Improving Diversity in Ranking using Absorbing Random Walks GRASSHOPPER

Andrew B. Goldberg

with Xiaojin Zhu, Jurgen Van Gael*, and David Andrzejewski

Department of Computer Sciences, University of Wisconsin, Madison * Department of Engineering, University of Cambridge

SIGIR IDR Workshop, July 23, 2009 Originally appeared at NAACL-HLT 2007

< □ > < □ > < □ > < □ > < □ > <

Ξ.

✓)Q(¾

Problem Description

- Given set of items (e.g., sentences, news articles, people)
- Rank items such that highly ranked items are important but not too similar to each other

Goldberg et al, UW-Madison GRASSHOPPER

Previous work [MMR (Carbonell and Goldstein, 1998) & CSIS (Radev, 2000)]

- Treat centrality and diversity separately using heuristics
- Post-processing step to eliminate redundancy
- Our approach (GRASSHOPPER)
 - Use absorbing Markov chain random walks to simultaneously rank based on centrality and diversity

E

 $\checkmark Q (\land$

▲ 🗗 🕨 ∢ 🖻 🕨

Diversity in Ranking can be Important

Examples

- Information retrieval
 - Do not want near identical articles
- Extractive text summarization
 - Do not want near identical sentences
- Social network analysis
 - Do not want people all from the same group

E

 $\checkmark Q (\land$

< ∃ >

▲ 「□ ▶

GRASSHOPPER = Graph Random-walk with Absorbing StateS that HOPs among PEaks for Ranking

- Centrality
- Diversity
- Prior ranking

<□▶ <⊡▶ <≧▶

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∢ ≣ ▶

Three inputs

- Graph W
 - Relationships between the items to rank
- Prior ranking r (as a probability vector)
 - Prior knowledge of item importance
 - Uniform if no information is available
- Weight $\lambda \in [0, 1]$ to balance the two

<ロ> <同> <同> < 回> < 回> < □> < □> <

E

 $\checkmark Q ($

To rank *n* items, we use an $n \times n$ weight matrix *W*

- w_{ij} the weight on edge from item *i* to item *j*
- Directed or undirected
- Non-negative weights ($w_{ij} = 0$ if i, j not connected)
- Self edges are ok
- Examples: cosine similarity between documents i, j; number of phone calls i made to j, etc.

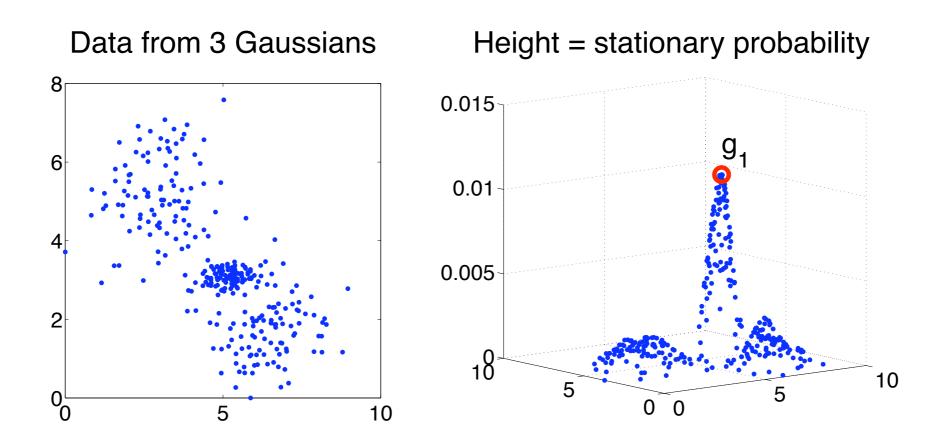
▲□▶▲□▶▲□▶▲□▶ = のへで

Optional. Used for re-ranking.

- Probability vector $r = (r_1, \ldots, r_n)^{\top}$, $r_i \ge 0$, $\sum_i r_i = 1$
- $r_i = P(\text{ picking item } i \text{ as the most important item })$
- More control than ranking: $(0.1, 0.7, 0.2)^{\top}$ vs. $(0.3, 0.37, 0.33)^{\top}$
- Uniform if no prior ranking
- Examples: (IR) document relevance scores to query; (summarization) position of sentence, etc.

▲□▶▲□▶▲≡▶▲≡▶ = 少�?

Same as PageRank (Page et al., 1998)


- Teleporting random walk
- Raw transition matrix \tilde{P} : $\tilde{P}_{ij} = w_{ij} / \sum_k w_{ik}$
- Teleporting transition matrix $P = \lambda \tilde{P} + (1 \lambda) 1 r^{\top}$
- Stationary distribution $\pi = P^{\top}\pi$
- $g_1 = \arg \max_i \pi_i$

But, PageRank does not address diversity at all

(Note: First item can instead be specified by user.)

▲□▶▲□▶▲≡▶▲≡▶ = 少�?

Toy example

Problem: Stationary distribution lacks diversity

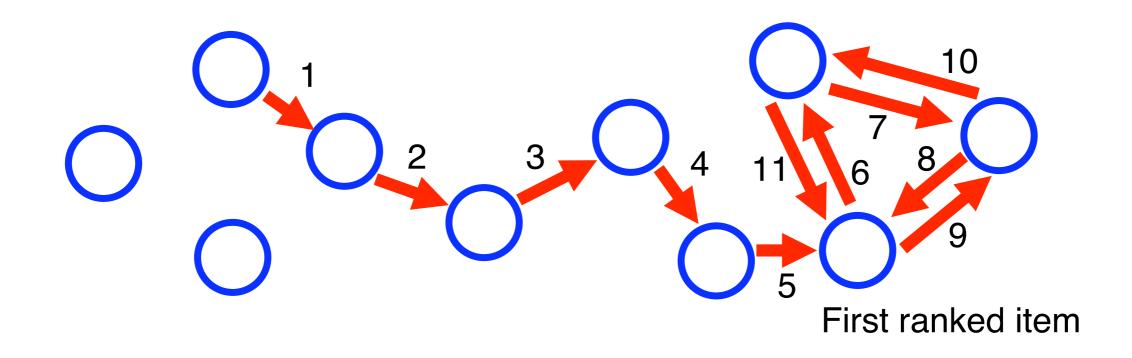
< □ ▶ < □ ▶ <

臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$

∃►

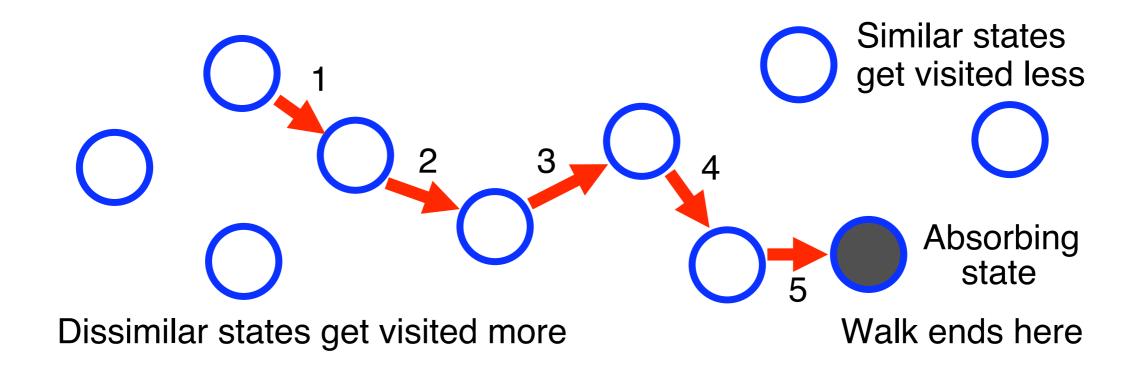
_


Idea: Turn ranked items into absorbing states

- Random walk ends when reaches absorbing state
- No more stationary distribution
- Rank by expected number of visits per walk

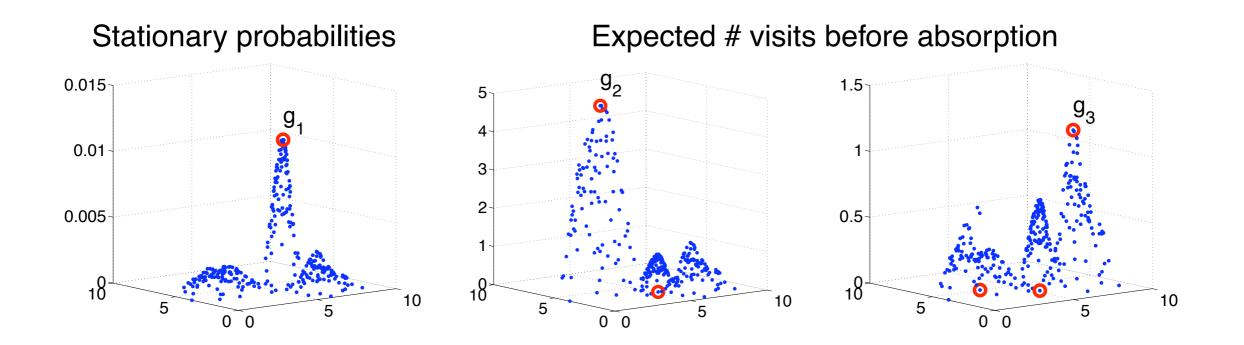
E.

 $\checkmark Q ($


Initial random walk with no absorbing states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥ < □ ≥

 \mathcal{A}


Absorbing random walk after ranking first item

◆□▶ ◆□▶ ◆ 国▶ ◆ 国▶ -

Ξ

GRASSHOPPER hops!

- States similar to absorbing states get fewer visits
- Next item ranked is diverse w.r.t. already ranked items

臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$

=

◀ □ ▶ ◀ व ▶

Expected Number of Visits

- For $g \in G$ (set of absorbing states), $P_{gg} = 1$, other entries 0
- Rearrange $P = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix}$ absorbing non-absorbing
- Fundamental matrix $N = (I Q)^{-1}$
 - N_{ij}: if random walk starts from *i*, the expected number of visits to *j*, before absorption

▲□▶▲□▶▲ = ▲ = ● の < @

- Average over starting states: $v = N^{\top} 1/(n |G|)$
 - v_j : expected number of visits to *j* regardless of start
- Next ranked item: $g_{|G|+1} = \arg \max_i v_i$

Similar to the heuristic "cluster, take center in turn"

- But no actual clustering is performed
- No need to know *a priori* how many clusters exist
- Fast computation: Matrix inversion lemma
 - Initial fundamental matrix computed with real inverse
 - Follow-up inverses derived using simple updates

1

 $\checkmark Q (\land$

▲□▶ ▲ 三▶

Multi-document extractive text summarization

- 2004 Document Understanding Conference data sets
- Items: all sentences in all documents on a topic
- Graph *W* with sparse (thresholded) cosine edges
- Prior ranking based on sentence position: $r_i \propto p_i^{-\alpha}$
- $\lambda = 0.5, \alpha = 0.25$ tuned on DUC 2003 data

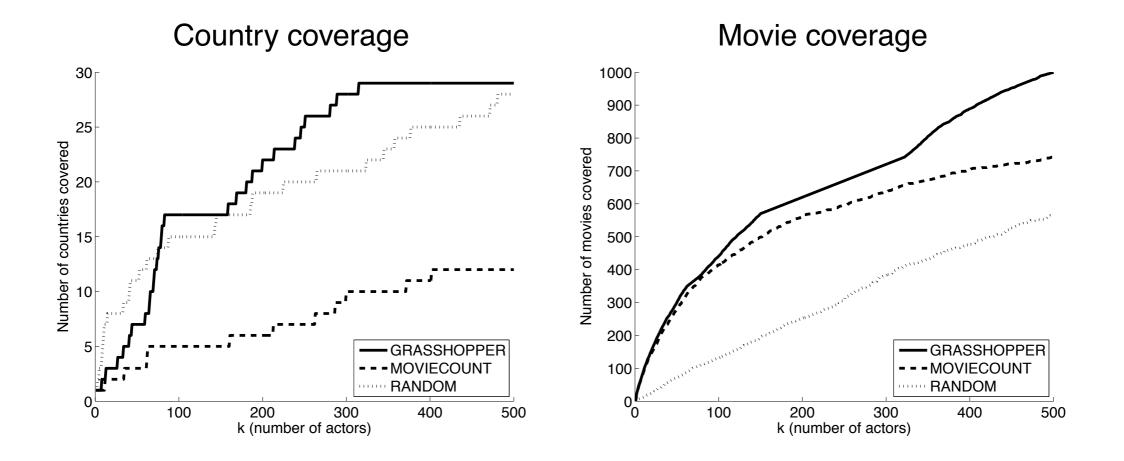
▲□▶▲□▶▲□▶▲□▶ = のへで

Evaluation based on ROUGE-1 metric (Lin and Hovy, 2003)

- Task 2: Between 1st & 2nd of 34 DUC competitors
- Task 4a: Between 5th & 6th of 11
- Task 4b: Between 2nd & 3rd of 11

<日 → 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 日 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → < 1 → </td>

- Goal: Rank prominent comedy stars from diverse countries
- Used 3000+ actors from films in 2000–2006


Movie Count Ranking			GRASSHOPPER Ranking		
1.	Ben Stiller	USA	1.	Ben Stiller	USA
2.	Anthony Anderson	USA	2.	Anthony Anderson	USA
3.	Eddie Murphy	USA	3.	Johnny Knoxville	USA
12.	Gerard Depardieu	France	8.	Gerard Depardieu	France
35.	Mads Mikkelsen	Denmark	13.	Mads Mikkelsen	Denmark
62.	Til Schweiger	Germany	27.	Til Schweiger	Germany
161.	Tadanobu Asano	Japan	34.	Tadanobu Asano	Japan
287.	Kjell Bergqvist	Sweden	44.	Kjell Bergqvist	Sweden

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Ξ

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Social Network Analysis Results

 GRASSHOPPER highly ranks actors representing many diverse countries and who starred in many different movies

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$

GRASSHOPPER ranking

 Centrality + diversity + prior in a unified framework of absorbing random walks

Download code: http://www.cs.wisc.edu/~jerryzhu/pub/grasshopper.m

- ▲ 급 ▶ ▲ 글 ▶ ... 글

 $\checkmark Q (~$