mm2,

7% smaller.

Though this analysis has assumed no area cost for borrowing, prior work has shown that

implementing borrowing incurs its own area overheads. Ipek et al. estimate the logic required to

fuse cores occupies area comparable to that of an entire core [86], about 12% more die area, most of

which falls out from the complexity of wiring and logic needed to dynamically share components.

These overheads would be substantially lower under an overprovisioning philosophy, as the result-

ing wiring would be core-local. This suggests that it may be more area-efficient to overprovision, as

borrowing’s routing complexity is much higher overall.

Delay Cost of Borrowing. The floorplans in Figure 6-5 show that the on-chip signalling dis-

tance between interconnected elements in the borrowing and overprovisioning scenario is compa-

rable. However, this observation is specific to two-core sharing, and would not hold for larger

borrowing pools. Moreover, addition of logic to enable dynamic borrowing may incur delay [86].

To evaluate the effect of this delay, I consider an experiment in which an additional two-cycle

delay is added to signals that cross core boundaries. This delay affects the inter-BG interconnect,

as well as the dispatch and commit logic. For simplicity, I do not model additional delays in branch

resolution—these should be second-order effects.

Figure 6-6 plots the runtime of the fully scaled-up borrowing design (i.e., F-1024, in which the

final scaling interval is implemented with borrowing) in grey, compared to the runtime of the next

lower scaling point, F-512 (dark grey), implemented with core-private resources. Both runtimes

170

are normalized to that of a fully scaled-up overprovisioned design (i.e., an F-1024 design like that of

Figure 6-5 b). In all cases, the added communication delay from borrowed resources reduces perfor-

mance, by an average of 9%. This means that the performance of the borrowed design, fully scaled,

is not much faster on average than one core operating alone, F-512. With only small delays

between core domains, there is little point to ever scaling to F-1024/Borrowed.

Two root causes underlie the performance gap between borrowing and overprovisioning.

Firstly, dispatch to borrowed resources is slower, incurring a longer effective fetch-to-dispatch

latency. Second, pointer/value pairs traversing the inter-bank-group interconnect experience

delays when crossing core boundaries. To address the effect of the latter, Figure 6-7 plots the exe-

cuting occupancy of the same designs. Recall that the executing occupancy is the number of

instructions in the window that have been scheduled but not yet completed. In other words, it

measures the mean number of instructions simultaneously “executing” in a design, rather than

waiting to execute, or waiting to commit. This measure is again normalized to that of the overpro-

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 R
un

tim
e

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rl

be
nc

h

sj
en

g

xa
la

nc
bm

k

bw
av

es

ca
ct

us

ca
lc

ul
ix

de
al

II

ga
m

es
s

ge
m

s

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

ap
ac

he
-1

jb
b-

1

ol
tp

-1

ze
us

-1

G
M

ea
n

FIGURE 6-6. Runtime of Borrowing F-1024 (grey) and No-Borrowing F-512 (dark grey),
normalized to that of the Overprovisioned F-1024 design.

171

visioned F-1024 design. Overall, added delays in the inter-BG network tend to reduce executing

occupancy, as wakeups tend to be delayed when they (unluckily) cross a core boundary. These

extra delays never occur in the core-private F-512 (dark grey), or the fully-overprovisioned base-

line.

Despite operating with slightly lower performance, the borrowing case exercises the unscaled

hardware similarly to the overprovisioned case, resulting in similar overall power consumption.

Comparable power and worse performance implies lower energy-efficiency from overprovisioned

designs. Figure 6-8 plots efficiency (, top, and , bottom) of Borrowing F-1024 and No-

Borrowing F-512 with respect to the overprovisioned design. Overprovisioning is never more effi-

cient than borrowing, and is usually substantially less efficient. On average, it is more efficient to

simply not scale beyond F-512, if borrowing is needed to do so.

While this experiment considers only the effect of borrowing to scale to the largest configura-

tion, i.e., from F-512 to F-1024, a larger lesson remains: borrowing will hurt performance and effi-

0.0

0.2

0.4

0.6

0.8

N
or

m
. E

xe
cu

tin
g

O
cc

up
an

cy

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rl

be
nc

h

sj
en

g

xa
la

nc
bm

k

bw
av

es

ca
ct

us

ca
lc

ul
ix

de
al

II

ga
m

es
s

ge
m

s

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

ap
ac

he
-1

jb
b-

1

ol
tp

-1

ze
us

-1

G
M

ea
n

FIGURE 6-7. Executing occupancy of Borrowing F-1024 (grey) and No-Borrowing F-512
(dark grey), normalized to that of the Overprovisioned F-1024 design.

E D⋅ E D
2⋅

172

ciency if it introduces more delay than an overprovisioned design. Though this experiment

concentrates on the last stage of scale-up, if borrowing is used at lower levels of the configuration

hierarchy (e.g., from F-256 to F-512), one can expect worse results. Any borrowing-induced delays

will occur more frequently in these smaller core designs, and will even more severely affect perfor-

mance. On the other hand, the area benefit of borrowing (if one exists) will see diminishing

returns as scalable components represent progressively less per-tile area.

Summary. While prior work has implicitly advocated resource borrowing, I show that if bor-

rowing introduces delays, overprovisioned Forwardflow cores are likely to perform better. The cost

of implementing fully-overprovisioned cores is fairly small: die area is increased by only 7% in the

hypothetical CMP used in this study. I conclude that, so long as per-scaled component area is

small, future designs should simply overprovision cores with sufficient resources to scale up,

0

1

2

N
or

m
al

iz
ed

 E
*D

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rl

be
nc

h

sj
en

g

xa
la

nc
bm

k

bw
av

es

ca
ct

us

ca
lc

ul
ix

de
al

II

ga
m

es
s

ge
m

s

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

ap
ac

he
-1

jb
b-

1

ol
tp

-1

ze
us

-1

G
M

ea
n

0

1

2

3

4

N
or

m
al

iz
ed

 E
*D

^2

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rl

be
nc

h

sj
en

g

xa
la

nc
bm

k

bw
av

es

ca
ct

us

ca
lc

ul
ix

de
al

II

ga
m

es
s

ge
m

s

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

ap
ac

he
-1

jb
b-

1

ol
tp

-1

ze
us

-1

G
M

ea
n

FIGURE 6-8. Energy efficiency of Borrowing F-1024 (grey) and No-Borrowing F-512 (dark
grey), normalized to that of the Overprovisioned F-1024 design.

173
rather than complicate hardware and software design with coordinated inter-core resource bor-

rowing.

6.3 Measuring Per-Core Power Consumption

Future hardware and software policies for scalable CMPs must seek a balance between power

consumption and performance demands. Performance is usually a straightforward metric: wall

clock time or throughput are both easily measured. But measuring power consumption is more

difficult, especially at fine granularity. To enable on-line estimation of energy-efficiency, scaling

policies and heuristics for future scalable CMPs need a means by which to reliably estimate per-

configuration and per-benchmark power consumption.

The power consumption of a circuit can be measured externally, e.g., by measuring a voltage

differential across a shunt resistor [89]. However, circuit-level techniques to estimate power

require significant additional hardware, are generally coarse-grained (e.g., measure the consump-

tion of an entire voltage plane, or an entire chip), and measure energy consumption over long time

intervals (i.e., on the order of milliseconds). These characteristics make circuit-level measurement

undesirable for use in scaling heuristics, for three reasons. First, hardware dedicated to scaling

heuristics should be small, non-invasive, and have low cost. Second, fine-grained scaling heuristics

require fine-grained estimates of energy consumption, preferably estimates that can distinguish

between consumption affected by scaling (e.g., the power consumed in the instruction window

and datapaths) and consumption independent of scaling (e.g., leakage current and clock power).

Third, and perhaps most important, scaling heuristics will use estimates of energy consumption to

evaluate which scaling points are currently preferable, given the current behavior of a workload.

Therefore, estimates should be made over relatively short periods of time—it may be unacceptable

174
to evaluate a particular scaling point for a few tens of milliseconds, as an entire phase of the com-

putation can elapse in that time [147, 148, 172].

Precise estimation of power consumption allows a scaling heuristic to operate with knowledge,

rather than assumption, of actual energy consumed by a calculation, leading to clearer power/per-

formance tradeoffs. This subsection develops a method by which scaling heuristics or system soft-

ware can estimate per-configuration power consumption, based on easily-observable

microarchitectural event counts. This feature enables a hardware scaling policy to directly measure

energy consumption, with minimal core hardware modification, or for software to estimate energy

directly by executing a small subroutine. Importantly, this approach requires almost no new hard-

ware, as it uses the core’s own execution resources to compute energy estimates.

Some prior work in this area has proposed or assumed specialized hardware to provide runt-

ime power estimation [87, 89], rather than direct physical measurement. The premise behind

these proposals is the same used by Wattch [25], a simulation tool for architectural-level approxi-

mations of power consumption in CMOS. Wattch operates on the simple assumption that all

microarchitectural events have a fixed energy cost—by construction the entire energy cost of an

execution is the sum of the products of counts of microarchitectural events and their associated

energy cost. In other words:

 (6.1)Eexecution Activationsi Ei⋅
i A∈
∑=

175
where is the set of all microarchitectural components, represents the number of

activations of each component in the execution, is the energy consumed by an activation of

component . is the total energy consumed during the execution.

However, though Wattch is a simulation tool, the same insight applies to online measurement

of actual systems. Though not all can be easily determined at runtime, Joseph et al.

[89] show that can be predicted with high accuracy from software-observable perfor-

mance counters in the Alpha 21264 and the Pentium Pro, based on a linear cost model. In other

words:

 (6.2)

where is the set of observable events, is the count for each event, and is a linear

weight (nominally, an energy cost) assigned to each event type.

Equations 6.1 and 6.2 differ in several key areas. First, Eqn. 6.2 is approximate—it relies on pre-

cise measurement of event counts and accurate per-event linear weight . Second, the set

consists of microarchitectural events that can be easily exposed as a performance counter (e.g., a

count of decoded instructions, or the number of local cache accesses), whereas the set (in Eqn.

6.1) consists of all possible microarchitectural events, including those not easily made available to

performance counters (e.g., the number of remote cache invalidations). A tradeoff arises because

the accuracy of the latter method improves as becomes more inclusive of , but the complexity

of implementing the sum in Eqn. 6.2 grows with the cardinality of . In other words, for accuracy,

A Activationsi

i Ei

i Eexecution

Activationsi

Activationsi

Eexecution E≈
est

N j E j
est⋅

j C∈
∑=

C N j E j
est

N j E j
est

C

A

C A

C

176
it would be preferable to measure all microarchitectural events, but for practicality, measurement

must be restricted to those events that are easy to count at a single processor core.

Fortunately, various are predictably correlated to various . For example, for

each instruction committed (a measure trivial to include in set), one can infer that the instruc-

tion was fetched (i.e., the fetch logic was activated), the instruction was decoded (i.e., microcode

tables were consulted), source operands were read (i.e., the register file was read), etc. These corre-

lations can be measured, to assign in such a way that the error of Eqn. 6.2 is minimized.

The problem of finding an acceptable set of countable events is that of a minimization prob-

lem: pick the smallest set of counters possible to minimize estimation error. Table 6-2 enumerates 34

possible candidate event counts for set , selected from events already present in the microarchi-

tecture of a Forwardflow core.

TABLE 6-2. Microarchitectural events in a Forwardflow core (candidates for set)

Event Name Description

l1d_misses Count of misses in the core’s local L1-D cache.

l2_misses Count of misses in the core’s local L2 cache.

l3_misses Count of misses in the L3 cache (from local core).

dram_access Count of total DRAM accesses (from local core).

mshr_recycle Number of MSHRs allocated.

l1d_access Count of all L1-D accesses and D-TLB translations.

l1i_access Count of all L1-I accesses and I-TLB translations.

l1i_misses Count of instruction misses resulting in a stall condition.

fetch_buffer_hits
Count of instruction fetches residing on the same cache line as the

previously-fetched instruction group.

fetch_puts
Count of cycles in which the fetch pipeline flows instructions to the

instruction decoders.

decode_puts
Count of cycles in which the decode pipeline flows instructions to the

dispatch logic.a

bpred_cnt Count of predicted branches.

total_instrs Count of total retired instructions.

N j Activationsi

C

E j
est

C

C

C

177

Given the 34 above counters, the number of all possible sets is:

 (6.3)

Obviously, a complete exploration of is infeasible for . To quickly explore the space

of possible counters, I used a genetic algorithm to quickly search the space of possible combina-

tions of counters, using heuristic-based hill-climbing to find a set of coefficients such that

error (i.e.,) is minimized over several executions .

cycle_count Count of elapsed processor cycles since boot.

nosq_predictions Count of predictions made by memory dependence predictor.

nosq_faults
Count of incorrect predictions made by memory dependence predic-

tor.

load_instrs Count of committed load instructions.

store_instrs Count of committed store instructions.

atomic_instrs Count of committed hardware atomic instructions.

load_miss Count of load instructions that miss in the L1-D cache.

store_miss Count of store instructions that miss in the local L2 cache.

ialu_ops Count of committed instructions requiring an integer ALU.

falu_ops Count of committed instructions requiring a floating point ALU.

dq_ht_count Count of activations of the DQ’s head and tail pointer logic.

uu_b0_count Count of activations of update hardware on bank 0 of the DQ.

bg_trans_cnt Count of operand transfers between bank groups.

arf_writes Count of writes to the ARF.

dflow_limit_cycles Count of cycles commit stalls with a non-empty DQ.

dq_full_cycles Count of cycles dispatch stalls due to a full DQ.

decoded_isntrs Total count of decoded instructions.

rct_count Count of writes to the top-level RCT.

rct_chckpt_count Count of RCT checkpoints created.

rct_stall_cycles Count of cycles in which decode stalls due to a hazard in the RCT.

contig_dispatch_cycles Count of cycles in which four instructions dispatch concurrently.

a. In practice, fetch_puts and decode_puts measure very different throughputs, as decode_puts encompasses
throughput from micro-operations as well as architectural instructions.

TABLE 6-2. Microarchitectural events in a Forwardflow core (candidates for set)

Event Name Description

C

C

SetsC
34
C⎝ ⎠

⎛ ⎞=

SetsC C 3>

E j
est

Eest k– Eexecution k––
k K∈
∑ K

178

Executions consisted of SPEC CPU 2006 and Wisconsin Commercial Workload benchmark

suites, and Forwardflow configurations ranging in size from 32-entry DQs to 1024-entry DQs. For

each configuration. I constrained the search criteria to consider only to keep the number of

event counters manageable. One degree of freedom was effectively removed, however, as all solu-

tions were required to consider the cycle_count register as part of set , as early experimenta-

tion revealed that no other count adequately accounts for static power consumption. Between

configurations of a Forwardflow core, I allowed the minimization algorithm to select different

coefficients , but the set was fixed regardless of configuration. This constrains the problem

space to discover counters that must be exposed at design-time to the power estimation logic, but

assumes that linear coefficients can be loaded selectively, based on configuration.

The genetic process identified store_instrs, fetch_puts, mshr_recycle,

l1i_access, l1d_access, ialu_ops, falu_ops, and cycle_count (forced) as opti-

mal . For all configurations, coefficients exist that yield an estimate of explained variance

(goodness of fit) . Results are detailed summarized in Table 6-3. These results indicate that

the same event counts, with different linear weights, can be used to measure the energy consumed

K

C 8≤

C

E j
est

C

C E j
est

R
2

0.98>

TABLE 6-3. Goodness of fit to actual power consumption of SPEC CPU 2006 and
Wisconsin Commercial Workloads for six Forwardflow configurations.

Forwardflow Configuration

F-32 0.9992

F-64 0.9989

F-128 0.9977

F-256 0.9954

F-512 0.9917

F-1024 0.9834

R
2

179
by Forwardflow-style scalable cores on per-configuration and per-benchmark basis. Figure 6-9

exemplifies this finding, with a plot of estimated power residuals for one Forwardflow configura-

tion (F-128), over the SPEC CPU 2006 benchmarks. The figure demonstrates very accurate overall

power estimation derived from the eight selected event counts. The greatest relative error occurs

in the power estimate of the calculix benchmark, an error of approximately -6%. The greatest

overestimate is around 4%, and occurs for the xalancbmk. Root-mean-square error is 1.4%.

Overall, these results are encouraging. The tight and root-mean-square error measures

indicate that the “true” power can be very closely approximated by a weighted sum of correlated

events. To actually realize this functionality, Appendix B presents a SPARC-like instruction

sequence that implements an algorithm to estimate energy consumption, using the eight counters

identified by the genetic process.

FIGURE 6-9. Normalized Residuals, power estimation versus observed power for
configuration F-128 over SPEC CPU 2006 benchmarks. Benchmarks are ordered as follows:
SPEC INT (alphabetical), SPEC FP (alphabetical).

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Benchmarks

N
or

m
al

iz
ed

 R
es

id
ua

l

R
2

180

I evaluated the execution time required to produce an energy estimate by running the power

estimation algorithm on each Forwardflow scaling point. Table 6-4 reports runtimes on each For-

wardflow configuration. The algorithm uses a small, configuration-specific in-memory working

set, which contains per-configuration coefficients . Runtimes for in-cache (warm) runs and

out-of-cache (cold) runs are shown in the table. Configurations F-128, F-256, F-512, and F-1024

perform indistinguishably because of the extremely short number of executed instructions (the

entire calculation fits within one F-128 window, therefore the extra resources of larger configura-

tions are never used).

Summary. This subsection shows that it is feasible for scaling heuristics to measure energy

consumed by a each individual core. The estimation algorithm presented in Appendix B is feasible

to implement, highly accurate (e.g.,) and has low overhead (e.g., approximately 500-1500

cycles, depending on cache behavior). This feature is usable by either hardware or software scaling

policies, and does not require prior information about a workload—only prior information about

dynamic configurations is required.

TABLE 6-4. Runtimes of power estimation algorithm on six Forwardflow configurations.

Forwardflow
Configuration

Warm Cycle Count Cold Cycle Count

F-32 528 1440

F-64 496 1407

F-128 484 1395

F-256 484 1395

F-512 484 1395

F-1024 484 1395

1± 10±

1± 10±

1± 10±

1± 10±

1± 10±

1± 10±

E j
est

R
2

0.98>

181

6.4 Fine-Grained Scaling for Single-Threaded Workloads

In this section, I consider the operation of a scalable CMP when running a single thread. Sys-

tem software may not know a priori which configuration of a scalable core is most efficient for a

particular workload. I develop a fine-grained hardware scaling policy that can tune single cores’

efficiency to match their workload, either as a proxy for the best static configuration, or to aid sys-

tem software in discovering that configuration. Overall, the characteristics of the Forwardflow

cores used in this study support the conclusion that fine-grained scaling policies can usually

approximate the efficiency of the best static configuration, but only exceed the efficiency of the

best static configuration when extensive profiling is available.

In general, a hardware scaling heuristic determines when a scalable core will change configura-

tion, and to which configuration it will scale. I propose a scaling policy, based on observed mem-

ory-level parallelism (MLP), for determining optimal window size, an approach which works well

with the dynamically-scalable Forwardflow cores used in this study. I compare this approach

against two prior approaches, based on direct measures of efficiency. I find that MLP-based scaling

usually achieves efficiency comparable to that of the best static configuration (which is not known

a priori). If possible, pre-profiling and static annotation can sometimes further improve efficiency,

for some workloads.

Scaling for Energy-Efficiency. If performance is the only concern, scalable cores should sim-

ply scale up, to the extent possible with available power. No sophisticated hardware policy is

needed to support this decision: system software is fully aware of the number of threads running

on a CPU, and can act accordingly.

182
However, when considering the possibility of scaling to optimize other metrics, e.g., energy-

efficiency (and in this study), software-level scaling choices are less obviously clear.

Section 6.3 suggests that software can profile workload power/performance tradeoffs, to selec-

tively optimize whatever metric is desired, but software cannot easily adapt to workload conditions

at extremely fine granularity (e.g., below the level of the smallest scheduling slice), and profiling

runs are not always possible. Instead, a hardware scaling policy could be used to adaptively and

opportunistically scale a core to optimize an efficiency metric, at almost arbitrarily small granular-

ity.

For instance, it is intuitive that a large window may be efficient for one phase of an application

but not another. Scaling affects efficiency in two ways. First, large windows do not show perfor-

mance improvements if the underlying execution has little or no ILP and/or MLP. In such a cir-

cumstance, scaling down improves efficiency by conserving power without affecting performance.

On the other hand, when a workload exhibits ILP, scaling up improves efficiency completing work

faster, despite higher power consumption.

6.4.1 Single-Thread Scaling Heuristics

A scaling policy performs two basic functions: decision, the act of determining an appropriate

configuration, and indication, the act of determining when to re-evaluate decisions. A variety of

heuristics have been suggested in the context of dynamically reconfigurable hardware [9, 17, 19,

44, 45, 50, 65, 80, 81, 87, 129], covering a variety of scaled components (e.g., caches, pipelines,

power-saving techniques), and a variety of optimized metrics (e.g., performance, efficiency met-

rics, power). This section considers representatives of these proposals, as well as a new scaling

E D⋅ E D
2⋅

183
heuristic based on MLP, to identify which general techniques are energy-efficient in the context of

scalable cores running single threads.

Limitations of Local Decisions. Implementing decision is a formidable problem. In general,

configuration choices that optimize energy-efficiency over one execution interval do not necessar-

ily optimize larger encompassing intervals. Consider optimization of (the same argument

below applies to , or any). To find the optimal configurations over time, a heuristic

must find a series of configurations over indication intervals such that:

 (6.4)

is minimized. Among configurations, there are possible configurations over time to

consider which might minimize the sum in Eqn 6.4. Importantly, selections that individually

minimize are not guaranteed to minimize the overall sum. However, scalable cores that usu-

ally exhibit power/performance monotonicity should not often expose this fallacy. That is, the

most efficient configuration for an interval usually remains the overall optimal choice within a

larger interval that encompasses . Exceptions to this rule of thumb arise only when configura-

tions expose non-monotonic extrema (e.g., a very slow but low-power configuration), suggesting a

local pathology.

Positional Adaptation (POS). Huang et al. [81] suggest a “positional” approach to microarchi-

tectural scaling, by associating a particular configuration with a static code segment in an applica-

tion. In other words, the acts of indication and decision are based on which static program segment

is executing. The authors explore a cross-product of static (i.e., compile-time) and dynamic (i.e.,

run-time) approaches to identify positional decision points, and to implement the decision algo-

E D⋅

E D
2⋅ E

x
D

y⋅

S I

E D⋅ ESi

i I∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

DSi

i I∈
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

⋅=

C C S

S

ESi
DSi

⋅

c i

i

184
rithm. The authors show that static profiling is desirable when possible; I evaluate positional adap-

tation in the context of static analysis only in this work, as other baselines adequately represent

dynamic alternatives.

POS leverages pre-execution profiling and static analysis to implement both indication and

decision. Profiling inputs are used for these runs, one run per configuration. After profiling, a

post-processing step encodes configuration choices into the target binary. During profiling, energy

and delay per subroutine is recorded, for use in post-processing.

In light of the difficulty of determining an optimal set of configurations to minimize Eqn.

6.4, I consider two different algorithms for computing from the profiling data. The first algo-

rithm, POS$, greedily makes locally-optimal configuration selections over each interval. Its execu-

tion demands (on top of a profiling run for each configuration) are insignificant. I also consider

POSg, which attempts to choose using a genetic algorithm, using Eqn. 6.4 as its fitness criterion.

I constrain the effort of POSg such that its runtime does not exceed the runtime of the benchmark

itself—i.e., total profiling overhead is roughly bounded to a factor of the number of configurations

plus one.

Figures 6-10 and 6-11 plot efficiency of POSg, with respect to that of POS$, for the integer

benchmarks. The results of floating-point and commercial workloads are similar. In most cases,

greedy and genetic optimizations yield similar overall efficiencies, with occasional exceptions due

to local minima (e.g., libquantum). However, the additional computational demands of POSg

S

S

S

185

are seldom worthwhile, as it seldom significantly improves efficiency with respect to POS$ (which

requires less pre-processing effort, including all profiling runs). This agrees with intuition suggest-

ing that local energy-efficiency decisions are usually acceptable. In light of this result, I reduce the

complexity of the subsequent evaluations by considering only POS$.

Power-Aware Microarchitectural Resource Scaling (PAMRS). Contrasting the static

approach of POS, Iyer and Marculescu [87] suggest a dynamic approach to both indication and

decision (others have also suggested a dynamic approach [19, 50, 81, 129]). Specialized hardware is

used to implement indication, which retains a table of frequently-executed branches. This table

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

as
tar

bz
ip2 gc

c
go

bm
k

h2
64

ref

hm
mer

lib
qu

an
tum

mcf

om
ne

tpp

pe
rlb

en
ch

sje
ng

xa
lan

cb
mk

GM
ea

n

FIGURE 6-10. Efficiency () of POSg, normalized to POS$, SPEC INT 2006.E D⋅

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
*D

^2

as
tar

bz
ip2 gc

c
go

bm
k

h2
64

ref

hm
mer

lib
qu

an
tum

mcf

om
ne

tpp

pe
rlb

en
ch

sje
ng

xa
lan

cb
mk

GM
ea

n

FIGURE 6-11. Efficiency () of POSg, normalized to POS$, SPEC INT 2006.E D
2⋅

186
retains execution counts of control transfers, and is used to determine when the execution enters a

new “hot spot”, or more generally, superblock.

To implement decision, PAMRS simply walks the space of possible configurations, directly

sampling energy and delay for each [87]. After sampling, the locally most-efficient configuration is

selected until a new “hot spot” is observed. I adopt the ratio of sampling interval size to window

size used by Iyer and Marculescu. This constitutes a sampling interval of 16x more instructions

than can be held in the largest evaluated window (i.e., 16,384 instructions). I performed a brief

sensitivity analysis of longer intervals, with little observed difference among six subset workloads.

MLP-Aware Window Scaling (MLP). PAMRS and POS take an efficiency-measurement

approach to configuration management, via direct sampling and estimation, and are generally

unaware of the specific effects leading to efficiencies (or in-efficiencies) resulting in its configura-

tion decisions. Instead of direct sampling, I propose an approach in which the underlying charac-

teristics of the scalable core’s affinity (or lack thereof) to a particular workload directly influence

indication and decision. For Forwardflow cores, this characteristic is memory-level parallelism

(MLP).

I describe a method by which to determine the smallest dynamic window size needed to expose

all possible MLP. Intuitively, the smallest window size that achieves all possible MLP should per-

form close to that of the largest window size. However, by using fewer resources, it should also save

power, thereby optimizing (local) energy efficiency.

The hardware cost of determining the locally-optimal window size is fairly modest:

•Per-architectural-register poison bits identify independent operations,

•A per-instruction bit to indicate whether or not the instruction is a load miss,

187
•Ten bits per instruction in the DQ’s metadata array, to retain architectural register names,

•A linear-feedback shift register (LFSR),

•A commit counter with range [0,), where is the window size of the largest con-

figuration, and,

•An exposed load miss register (ELMR), consisting of one bit per configuration. The highest

configuration with a set bit at the end of profiling is the optimal window size.

Figure 6-12 depicts the MLP profiling process as a flow chart. To begin, the committed

instruction stream4 is decomposed into profiling intervals, approximately in size. Profiling

always begins on a load miss, randomly sampled using the LFSR5. When profiling, hardware

counts the number of committed instructions in the interval () which is used to identify appro-

priate window sizes (described below). The profiling interval ends after instructions com-

mit.

In order to identify load misses during commit-time profiling, a single bit is retained (e.g., in

the DQ metadata array) to indicate whether or not a load missed in the cache. To further identify

independent load misses, profiling hardware maintains an array of poison bits, one for each archi-

tectural register (e.g., similar to those used in Runahead Execution [122])6. When a profiling inter-

val begins, poison bits and the ELMR are cleared. The first committed load miss—i.e., the

operation that triggered the profiling interval—sets the poison bit associated with its output regis-

4. Using committed instructions keeps the MLP profiling hardware off of the critical execution path.

5. Sampling must be randomized to prevent aliasing, in which the same load is profiled within a loop because of a coincidental

relationship between and the length of the loop.

6. There is no need to physically locate poison bits within the ARF.

W Wmax Wmax

Wmax

Wmax

W

Wmax

188

ter. While profiling, committed instructions that name a poisoned register as an operand set the

poison bit on their output register. Conversely, when an instruction commits with no poisoned

operands, profiling logic clears the output register’s poison bit. In this manner, poison bits propa-

gate from the first load miss to all dependent committed instructions (and only dependent instruc-

tions) in the profiling window. When a load commits with no poisoned input operands, the load is

data-independent of the load that initiated the profiling interval. Importantly, an exposed miss is

detected if the committing load is also a load miss.

Observation of an exposed miss may cause a bit to set in the ELMR, depending on the current

value of (the count of the number of committed instructions since profiling began). Each bit

is associated with window size : if , is set upon observation of an exposed

miss. This hardware is trivially implemented with a set-enable register on each bit of the ELMR,

tied to the appropriate carry signal in the commit counter .

Load Miss?

Poisoned? Poison Output

W=W+1

Antidote Output

Set ELMRi

FIGURE 6-12. Profiling flow for MLP estimation.

Note: i W() max W Wmin,()()
2

log Wmin()
2

log–=

YES

YES

NO

NO
W>Wmax?

Done Profiling

Get Another
Instruction

START:
Randomly-Selected

Load Miss

W = 0

NO

YES

W

ELMRi Wi W Wi≥ ELMRi

W

189
Hysteresis. At the conclusion of the profiling period, the most significant set bit in the ELMR

indicates the configuration that would have exposed the greatest number of misses, had that con-

figuration been in use when the profiled instructions executed. Because the ELMR-indicated size

is a function of only a single load miss, the size reflects only what might have been achieved with

respect to that load’s forward slice, and not the best overall configuration. To provide an element of

memory, by which many loads can be considered over time, only upward changes in configuration

are accepted from the ELMR. In other words, profiling never directly causes a core to scale down.

Over time, core configuration approaches the largest configuration that was ever useful, rather

than the largest configuration that was useful for the most recent profiled load miss. To force

workloads to re-assert value of larger configurations, cores scale down (fully) whenever a full-

squash condition is encountered (e.g., an external interrupt or exception), so that an application

must re-exhibit affinity for larger windows.

The need to limit downward scaling from MLP estimation was not immediately apparent. Fig-

ure 6-13 plots the configurations selected by the MLP heuristic, as a function of position in the

benchmark (measured in instructions committed), for two selected benchmarks. Specifically, the

plots indicate configuration size on the y-axis as (e.g., F-1024 is shown as

, F-32 is , etc.). UpDown represents the MLP heuristic without hysteresis, UpOnly

includes hysteresis. The figure also plots the dynamic IPC of F-128, as an indicator of phase behav-

ior.

In the libquantum benchmark, both UpDown and UpOnly work well, because the inner-

most loop of this benchmark is very simple. Between profiled loads, there is little difference in the

number of subsequent independent misses. Therefore, when running libquantum (left), both

WindowSize()2log 5–

y 5= y 0=

190

policies behave similarly (i.e., they choose to scale up completely, and remain fully scaled-up for

the duration of the execution). On the other hand, astar occasionally exhibits an independent

load miss exposed only by larger configurations. In astar (and the majority of benchmarks in

this study), not all load misses are equal: some misses tend to be independent of others, and some

misses are not. This leads to a varied estimation of MLP, as indicated by the large number of recon-

0

1

2

3

4

5

IPC
UpDown
UpOnly

0

1

2

3

4

5

IPC
UpDown
UpOnly

libquantum astar

FIGURE 6-13. Configuration decisions over position, MLP heuristic with allowed down-
scaling (UpDown) and disallowed down-scaling (UpOnly).

0.0

0.5

1.0

U
pD

ow
n

U
pO

nl
y

F-
10

24

Runtime

U
pD

ow
n

U
pO

nl
y

F-
10

24

E*D

U
pD

ow
n

U
pO

nl
y

F-
10

24

E*D^2

0.0

0.5

1.0

1.5
U

pD
ow

n

U
pO

nl
y

F-
10

24

Runtime

U
pD

ow
n

U
pO

nl
y

F-
10

24

E*D
U

pD
ow

n

U
pO

nl
y

F-
10

24

E*D^2

libquantum astar

FIGURE 6-14. Normalized runtime, , and , MLP heuristic with allowed down-
scaling (UpDown) and disallowed down-scaling (UpOnly), and best static configuration.

E D⋅ E D
2⋅

191
figuration decisions under UpDown in astar, as compared to UpOnly. Without hysteresis, this

leads to causes of inefficiency. First, after scaling down, the processor is ill-equipped to expose

MLP on subsequent load misses. Second, the act of reconfiguring requires quiescing the pipeline,

incurring performance overhead at each decision point.

Figure 6-14 plots the resulting runtimes and efficiencies, normalized to that of F-1024. Overall,

though UpOnly requires no more hardware than that of UpDown, the former delivers much better

energy-efficiency in most cases. Therefore, in the remainder of this section, I evaluate only

UpOnly, under the name MLP.

Limitations. Inaccuracies in estimation of optimal window size may arise for several reasons.

First, the approach outlined above only considers true-path committed instructions. It does not

account for prefetching effects of false-path operations. Second, the approach assumes that all

instructions within a profiling interval could have resided within the window of the largest

possible configuration—this may not be possible if the profiled instruction interval includes a seri-

alizing event, or if branch mispredictions limit the number of in-flight instructions (very common

on average, cf Chapter 5). Lastly, without a strong indicator for when to scale down, the overall

effectiveness of MLP-aware scaling might be limited for scalable cores with fairly inefficient scale-

up (as opposed to Forwardflow, used in this evaluation, which is often most efficient at its largest

scaling points).

6.4.2 Heuristic Evaluation

This section evaluates which of the above metrics deliver the best overall energy-efficiency. I

compare each approach against the most-efficient static configuration, on a per-benchmark basis.

This baseline is fairly harsh—identifying the most-efficient configuration would require a com-

Wmax

192

plete run of each configuration, in advance. Overall, all three techniques studied optimize effi-

ciency metrics fairly well, close to or exceeding the efficiency of the baseline.

MLP does not seek to minimize any particular metric, but POS and PAMRS make measure-

ment-based decisions. For POS, software analysis of the configuration space occasionally leads to

different scaling decisions, depending on whether or is selected for optimization. This

difference is indicated by two different POS configurations, POS-ED and POS-ED2. Figure 6-15 a)

illustrates the only benchmark in which the scaling decisions differ significantly7 under POS-ED

and POS-ED2 (leslie3d). Similarly, PAMRS is represented as two configurations, PAMRS-ED

and PAMRS-ED2, depending on which metric is measured, though online sampling (i.e., PAMRS)

yields significantly different scaling decisions in about 33% of examined benchmarks. Figure 6-15

b) exemplifies this behavior with a plot of leslie3d’s configurations in the course of execution.

7. My criteria for determining whether scaling decisions are “significantly different” is purely subjective, based on inspection.

E D⋅ E D
2⋅

0

1

2

3

4

5

IPC
POS$-ED
POS$-ED2

FIGURE 6-15. a) Scaling decision over

position, POS optimizing and ,
leslie3d.

E D⋅ E D
2⋅

FIGURE 6-15. b) Scaling decision over
position, PAMRS optimizing and

, leslie3d.

E D⋅

E D
2⋅

0

1

2

3

4

5

IPC
PAMRS-ED
PAMRS-ED2

193

In about a third of the examined benchmarks, POS and PAMRS yield different estimates for

per-configuration efficiency, and therefore select different configurations (exemplified by

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

as
tar

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

bz
ip2

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

gc
c

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

go
bm

k

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

h2
64

ref

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

hm
mer

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

lib
qu

an
tum

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

mcf

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

om
ne

tpp

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

pe
rlb

en
ch

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

sje
ng

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

xa
lan

cb
mk PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

GM
ea

n

FIGURE 6-16. Normalized , SPEC INT 2006, dynamic scaling heuristics and best
overall static configuration, normalized to F-1024.

E D⋅

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

bw
av

es

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ca
ctu

s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ca
lcu

lix

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

de
alI

I

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ga
mes

s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ge
ms

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

gr
om

ac
s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

lbm

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

les
lie

3d

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

milc

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

na
md

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

po
vr

ay

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

so
ple

x

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

sp
hin

x3

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ton
to

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

wrf

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ze
us

mp

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P

GM
ea

n

FIGURE 6-17. Normalized , SPEC FP 2006, dynamic scaling heuristics and best
overall static configuration, normalized to F-1024.

E D⋅

194

leslie3d). Since POS is usually very efficient (e.g., looking ahead to Figure 6-16), this trend

suggests dynamic sampling does not adequately capture the true efficiency measures of each con-

figuration: the wider-scoped static sampling of POS tends to do better. POS’s profiling captures the

overall efficiency over a fairly large interval (e.g., a stack of function calls), whereas PAMRS cap-

tures a sample of the local efficiency. Though larger sampling intervals made no perceptible differ-

ence in PAMRS’s behavior in a sensitivity analysis, POS’s use of software-guided indication coupled

with software-specified decision is usually more effective than PAMRS’s dynamic measurement

approach.

Figures 6-16, 6-17, and 6-18, plot normalized for integer, floating point, and commercial

workloads, respectively, among all heuristics. The figures also include the static configuration

which is most optimal for each benchmark. All efficiencies are normalized to that the of a single

core fully scaled-up (i.e., F-1024). Overall, once the most-efficient static configuration is known,

E D⋅

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

ap
ac

he
-1 PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

F-
51

2

jbb
-1 PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

F-
51

2

olt
p-

1 PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

ze
us

-1 PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P

GM
ea

n

FIGURE 6-18. Normalized , Commercial Workloads, dynamic scaling heuristics and
best static configuration, normalized to F-1024.

E D⋅

195

fine-grain scaling for shows a small average benefit under positional adaptation, essentially

no benefit under MLP, and some reduction in efficiency under PAMRS. Trends are similar when

E D⋅

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
*D

^2

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

as
tar

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

bz
ip2

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

gc
c

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

go
bm

k

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

h2
64

ref

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

hm
mer

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

lib
qu

an
tum

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

mcf

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

om
ne

tpp

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

pe
rlb

en
ch

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

sje
ng

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

xa
lan

cb
mk PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

GM
ea

n

FIGURE 6-19. Normalized , SPEC INT 2006, dynamic scaling heuristics and best stati
configuration, normalized to F-1024.

E D
2⋅

0

1

2

N
or

m
al

iz
ed

 E
*D

^2

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

bw
av

es

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ca
ctu

s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ca
lcu

lix

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

de
alI

I

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ga
mes

s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ge
ms

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

gr
om

ac
s

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

lbm

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

les
lie

3d

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

milc

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

na
md

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

po
vr

ay

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

so
ple

x

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

sp
hin

x3

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

ton
to

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

wrf

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

10
24

ze
us

mp

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P

GM
ea

n

FIGURE 6-20. Normalized , SPEC FP 2006, dynamic scaling heuristics and best static
configuration, normalized to F-1024.

E D
2⋅

196

considering , in Figures 6-18 through 6-20.

Many benchmarks’ efficiency improves somewhat under POS. POS delivers better efficiency

than the best static configuration 67% of the time. This improvement exceeds 10% in 11 of 66

cases. Overall, POS implements the best dynamic scaling policy in 71% of all runs. However, the

risk of significant degradation in efficiency should not be overlooked. The evaluation of POS used

training inputs (where available) to ascertain the relative efficiencies—at least some of the bench-

marks used in this study exhibit input-dependent behavior, which affects positional efficiency.

POS reduces efficiency in excess of 10% in eight cases (e.g., bwaves, milc, and libquantum—

benchmarks exhibiting better-than average window scaling, cf Chapter 5). Comparatively, PAMRS

significantly reduces efficiency in 30% of cases, is only most efficient for xalancbmk optimizing

 (Figure 6-16), and never significantly improves efficiency over the best static configuration.

E D
2⋅

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

^2

PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

ap
ac

he
-1 PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

F-
51

2

jbb
-1 PO

S$
-E

D
PA

M
R

S-
E

D
M

L
P

F-
10

24

olt
p-

1 PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P
F-

51
2

ze
us

-1 PO
S$

-E
D

PA
M

R
S-

E
D

M
L

P

GM
ea

n

FIGURE 6-21. Normalized , Commercial Workloads, dynamic scaling heuristics and
best static configuration, normalized to F-1024.

E D
2⋅

E D⋅

197
Though MLP is seldom is more optimal than the most optimal static configuration (only 18%

of the time), it can be used as a dynamic means by which to safely approximate the most-optimal

static configuration, without an explicit profiling run. Moreover, it is less likely to harm efficiency,

compared to POS, as MLP significantly degrades efficiency with respect to the best static configu-

ration in only one benchmark (hmmer, an efficiency outlier for Forwardflow cores).

6.4.3 Fine-Grained Single-Thread Scaling Summary

When selecting a configuration to dynamically optimize energy efficiency, cores should occa-

sionally scale down, when performance of scaled-up configurations does not justify the added

power consumption. I have evaluated two prior proposals—Positional Adaptation [81] and Power-

Aware Microarchitectural Resource Scaling [87], which attempt to directly optimize an energy-

efficiency metric, through measurement and response. I have also proposed an MLP-based

method by which to scale Forwardflow cores, which attempts to measure the microarchitectural

events leading to efficiency, rather than the efficiency metrics themselves.

Though fine-grained scaling techniques do not often exceed the efficiency of the best static

configuration, system software is not likely to know the best static configuration a priori. A hard-

ware scaling policy can be leveraged by system software as a means to identify the best static con-

figuration.

As a closing remark, because Forwardflow cores are used as an evaluation platform in these

experiments, it is usually very energy-efficient to scale up. Most benchmarks are statically most-

efficient under large windows. The generality of these findings may be subject to this effect, espe-

cially those of the MLP heuristic, which is tailored to the mechanism by which Forwardflow scales

performance. However, a heuristic tailored to another scalable core would likely tend toward that

198
core’s most-efficient operating point as well—in this sense, it is intended behavior. Such a policy

plays to the strengths of the microarchitecture with which it is paired.

6.5 Scaling for Multi-Threaded Workloads

In this section, I evaluate means by which scalable CMPs can improve the energy-efficiency of

multithreaded workloads. In general, a scalable core can positively affect a multithreaded work-

load’s efficiency in two ways. First, by scaling up, sequential bottlenecks can be reduced in severity.

In this area, the difficulty arises in identifying sequential bottlenecks in the first place. The second

area of benefit is opportunistic scale-down: scaling down cores that perform no useful work (e.g.,

while waiting on a lock) conserves power at virtually no performance cost, thereby increasing effi-

ciency.

A peculiarity of this work is that it seeks to find and eliminate sequential bottlenecks. In con-

trast, available multi-threaded benchmarks tend have been carefully organized to avoid sequential

bottlenecks. Therefore, much of this evaluation focuses on a microbenchmark, which emulates a

sequential bottleneck of varying severity, with a brief discussion other workloads.

6.5.1 Scalable Cores and Amdahl’s Law

Amdahl’s Law [12] (Eqn. 6.5) governs the reduction in runtime expected from parallel execu-

tion, as a function of the degree of parallelism, , and the fraction of total work that can be exe-

cuted in parallel, .

 (6.5)

N

f

RelRuntime f N,() 1 f–() f

N
----+=

199
Equation 6.5 decomposes relative runtime into a sequential component (i.e.,) and a par-

allel component (i.e., , reduced in magnitude by a factor of though parallel execution). How-

ever, Amdahl’s Law implicitly assumes that all processing elements exhibit homogeneous

performance. Hill and Marty [73] consider the effect of heterogeneous performance on Amdahl’s

Law, providing a basis for performance expectations of scalable cores (Eqn. 6.6).

 (6.6)

A CMP equipped with scalable cores still accelerates the parallel component of an execution by

a factor , but can also reduce the runtime of the sequential component of the calculation by a

sequential speedup factor, . Like , the precise value of varies by workload. In the context of a

microarchitecturally-scaled core, depends on how much ILP and MLP can be exposed by the

scalable microarchitecture. In the specific case of the Forwardflow cores of this study, the sequen-

tial speedup factor is substantially higher for memory-bound workloads than for compute-bound

workloads.

Figure 6-22 considers the potential runtime reductions possible under several different hypo-

thetical sequential work functions, as well as the expected runtime predicted by Amdahl’s Law

without any core scaling. SC, INT considers a sequential phase consisting of a hypothetical work-

load that behaves similar to the SPEC INT 2006 benchmark suite (, when scaled from F-

128 to F-1024); SC, FP and SC, COM consider SPEC FP 2006 () and commercial work-

loads (), respectively. Scalable cores help to optimize workloads with substantial sequen-

tial bottlenecks (i.e., smaller values of): consequently, runtime reductions are more noticeable on

the left-most data points.

1 f–

f N

RelRuntime f N k, ,() 1 f–
k

f

N
----+=

N

k f k

k

k 1.31=

k 1.53=

k 1.11=

f

200

This section considers hardware policies for per-core scaling configurations, to achieve the

hypothetical behavior depicted in Figure 6-22. In general, the challenge arises from difficulty in

explicitly identifying parallel and sequential sections. Inability to ascertain whether a particular

core’s computation constitutes a sequential bottleneck or not hampers a scalable CMP’s ability to

ameliorate these bottlenecks through core scaling.

I discuss six approaches that seek to optimize energy-efficiency. First, under some circum-

stances, system software can be expected to adequately handle the problem of identifying sequen-

tial bottlenecks, directly achieving the behavior of Figure 6-22. Second, skilled parallel

programmers know Amdahl’s Law8, and may themselves be aware of sequential bottlenecks. I

8. Though they may quickly forget it, according to Thomas Puzak.

FIGURE 6-22. Predicted runtimes from Amdahl’s Law (N=8), for static cores (Amdahl’s
Law), and scalable cores running integer (SC, INT), floating point (SC, FP), or commercial
(SC, COM) workloads.

201

evaluate programmer performance hints, over sequential bottlenecks of varying severity. Third,

speculative lock elision (SLE) and related techniques ([134, 135]) use specialized hardware to iden-

tify critical sections. I consider the use of SLE-like critical section detection hardware as a means

to identify a sequential bottleneck, and scale up accordingly. Fourth, hardware spin detection has

been suggested a means to identify unimportant executions on multicore systems [182]. During

spins, cores should scale down, not to improve overall performance, but to reduce energy con-

sumption of effectively idle cores, thereby improving efficiency. Fifth, I consider using both spin

detection to trigger scale down, and critical section identification to scale up. Last, I use spin

detection as an indicator for scale up in non-spinning cores.

A Simple Microbenchmark. Few would argue that multithreaded benchmarks are simple. The

implications of dynamically-scalable hardware on multithreaded benchmarks threatens to over-

whelm intuition with a cross-product of complicated software and hardware behavior. To under-

stand the effects of these scaling policies in a controlled environment, and to expose a sequential

bottleneck (albeit artificially), I begin the evaluation with a microbenchmark, Amdahl. Amdahl

consists of a simple computation kernel (randomized array traversal with a small computational

payload), with alternating parallel and sequential sections of variable length. Literally, it executes

f 1-f f 1-f f 1-f f 1-f

Time
FIGURE 6-23. Four iterations of Amdahl microbenchmark, parallel phase of length f,
sequential phase of length 1-f.

202

the process modeled by Amdahl’s Law. Figure 6-23 illustrates four iterations of Amdahl, alternat-

ing between parallel and sequential phases. Figure 6-24 shows the normalized runtime of Amdahl

as is varied on an 8-processor SunFire v880 SMP, demonstrating the desired behavior of the

microbenchmark. Simulations of Amdahl run for four transactions. Amdahl’s work function’s

runtime is reduced by about 40% when scaled from F-128 to F-1024 (i.e., , with respect to

Eqn. 6.6).

6.5.2 Identifying Sequential Bottlenecks

System Software Scheduling and Scaling. When parallel and sequential phases are transpar-

ent to scheduling software, the behavior above is possible using system software to select per-core

configurations. For instance, if a sequential bottleneck consists of a single process9, upon which

other processes explicitly wait, only the smallest degree of scheduling awareness is needed to accu-

rately identify a sequential bottleneck. Under such a scenario, an operating system or hypervisor

FIGURE 6-24. Runtime of Amdahl on 8-processor SunFire v880, normalized to , and
runtime predicted by Amdahl’s Law.

f 0=

f

k 1.65≈

203
can enact scaling decisions to directly achieve the desired behavior, even oblivious of , , and .

Given that this implementation should behave identically to the model of Eqn. 6.6 and Figure 6-

22, I do not present a simulation-based evaluation of this scenario.

Programmer-Guided Scaling (Prog). It is not reasonable to expect a programmer to profile

every phase of every application on all possible scalable core configurations. However, one might

feasibly expect an expert programmer to use a combination of inspection, profiling, and intuition

to manually identify sequential bottlenecks, parallel sections, and idle time in a parallel or concur-

rent application. To this end, I propose exposing the scaling features of a scalable core to the pro-

grammer, via a performance hint instruction, sc_hint.

sc_hint communicates the programmer’s

performance preference to the scalable core.

sc_hint takes a single argument, which indi-

cates whether the core should scale up, e.g. to

accelerate a sequential bottleneck

(sc_hint(fast)), scale down, e.g., during a

hot-spin or performance-insensitive section of

the execution (sc_hint(slow)), or assume

an OS-specified default configuration (sc_hint(default)), e.g., when executing a parallel

section. Figure 6-25 shows how I annotate the Amdahl benchmark, described above, with

sc_hint instructions.

9. I give emphasis to the process abstraction, because the scheduling state of processes are immediately available to system soft-

ware, however, other means to communicate a sequential bottleneck are feasible, so long as the duration of the bottleneck is long

enough to effectively amortize the cost of invoking the operating system.

f N k

while(true)

if(tid == 3) {

sc_hint(fast);

doSequentialBottleneck();

}

sc_hint(slow);

Barrier();

sc_hint(default);

doParallelSection();

}

FIGURE 6-25. sc_hint instruction
example.

204
Note that an implementation of sc_hint could take several forms. An actual instruction

could be added to the ISA to accommodate a performance hint, or a control register (privileged or

otherwise) could be added to the core, making sc_hint an alias for a control register write. I

advocate the latter option, as system software should virtualize the performance hint during

thread migration, so that performance hints are always associated with the workload from which

they are given, rather the core to which they are given. Moreover, system software should be

granted means by which to control programmer-guided hints, for instance by setting the actual

configurations used by the various performance hints. For simplicity, I assume sc_hint(slow)

scales a core down to the smallest configuration (F-32), sc_hint(default) scales the local

core to F-128, and sc_hint(fast) scales the core up fully, to F-1024.

Unfortunately, programmer involvement not only requires additional software effort, but also

makes this technique essentially useless to existing software, which contains no explicit hints. As

such, I only evaluate programmer-guided scaling for microbenchmarks. The effort required to

augment other benchmarks with performance hints does not seem justified, especially given that

the parallel benchmarks used in this study are heavily optimized toward high values of .

Critical Section Boost (Crit). Speculative lock elision (SLE) [134] identifies critical sections

through use of hardware atomic operations (expected to be a lock acquisition), coupled with a

temporally-silent store (expected to be a lock release). I propose using these same mechanisms to

identify explicitly-synchronized sections of code, and scale up (to F-1024) whenever such a section

is encountered. The core operates at its nominal configuration (F-128) when not executing a criti-

cal section. Intuitively, this accelerates lock-protected portions of the execution.

f

205
This technique can be deployed entirely in hardware, and therefore has the potential to affect

existing software without modifications. However, the degree of success expected by this tech-

nique will depend on sequential bottlenecks being explicitly demarcated with synchronization

directives. In particular, the microbenchmark based on Amdahl’s Law does not include a lock-pro-

tected sequential bottleneck. This omission was accidental, but fortuitously serves to provide

insight in at least two ways, discussed below.

Spin-Based Scale Down (Spin). Hardware spin detection has been suggested a means to help

manage power in overprovisioned multicore systems [182], by identifying executions that perform

no meaningful work. Software spins for a variety of reasons, e.g., genuine idle periods (in the oper-

ating system) and latency-sensitive synchronization. During such a spin, no meaningful work is

performed. As such, I propose using spin detection to trigger per-core scale down operations.

Under this policy, a core immediately scales down (to F-32) whenever a spin is detected. The core

operates at its nominal scaling point otherwise (F-128). Intuitively, this scaling down causes the

core to spin more slowly, consuming less power as it does so. If the spin is genuinely unimportant

to overall workload performance, scaling down improves overall energy-efficiency of the execu-

tion.

Like critical-section boost, spin-based scale down can be deployed entirely in hardware, and is

therefore applicable to software without explicit changes to do so. Of course, software that seldom

or never spins will see no benefit from this heuristic.

Fast Critical Sections and Slow Spinning (CSpin). Critical-section boost and spin-based

scale-down can also operate together. Under this hybrid approach, cores scale up when executing a

206
critical section, scale down when spinning, and operate at the nominal configuration for the

remainder of the execution.

Importantly, when executing a critical section that includes a spin (e.g., a nested lock acquisi-

tion), cores scale down, pessimistically assuming that the lock will be held for some time. In a well-

organized application, intuition suggests that threads should seldom spin within critical sections.

However, evaluation reveals that false positives from the critical section logic (described below)

can occur, and spin-based scale-down can sometimes correct otherwise pathological behavior.

All Other Threads Spin (ASpin). The spin-based model used per-thread spinning to motivate

a local decision to scale down. However, more sophisticated policies are possible when spin indica-

tors are shared between cores. For instance, by process of elimination, when only one core is not

spinning, one might infer the remaining core is executing a sequential bottleneck. This is the pre-

cise syndrome that would arise from an operating system running a single-threaded application

(even if that operating system is entirely unaware of scalable cores), or more interestingly, a multi-

threaded benchmark with a significant sequential bottleneck.

Following this intuition, the ASpin scaling policy implements the same spin detectors as Spin,

but also communicates spin behavior to other cores. Whenever a core detects that all other cores’

spin detectors are asserted, the remaining (non-spinning) core scales up. The core immediately

scales down to a nominal configuration (e.g., F-128) if another core stops spinning.

The method by which ASpin communicates spin information among cores is idealized in the

evaluation. The precise implementation of the logic for ASpin presents several tradeoffs, both in

mechanism itself and in the degree to which the mechanism is made visible to software. In one

extreme, dedicated signals can be routed between all cores (or subsets of cores) to communicate a

207
single bit of information (spin state). This approach requires no virtualization, but only operates as

expected during a sequential bottleneck among all hardware threads—in particular, it does not

identify sequential bottlenecks among software threads (which may be descheduled). Under some

circumstances, this may constitute desired or undesired behavior. Further, this technique only

applies to sequential (1-thread) bottlenecks, not the more general case of n-thread bottlenecks.

On the other hand, this feature can be implemented mostly in software, albeit with greater

expected overheads. For instance, if the spin detector is used to trigger a core-local exception upon

activation, low-level software can maintain a count of spinning cores, or if desired, spinning

threads. Software may react as desired to spins, e.g., with an inter-processor interrupt to a non-

spinning core to force scale-up. Hybrids between all-hardware and mostly-software are also possi-

ble—the precise solution will depend on the degree of vertical integration enjoyed by a CMP man-

ufacturer.

Lastly, ASpin may raise virtualization challenges for the system software. For instance, a soft-

ware-visible spin indication line may require virtualization among threads within a cooperative

process (e.g., within a multithreaded process, a virtual machine, or a Solaris-style processor set

[161]). Under such virtualization, it would be beneficial to separate bottleneck detection (indica-

tion) from the scale-up response (decision), in the context of chip power budget shared at run-time

between many multi-threaded applications.

6.5.3 Evaluation of Multi-thread Scaling Policies

Microbenchmark Evaluation. Figure 6-26 plots the normalized runtime of Amdahl for a

variety of parallel fractions f, among all scaling policies; Figure 6-27 plots normalized power con-

208

sumption. Runtimes are normalized to that of a static F-128 configuration’s runtime on .

Figures 6-28 and 6-29 plot and , respectively, normalized to F-1024. Overall, runtimes

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.0
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.1
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.2
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.5
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in
F=0.7

5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.8
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
9

FIGURE 6-26. Runtime of Amdahl with varied parallel fraction f, all multithreaded
heuristics (normalized to static configuration F-128 for all cores).

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
ow

er

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.0
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.1
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.2
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.5
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.7
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.8
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
9

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

Agg
reg

ate

FIGURE 6-27. Power consumption of Amdahl with varied parallel fraction f, all
multithreaded heuristics (normalized to static configuration F-128 for all cores).

f 0.0=

E D⋅ E D
2⋅

209

follow (at worst) those predicted by Amdahl’s Law (Eqn. 6.5), and at times, those of Amdahl’s Law

in the Multicore Era (Eqn. 6.6). Under F-128 and larger configurations, Amdahl sees little or no

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
*D

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.0
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.1
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.2
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.5
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in
F=0.7

5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.8
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
9

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

GM
ea

n

FIGURE 6-28. Efficiency (), normalized to F-1024, Amdahl microbenchmark, across
all scaling heuristics.

E D⋅

0

1

2

N
or

m
al

iz
ed

 E
*D

^2

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.0
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.1
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.2
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.5
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.7
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.8
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
0

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
5

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

F=0.9
9

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

GM
ea

n

FIGURE 6-29. Efficiency (), normalized to F-1024, Amdahlmicrobenchmark, across
all scaling heuristics.

E D
2⋅

210

performance improvement beyond : this is an artifact of the small scale of the benchmark

(intended to keep simulation times manageable). Under longer runs with larger working sets, fur-

ther scaling is possible. In a related phenomenon, the performance difference between F-128 and

F-1024 becomes less significant with increasing . Greater explicit parallelism leads to greater load

imbalance from individual high-performance cores, as synchronization becomes a bottleneck.

Programmer-guided scaling (Prog) is highly effective for all values of . For low , perfor-

mance of the programmer-guided policy follows that of F-1024. As parallelism increases, perfor-

mance tends toward F-128. Given sufficient programmer knowledge of how a parallel program

operates, programmer-guided scaling is highly effective. Figure 6-30 plots the resulting changes in

configuration over three transactions of Amdahl, , under the programmer-guided heu-

ristic. Configurations in this and subsequent graphs are plotted on the y-axis as

(e.g., F-1024 is shown as , F-32 is , etc.). Even within the scope of

a controlled microbenchmark, the effects of system-level activity are visible, e.g., the misalignment

of parallel phases on cores. In this example, the sequential phase of the application is executed by

f 0.95=

f

f f

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-30. Scaling decisions over time, Amdahl , programmer-guided
heuristic.

f 0.85=

f 0.85=

WindowSize()2log 5– y 5= y 0=

211

processor P3. In almost all cases, programmer-guided scaling is most efficient overall, and delivers

best performance. Notably, this is only not the case when programmer expectations are not met by

the execution (i.e., , in which the programmer “expected” performance to scale beyond

that of).

Figure 6-31 plots the configuration space over time for the spin-based scale-down heuristic,

Spin. Without an indicator for scale-up, cores never scale beyond F-128 (). However, the spin

detector correctly identifies cases in which processors wait for P3 to complete the sequential bot-

tleneck, and scaled down accordingly, very similar to the programmer-inserted behavior of Figure

6-30.

Though Spin does nothing to decrease runtime, it noticeably improves efficiency, by reducing

the power consumption of cores which perform no useful work. This effect is apparent across all

sizes of sequential bottleneck, but is more noticeable at lower values of .

f 0.99=

f 0.95=

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-31. Scaling decisions over time, Amdahl , spin-based heuristic.f 0.85=

y 2=

f

212

The scaling decisions of the critical section boost heuristic Crit are somewhat unexpected (Fig-

ure 6-32). Nearly all cores scale to the largest configuration (F-1024), and remain at that configura-

tion for the duration of the benchmark. This is counterintuitive, as the critical section of Amdahl

is not protected by a lock at all (refer to Figure 6-25). However, the implementation of barrier logic

used in this microbenchmark does use a lock, which in turn triggers false positives in the imple-

mentation of SLE-style critical section detection logic. This represents an unintentional, but inter-

esting, effect of the Amdahl benchmark: its critical section is not lock-protected. As a safety

measure, the Crit automatically scales down after a fixed interval (1M instructions), but each invo-

cation of the barrier triggers a new “critical section”, resetting this counter. While the effect of crit-

ical section boost’s false positives improves performance, like that of programmer-guided scaling,

efficiency suffers from running spinning threads at large configurations.

Crit’s false positives raise two important findings. First, critical sections do not necessarily imply

sequential bottlenecks. Amdahl uses locks only to implement a barrier, which happens to give a

false impression of criticality to the implementation of a critical-section detector used in this

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-32. Scaling decisions over time, Amdahl , critical-section boost
heuristic.

f 0.85=

213
study. Intuitively, however, it follows that other workloads will use locks for safety (not as a perfor-

mance annotation), and not all code sections guarded by locks will be bottlenecks. Second, these false

positives arise in the first place because the programmer’s use of synchronization did not match

the expectations of the hardware designer10. This is a cautionary tale, as software implements syn-

chronization, and is free to do so in a variety of ways [112, 114], with or without locks [71], or even

on an ad-hoc basis. A hardware mechanism to correctly detect all of these cases, including those

not yet conceived, is intractable. False positives and their associated negative effects are likely

unavoidable when scaling up based on perceived synchronization operations.

It may be possible to eliminate hardware inference of synchronization if synchronization

libraries are explicitly augmented with the same annotations used in the programmer-guided-scal-

ing experiment. A scalable-core-aware synchronization library could have detected Amdahl’s bot-

tleneck, by observing all threads in a barrier, save one. Programs dynamically linked against a

synchronization library would not even require a recompilation to leverage this functionality. Of

course, this approach would not help applications using ad-hoc or lock-free synchronization, or

those with statically-linked binaries.

Since Crit operates all cores at F-1024, it is not surprising that efficiency mostly follows that of

the fully scaled-up configuration. The notable exception is , in which the “sequential”

operation never encounters a barrier. Without the (beneficial) false positive effect, Crit never

scales above a 128-entry window.

10. Ironically, my use of synchronization did not match my own expectations.

f 0.0=

214

The unexpected pathology in the critical section boost heuristic can sometimes be avoided

when coupled with spin-based scale-down (i.e., CSpin). Figure 6-33 shows the scaling decisions

from the hybrid spin/critical section scaling policy. Like the purely spin-based approach, most

processors operate at size F-128 or smaller for the duration of the execution. Processor P1 briefly

scales up, again due to a false positive critical section (recall that P3 runs the sequential bottle-

neck), but is quickly checked by the spin detector. The efficiency of CSpin is comparable to that of

Spin, as their behaviors are quite similar overall. Since CSpin effectively cures Crit of its pathology,

I evaluate CSpin only in subsequent runs.

Figure 6-34 plots the scaling decisions of the ASpin policy, in which a thread (core) scales up

only when all other threads’ (cores’) spin detector is asserted. Transitions demarcating iteration

boundaries are very clear. In some cases, scheduling skew causes processor P3 to scale up shortly

after it enters the sequential bottleneck (e.g., P3’s scale-up is delayed by a slow P6 in the first itera-

tion, and P4 in the second), but the decision is sufficiently timely to make an impact on perfor-

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-33. Scaling decisions over time, Amdahl , critical-section boost/spin-
based scale-down heuristic.

f 0.85=

215

mance (Figure 6-26) and efficiency (Figures 6-28 and 6-29). For Amdahl, ASpin effectively

combines the beneficial scale-down of Spin and the intended critical scale-up of Crit.

Commercial Workloads. Using the insight from Amdahl, I now consider the behavior of

commercial workloads under dynamic scaling heuristics. These benchmarks are quite different

from the data-parallel microbenchmark: they are concurrent, task-parallel workloads. More to the

point, they have been tuned to have few bottlenecks and large , making them difficult candidates

for dynamic scaling in general. Prog cannot be used on these workloads, hence its conspicuous

absence in the figures belonging to this section.

The evaluation of the commercial workloads considers runtime per transaction as a measure

of performance, plotted in Figure 6-35 for each of the four workloads. In general, heuristics focus-

ing on scale-down (i.e., Spin and ASpin) do not significantly degrade performance, and they do

improve energy-efficiency (Figures 6-36 and 6-37) with respect to a uniformly scaled-down con-

figuration (F-128). Scaling up, however, is more efficient for jbb, provided power is available to

do so.

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-34. Scaling decisions over time, Amdahl , all-other-threads-spin
heuristic.

f 0.85=

f

216

The commercial workloads are laden with synchronization—enough so that CSpin’s critical-

section detection logic is very active. Due to the frequency of synchronization tempered with few

spins, CSpin commonly causes all cores to scale up simultaneously. This may not be desirable for

long periods, as it is not always energy-efficient to do so, and available power supply or cooling

capacity may be exceeded by prolonged, multi-core scale-up. To illustrate, Figure 6-38 plots CSpin’s

scaling decisions over time for the oltp-8 workload. Other workloads exhibit similar behavior

overall CSpin. oltp-8’s exact behavior is not sufficiently transparent to ascertain whether these

critical sections constitute sequential bottlenecks or not: but runtime reductions are comparable to

those of the static design point F-1024, suggesting that no specific bottleneck is remedied. As was

the case with the Amdahl microbenchmark, it would seem that lock-protected critical sections do

not necessarily imply sequential bottlenecks, at least in these workloads.

0.0

0.5

1.0

N
or

m
. R

un
tim

e
pe

r
T

ra
ns

ac
tio

n

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

ap
ac

he
-8

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

jbb
-8

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

olt
p-

8

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

ze
us

-8

F-
12

8
F-

10
24

Pr
og

Sp
in

C
ri

t
C

Sp
in

A
Sp

in

GM
ea

n

FIGURE 6-35. Normalized runtime per transaction, commercial workloads.

217

The spin-based approaches improve energy-efficiency by opportunistically scaling down. Fig-

ure 6-39 shows the scaling decisions of ASpin for apache-8, which shows the most frequent

opportunistic down-scaling (though all workloads exhibit some). Importantly, despite the all-spin

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

ap
ac

he
-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

jbb
-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

olt
p-

8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

ze
us

-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

Agg
reg

ate

FIGURE 6-36. , normalized to F-1024, Commercial Workloads.E D⋅

0.0

0.5

1.0

N
or

m
al

iz
ed

 E
*D

^2

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

ap
ac

he
-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

jbb
-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

olt
p-

8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

ze
us

-8

F-
12

8
F-

10
24

Sp
in

C
Sp

in
A

Sp
in

Agg
reg

ate

FIGURE 6-37. , normalized to F-1024, Commercial Workloads.E D
2⋅

218

scale-up heuristic, ASpin never scales up. This suggests that in the apache-8 workload, purely

sequential bottlenecks are rare. This is not surprising, considering substantial effort was spent tun-

ing the commercial workloads for scalability.

Summary. This section has shown that there is opportunity in fine-grained scaling for multi-

threaded workloads, provided inefficient computations (e.g., spinning) or sequential bottlenecks

can be identified and optimized appropriately through core scaling. For instance, programmer-

guided scaling works well in a microbenchmark setting. Spin-detection hardware is effective at

improving efficiency by opportunistically scaling down cores which perform no useful work.

Lastly, though scaling up is often efficient by virtue of highly-efficient Forwardflow cores, using

critical sections as an indicator to trigger scale-up yields counter-intuitive results: cores scale up

when executing critical sections, not necessarily sequential bottlenecks.

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-38. Scaling decisions over time, oltp-8, CSpin policy.

219

6.6 DVFS as a Proxy for Microarchitectural Scaling

Regardless of whether scalable cores are coupled with hardware scaling policies, it seems likely

that researchers will pursue software-level policies for dynamic management of scalable cores in

CMPs. Section 6.3’s findings indicate that software can use simple event-counting mechanisms to

approximate power consumed by a single thread, and can use this and performance data to opti-

mize a desired efficiency metric. But, development of these policies is challenging, as actual scal-

able hardware itself is not yet available for software evaluation.

One possible approach to this problem is to adopt the same methodology used in this thesis:

full-system simulation. While this approach grants significant flexibility, e.g., in the types of scal-

able cores evaluated, the simple fact remains that simulation is extremely time-consuming. The

single-thread evaluation used in this study executes only 100 million instructions per bench-

mark—i.e., the entire simulation covers about one typical scheduling time slice for today’s operat-

0

1

2

3

4

5

P0
P1
P2
P3
P4
P5
P6
P7

FIGURE 6-39. Scaling decisions over time, apache-8, ASpin policy.

220
ing systems. Nonetheless, such a simulation can require weeks of host execution time to complete.

Barring major improvements in simulation latency and throughput, a meaningful evaluation via of

multiple time slices would tax the resources—and the patience—of many systems researchers.

As an alternative to simulation, currently-deployed DVFS techniques seem a logical proxy for

the behavior of future scalable cores. Though the future of DVFS-based scale-up is dubious (cf

Chapter 2), DVFS-capable hardware is ubiquitous today. Altering frequency and voltage effectively

varies a core’s power/performance point, similar at a high level to the expected operation of a

microarchitecturally-scaled core. However, DVFS speeds up a processor’s operations; it does noth-

ing to tolerate memory latency. This leads to performance disparities between the two techniques,

of which future scalable core researchers should be made aware.

6.6.1 Estimating Window-Scaling Performance with DVFS

Forwardflow-style window scaling and DVFS approach performance scaling very differently.

Window scaling improves performance by increasing core lookahead, which in turn enhances the

core’s ability to discover independent work to perform (i.e., instruction-level parallelism). In the

best case, this results in the concurrent servicing of misses, increasing memory-level parallelism,

and improving latency tolerance.

On the other hand, DVFS improves runtime by increasing frequency. Increasing frequency

lowers clock cycle time, effectively reducing the absolute time required to perform operations

within a core. That is, frequency-scaled operations require the same number of cycles to execute,

221

but the duration of a single cycle is lessened. Importantly, events outside the scaled frequency

domain (e.g., a main memory miss) see no change in actual latency, and in fact may experience an

increase in perceived latency, as measured in cycles.

Intuitively, these techniques attack different performance bottlenecks, and one would expect

them to behave differently, depending on the requirements of a particular workload. A compute-

bound application will benefit most from DVFS, as most of its execution time is devoted to com-

putationally-intensive tasks. On the other hand, one would expect a memory-bound application to

see little benefit from DVFS, and greater benefit from increased lookahead.

To explore this intuition, I present a simple experiment. With F-128 as a baseline, Chapter 5

demonstrates that scaling to F-256 (doubling the window size) can increase performance by about

L3B0

L2

P0

L2

P4

FIGURE 6-40. DVFS domain consisting of core and private cache hierarchy.

L3B4

L3B1

L2

P1

L2

P5

L3B5

L3B2

L2

P2

L2

P6

L3B6

L3B3

L2

P3

L2

P7

L3B7

DVFS Domain

222

10% for a single thread. DVFS can do the same. To achieve roughly the same speedup from DVFS,

a 20% clock frequency increase is required11. I therefore consider two scale-up implementations in

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
un

tim
e

F-
12

8
F-

25
6

3.
6G

H
z

as
tar

F-
12

8
F-

25
6

3.
6G

H
z

bz
ip2

F-
12

8
F-

25
6

3.
6G

H
z

gc
c

F-
12

8
F-

25
6

3.
6G

H
z

go
bm

k

F-
12

8
F-

25
6

3.
6G

H
z

h2
64

ref

F-
12

8
F-

25
6

3.
6G

H
z

hm
mer

F-
12

8
F-

25
6

3.
6G

H
z

lib
qu

an
tum

F-
12

8
F-

25
6

3.
6G

H
z

mcf

F-
12

8
F-

25
6

3.
6G

H
z

om
ne

tpp

F-
12

8
F-

25
6

3.
6G

H
z

pe
rlb

en
ch

F-
12

8
F-

25
6

3.
6G

H
z

sje
ng

F-
12

8
F-

25
6

3.
6G

H
z

xa
lan

cb
mk

F-
12

8
F-

25
6

3.
6G

H
z

GM
ea

n

FIGURE 6-41. Normalized runtime, SPEC INT 2006, baseline Forwardflow core (F-128),
partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS (@3.6GHz).

FIGURE 6-42. Normalized runtime, SPEC FP 2006, baseline Forwardflow core (F-128),
partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS (3.6GHz).

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
un

tim
e

F-
12

8
F-

25
6

3.
6G

H
z

bw
av

es

F-
12

8
F-

25
6

3.
6G

H
z

ca
ctu

s

F-
12

8
F-

25
6

3.
6G

H
z

ca
lcu

lix

F-
12

8
F-

25
6

3.
6G

H
z

de
alI

I

F-
12

8
F-

25
6

3.
6G

H
z

ga
mes

s

F-
12

8
F-

25
6

3.
6G

H
z

ge
ms

F-
12

8
F-

25
6

3.
6G

H
z

gr
om

ac
s

F-
12

8
F-

25
6

3.
6G

H
z

lbm

F-
12

8
F-

25
6

3.
6G

H
z

les
lie

3d

F-
12

8
F-

25
6

3.
6G

H
z

milc

F-
12

8
F-

25
6

3.
6G

H
z

na
md

F-
12

8
F-

25
6

3.
6G

H
z

po
vr

ay

F-
12

8
F-

25
6

3.
6G

H
z

so
ple

x

F-
12

8
F-

25
6

3.
6G

H
z

sp
hin

x3

F-
12

8
F-

25
6

3.
6G

H
z

ton
to

F-
12

8
F-

25
6

3.
6G

H
z

wrf

F-
12

8
F-

25
6

3.
6G

H
z

ze
us

mp

F-
12

8
F-

25
6

3.
6G

H
z

GM
ea

n

223

this section: microarchitectural scaling from F-128 to F-256, and a +20% frequency increase on F-

128’s clock, yielding the 3.6Ghz configuration (cf Chapter 3, nominal frequency is 3.0 GHz). For

experimental purposes, I assume each core in the 8-core CMP target machine can operate within

its own DVFS domain: 3.6GHz scales its P0 core, L1, and L2 frequency and voltage up by 20%. The

shared L3 remains at nominal operating conditions. I assume no delay for signals crossing asyn-

chronous clock boundaries in this experiment. This assumption is optimistic for the DVFS case,

but enables a per-core DVFS implementation without affecting the behavior (absolute timing or

leakage) of the large on-chip L3 cache.

The comparison of F-256 to 3.6Ghz is fairly arbitrary. Both yield noticeably different runtimes

and power consumptions than the baseline. But the most important aspects of this evaluation are

11. Determined empirically.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
un

tim
e

F-
12

8
F-

25
6

3.
6G

H
z

ap
ac

he
-1

F-
12

8
F-

25
6

3.
6G

H
z

jbb
-1

F-
12

8
F-

25
6

3.
6G

H
z

olt
p-

1

F-
12

8
F-

25
6

3.
6G

H
z

ze
us

-1

F-
12

8
F-

25
6

3.
6G

H
z

GM
ea

n

FIGURE 6-43. Normalized runtime, Commercial Workloads, baseline Forwardflow core
(F-128), partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS
(3.6GHz).

224

qualitative in nature, and similar results are likely with other configuration pairs. E.g., an evalua-

tion of F-1024 and its average-performance-equivalent DVFS configuration would also suffice.

Figure 6-41 plots the normalized runtime of SPEC INT 2006, for the three configurations

involved in this study. Normalized runtimes of SPEC FP 2006 and commercial workloads are plot-

ted in Figures 6-42 and 6-43, respectively. Normalized runtime residuals between F-256 and 3GHz

are plotted in Figure 6-44. In general, both DVFS and window scaling decrease runtime, as

expected. However, there are two notable differences in performance behavior.

First, the degree to which each benchmark’s runtime is reduced varies a great deal under

microarchitectural scaling (standard deviation 0.12, 0.24 if F-1024 is considered), from essentially

zero (e.g., sjeng) to a roughly 2x speedup (libquantum). Runtime reductions from DVFS are

typically much less varied (standard deviation 0.04).

FIGURE 6-44. Relative runtime difference between DVFS-based scaling and window-
based scaling.

225
Second, runtime reductions from microarchitectural scaling are negatively correlated with

respect to those of DVFS (correlation -0.74). This finding supports the intuition that some work-

loads (i.e., compute-bound) benefit very little from microarchitectural scaling, but significantly

from DVFS, and still other workloads (i.e., memory-bound) benefit little from DVFS but greatly

from scaling.

Together, these two trends suggest that, among individual benchmarks, DVFS is a poor substi-

tute for the performance characteristics of microarchitectural scaling. However, when averaged

over many workloads, overall runtime reduction from DVFS is comparable to that expected of a

scalable core.

In light of these findings, I recommend DVFS as a proxy for microarchitectural (window) scal-

ing only for studies with rigorous evaluation of a meaningful variety of workloads. Such averages

should include appropriately-weighted mixes of compute-bound and memory-bound workloads.

6.6.2 Estimating Window-Scaling Power with DVFS

Like performance, the effect of DVFS on overall power consumption is very different from that

of microarchitectural scaling. To begin, consider the general equation for dynamic power con-

sumption in CMOS:

 (6.7)

DVFS affects two terms in Eqn. 6.7. Frequency () is increased 20% in this experiment. If the

baseline already operates at maximum possible (correct) frequency for nominal operating voltage,

DVFS must also scale to ensure correct operation at greater frequency. Together, scaling of

Pdynamic α CL f V dd
2⋅ ⋅ ⋅=

f

V dd

226

operating voltage and frequency leads to a cubic increase in dynamic power under DVFS. However,

recall that the DVFS domain for this experiment is limited to a core and its private cache hierarchy.

Only the power of these components will be affected by voltage scaling.

On the other hand, microarchitectural scaling holds frequency and voltage constant, and

instead varies capacitive load , by introducing additional resources when scaling up, as well as

increasing activity factor of unscaled components (recall that scaling window size also scales

power of unscaled components, such as caches, by influencing the demands placed on those struc-

tures).

Voltage scaling’s effects on static power are indirect. By affecting dynamic power, DVFS

changes the expected operating temperature of nearby models. This in turn increases leakage

power. There is also a small effect on the power of the clock distribution system (in fact, a dynamic

effect) which is included in the ‘static’ category. By delivering clock pulses more frequently and at

higher voltage, clock power increases cubically ().

CL

α

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 P
ow

er

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-1

28
F

-2
56

3.
6G

H
z

astar

F
-1

28
F

-2
56

3.
6G

H
z

bzip2

F
-1

28
F

-2
56

3.
6G

H
z

gcc

F
-1

28
F

-2
56

3.
6G

H
z

gobmk

F
-1

28
F

-2
56

3.
6G

H
z

h264ref

F
-1

28
F

-2
56

3.
6G

H
z

hmmer

F
-1

28
F

-2
56

3.
6G

H
z

libquantum

F
-1

28
F

-2
56

3.
6G

H
z

mcf

F
-1

28
F

-2
56

3.
6G

H
z

omnetpp

F
-1

28
F

-2
56

3.
6G

H
z

perlbench

F
-1

28
F

-2
56

3.
6G

H
z

sjeng

F
-1

28
F

-2
56

3.
6G

H
z

xalancbmk

F
-1

28
F

-2
56

3.
6G

H
z

HMean

FIGURE 6-45. Normalized power consumption, SPEC INT 2006, baseline Forwardflow
core (F-128), partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS
(3.6GHz).

α 1=

227

Figures 6-45, 6-46, and 6-47 plot categorized (normalized) power consumption across integer,

floating point, and commercial workloads, respectively. A complete description of the categories

can be found in Chapter 5, Section 5.4.1. The effect of DVFS and scaling on power consumption is

immediately obvious. For comparable performance improvement, DVFS consumes substantially

more power—both from dynamic and static sources. There are only two cases in which this trend

does not hold (lbm and milc)—both of which exhibit significant performance improvements

under microarchitectural scaling, accounting for atypically higher activity factors in F-256 as a

result.

Overall, DVFS overestimates power required to implement scale up, as compared to microar-

chitectural scaling. Researchers seeking to use DVFS to model scalable cores should do so with

these caveats in mind. In particular, direct measurement of chip power changes from DVFS is not

a reliable metric by which to gauge expected power consumption of a scaled-up core. Instead, a

power model based on performance counters (Section 6.3) offers a reasonable alternative, as does

(brief) simulation.

FIGURE 6-46. Normalized power consumption, SPEC FP 2006, baseline Forwardflow core
(F-128), partially-scaled Forwardflow core (F-256), and F-128 accelerated by DVFS
(3.6GHz).

0

1

2

N
or

m
al

iz
ed

 P
ow

er

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F
-1

28
F

-2
56

3.
6G

H
z

bwaves

F
-1

28
F

-2
56

3.
6G

H
z

cactus

F
-1

28
F

-2
56

3.
6G

H
z

calculix

F
-1

28
F

-2
56

3.
6G

H
z

dealII

F
-1

28
F

-2
56

3.
6G

H
z

gamess

F
-1

28
F

-2
56

3.
6G

H
z

gems

F
-1

28
F

-2
56

3.
6G

H
z

gromacs

F
-1

28
F

-2
56

3.
6G

H
z

lbm
F

-1
28

F
-2

56
3.

6G
H

z

leslie3d

F
-1

28
F

-2
56

3.
6G

H
z

milc

F
-1

28
F

-2
56

3.
6G

H
z

namd

F
-1

28
F

-2
56

3.
6G

H
z

povray

F
-1

28
F

-2
56

3.
6G

H
z

soplex

F
-1

28
F

-2
56

3.
6G

H
z

sphinx3

F
-1

28
F

-2
56

3.
6G

H
z

tonto

F
-1

28
F

-2
56

3.
6G

H
z

wrf

F
-1

28
F

-2
56

3.
6G

H
z

zeusmp

F
-1

28
F

-2
56

3.
6G

H
z

HMean

228

6.7 Summary of Key Results

I have presented several key findings in this chapter. First, I have shown that per-core overpro-

visioning of scalable resources can be made cheap and simple, and further that it may enable

“tighter loops” in core design [23]. While not all scalable core designs are well-suited to overprovi-

sioning [86, 94], at least two core designs can used in the context of a scalable CMP with small cost

to per-core overprovisioning [60, 180].

I have shown that scaling policies—both hardware- and software-based—can determine

power consumption of single threads by computing linear weighted sums of core-local event

counts. This computation can be performed directly at low cost, in hardware though uOp inser-

tion, or in a software subroutine. Overall, the accuracy of this approximation technique matches

FIGURE 6-47. Normalized power consumption, Commercial Workloads, baseline
Forwardflow core (F-128), partially-scaled Forwardflow core (F-256), and F-128 accelerated
by DVFS (3.6GHz).

0.0

0.5

1.0
N

or
m

al
iz

ed
 P

ow
er

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static/Clk

F-
12

8
F-

25
6

3.
6G

H
z

ap
ac

he
-1

F-
12

8
F-

25
6

3.
6G

H
z

jbb
-1

F-
12

8
F-

25
6

3.
6G

H
z

olt
p-

1
F-

12
8

F-
25

6
3.

6G
H

z

ze
us

-1

F-
12

8
F-

25
6

3.
6G

H
z

HM
ea

n

229
that of the methodology used in this thesis—accurate within 10-20% of true power consumption

[25].

However, despite inexpensive methods for measuring power consumption, I find the most

generally useful hardware scaling policy for fine-grained single-thread scaling does not directly

measure power consumption. Instead, the proposed policy seeks to optimally size the instruction

window by profiling available memory-level parallelism (MLP). I have shown that, by making

temporally- or positionally-local efficiency measurements, some hardware scaling policies do not

always adequately approximate global efficiency metrics. However, once the most-efficient static

configuration is known (e.g., by profiling performed at the level of system software, possibly

assisted by a hardware dynamic scaling policy), few observed single-thread benchmarks benefit

further from dynamic scaling.

When multiple threads are considered, opportunistically scaling down to very low-perfor-

mance and low-power configurations can improve efficiency. Candidate executions for scale-

down can be identified by the programmer, or by spin-detection hardware. Among evaluated poli-

cies, only programmer-guided scaling reliably scales up when appropriate in a multithreaded set-

ting—in particular, an evaluated implementation critical-section acceleration is ineffective and

prone to false positives, leading to two findings. First, critical sections do always constitute sequen-

tial bottlenecks. Second, since synchronization is implemented in software, hardware-based meth-

ods of identifying synchronization, both free of false positives and accurate across all workloads,

are likely infeasible, as programmers may employ difficult-to-detect or ad-hoc synchronization

primitives at will.

230
Lastly, I have shown that future researchers seeking to explore software policies for scalable

cores can look to DVFS as a method by which scalable core performance can be approximated,

when considered in aggregate. Results based on individual benchmarks should not be considered

significant, as the performance effects of microarchitectural scaling tend to vary more than those

of DVFS. Researchers should not look to the power response of DVFS as an accurate model of

scalable cores, however, as DVFS almost universally overestimates power consumption, due to its

inherent cubic relation to dynamic consumption. Instead, researchers might consider simple

event-based models for power consumption, like those evaluated in Section 6.3.

231

Chapter 7

Conclusions and Future Work

In this final chapter, I briefly summarize the contents of this thesis, and discuss future direc-

tions that could be investigated in further study of scalable cores.

7.1 Conclusions

This work makes several contributions toward the realization of a scalable CMP. First, I discuss

SSR (Chapter 4), a dependence representation suitable for implementation in simple hardware.

SSR exploits the synergy between single-successor dominance and explicit successor representations,

by using pointers between instructions to explicitly define a dataflow graph. The principal finding

of Chapter 4 is that the performance degradation of serialized wakeup of multiple successors can

be masked, and overcome, by the increased the scheduling window size enabled by SSR.

Second, I discuss the architecture of an efficient, statically-scalable core (Forwardflow, Chapter

5). Intuitively, in the shadow of a load miss, ample time is available to execute independent work—

Forwardflow exploits this intuition by leveraging SSR to build a large, modular instruction win-

dow, increasing lookahead instead of peak throughput. I thoroughly evaluate the Forwardflow

design, and show that it outperforms similarly-sized conventional designs by avoiding scheduler

clog, and that it can often exceed the performance of CFP and Runahead, while simultaneously

using less power.

232
Next, I discuss a dynamically-scaled version of the Forwardflow architecture, and evaluate

scaling policies for single- and multi-threaded workloads, to optimize energy-efficiency metrics. I

show that multithreaded executions can be made more efficient by scaling cores down when they

perform no useful work. Moreover, programmer-guided core scaling effectively identifies sequen-

tial bottlenecks, at fine granularity, and is the most effective evaluated method for deciding when

to scale up when running many threads.

In the area of scalable core design, I show that the area costs of fully-provisioned scalable cores

can be small, whereas the potential performance loss from resource borrowing can be significant.

Future designers of scalable cores need not focus on whole-core aggregation to scale up, and can

instead devote efforts to the (arguably easier) problem of implementing new, efficient overprovi-

sioned scalable cores.

Lastly, I lay the groundwork for future research in software policies, by showing that DVFS can

be used as a proxy for core scale-up, with some caveats. In particular, DVFS accurately models the

performance of scalable cores, when averaged over many workloads. The rigor expected of a thor-

ough scientific evaluation should provide this average. For modeling power, I show that simple

correlation of microarchitectural events can effectively predict the energy consumption of a scal-

able core, suggesting that future software policies can estimate the power consumption of scalable

cores from performance counters, and the performance from today’s DVFS.

7.2 Areas of Possible Future Work

This thesis considers several areas of scalable core hardware: core microarchitecture, dynamic

scaling policies, interconnects, etc., but significant work remains to be done in software. The

experiments in this thesis have shown that software policies can estimate the power consumed by

233
single threads with high accuracy and low overhead. This motivates both software policies which

are aware of per-configuration and per-benchmark power consumption, as well as future exten-

sions to this work to consider multiple concurrent threads in a CMP.

I have shown that DVFS can be used to proxy performance of scalable cores, suggesting that

future software-level considerations can use DVFS as a vehicle for evaluation, instead of simula-

tion. Under DVFS, future policies for scalable CMPs can be discovered and evaluated well in

advance of the hardware on which they will operate.

In the area of hardware, the benefits of energy-proportional design motivate future designs

that push the extrema of scalable cores. More effective policies are possible when the underlying

core grants greater flexibility in power/performance tradeoffs. Very high-performance/high-

power or low-performance/low-power scalable core designs should be designed and evaluated.

While SSR and the Forwardflow design may serve as baselines or even motivators for these future

scalable core designs, there is no cause to believe that Forwardflow is the best overall scalable core

design—it is merely the product of one thesis’ work, and future designs are likely to surpass it, both

in performance and efficiency.

This work has focused largely on cores, the effects of core scaling, and policies by which to

scale cores. In particular, I have given little treatment to the memory system, how it should scale

with core resources. Future architects should also consider schemes that aggregate cache space

[86], effectively implement coherence [108], and manage cache space [22, 33].

234

7.3 Reflections

I conclude this document with a less formal consideration of the meta-lessons of this work. In

this final section, I begin by placing this work in the context of the larger research community, and

the trends underlying it. This section consists largely of my own opinions, which I do not attempt

to substantiate quantitatively. These are my findings and impressions on research in computer

architecture in general, rather than in the particular cases addressed in this document.

Much of the development of SSR and Forwardflow was motivated by the challenge to improve

single-thread performance. Despite the final form of the presentation, only the latter half of the

work leading to this dissertation had any notion of a scalable core—initially, I sought only to build

an energy-efficient large-window machine. Ironically, scalable cores are ultimately motivated best

in the context of emerging multi-threaded hardware. Before this work was adequately positioned

in the context of future CMPs, it saw no acceptance among the research community.

This leads to my first main point: core microarchitecture is at an impasse, because computer

architecture is at an impasse. ISCA 2010’s panel, “Microarchitecture is Dead, Long Live Microar-

chitecture!” seemed to conclude with a consensus that microarchitecture is not dead, but in my

opinion, no attendee pointed out convincing evidence of long life expectancy, either. In the loom-

ing shadow of commonplace highly-concurrent chips, I suspect not all researchers are fully con-

vinced that the pursuit of single-thread performance is over. However, few would argue that the

“low-hanging fruit” are gone.

One the other side of the impasse, it is not yet clear how software will effectively use concur-

rent hardware, beyond a handful of cores. Some might call this an opportunity: it constitutes a sig-

nificant challenge for researchers, but somewhat discouragingly, four decades of research in

235
parallel computing has yet to solve the problem. On the other hand, with the entire computing

industry now in the “Fundamental Turn Towards Concurrency” [162], motivation for the problem

of parallel programming—and potential rewards for solving it—have never been higher. This work

seeks to ease the transition into concurrent executions, by addressing sequential bottlenecks. If

core microarchitecture has a future in academic computer architecture research, it is in the need to

address sequential bottlenecks with new and novel approaches.

This leads to my second main point: software must change to accommodate concurrency,

and that trend opens the door for architecture to change as well (e.g., in the ISA). In one of the

successful proposals in this work, exposing core scaling to the programmer enabled a hardware

scaling policy to partially ameliorate a sequential bottleneck—thereby (theoretically) helping the

programmer meet his/her performance objectives. Exposing core scaling constitutes a straightfor-

ward tool by which the programmer can relate performance constraints to the underlying hard-

ware and/or system software. Of course, much future work should evaluate the technical,

linguistic, and psychological implications of performance hints (after all, there is a worry that pro-

grammers will compulsively litter their code with “go fast” directives, obviating the point of scal-

able cores). Certainly, the new primitives and abstractions that emerge as huge numbers of

programmers tackle the multicore programming problem will shape expectations for years to

come.

This does not obviate the need for faster cores. Faster cores will still be in demand for many

years. On numerous occasions I desired a faster core—indeed, a scalable core—when developing

the simulation software used in this study. This segues to the final meta-point of my discussion: I

believe researchers should seek new means by which to evaluate academic research. Simulation

236
is hard, slow, error-prone, and quite frankly, it is difficult to convince oneself (or others) of its

accuracy. Though it has been a staple of many academic (and industrial) research teams, and my

own research, all of these problems’ complexity grows worse as focus shifts to multicore designs.

Ultimately, working with a simulator (even of my own design) constrained rather than empowered

my research, by encouraging me to operate within its capabilities, rather than expand them. To

quote Abraham Maslow’s law of the instrument, “if all you have is a hammer, everything looks like

a nail”1. With simulators as hammers, I believe there is a tendency to cast architecture problems as

nails, i.e., to frame problems within the bounds of what can be easily simulated, rather than pursue

the best means by which to make the evaluation.

I do not make this point lightly. A great deal of the technical effort leading to this thesis was

spent in simulator development—which was an excellent software engineering experience—but

gains nothing “on paper” as far as the research community is concerned. I find this curious. Meth-

ods affect the entire field, and it should be considered a first-order problem.

Unfortunately, I have no specific alternatives to offer on this point. Few general evaluation

methods approach the near-panacea of simulation. Achieving the visibility, flexibility, and turn-

around time of simulation with another methodology is daunting. Simulation may be a necessary

evil in some cases, possibly as a means by which to bootstrap other forms of evaluation. Nonethe-

less, I believe the community would benefit from less simulation, on the whole. As computer

architecture research takes the fundamental turn, an opportunity exists to change architecture in

ways not previously possible, and at the same time, change the means by which we evaluate it.

1. Abraham H. Maslow. Psychology of Science: A Reconnaissance. Maurice Basset, Publisher. 1966 and 2002.

237

References

[1] I. Ahn, N. Goundling, J. Sampson, G. Venkatesh, M. Taylor, and S. Swanson. Scaling the Utilization
Wall: The Case for Massively Heterogeneous Multiprocessors. Technical Report CS2009-0947, Uni-
versity of California-San Diego, 2009.

[2] H. H. Aiken and G. M. Hopper. The Automatic Sequence Controlled Calculator. Electrical Engi-
neering, 65(8), 1945.

[3] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery: An Efficient,
Scalable Alternative to Reorder Buffers. IEEE Micro, 23(6), Nov/Dec 2003.

[4] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing and Recovery: Towards Scalable
Large Instruction Window Processors. In Proc. of the 36th Annual IEEE/ACM International Symp.
on Microarchitecture, Dec. 2003.

[5] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. K. Martin, D. J. Sorin, M. D. Hill, and
D. A. Wood. Evaluating Non-deterministic Multi-threaded Commercial Workloads. In Proc. of the
5th Workshop on Computer Architecture Evaluation Using Commercial Workloads, pages 30–38, Feb.
2002.

[6] A. R. Alameldeen and D. A. Wood. Variability in Architectural Simulations of Multi-threaded
Workloads. In Proc. of the 9th IEEE Symp. on High-Performance Computer Architecture, pages 7–18,
Feb. 2003.

[7] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful for Multiprocessor Workloads. IEEE
Micro, 26(4):8–17, Jul/Aug 2006.

[8] D. Albonesi, R., Balasubramonian, S. Dropsbo, S. Dwarkadas, F. Friedman, M. Huang, V. Kursun,
G. Magklis, M. Scott, G. Semeraro, P. Bose, A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynami-
cally tuning processor resources with adaptive processing. IEEE Computer, 36(2):49–58, Dec. 2003.

[9] D. H. Albonesi. Selective cache ways: on-demand cache resource allocation. In Proc. of the 32nd
Annual IEEE/ACM International Symp. on Microarchitecture, pages 248–259, Nov. 1999.

[10] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization sets: a dynamic dependence-based parallel
execution model. In Proc. of the 16th ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP), pages 85–96, Feb. 2009.

[11] R. S. Alqrainy. Intel Microprocessor History. http://www.scribd.com/doc/17115029/Intel-Micro-
processor-History.

[12] G. M. Amdahl. Validity of the Single-Processor Approach to Achieving Large Scale Computing
Capabilities. In AFIPS Conference Proceedings, pages 483–485, Apr. 1967.

238
[13] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded Transactional

Memory. In Proc. of the 11th IEEE Symp. on High-Performance Computer Architecture, Feb. 2005.

[14] K. Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Dataflow Architecture.
IEEE Transactions on Computers, pages 300–318, Mar. 1990.

[15] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The Landscape of Parallel Computing Research:
A View from Berkeley. Technical Report Technical Report No. UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, 2006.

[16] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and B. Parady. SPEComp: A New
Benchmark Suite for Measuring Parallel Computer Performance. In Workshop on OpenMP Appli-
cations and Tools, pages 1–10, July 2001.

[17] R. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Balancing. In Proc. of the 28th
Annual Intnl. Symp. on Computer Architecture, July 2001.

[18] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory hierarchy
reconfiguration for energy and performance in general-purpose processor architectures. In Proc. of
the 33rd Annual IEEE/ACM International Symp. on Microarchitecture, pages 245–257, Dec. 2000.

[19] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas, and H. Dwarkadas. Dynamic
Memory Hierarchy Performance Optimization. In Workshop on Solving the Memory Wall Problem,
June 2000.

[20] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-cluster, dynamically-
scheduled, superscalar processors. In Proc. of the 27th Annual Intnl. Symp. on Computer Architec-
ture, June 2000.

[21] L. A. Barroso, J. Dean, and U. Holze. Web Search for a Planet: The Google Cluster Architecture.
IEEE Micro, 23(2), March 2003.

[22] B. M. Beckmann, M. R. Marty, and D. A. Wood. ASR: Adaptive Selective Replication for CMP
Caches. In Proc. of the 39th Annual IEEE/ACM International Symp. on Microarchitecture, Dec. 2006.

[23] E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops Sink Chips. In Proc. of the 8th IEEE Symp.
on High-Performance Computer Architecture, Feb. 2002.

[24] S. E. Breach. Design and Evaluation of a Multiscalar Processor. PhD thesis, Computer Sciences
Department, University of Wisconsin–Madison, Feb. 1999.

[25] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations. In Proc. of the 27th Annual Intnl. Symp. on Computer Architecture,
pages 83–94, June 2000.

[26] D. C. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report CS-TR-
1997-1342, Computer Sciences Department, University of Wisconsin–Madison, 1997.

239
[27] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and P. Cook. A circuit level imple-

mentation of an adaptive issue queue for power-aware microprocessors. In Great Lakes Symposium
on VLSI Design, pages 73–78, 2001.

[28] H. Cain and P. Nagpurkar. Runahead execution vs. conventional data prefetching in the IBM
POWER6 microprocessor. In 2010 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), 2010.

[29] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-Based Approach. In Proc. of the 31st
Annual Intnl. Symp. on Computer Architecture, June 2004.

[30] R. Canal, J.-M. Parcerisa, and A. Gonzalez. A Cost-Effective Clustered Architecture. In Proc. of the
Intnl. Conf. on Parallel Architectures and Compilation Techniques, Oct. 1999.

[31] K. Chakraborty. Over-provisioned Multicore Systems. PhD thesis, University of Wisconsin, 2008.

[32] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation Spreading: Employing Hardware Migra-
tion to Specialize CMP Cores On-the-fly. In Proc. of the 12th Intnl. Conf. on Architectural Support
for Programming Languages and Operating Systems, Oct. 2006.

[33] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multiprocessors. In Proc. of the 33nd
Annual Intnl. Symp. on Computer Architecture, June 2006.

[34] J. Charles, P. Jassi, A. N. S, A. Sadat, and A. Fedorova. Evaluation of the Intel Core i7 Turbo Boost
feature. In Proceedings of the IEEE International Symposium on Workload Characterization, Oct.
2009.

[35] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer, and M. Tremblay.
Simultaneous Speculative Threading: A Novel Pipeline Architecture Implemented in Sun’s ROCK
Processor. In Proc. of the 36th Annual Intnl. Symp. on Computer Architecture, June 2009.

[36] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Multithread Applications. In Proceedings
of the SIGMETRICS Symposium on Parallel and Distributed Tools (SPDT-98), pages 48–59, Aug.
1998.

[37] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture Optimizations for Exploiting Memory-Level
Parallelism. In Proc. of the 31st Annual Intnl. Symp. on Computer Architecture, pages 76–87, June
2004.

[38] G. Z. Chrysos and J. S. Emer. Memory Dependence Prediction using Store Sets. In Proc. of the 26th
Annual Intnl. Symp. on Computer Architecture, pages 142–153, May 1999.

[39] A. Cristal, O. J. Santana, F. Cazolra, M. Galluzi, T. Ramirez, M. Percias, and M. Valero. Kilo-
instruction processors: overcoming the memory wall. IEEE Micro, 25(3), May 2005.

[40] A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez. Toward kilo-instruction processors. ACM
Transactions on Architecture and Compiler Optimizations, 1(4), Dec. 2004.

240
[41] Z. Cvetanovic. Performance analysis of the Alpha 21364-based HP GS1280 multiprocessor. In Proc.

of the 30th Annual Intnl. Symp. on Computer Architecture, pages 218–229, June 2003.

[42] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In Proc. of
the 6th USENIX Symp. on Operating Systems Design and Implementation, Dec. 2004.

[43] B. S. Deepaksubramanyan and A. Nunez. Analysis of Subthreshold Leakage Reduction in CMOS
Digital Circuits. In 13th NASA VLSI Symposium, 2007.

[44] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via dynamic working set
analysis. In Proc. of the 29th Annual Intnl. Symp. on Computer Architecture, May 2002.

[45] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, G. Semeraro,
G. Magklis, and M. L. Scott. Integrating Adaptive On-Chip Storage Structures for Reduced
Dynamic Power. In Proc. of the Intnl. Conf. on Parallel Architectures and Compilation Techniques,
pages 141–152, Sept. 2002.

[46] J. Dundas and T. Mudge. Improving Data Cache Performance by Pre-Executing Instructions Under
a Cache Miss. In Proc. of the 1997 Intnl. Conf. on Supercomputing, pages 68–75, July 1997.

[47] A. N. Eden and T. Mudge. The YAGS Branch Prediction Scheme. In Proc. of the 25th Annual Intnl.
Symp. on Computer Architecture, pages 69–77, June 1998.

[48] W. T. F. Encyclopedia. IBM POWER. http://en.wikipedia.org/wiki/IBM_POWER.

[49] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster Architecture: Reducing Pro-
cessor Cycle Time Through Partitioning. International Journal of Parallel Programming, 27(5):327–
356, Oct. 1999.

[50] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In Proc. of the 28th Annual Intnl. Symp.
on Computer Architecture, pages 230–239, July 2001.

[51] I. T. R. for Semiconductors. ITRS 2006 Update. Semiconductor Industry Association, 2006. http://
www.itrs.net/Links/2006Update/2006UpdateFinal.htm.

[52] I. T. R. for Semiconductors. ITRS 2007 Update. Semiconductor Industry Association, 2007. http://
www.itrs.net/Links/2007ITRS/Home2007.htm.

[53] M. Franklin. Multi-Version Caches for Multiscalar Processors. In In Proceedings of the First Interna-
tional Conference on High Performance Computing (HiPC), 1995.

[54] M. Franklin and G. S. Sohi. The Expandable Split Window Paradigm for Exploiting Fine-Grain
Parallelism. In Proc. of the 19th Annual Intnl. Symp. on Computer Architecture, pages 58–67, May
1992.

[55] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering of Memory
References. IEEE Transactions on Computers, 45(5):552–571, May 1996.

241
[56] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai. Scalable Load and Store Processing in

Latency Tolerant Processors. In Proc. of the 32nd Annual Intnl. Symp. on Computer Architecture,
June 2005.

[57] B. Ganesh, A. Jalell, D. Wang, and B. Jacob. Fully-buffered dimm memory architectures: Under-
standing mechanisms, overheads and scaling. In Proc. of the 13th IEEE Symp. on High-Performance
Computer Architecture, Feb. 2007.

[58] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant, B. Patel, M. Taufique, and
H. Samarchi. A Sub-2 W Low Power IA Processor for Mobile Internet Devices in 45 nm High-k
Metal Gate CMOS. IEEE Journal of Solid-State Circuits, 44(1):73–82, 2009.

[59] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proc. of the 19th ACM Symp.
on Operating System Principles, Oct. 2003.

[60] D. Gibson and D. A. Wood. Forwardflow: A Scalable Core for Power-Constrained CMPs. In Proc.
of the 37th Annual Intnl. Symp. on Computer Architecture, June 2010.

[61] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proc. of the 26th Annual Intnl. Symp.
on Computer Architecture, pages 162–171, May 1999.

[62] R. Gonzalez, A. Cristal, M. Percias, M. Valero, and A. Veidenbaum. An asymmetric clustered pro-
cessor based on value content. In Proc. of the 19th Intnl. Conf. on Supercomputing, June 2005.

[63] J. Gonz��lez and A. Gonz��lez. Dynamic Cluster Resizing. In Proceedings of the 21st International
Conference on Computer Design, 2003.

[64] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. McDonald, S. Keckler, and D. Burger.
Implementation and Evaluation of a Dynamically Routed Processor Operand Network. Networks-
on-Chip, 2007. NOCS 2007. First International Symposium on, 2007.

[65] T. Halfhill. Transmeta Breaks x86 Low-Power Barrier. Microprocessor Report, pages 9–18, February
2000.

[66] L. Hammond, B. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis, and K. Olukotun. Pro-
gramming with Transactional Coherence and Consistency (TCC). In Proc. of the 11th Intnl. Conf.
on Architectural Support for Programming Languages and Operating Systems, Oct. 2004.

[67] A. Hartstein and T. R. Puzak. Optimum Power/Performance Pipeline Depth. In Proc. of the 36th
Annual IEEE/ACM International Symp. on Microarchitecture, Dec. 2003.

[68] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann, third edition, 2003.

[69] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. Computer Architecture News, 34(4):1–17,
2006.

[70] A. Henstrom. US Patent #6,557,095: Scheduling operations using a dependency matrix, Dec. 1999.

242
[71] M. Herlihy. Obstruction-free synchronization: Double-ended queues as an example. In Proceedings

of the 23rd International Conference on Distributed Computing Systems, 2003.

[72] M. D. Hill. Multiprocessors Should Support Simple Memory Consistency Models. IEEE Computer,
31(8):28–34, Aug. 1998.

[73] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer, pages 33–38, July
2008.

[74] A. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating All-Level Cache Misses in In-Order Pipe-
lines. In Proc. of the 15th IEEE Symp. on High-Performance Computer Architecture, Feb. 2009.

[75] T. Horel and G. Lauterbach. UltraSPARC-III: Designing Third Generation 64-Bit Performance.
IEEE Micro, 19(3):73–85, May/June 1999.

[76] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-Speed Electrical Signaling: Overview and
Limitations. IEEE Micro, 18(1), Jan/Feb 1998.

[77] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for Lightweight Race Recording. In Proc.
of the 35th Annual Intnl. Symp. on Computer Architecture, June 2008.

[78] M. Huang, J. Renau, and J. Torrellas. Energy-efficient hybrid wakeup logic. In ISLPED ’02: Proceed-
ings of the 2002 international symposium on Low power electronics and design, pages 196–201, New
York, NY, USA, 2002. ACM.

[79] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A framework for dynamic energy efficiency and
temperature management. In Proc. of the 33rd Annual IEEE/ACM International Symp. on Microar-
chitecture, Dec. 2000.

[80] M. Huang, J. Renau, S. M. Yoo, and J. Torrellas. A framework for dynamic energy efficiency and
temperature management. In Proc. of the 33rd Annual IEEE/ACM International Symp. on Microar-
chitecture, Dec. 2000.

[81] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: application to energy
reduction. Computer Architecture News, 31(2), 2003.

[82] Intel, editor. Intel 64 and IA-32 Architectures Software Developer’s Manual, volume 3A: System Pro-
gramming Guide Part 1. Intel Corporation.

[83] Intel. Microprocessor Quick Reference Guide. http://www.intel.com/pressroom/kits/quickref.htm.

[84] Intel. First the Tick, Now the Tock: Next Generation IntelÆ Microarchitecture (Nehalem). http://
www.intel.com/technology/architecture-silicon/next-gen/whitepaper.pd% f, 2008.

[85] Intel. Intel and Core i7 (Nehalem) Dynamic Power Management, 2008.

243
[86] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Accomodating Software Diversity

in Chip Multiprocessors. In Proc. of the 34th Annual Intnl. Symp. on Computer Architecture, June
2007.

[87] A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling. In DATE ’01: Proceed-
ings of the conference on Design, automation and test in Europe, 2001.

[88] A. Jain and et al. A 1.2GHz Alpha Microprocessor with 44.8GB/s Chip Pin Bandwidth. In Proceed-
ings of the IEEE 2001 International Solid-State Circuits Conference, pages 240–241, 2001.

[89] R. Joseph and M. Martonosi. Run-time power estimation in high performance microprocessors. In
ISLPED ’01: Proceedings of the 2001 international symposium on Low power electronics and design,
pages 135–140, 2001.

[90] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar and super-pipe-
lined machines. In Proc. of the 3rd Intnl. Conf. on Architectural Support for Programming Languages
and Operating Systems, Apr. 1989.

[91] D. Kanter. The Common System Interface: Intel’s Future Interconnect. http://www.real-
worldtech.com/page.cfm?ArticleID=RWT082807020032.

[92] S. Keckler, D. Burger, K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia,
M. Govindan, P. Gratz, D. Gulati, H. H. amd C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,
S. Sharif, and P. Shivakumar. Architecture and Implementation of the TRIPS Processor. CRC Press,
2007.

[93] R. M. Keller. Look-Ahead Processors. ACM Computing Surveys, 7(4), 1975.

[94] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati, D. Burger, and S. W. Keck-
ler. Composable Lightweight Processors. In Proc. of the 40th Annual IEEE/ACM International
Symp. on Microarchitecture, Dec. 2007.

[95] I. Kim and M. H. Lipasti. Half-price architecture. In Proc. of the 30th Annual Intnl. Symp. on Com-
puter Architecture, pages 28–38, June 2003.

[96] L. Kleinrock. Queueing Systems Volume I: Theory. Wiley Interscience, 1975.

[97] G. Konstadinidis, M. Tremblay, S. Chaudhry, M. Rashid, P. Lai, Y. Otaguro, Y. Orginos,
S. Parampalli, M. Steigerwald, S. Gundala, R. Pyapali, L. Rarick, I. Elkin, Y. Ge, and I. Parulkar.
Architecture and Physical Implementation of a Third Generation 65 nm, 16 Core, 32 Thread Chip-
Multithreading SPARC Processor. IEEE Journal of Solid-State Circuits, 44(1):7–17, 2009.

[98] G. K. Konstadinidis and et al. Implementation of a Third-Generation 1.1-GHz 64-bit Microproces-
sor. IEEE Journal of Solid-State Circuits, 37(11):1461–1469, Nov 2002.

[99] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for heterogeneous chip
multiprocessors. In Proc. of the Intnl. Conf. on Parallel Architectures and Compilation Techniques,
Sept. 2006.

244
[100] L. Lamport. How to Make a Multiprocess Computer that Correctly Executes Multiprocess Pro-

grams. IEEE Transactions on Computers, pages 690–691, 1979.

[101] A. R. Lebeck, T. Li, E. Rotenberg, J. Koppanalil, and J. P. Patwardhan. A Large, Fast Instruction
Window for Tolerating Cache Misses. In Proc. of the 29th Annual Intnl. Symp. on Computer Archi-
tecture, May 2002.

[102] B. Liblit. An Operational Semantics for LogTM. Technical Report 1571, Computer Sciences
Department, University of Wisconsin–Madison, Aug. 2006.

[103] P. S. Magnusson et al. SimICS/sun4m: A Virtual Workstation. In Proceedings of Usenix Annual
Technical Conference, June 1998.

[104] P. S. Magnusson et al. Simics: A Full System Simulation Platform. IEEE Computer, 35(2):50–58,
Feb. 2002.

[105] D. Markovic, B. Nikolic, and R. Brodersen. Analysis and design of low-energy flip-flops. In ISLPED
’01: Proceedings of the 2001 international symposium on Low power electronics and design, 2001.

[106] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, and D. A. Wood. Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. Computer Architecture News, pages 92–99, Sept. 2005.

[107] J. Martinez, J. Renau, M. Huang, M. Prvulovic, and J. Torrellas. Cherry: Checkpointed Early
Resource Recycling in Out-of-order Microprocessors. In Proc. of the 35th Annual IEEE/ACM Inter-
national Symp. on Microarchitecture, Nov. 2002.

[108] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support Server Consolidation. In Proc. of the
34th Annual Intnl. Symp. on Computer Architecture, June 2007.

[109] S. Mathew, M. Anders, B. Bloechel, T. Nguyen, R. Krishnamurthy, and S. Borkar. A 4-GHz 300-
mW 64-bit integer execution ALU with dual supply voltages in 90-nm CMOS. IEEE Journal of
Solid-State Circuits, 40(1):44–51, 2005.

[110] A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi, C. Kozyrakis, and K. Olukotun.
Architectural Semantics for Practical Transactional Memory. In Proc. of the 33nd Annual Intnl.
Symp. on Computer Architecture, June 2006.

[111] R. McDougall and J. Mauro. Solaris internals: Solaris 10 and OpenSolaris kernel architecture. Sun
Microsystems Pressslash Prentice Hall, Upper Saddle River, NJ, USA, second edition, 2007.

[112] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on Shared-Mem-
ory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.

[113] J. F. M. Meyrem Kyrman, Nevin Kyrman. Cherry-MP: Correctly Integrating Checkpointed Early
Resource Recycling in Chip Multiprocessors. In Proc. of the 38th Annual IEEE/ACM International
Symp. on Microarchitecture, Nov. 2005.

245
[114] M. Moir. Practical Implementations of Non-blocking Synchronization Primitives. In Sixteenth

ACM Symposium on Principles of Distributed Computing, Santa Barbara, California, Aug. 1997.

[115] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and Deterministically Replaying
Shared-Memory Multiprocessor Execution Efficiently. In Proc. of the 35th Annual Intnl. Symp. on
Computer Architecture, June 2008.

[116] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics, pages 114–117,
Apr. 1965.

[117] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-Based Transac-
tional Memory. In Proc. of the 12th IEEE Symp. on High-Performance Computer Architecture, pages
258–269, Feb. 2006.

[118] A. Moshovos, S. E. Breach, T. Vijaykumar, and G. S. Sohi. Dynamic Speculation and Synchroniza-
tion of Data Dependences. In Proc. of the 24th Annual Intnl. Symp. on Computer Architecture, pages
181–193, June 1997.

[119] A. Moshovos and G. S. Sohi. Streamlining Inter-Operation Communication via Data Dependence
Prediction. In Proc. of the 30th Annual IEEE/ACM International Symp. on Microarchitecture, pages
235–245, Dec. 1997.

[120] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for Efficient Processing in Runahead Execution
Engines. In Proc. of the 32nd Annual Intnl. Symp. on Computer Architecture, June 2005.

[121] O. Mutlu, H. Kim, and Y. N. Patt. Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance. IEEE Micro, 26(1), Jan/Feb 2006.

[122] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Effective Alternative to
Large Instruction Windows. IEEE Micro, 23(6):20–25, Nov/Dec 2003.

[123] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. A Design Space Evaluation of Grid Pro-
cessor Architectures. In Proc. of the 34th Annual IEEE/ACM International Symp. on Microarchitec-
ture, pages 40–51, Dec. 2001.

[124] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachandran, and D. Greenhill. Implementation of
an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip. IEEE Journal of Solid-State Cir-
cuits, 43(1):6–20, January 2008.

[125] H.-J. Oh, S. Mueller, C. Jacobi, K. Tran, S. Cottier, B. Michael, H. Nishikawa, Y. Totsuka,
T. Namatame, N. Yano, T. Machida, and S. Dhong. A fully pipelined single-precision floating-point
unit in the synergistic processor element of a CELL processor. IEEE Journal of Solid-State Circuits,
41(4):759–771, 2006.

[126] S. Palacharla and J. E. Smith. Complexity-Effective Superscalar Processors. In Proc. of the 24th
Annual Intnl. Symp. on Computer Architecture, pages 206–218, June 1997.

246
[127] I. Park, C. Ooi, and T. Vijaykumar. Reducing Design Complexity of the Load/Store Queue. In Proc.

of the 36th Annual IEEE/ACM International Symp. on Microarchitecture, Dec. 2003.

[128] M. Percias, A. Cristal, R. Gonzalez, D. A. Jimenez, and M. Valero. A Decoupled KILO-Instruction
Processor. In Proc. of the 12th IEEE Symp. on High-Performance Computer Architecture, Feb. 2006.

[129] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power requirements of instruction scheduling
through dynamic allocation of multiple datapath resources. In Proc. of the 34th Annual IEEE/ACM
International Symp. on Microarchitecture, Dec. 2001.

[130] C. V. Praun and X. Zhuang. Bufferless Transactional Memory with Runahead Execution, Jan. 2009.
Pub. No. WO/2009/009583, International Application No. PCT/US2008/069513, on behalf of IBM.

[131] M. Prvulovic. CORD: Cost-effective (and nearly overhead-free) Order Recording and Data race
detection. In Proc. of the 12th IEEE Symp. on High-Performance Computer Architecture, Feb. 2006.

[132] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction queue design using depen-
dence chains. In Proc. of the 29th Annual Intnl. Symp. on Computer Architecture, pages 318–329,
May 2002.

[133] J. M. Rabaey. Digital Integrated Circuits. Prentence Hall, 1996.

[134] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multi-
threaded Execution. In Proc. of the 34th Annual IEEE/ACM International Symp. on Microarchitec-
ture, Dec. 2001.

[135] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based Programs. In
Proc. of the 10th Intnl. Conf. on Architectural Support for Programming Languages and Operating
Systems, Oct. 2002.

[136] M. A. Ramirez, A. Cristal, A. V. Veidenbaum, L. Villa, and M. Valero. Direct Instruction Wakeup
for Out-of-Order Processors. In IWIA ’04: Proceedings of the Innovative Architecture for Future Gen-
eration High-Performance Processors and Systems (IWIA’04), pages 2–9, Washington, DC, USA,
2004. IEEE Computer Society.

[137] T. Ramirez, A. Pajuelo, O. J. Santana, and M. Valero. Runahead Threads to improve SMT perfor-
mance. In Proc. of the 14th IEEE Symp. on High-Performance Computer Architecture, Feb. 2008.

[138] D. Risley. A CPU History. http://www.pcmech.com/article/a-cpu-history/.

[139] A. Roth. Store Vulnerability Window (SVW): Re-Execution Filtering for Enhanced Load Optimi-
zation. In Proc. of the 32nd Annual Intnl. Symp. on Computer Architecture, June 2005.

[140] S. M. Sait and H. Youssef. VLSI Physical Design Automation: Theory and Practice. World Scientific,
1999.

[141] P. Salverda and C. Zilles. A Criticality Analysis of Clustering in Superscalar Processors. In Proc. of
the 38th Annual IEEE/ACM International Symp. on Microarchitecture, pages 228–241, Nov. 2005.

247
[142] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and C. Moore.

Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture. In Proceedings of the
30th Annual International Symposium on Computer Architecture, pages 422–433, June 2003.

[143] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. ReSlice: Selective Re-Execution of Long-Retired
Misspeculated Instructions Using Forward Slicing. In Proc. of the 38th Annual IEEE/ACM Interna-
tional Symp. on Microarchitecture, Nov. 2005.

[144] P. Sassone, J. R. II, E. Brekelbaum, G. Loh, and B. Black. Matrix Scheduler Reloaded. In Proc. of the
34th Annual Intnl. Symp. on Computer Architecture, pages 335–346, June 2007.

[145] A. S. Sedra and K. C. Smith. Microelectronic Circuits, 4th Edition. Oxford University Press, 1998.

[146] T. Sha, M. M. K. Martin, and A. Roth. NoSQ: Store-Load Communication without a Store Queue.
In Proc. of the 39th Annual IEEE/ACM International Symp. on Microarchitecture, pages 285–296,
Dec. 2006.

[147] T. Sherwood and B. Calder. Time Varying Behavior of Programs. Technical report, UC San Diego
Technical Report UCSD-CS99-630, Aug. 1999.

[148] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis to Find Periodic
Behavior and Simulation Points in Applications. In Proc. of the Intnl. Conf. on Parallel Architectures
and Compilation Techniques, pages 3–14, Sept. 2001.

[149] T. Shyamkumar, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1. Technical Report
HPL-2008-20, Hewlett Packard Labs, 2008.

[150] D. Sima. The Design Space of Regsiter Renaming Techniques. IEEE Micro, 20(5), 2000.

[151] M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on multiple instruction issue. In Proc. of the
3rd Intnl. Conf. on Architectural Support for Programming Languages and Operating Systems, Apr.
1989.

[152] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. In Proc. of the 22nd Annual Intnl.
Symp. on Computer Architecture, pages 414–425, June 1995.

[153] G. S. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit,
Pipelined Computers. IEEE Transactions on Computers, pages 349–359, Mar. 1990.

[154] G. S. Sohi and S. Vajapeyam. Instruction Issue Logic for High-Performance Interruptable Pipelined
Processors. In Proc. of the 14th Annual Intnl. Symp. on Computer Architecture, pages 27–34, June
1987.

[155] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast Checkpoint/Recovery to Support
Kilo-Instruction Speculation and Hardware Fault Tolerance. Technical Report 1420, Computer Sci-
ences Department, University of Wisconsin–Madison, Oct. 2000.

248
[156] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual Flow Pipelines. In

Proc. of the 11th Intnl. Conf. on Architectural Support for Programming Languages and Operating
Systems, Oct. 2004.

[157] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. Strenski, and P. Emma. Optimizing
pipelines for power and performance. Nov. 2002.

[158] S. Stone, K. Woley, and M. Frank. Address-Indexed Memory Disambiguation and Store-to-Load
Forwarding. In Proc. of the 38th Annual IEEE/ACM International Symp. on Microarchitecture, Nov.
2005.

[159] S. Subramaniam and G. Loh. Store Vectors for Scalable Memory Dependence Prediction and
Scheduling. In Proc. of the 12th IEEE Symp. on High-Performance Computer Architecture, Feb. 2006.

[160] S. Subramaniam and G. H. Loh. Fire-and-Forget: Load/Store Scheduling with No Store Queue at
All. In Proc. of the 39th Annual IEEE/ACM International Symp. on Microarchitecture, pages 273–
284, Dec. 2006.

[161] I. Sun Microsystems. Solaris 10 Reference Manual Collection: man pages section 2: System Calls.
http://docs.sun.com/app/docs/doc/816-5167.

[162] H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. Dr.
Dobb’s Journal, 30(3), March 2005.

[163] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proc. of the 36th Annual
IEEE/ACM International Symp. on Microarchitecture, pages 228–241, Dec. 2003.

[164] S. Tam, S. Rusu, J. Chang, S. Vora, B. Cherkauer, and D. Ayers. A 65nm 95W Dual-Core Multi-
Threaded Xeon Processor with L3 Cache. In Proc. of the 2006 IEEE Asian Solid-State Circuits Con-
ference, Nov. 2006.

[165] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0. Technical Report HPL-2006-86, Hewlett
Packard Labs, June 2006.

[166] G. S. Tjaden and M. J. Flynn. Detection and Parallel Execution of Independent Instructions. IEEE
Transactions on Computers, (10), 1970.

[167] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-Core 32-Thread Plus 32-Scout-
Thread CMT SPARC Processor. In ISSCC Conference Proceedings, 2008.

[168] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. Exploiting Choice:
Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Processor. In Proc.
of the 23th Annual Intnl. Symp. on Computer Architecture, pages 191–202, May 1996.

[169] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic Prediction of Critical Path Instructions.
In Proc. of the 7th IEEE Symp. on High-Performance Computer Architecture, pages 185–196, Jan.
2001.

249
[170] Intel Turbo Boost Technology in Intel Core Microarchitecture (Nehalem) Based Processors. http://

download.intel.com/design/processor/applnots/320354.pdf, November 2008.

[171] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. In Pro-
ceedings of the London Mathematical Society, Series 2, 42, pages 230–265.

[172] F. Vandeputte, L. Eeckhout, and K. D. Bosschere. Exploiting program phase behavior for energy
reduction on multi-configuration processors. Journal of Systems Architecture:the EUROMICRO
Journal, 53(8):489–500, 2007.

[173] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson, and
M. B. Taylor. Conservation Cores: Reducing the Energy of Mature Computations. In Proc. of the
9th Intnl. Conf. on Architectural Support for Programming Languages and Operating Systems, Nov.
2000.

[174] T. N. Vijaykumar and G. S. Sohi. Task Selection for a Multiscalar Processor. In Proc. of the 31st
Annual IEEE/ACM International Symp. on Microarchitecture, pages 81–92, Nov. 1998.

[175] Virtutech Inc. Simics Full System Simulator. http://www.simics.com/.

[176] R. Vivekanandham, B. Amrutur, and R. Govindarajan. A scalable low power issue queue for large
instruction window processors. In Proc. of the 20th Intnl. Conf. on Supercomputing, pages 167–176,
June 2006.

[177] J. von Neumann. First Draft of a Report on the EDVAC. Technical report, Moore School of Electri-
cal Engineering, Univ. of Pennsylvania, 1945.

[178] D. Wall. Limits of Instruction Level Parallelism. In Proc. of the 4th Intnl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems, Apr. 1991.

[179] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: A Power-Performance Simulator for Intercon-
nection Networks. In Proc. of the 35th Annual IEEE/ACM International Symp. on Microarchitecture,
pages 294–305, Nov. 2002.

[180] Y. Watanabe, J. D. Davis, and D. A. Wood. WiDGET: Wisconsin Decoupled Grid Execution Tiles.
In Proc. of the 37th Annual Intnl. Symp. on Computer Architecture, June 2010.

[181] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual (Version 9). PTR Prentice Hall,
1994.

[182] P. M. Wells, K. Chakraborty, and G. S. Sohi. Hardware Support for Spin Management in Overcom-
mitted Virtual Machines. In Proc. of the Intnl. Conf. on Parallel Architectures and Compilation Tech-
niques, Sept. 2006.

[183] P. M. Wells and G. S. Sohi. Serializing Instructions in System-Intensive Workloads: Amdahl’s Law
Strikes Again. In Proc. of the 14th IEEE Symp. on High-Performance Computer Architecture, Feb.
2008.

250
[184] S. J. Wilton and N. P. Jouppi. An enhanced access and cycle time model for on-chip caches. Tech

report 93/5, DEC Western Research Lab, 1994.

[185] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

[186] Y. Wu and T. fook Ngai. Run-ahead program execution with value prediction, 2007. U.S. Patent
7,188,234.

[187] P. Xekalakis, N. Ioannou, and M. Cintra. Combining thread level speculation helper threads and
runahead execution. In Proc. of the 23rd Intnl. Conf. on Supercomputing, June 2009.

[188] M. Xu, R. Bodik, and M. D. Hill. A “Flight Data Recorder” for Enabling Full-system Multiprocessor
Deterministic Replay. In Proc. of the 30th Annual Intnl. Symp. on Computer Architecture, pages 122–
133, June 2003.

[189] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive Reduction (RTR) for Longer Memory
Race Recording. In Proc. of the 12th Intnl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, pages 49–60, Oct. 2006.

[190] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–40, Apr. 1996.

[191] B. Zhai, D. Blaauw, D. Sylvester, and K. Flaunter. Theoretical and Practical Limits of Dynamic Volt-
age Scaling. In Proc. of the 41st Annual Design Automation Conference, pages 868–873, June 2004.

[192] R. Zlatanovici, S. Kao, and B. Nikolic. Energy‚ÄìDelay Optimization of 64-Bit Carry-Lookahead
Adders With a 240 ps 90 nm CMOS Design Example. IEEE Journal of Solid-State Circuits,
44(2):569–583, February 2009.

251

Appendix A

Supplements for Chapter 3

This appendix contains the supplemental information for Chapter 3: Evaluation Methodology.

A.1 Inlined SPARCv9 Exceptions

Two different areas of the SPARCv9 exception set are modeled with hardware acceleration in

this thesis: fill operations on the data translation lookaside buffer (D-TLB) and register window

spill/fill exceptions. By providing hardware acceleration, the target machines are not strictly com-

pliant to the SPARCv9 architectural specification [181]. However, it is assumed that these mecha-

nisms can be deactivated if strict adherence is required. Moreover, it is not the intention of this

work to strictly adhere to any given instruction set architecture (ISA), but rather to provide insight

into the general behavior of processor cores. To this end, the features specific to SPARCv9 not

present in a more commonplace ISA like x86 have been accelerated with hardware support. This

not only generalizes the results of this thesis, but also provides substantial speedups in some cases.

The details of the implementation of these hardware accelerations are presented below, and a brief

analysis of the performance implications follows.

Overall, results from this work reflect the findings of Wells and Sohi [183].

252

A.2 Hardware-Assisted D-TLB Fill

The SPARCv9 specification requires that loads and stores which do not successfully translate

their logical addresses to physical addresses do not appear to execute. Instead, the program

counter, PC (and the SPARC-specific next program counter register, NPC), is set to execute a soft-

ware D-TLB fill routine, in privileged mode [181]. By requiring a control transfer to privileged

mode only on faulting memory accesses, a core implementing SPARCv9 discovers at execute-time

whether or not implicit control flow predictions are correct (i.e., implicit speculation that memory

operations will not fault). However, for the misprediction recovery approaches used in this work

(fine-grained checkpointing), it is cost-prohibitive to checkpoint processor state on every implicit

control prediction (i.e., any instruction capable of generating an exception—including all loads

and stores). Instead, checkpoints are used for common-case mispredictions (e.g., explicitly pre-

dicted branches) [155, 3, 190], and other techniques (i.e., a complete pipeline flush) are used to

resolve rarer cases, such as exceptions and external interrupts.

253
Unfortunately, a software-filled TLB pushes

the boundaries of the (subjective) term rare.

That is, some workloads exhibit sufficiently

poor TLB locality such that TLB fills are, in

fact, quite frequent. The most dramatic

observed example is the art benchmark

from SPEC OMP [16], which incurs roughly

one TLB miss per 46 user-level instructions,

though the Wisconsin Commercial Workload

Suite [5] also exhibits high TLB miss rates,

plotted in Figure A-1. The target machine uses a 1024-entry two-way set-associative D-TLB, aug-

mented with a 16-entry fully-associative victim TLB. The cost of squashing a large pipeline to ser-

vice these TLB fills can be noticeable, as not only must a processor enter and leave privileged mode

(at least as expensive as a branch misprediction), but there is substantial opportunity cost in the

form of independent instructions that may have been eligible for execution, had a full squash not

been necessary.

In the Solaris operating system, the TLB fill routine attempts to service the miss by consulting

a larger, software-managed translation table, the Translation Storage Buffer, or TSB [111, 161]. The

common case of D-TLB fill is a fill that is entirely serviced via a lookup in the TSB.

Hardware-assisted D-TLB fill is modeled as a hardware D-TLB fill from the TSB. Because the

TSB contains bits to identify the (rare) cases of unmapped or invalid accesses, accessing the TSB in

hardware is sufficient to identify TLB fills that cannot be properly services by the TSB alone. It is

0

50000

100000

150000

In
lin

ed
 T

L
B

 F
ill

s

O
oO

ap
ac

he
-1

O
oO

jbb
-1

O
oO

olt
p-

1

O
oO

ze
us

-1

O
oO

AM
ea

n

FIGURE A- 1 TLB misses in Commercial
Workloads.

254
assumed that system software provides the TSB’s location in physical memory to the acceleration

hardware, and furthermore that this hardware can be disabled if a different TSB format is in use

(or if a different translation structure is used). In other words, the hardware-assisted TLB fill eval-

uated in this design is specific to SPARCv9 running Solaris 9 and 10. Misses that cannot be ser-

viced by the TSB trap to software as normal D-TLB misses.

The D-TLB fill hardware is located in the commit sequencing pipeline, which enables all

microarchitectural models to leverage the same logic. Memory operations that fail translation (at

execute-time) are artificially delayed as though simply incurring long delays in the memory hier-

archy (e.g., with an MSHR). However, because these operations have already executed, they are not

scheduler-resident. These operations wait until dedicated fill hardware detects that a stalled mem-

ory operation has reached the commit point (in a canonical out-of-order design, the head of the

re-order buffer). At that time, the TSB is consulted to determine the correct translation, and the

load (or store) is replayed via the commit-time replay circuitry, already in-place to facilitate specu-

lative memory bypassing [146]. In the case of loads, the destination register is written, and the

scheduler is notified that the load has completed execution. In the error-free case, the processor

pipeline need not be squashed to service a D-TLB fill, allowing independent operations to execute

opportunistically and out of order. Memory ordering is guaranteed through load and translation

replay for vulnerable accesses [146].

A.3 Hardware-Assisted Inlined Register Spill, Fill, and Clean

SPARCv9 specifies 34 exceptions designed to deliver the appearance of an unbounded number

of register windows to a user-space application, as well as to some portions of privileged code

[181]. Of these exceptions, one exception type (Flush) is used to synchronize hardware register

255

state with reserved memory, and is relatively rare. A second exception type is used to guarantee

isolation between threads (Clean), and is commonly coupled with other exceptions as an optimi-

zation (notably with spills). The remaining 32 exceptions are used by software to spill and fill reg-

isters. The exact exception type used depends on the contents of the SPARCv9 registers WSTATE

and OTHERWIN, and is partially under software control (several different implementations of

spill and fill traps are necessary, for instance, to support legacy SPARCv8 code, to support privi-

leged windows spilled and filled by user processes, vice versa, to support mixed-mode (e.g., 32-bit

and 64-bit) operation, and to enable certain optimizations, such as the combination of a clean win-

dow operation with a spill). Because software is free to implement these exception handlers in a

flexible way, the generality of a single spill/fill acceleration mechanism is limited. Figure A-2 plots

FIGURE A- 2 Register window exceptions by type, over all simulations.

256

the count of each spill and fill type encountered across the simulations leading to this thesis

(counting individual benchmarks only once). As with TLB traps, the frequency of windowing

traps varies by workload, with relatively few traps for most of the SPEC suites (e.g., Figure A-3

plots the combined number of spills and fills in 100-million instruction runs of SPEC INT 2006),

and relatively frequent traps for commercial workloads (Figure A-4).

It is possible to detect likely spill/fill traps at decode-time, by recording the (speculative) state

of windowing registers. Register spills and fills are the explicit result of some save and restore

instructions, respectively, and the implicit result of some other opcodes that are similarly easy to

detect at decode-time. To prevent these spills and fills, the acceleration hardware speculatively

inserts operations fulfilling the requirements of a spill or fill handler into the predicted instruction

stream at the appropriate position. It is assumed that the OS provides microcode implementing

these operations at boot-time. The microcode for each trap type then resides in buffers dedicated

0

5000

10000

R
eg

is
te

r
W

in
do

w
 S

pi
lls

/F
ill

s

O
oO

as
tar

O
oO

bz
ip2

O
oO

gc
c

O
oO

go
bm

k

O
oO

h2
64

ref

O
oO

hm
mer

O
oO

lib
qu

an
tum

O
oO

mcf

O
oO

om
ne

tpp

O
oO

pe
rlb

en
ch

O
oO

sje
ng

O
oO

xa
lan

cb
mk

O
oO

AM
ea

n

FIGURE A- 3 Spills and Fills in SPEC INT 2006.

257
to that purpose. Collectively, these speculatively-inserted exception handlers are referred to as

inlined spills and fills. Because these exceptions occur on predicted execution paths, inlined excep-

tions of this type are verified at commit-time. Inlined spills and fills are “best-effort”—they revert

to explicit software control of exception handling when unhandled conditions arise (e.g., an unan-

ticipated exception or external interrupt).

Because this work does not explicitly simulate

the boot process, nor model the necessary addi-

tions to the target’s operating system to fill

microcode tables with inlined exceptions, the

first fill and spill exception of each type

encountered during warmup phases of simula-

tion is used as a template for all future invoca-

tions of the handler. In this manner, the

hardware to inline exceptions dynamically

bootstraps from observed execution stream.

Subsequent executions of exceptions that

diverge from this observed execution trigger software intervention. The bootstrapping process is

repeated if several exceptions of the same type require software intervention with no intervening

successful inlined exceptions (i.e., if the initial bootstrapping records a corner case of the excep-

tion handling code).

0

10000

20000

30000

R
eg

is
te

r
W

in
do

w
 S

pi
lls

/F
ill

s

O
oO

ap
ac

he
-1

O
oO

jbb
-1

O
oO

olt
p-

1

O
oO

ze
us

-1

O
oO

AM
ea

n

FIGURE A- 4 Spills and Fills in 100M
instruction runs of the Wisconsin
Commercial Workload suite.

258

A.4 Results

Figure A-5 plots the success rate of the TLB fill

inlining hardware for the commercial workload

suite (the other suites are not as sensitive to TLB

fill), as a percentage of all TLB exceptions. A suc-

cess is considered an inlined exception that does

not require a trap to software control. The most

common condition under which TLB-fill inlining

fails (e.g., for jbb-1), is a TSB miss. Failed

exceptions trap to a software handler, as though

no acceleration had been attempted. The inlining

0

20

40

60

80

In
lin

ed
 T

L
B

 F
ill

 S
uc

ce
ss

 R
at

e

O
oO

ap
ac

he
-1

O
oO

jbb
-1

O
oO

olt
p-

1

O
oO

ze
us

-1

FIGURE A- 5 Success rate of TLB-fill
inlining mechanism, commercial
workloads.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 I
PC

O
oO

N
o

H
W

A

F-
12

8

N
o

H
W

A

F-
25

6

N
o

H
W

A

F-
51

2

N
o

W
H

A

IN
T

O
oO

N
o

H
W

A

F-
12

8

N
o

H
W

A

F-
25

6

N
o

H
W

A

F-
51

2

N
o

W
H

A

FP

O
oO

N
o

H
W

A

F-
12

8

N
o

H
W

A

F-
25

6

N
o

H
W

A

F-
51

2

N
o

W
H

A

COM
-1

O
oO

N
o

H
W

A

F-
12

8

N
o

H
W

A

F-
25

6

N
o

H
W

A

F-
51

2

N
o

W
H

A

Agg
reg

ate

FIGURE A- 6 Normalized IPC across machine configurations, SPEC INT 2006 (INT),
SPEC FP 2006 (FP), and Wisconsin Commercial Workloads (COM-1).

259
success rate of register window exceptions selected for acceleration is nearly 100%. Occasionally,

software is invoked for exceptional cases, e.g., rare spill/fill types and nested exceptions.

Figure A-6 plots the resulting performance difference for a variety of machine configurations

(refer to Chapter 3 for descriptions of these configurations—briefly, they include an out-of-order

machine and Forwardflow configurations with varied instruction window sizes, each with and

without hardware trap acceleration). I report IPC instead of runtime in the figure, due to a limita-

tion of the methodology: The simulation infrastructure runs for a fixed number of committed

instructions (or transactions, in some cases). However, speculatively inlined instructions do not

count toward this execution goal. Therefore, hardware-accelerated configurations perform more

total work than non-accelerated counterparts (using instruction commits as a measure of “work”),

and take different execution paths. As such, runtimes are not directly comparable.

260

Appendix B

Supplements for Chapter 6

This appendix contains the supplemental information for Chapter 6: Scalable Cores in CMPs.

B.1 Power-Aware Microarchitecture

Section 6.3 discusses a procedure to discover energy consumption over a fixed interval using

hardware event counters. Briefly, the linear sum of weighted event counts can be used to approxi-

mate. These weights are coefficients in a linear equation. In other words:

 (B.1)

where is the coefficient for counter , and is the event count.

I now present the method by which a hardware-based dynamic scaling policy, other hardware

entity, or software via a procedure call, can leverage this mechanism to estimate energy consump-

tion over an interval.

B.1.2 Platform Assumptions and Requirements

The method I suggest uses the underlying core’s functional pathways and decode logic to

directly compute the linear sum, above (Eqn. B.1). To do so in hardware, an instruction sequence

is pre-loaded by the operating system, specialized for this purpose. I assume additional hardware

Eexecution E≈
est

N j E j
est⋅

j C∈
∑=

E j
est

j N j

261
in the frontend logic, designed to insert these instructions into the instruction stream when sig-

nalled to do so by the hardware scaling policy (or other interested entity). Similar hardware

already exists in the baselines used in this thesis, in the form of inlined exception handlers, and

instruction decomposition logic for CISC operations. In particular, instructions are inserted pre-

decode, as though they had been fetched, in program order, from the instruction cache. Alterna-

tively, one could use a privileged software subroutine. In either case, instruction sequences inter-

posed in the midst of an execution should be carefully designed to be completely transparent to a

running program.

The inputs to this process are event counts, stored in special-purpose registers (i.e., perfor-

mance counters), and coefficients, which I assume are stored in memory, but could also reside in

special-purpose registers. I further assume these special-purpose registers are implemented by the

decode logic, and are not precise with respect to the current commit point of the processor. How-

ever, I expect that they can be read without serializing the pipeline (in other words, software

accounts for any inaccuracies in these counts due to reading them in a non-serialized fashion).

B.1.3 Power-Aware Architecture and Instruction Sequence

Before the energy measurement algorithm below can run successfully, system software must

first make known the location of a per-configuration Configuration Power Estimate Block (CPEB),

which records for the currently-selected configuration. Each CPEB is 128 bytes in size (two

cache lines), and consists of eight double-precision coefficients, as well as space to temporarily

buffer the values of floating point registers (used for context save and restore, to ensure invisibility

to software). The coefficients have been predetermined, at chip-design time, by the chip manufac-

turer.

E j
est

262
Each processing core using this algorithm further requires an 8-byte memory area for storing

the last observed timestamp (LST, i.e., a previous value of the %tick register). This area is not

virtualized, but it must remain core-private for the duration of any measured execution. It, too,

could be implemented as a special purpose register, though write precision is required. The

addresses of the LST and CPEB must be physical: the algorithm below cannot tolerate a D-TLB

miss on these accesses.

I assume the firmware has access to microarchitecture-specific hardware resources, such as

processor-model-specific event counters, and microarchitecture specific addressing modes. In

particular, the instruction sequence listed below may baffle a reader accustomed to SPARCv9-

compliant assembly operations, e.g., by specifying local (integer) registers as source operands of

floating-point conversion operations. However, these addressing modes are in line with the imple-

mentation of the microarchitectures used in this study, and are suitable for direct insertion into the

second stage of the decode pipeline in all processor models used in this thesis.

Lastly, this implementation assumes a stack has been established, as is the common practice in

SPARCv9, using the stack pointer register (%sp), and that this stack may be utilized by the power

estimation microcode. This assumption is necessary because the inserted microcode uses register

windows (save and restore opcodes) to preserve program state. The stack requirement can be

relaxed, at the cost of expanding the CPEF by an additional 40 bytes, in order to explicitly save and

restore local integer registers used by this computation. Power estimation is cancelled if the access

to the stack pointer misses in the D-TLB.

Algorithm Description. The operation begins (line 03) by saving integer state, so as not to

corrupt the measured execution. Lines 06 through 12 compute addresses of the CPEB and LST,

263
and issue prefetches to each cache block, in case these lines are not cached. Lines 13 through 15

perform a context save operation on floating-point state used by the algorithm. Context-restore

occurs in lines 76-81.

In general, the computation performs three steps. First, coefficients are read from the CPEB,

using an ldqf instruction to read two coefficients in parallel (e.g., Line 25 reads coefficients for

the store_instrs and fetch_puts events). Second, event counts themselves are read from

special-purpose registers (e.g., Line 27). Third event counts and coefficients are multiplied, and

accumulated (in register %F4). To minimize the number of architectural registers saved and

restored, these three steps are performed four times, in sequence (first in Lines 25-33, second in

35-44, etc.). This effectively decomposes the operation, based on coefficient position in the CPEB.

Technically, the internal organization of the CPEB is implementation-dependent.

Static power consumption is addressed slightly differently. Line 60 reads the current time, and

Lines 61 through 63 compute the cycles elapsed since the last measurement, and record the cur-

rent time to the memory assigned to the LST. Thereafter, the number of elapsed cycles is used in a

manner similar to that of the event counts themselves (i.e., cycle_count has a corresponding

coefficient in the CPEB).

Once all contributions have been accumulated (in the sequence below, in %F4), a special-pur-

pose instruction is used to communicate the consumed energy to the scaling policy (Line 72, a

write to register %energy_consumed). I assume scaling policies will monitor this register for

update. Other means for communicating the result are possible.

Instruction Sequence. Hereafter follows the actual instruction sequence used to measure

energy for power-aware dynamic scaling policies. This constitutes the conclusion of this appendix.

264

01 # Context save:
02 # Need fresh locals and use of FP regs F0-F6 (double size)
03 save %sp, -208, %sp
04
05 # Form address of constants
06 sethi %hi(&CPEB) %l7
07 addx %l7, %lo(&CPEB) %l7 # l7 is address of CPEB
08 prefetch [%l7 + 0] # Arrange to have next needed
09 prefetch [%l7 +64] # lines available
10 sethi %hi(<S) %l6
11 addx %l6, %lo(<S) %l6 # l6 is address of LTS
12 prefetch [%l6 + 0] !Exclusive
13 stx %fsr, [%l7 +88] # FSR saved
14 stqf %F0, [%l7 +96] # F0(Temp), F2(Temp) saved
15 stqf %F4, [%l7 +112] # F4(Sum), F6(Temp) saved
16
17 # Implementing the linear sum
18 # General process:
19 # 1. Read coefficients (ldqf)
20 # 2. Read event counts (rd, partially covers ldqf latency)
21 # 3. Multiply and accumulate
22
23 # Process decomposed over pairs of coefficients,
24 # to optimize ldqfs
25 ldqf [%l7 + 0], %F0 # F0 = store_instrs_coeff
26 # F2 = fetch_puts_coeff
27 rd %store_instrs, %l0 # store_instrs
28 rd %fetch_puts, %l1 # fetch_puts
29 fitod %l0, %F6 # double(store_instrs)
30 fmuld %F0, %F6, %F4 # F4 = ’Accumulated Energy’
31 fitod %l0, %F6 # double(fetch_puts)
32 fmuld %F2, %F6, %F6 # double(correlated_energy)
33 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
34
35 ldqf [%l7 + 16], %F0 # F0 = mshr_recycle_coeff
36 # F2 = l1i_access_coeff
37 rd %mshr_recycles, %l0 # mshr_recycles
38 rd %l1i_access, %l1 # l1i_access
39 fitod %l0, %F6 # double(mshr_recycles)
40 fmuld %F0, %F6, %F6 # double(correlated_energy)

265
41 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
42 fitod %l2, %F6 # double(l1i_access)
43 fmuld %F2, %F6, %F6 # double(correlated_energy)
44 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
45
46 ldqf [%l7 + 32], %F0 # F0 = l1d_access_coeff
47 # F2 = ialu_ops_coeff
48 rd %l1d_accesss, %l0 # l1d_accesss
49 rd %ialu_ops, %l1 # ialu_ops
50 fitod %l0, %F6 # double(l1d_accesss)
51 fmuld %F0, %F6, %F6 # double(correlated_energy)
52 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
53 fitod %l2, %F6 # double(ialu_ops)
54 fmuld %F2, %F6, %F6 # double(correlated_energy)
55 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
56
57 ldqf [%l7 + 48], %F0 # F0 = falu_ops_coeff
58 # F2 = cycle_count_coeff
59 rd %falu_opss, %l0 # falu_opss
60 rd %tick, %l1 # current time
61 ldx [%l6 + 0], %l2 # LST
62 stx [%l6 + 0], %l1 # Write current time to LST
63 subx %l1, %l2, %l1 # cycle_count
64 fitod %l0, %F6 # double(falu_opss)
65 fmuld %F0, %F6, %F6 # double(correlated_energy)
66 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
67 fitod %l2, %F6 # double(cycle_count)
68 fmuld %F2, %F6, %F6 # double(correlated_energy)
69 faddd %F4, %F6, %F4 # F4 = ’Accumulated Energy’
70
71 # Pass result to power-aware compontents
72 wr %F4, %energy_consumed
73
74 # Context restore
75 # Restore FP regs F0-F6 (double size)
76 ldqf [%l7 +96], %F0 # F0, F2 restored
77 ldqf [%l7 +112], %F4 # F4, F6 restored
78 ldx [%l7 +88], %fsr # FSR restored
79
80 # Restore previous window
81 restore %sp, -208, %sp

266

Appendix C

Supplements for Chapter 5

This appendix presents the complete data from Chapter 5. Runtimes are listed in cycles. Cate-

gorized power consumption is normalized to that of F-128, as the absolute values produced by the

WATTCH power models are nonsensical—only relative comparisons are valid between them.

TABLE B-1. Data tables.

FORWARDFLOW RUNTIMES

 F-32 F-64 F-128 F-256 F-512 F-1024

astar 159372601 120204074 98392526 92503185 90326357 89546028

bzip2 142935622 98906135 80937353 79041677 77167533 75869266

gcc 146277165 122338908 107009282 1028278 100838618 99427040

gobmk 126847363 10422075 88066570 84776863 83741764 83523828

h264ref 156305883 124224206 98027570 95763256 95221982 95091000

hmmer 93119436 71887576 56807506 51827561 49609554 46676647

libquantum 1232369835 651727125 384324608 199526264 110515309 68431995

mcf 92544223 662500779 539916301 484119275 454999941 444083808

omnetpp 130384069 104799448 84635178 82039774 80999432 80457401

perlbench 231558413 186175145 160399673 152922628 148524786 144319586

sjeng 121910265 99767606 81396736 78470738 78270511 78107556

xalancbmk 206279286 179237515 155573719 114548724 97188234 84558570

bwaves 625698987 400670272 236203198 174940001 122052831 69785262

cactus 139177765 112197116 70560713 64478432 56228308 50614168

calculix 90312168 82168391 49599602 43981071 42777893 42159466

dealII 117426205 98908267 80367800 74314517 71906502 67097030

gamess 86005720 68822675 48170099 45242258 44860773 44496037

gems 302434704 250094782 18786579 132390964 86089967 57928109

gromacs 138157229 130863068 110298092 99262502 94952759 91714606

lbm 659344757 460155376 322292704 225430666 157185303 117425804

leslie3d 157907765 134888297 119947356 116846157 115608184 115005882

267
milc 850611193 598360911 426173077 250753152 156970913 110555794

namd 111032308 80361087 60352116 56166260 56209143 55853530

povray 117225887 99037842 77496782 76052253 75985355 76050323

soplex 145558673 121066338 104211959 99886482 98969794 98448218

sphinx3 31864245 298987022 263611973 234716176 202723625 186841835

tonto 110495496 89621899 71278406 69136490 68625087 68824644

wrf 103606897 83244870 66918638 64672884 62028369 60911526

zeusmp 221031128 164936748 102293201 81874646 68488142 43808410

apache-1 362420242 305182476 267737916 253243985 244935985 243144788

jbb-1 163064813 137395919 119695034 11022192 105735781 10455294

oltp-1 185285988 161252686 142753177 137961538 135334892 134174349

zeus-1 36328931 308847456 27369436 255886483 245735143 242949041

BASELINE RUNTIMES

 OoO CFP Runahead

astar 108381104 103686496 10880601

bzip2 60309232 58827250 60706924

gcc 103529691 100804382 104823389

gobmk 89938113 87580945 91304136

h264ref 122608498 121435667 12303746

hmmer 47017620 41864209 47125729

libquantum 527382494 352733709 493723219

mcf 57006375 614510274 46781566

omnetpp 92934331 90016065 93143578

perlbench 165710376 154114025 167232988

sjeng 86053386 84874785 85649622

xalancbmk 157783493 128478845 127193514

bwaves 237979262 122006269 249311824

cactus 74774475 53855113 81181912

calculix 56461579 54831389 58326971

dealII 87835135 79762412 89185288

gamess 51866215 51054731 54796941

gems 19250011 10537161 21217322

gromacs 96610537 91313722 95930938

lbm 31359105 191502076 317022326

leslie3d 11917818 117339702 119582443

milc 450775123 287028237 477575518

namd 57276247 56770290 57348359

268
povray 70554865 72047663 71491300

soplex 105959499 10698802 10682845

sphinx3 277860842 242975507 256156718

tonto 73769757 74113551 76354584

wrf 67715834 64888739 67880278

zeusmp 109134815 60351753 113540517

apache-1 268842316 250167 160408691

jbb-1 118334495 108388549 123699305

oltp-1 144436017 138823309 146296835

zeus-1 275098282 25056042 197337592

NORMALIZED POWER BREAKDOWN FOR F-32

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 0.33 0.25 0.56 0.53 0.6 0.37

bzip2 0.44 0.51 0.56 0.69 0.77 0.52

gcc 0.5 0.6 0.74 0.66 0.75 0.53

gobmk 0.46 0.52 0.68 0.61 0.71 0.5

h264ref 0.62 1.33 0.61 0.55 0.72 0.49

hmmer 0.41 0.45 0.64 0.66 0.83 0.5

libquantum 0.3 0.4 0.31 0.34 0.33 0.25

mcf 0.39 0.44 0.57 0.53 0.59 0.42

omnetpp 0.48 0.58 0.65 0.6 0.67 0.47

perlbench 0.48 0.52 0.71 0.64 0.73 0.52

sjeng 0.42 0.42 0.65 0.6 0.69 0.46

xalancbmk 0.52 0.55 0.79 0.7 0.83 0.58

apache-1 0.46 0.57 0.69 0.54 0.68 0.49

jbb-1 0.47 0.48 0.75 0.66 0.77 0.55

oltp-1 0.53 0.61 0.78 0.65 0.77 0.55

zeus-1 0.46 0.59 0.7 0.54 0.68 0.5

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 0.38 0.37 0.37 0.8 0.49 0.98

bzip2 0.48 0.46 0.49 0.96 0.6 0.98

gcc 0.58 0.52 0.59 0.93 0.69 0.98

gobmk 0.51 0.48 0.51 0.97 0.66 0.98

h264ref 0.58 0.57 0.57 0.94 0.63 0.98

hmmer 0.57 0.53 0.58 0.83 0.64 0.98

269
libquantum 0.3 0.27 0.31 0.49 0.33 0.98

mcf 0.46 0.41 0.45 0.7 0.51 0.98

omnetpp 0.54 0.47 0.54 0.91 0.63 0.98

perlbench 0.56 0.5 0.57 0.82 0.68 0.98

sjeng 0.45 0.43 0.45 0.97 0.59 0.98

xalancbmk 0.64 0.54 0.63 0.82 0.73 0.98

apache-1 0.55 0.47 0.55 0.83 0.67 0.98

jbb-1 0.57 0.51 0.58 0.89 0.7 0.98

oltp-1 0.63 0.56 0.63 0.88 0.73 0.98

zeus-1 0.58 0.49 0.58 0.85 0.67 0.98

NORMALIZED POWER BREAKDOWN FOR F-64

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 0.64 0.63 0.77 0.62 0.79 0.53

bzip2 0.74 0.79 0.82 0.85 0.85 0.69

gcc 0.78 0.86 0.87 0.71 0.89 0.65

gobmk 0.77 0.88 0.84 0.68 0.88 0.63

h264ref 1.02 2.29 0.75 0.6 0.88 0.52

hmmer 0.72 0.78 0.81 0.73 0.91 0.62

libquantum 0.69 0.85 0.59 0.51 0.57 0.44

mcf 0.69 0.74 0.8 0.68 0.82 0.59

omnetpp 0.83 0.99 0.81 0.66 0.83 0.6

perlbench 0.8 0.89 0.87 0.71 0.89 0.65

sjeng 0.71 0.75 0.8 0.65 0.84 0.59

xalancbmk 0.79 0.9 0.88 0.71 0.92 0.66

apache-1 0.76 0.9 0.85 0.67 0.84 0.62

jbb-1 0.77 0.82 0.87 0.72 0.9 0.65

oltp-1 0.81 0.9 0.89 0.7 0.89 0.65

zeus-1 0.76 0.92 0.86 0.67 0.84 0.62

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 0.63 0.62 0.62 0.91 0.73 0.98

bzip2 0.74 0.71 0.74 0.98 0.79 0.98

gcc 0.8 0.74 0.8 0.97 0.87 0.98

gobmk 0.77 0.72 0.76 0.98 0.86 0.98

h264ref 0.98 0.83 0.97 0.95 0.88 0.98

hmmer 0.76 0.75 0.76 0.91 0.8 0.98

libquantum 0.58 0.55 0.58 0.69 0.6 0.98

mcf 0.72 0.67 0.7 0.87 0.76 0.98

270
omnetpp 0.78 0.72 0.78 0.95 0.82 0.98

perlbench 0.78 0.74 0.78 0.92 0.87 0.98

sjeng 0.69 0.67 0.69 0.98 0.8 0.98

xalancbmk 0.81 0.73 0.79 0.91 0.88 0.98

apache-1 0.78 0.71 0.78 0.92 0.85 0.98

jbb-1 0.77 0.73 0.77 0.94 0.86 0.98

oltp-1 0.83 0.76 0.82 0.94 0.88 0.98

zeus-1 0.8 0.71 0.79 0.93 0.85 0.98

NORMALIZED POWER BREAKDOWN FOR F-128

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 1 1 1 1 1 1

bzip2 1 1 1 1 1 1

gcc 1 1 1 1 1 1

gobmk 1 1 1 1 1 1

h264ref 1 1 1 1 1 1

hmmer 1 1 1 1 1 1

libquantum 1 1 1 1 1 1

mcf 1 1 1 1 1 1

omnetpp 1 1 1 1 1 1

perlbench 1 1 1 1 1 1

sjeng 1 1 1 1 1 1

xalancbmk 1 1 1 1 1 1

apache-1 1 1 1 1 1 1

jbb-1 1 1 1 1 1 1

oltp-1 1 1 1 1 1 1

zeus-1 1 1 1 1 1 1

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 1 1 1 1 1 1

bzip2 1 1 1 1 1 1

gcc 1 1 1 1 1 1

gobmk 1 1 1 1 1 1

h264ref 1 1 1 1 1 1

hmmer 1 1 1 1 1 1

libquantum 1 1 1 1 1 1

mcf 1 1 1 1 1 1

omnetpp 1 1 1 1 1 1

perlbench 1 1 1 1 1 1

271
sjeng 1 1 1 1 1 1

xalancbmk 1 1 1 1 1 1

apache-1 1 1 1 1 1 1

jbb-1 1 1 1 1 1 1

oltp-1 1 1 1 1 1 1

zeus-1 1 1 1 1 1 1

NORMALIZED POWER BREAKDOWN FOR F-256

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 1.22 1.13 1.09 1.17 1.09 1.12

bzip2 1.13 1.05 1.04 1.05 1.02 1.02

gcc 1.18 1.1 1.05 1.11 1.06 1.06

gobmk 1.15 1.06 1.04 1.12 1.04 1.05

h264ref 1.13 1.04 1.02 1.04 1.03 1.03

hmmer 1.23 1.07 1.05 1.19 1.06 1.09

libquantum 2.24 2.24 1.92 2.01 1.89 1.9

mcf 1.31 1.25 1.13 1.2 1.15 1.18

omnetpp 1.18 1.14 1.03 1.12 1.05 1.05

perlbench 1.23 1.17 1.05 1.18 1.1 1.1

sjeng 1.15 1.06 1.04 1.13 1.05 1.05

xalancbmk 1.64 1.56 1.36 1.49 1.39 1.43

apache-1 1.29 1.2 1.08 1.17 1.13 1.13

jbb-1 1.24 1.18 1.1 1.17 1.11 1.11

oltp-1 1.18 1.11 1.04 1.12 1.06 1.06

zeus-1 1.29 1.2 1.1 1.18 1.14 1.14

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 2.15 1.28 1.16 1.03 1.09 1.02

bzip2 2.13 1.23 1.14 1 1.09 1.02

gcc 2.06 1.29 1.1 1.01 1.07 1.02

gobmk 1.99 1.23 1.07 1.01 1.05 1.02

h264ref 1.91 1.1 1.03 1.01 1.03 1.02

hmmer 2.02 1.13 1.1 1.04 1.1 1.02

libquantum 3.59 2.35 1.92 1.69 1.94 1.02

mcf 2.3 1.42 1.23 1.08 1.2 1.02

omnetpp 2 1.29 1.07 1.01 1.05 1.02

perlbench 2.1 1.32 1.12 1.03 1.12 1.02

sjeng 2 1.23 1.07 1.01 1.05 1.02

xalancbmk 2.8 1.75 1.5 1.27 1.44 1.02

272
apache-1 2.17 1.38 1.17 1.04 1.13 1.02

jbb-1 2.24 1.37 1.2 1.04 1.14 1.02

oltp-1 2.04 1.28 1.09 1.03 1.06 1.02

zeus-1 2.17 1.38 1.17 1.05 1.14 1.02

NORMALIZED POWER BREAKDOWN FOR F-512

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 1.39 1.21 1.13 1.23 1.14 1.18

bzip2 1.27 1.11 1.1 1.09 1.06 1.06

gcc 1.37 1.21 1.08 1.17 1.11 1.12

gobmk 1.3 1.11 1.06 1.17 1.07 1.08

h264ref 1.25 1.07 1.03 1.05 1.04 1.04

hmmer 1.42 1.23 1.03 1.26 1.09 1.14

libquantum 4.8 4.87 3.47 3.67 3.35 3.38

mcf 1.66 1.51 1.22 1.38 1.25 1.34

omnetpp 1.32 1.19 1.05 1.15 1.08 1.08

perlbench 1.51 1.34 1.09 1.32 1.22 1.22

sjeng 1.3 1.12 1.05 1.17 1.1 1.1

xalancbmk 2.32 2.1 1.61 1.91 1.72 1.84

apache-1 1.61 1.42 1.15 1.34 1.25 1.24

jbb-1 1.46 1.3 1.16 1.26 1.2 1.2

oltp-1 1.36 1.19 1.07 1.18 1.1 1.11

zeus-1 1.63 1.43 1.17 1.35 1.27 1.26

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 2.01 1.63 1.22 1.05 1.14 1.06

bzip2 2.31 1.72 1.38 1.01 1.23 1.06

gcc 2.02 1.79 1.19 1.02 1.14 1.06

gobmk 1.87 1.6 1.12 1.01 1.08 1.06

h264ref 1.67 1.22 1.04 1.01 1.04 1.06

hmmer 1.8 1.2 1.15 1.06 1.15 1.06

libquantum 5.88 5.66 3.47 2.85 3.49 1.06

mcf 2.52 2.15 1.49 1.13 1.42 1.06

omnetpp 1.9 1.76 1.11 1.02 1.08 1.06

perlbench 2.19 1.92 1.28 1.05 1.26 1.06

sjeng 1.87 1.6 1.11 1.01 1.09 1.06

xalancbmk 3.55 3.01 2.06 1.45 1.85 1.06

apache-1 2.27 2.09 1.35 1.08 1.24 1.06

jbb-1 2.26 1.96 1.33 1.06 1.24 1.06

273
oltp-1 1.95 1.73 1.16 1.04 1.11 1.06

zeus-1 2.25 2.06 1.34 1.08 1.26 1.06

NORMALIZED POWER BREAKDOWN FOR F-1024

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 1.54 1.27 1.14 1.27 1.18 1.21

bzip2 1.44 1.2 1.17 1.13 1.1 1.1

gcc 1.56 1.29 1.11 1.22 1.16 1.17

gobmk 1.45 1.17 1.06 1.2 1.1 1.1

h264ref 1.36 1.1 1.03 1.05 1.05 1.04

hmmer 1.62 1.3 1.01 1.34 1.15 1.21

libquantum 8.58 8.2 5.59 6.05 4.8 5.08

mcf 1.92 1.65 1.27 1.48 1.29 1.42

omnetpp 1.44 1.22 1.06 1.17 1.09 1.09

perlbench 1.85 1.55 1.13 1.48 1.35 1.36

sjeng 1.48 1.2 1.05 1.24 1.16 1.16

xalancbmk 3.12 2.56 1.86 2.34 2.09 2.33

apache-1 1.86 1.54 1.17 1.45 1.31 1.29

jbb-1 1.62 1.36 1.18 1.3 1.25 1.23

oltp-1 1.54 1.26 1.08 1.23 1.13 1.14

zeus-1 1.89 1.58 1.19 1.48 1.35 1.33

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 2.15 2.3 1.27 1.05 1.19 1.14

bzip2 3.02 2.94 1.74 1.01 1.45 1.14

gcc 2.24 2.83 1.28 1.02 1.2 1.14

gobmk 1.98 2.35 1.16 1.01 1.11 1.14

h264ref 1.75 1.47 1.05 1.01 1.05 1.14

hmmer 1.99 1.32 1.22 1.1 1.22 1.14

libquantum 9.7 13.64 5.59 4.44 5.39 1.14

mcf 2.95 3.43 1.7 1.15 1.57 1.14

omnetpp 1.98 2.71 1.13 1.02 1.09 1.14

perlbench 2.6 3.26 1.48 1.07 1.4 1.14

sjeng 2.02 2.39 1.18 1.02 1.16 1.14

xalancbmk 5.02 5.82 2.83 1.63 2.37 1.14

apache-1 2.63 3.51 1.5 1.09 1.32 1.14

jbb-1 2.54 3.14 1.46 1.06 1.32 1.14

oltp-1 2.09 2.63 1.21 1.05 1.14 1.14

zeus-1 2.65 3.51 1.52 1.09 1.35 1.14

274
NORMALIZED POWER BREAKDOWN FOR CFP

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 2.11 144.45 7.66 1.28 1.1 1.04

bzip2 3.73 77.66 11.17 1.91 0.99 1.4

gcc 3.31 120.3 7.89 1.33 1.1 1.11

gobmk 2.19 174.33 8.14 1.38 1.05 1.05

h264ref 4.55 225.66 3.85 0.75 0.92 0.92

hmmer 3.38 178.85 8.89 1.76 1.32 1.35

libquantum 11.46 190.96 18.91 1.52 1.31 1.22

mcf 19.33 102.77 43.3 1.07 0.94 0.92

omnetpp 3.09 129.58 7.17 1.37 0.99 0.99

perlbench 6.36 142.88 12.7 1.58 1.27 1.27

sjeng 1.94 154.22 8.23 1.35 1.06 1.02

xalancbmk 5.02 177.1 13.83 1.55 1.3 1.29

apache-1 4.78 191.79 8.99 1.63 1.2 1.23

jbb-1 3.2 113.72 8.8 1.41 1.15 1.18

oltp-1 3.02 167.83 7.48 1.42 1.09 1.11

zeus-1 5.02 206.41 8.79 1.66 1.22 1.26

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 3.88 4.83 1.06 0.98 1.08 1.14

bzip2 5.35 5.52 1.38 1.04 1.26 1.14

gcc 4.74 5.37 1.1 1.02 1.13 1.14

gobmk 4.15 5.48 1.04 1 1.04 1.14

h264ref 2.66 4.53 1.09 0.96 0.94 1.14

hmmer 2.64 5.53 1.37 1.16 1.34 1.14

libquantum 6.25 16.34 1.1 1.07 1.49 1.14

mcf 8.15 24.74 0.9 0.91 0.93 1.14

omnetpp 4.97 4.59 1.01 0.99 0.97 1.14

perlbench 5.89 9.91 1.22 1.02 1.24 1.14

sjeng 3.87 4.92 0.98 1 1.02 1.14

xalancbmk 6.34 7.96 1.27 1.15 1.27 1.14

apache-1 5.72 7.65 1.28 1.06 1.2 1.14

jbb-1 4.78 5.58 1.12 1.04 1.13 1.14

oltp-1 4.61 5.8 1.1 1.02 1.08 1.14

zeus-1 5.86 7.47 1.31 1.06 1.22 1.14

NORMALIZED POWER BREAKDOWN FOR Runahead

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

275
astar 1.7 110.21 3.7 1.16 1 0.96

bzip2 3 60.09 5.41 1.79 0.94 1.32

gcc 2.55 94.49 3.75 1.26 1.04 1.05

gobmk 1.84 135.89 3.99 1.28 0.99 0.99

h264ref 4 185.66 2.01 0.74 0.9 0.91

hmmer 2.64 133.87 4.22 1.57 1.21 1.21

libquantum 4.59 151.72 4.14 2 1.18 1.63

mcf 2.77 138.75 6.04 1.88 1.71 1.89

omnetpp 2.57 103.99 3.57 1.31 0.95 0.95

perlbench 2.35 105.69 3.96 1.44 1.15 1.16

sjeng 1.68 120.97 4.1 1.27 0.98 0.95

xalancbmk 3.15 179.85 6.16 2.01 1.65 1.82

apache-1 3.74 161.94 4.6 1.62 1.14 1.4

jbb-1 2.22 83.88 3.79 1.25 1 1.03

oltp-1 2.37 129.32 3.53 1.32 1.01 1.04

zeus-1 2.92 149.51 3.16 1.47 1.03 1.07

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 2.85 2.31 0.96 0.95 0.98 1.14

bzip2 4.01 2.77 1.28 1.03 1.2 1.14

gcc 3.52 2.54 1.03 1 1.08 1.14

gobmk 3.12 2.56 0.96 0.99 0.98 1.14

h264ref 2.35 2.5 1.07 0.96 0.93 1.14

hmmer 2.31 2.8 1.21 1.09 1.21 1.14

libquantum 7.04 3.22 2.08 0.78 3.39 1.14

mcf 7.8 3.55 2.08 0.96 2.6 1.14

omnetpp 3.67 2.38 0.96 0.98 0.94 1.14

perlbench 3.89 2.8 1.11 0.97 1.18 1.14

sjeng 2.92 2.36 0.91 1 0.96 1.14

xalancbmk 6.82 3.53 1.81 1.05 2.03 1.14

apache-1 4.21 3.36 1.26 0.91 1.11 1.14

jbb-1 3.38 2.44 1 0.99 1.03 1.14

oltp-1 3.37 2.67 1.01 0.99 1.01 1.14

zeus-1 4.15 2.87 1.14 0.97 1.08 1.14

NORMALIZED POWER BREAKDOWN FOR OoO

 Sched/UH Bypass/ON PRF/ARF ALUs L2/L3 DMEM

astar 1.69 109.86 3.64 1.16 0.99 0.95

bzip2 2.97 59.39 5.28 1.77 0.93 1.31

276
gcc 2.53 93.57 3.67 1.25 1.03 1.04

gobmk 1.83 135.87 3.94 1.28 0.99 0.99

h264ref 4 185.26 1.97 0.74 0.9 0.9

hmmer 2.64 133.68 4.14 1.57 1.2 1.2

libquantum 2.52 82 2.33 1.02 0.76 0.76

mcf 1.57 82.91 3.83 1.11 1 0.97

omnetpp 2.55 103.2 3.49 1.3 0.95 0.94

perlbench 2.12 94.84 3.6 1.29 1.03 1.03

sjeng 1.65 119.05 3.99 1.25 0.96 0.94

xalancbmk 1.76 110.96 3.89 1.22 1.03 1.01

apache-1 2.55 124.98 3.3 1.28 1 1.04

jbb-1 2.24 83.76 3.77 1.26 1.01 1.04

oltp-1 2.31 126.97 3.42 1.29 1 1.02

zeus-1 2.55 130.38 3.08 1.27 0.99 1.03

 Rename/RCT ROB/DQ Other Network Fetch Static/Clk

astar 1.99 2.31 0.95 0.95 0.98 1.14

bzip2 2.67 2.76 1.27 1.03 1.18 1.14

gcc 2.21 2.53 1.01 1.01 1.05 1.14

gobmk 2.06 2.57 0.96 1 0.98 1.14

h264ref 2.01 2.5 1.07 0.96 0.92 1.14

hmmer 2.22 2.79 1.21 1.09 1.2 1.14

libquantum 1.6 1.69 0.73 0.8 0.77 1.14

mcf 2 2.12 0.91 0.96 0.96 1.14

omnetpp 2.16 2.37 0.95 0.98 0.93 1.14

perlbench 2.11 2.62 0.97 0.98 1 1.14

sjeng 1.9 2.33 0.9 0.99 0.94 1.14

xalancbmk 2.15 2.24 0.97 0.99 0.99 1.14

apache-1 2.11 2.61 0.99 1 1 1.14

jbb-1 2.11 2.48 0.98 1 1 1.14

oltp-1 2.13 2.66 0.99 0.99 1 1.14

zeus-1 2.09 2.5 0.98 0.99 0.99 1.14

