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Privacy attack through index file

your file

NLP software
=⇒

bag-of-word
index

access
⇐=

hacker

What can the hacker do?

Learn a bigram language model

Reconstruct your original ordered documents
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Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W ) = (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language?

I No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn?
I Traditional wisdom: all it can learn is a unigram LM (word frequencies)

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.
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Mission: possible
An example of exact bigram LM recovery:

Generative model:

1 z ∼ θ = {p, q, r}
2 z → x by removing word order

Probability of a BOW vector:

P (x|θ) =
∑

z∈σ(x)

P (z|θ) =
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)

σ(x) is all unique orderings of x
σ(〈d〉:1, A:2, B:1)={“〈d〉 A A B”, “〈d〉 A B A”, “〈d〉 B A A”}
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Mission: possible

An example of exact bigram LM recovery:

Assuming all docs have length |x| = 4, then only 4 kinds of BOWs:

x P (x|θ) =
∑

z∈σ(x)

∏|x|
j=2 P (zj |zj−1)

(〈d〉:1, A:3, B:0) rp2

(〈d〉:1, A:2, B:1) rp(1− p) + r(1− p)(1− q) + (1− r)(1− q)p
(〈d〉:1, A:0, B:3) (1− r)q2

(〈d〉:1, A:1, B:2) 1-above
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Mission: possible

Let true θ = {r = 0.25, p = 0.9, q = 0.5}
Given x1 . . .xn, n →∞, the observed frequency of BOWs will be:

(〈d〉:1, A:3, B:0) 20.25%
(〈d〉:1, A:2, B:1) 37.25%
(〈d〉:1, A:0, B:3) 18.75%
(〈d〉:1, A:1, B:2) 100%-above

Matching probability with observed frequency
rp2 = 0.2025
rp(1− p) + r(1− p)(1− q)

+(1− r)(1− q)p = 0.3725
(1− r)q2 = 0.1875

exactly recovers θ.
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Let’s get real

Real documents are not generated from a bigram LM

Maximize log likelihood instead

Parameter θ = [θuv = P (v|u)]W×W (bigram LM matrix)

Normalized log likelihood under θ:

`(θ) ≡ 1
C

n∑
i=1

log P (xi|θ) =
1
C

n∑
i=1

log
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)

C =
n∑

i=1

(|xi| − 1)

But there are multiple local optima
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Regularization

Normalized log likelihood under θ:

`(θ) ≡ 1
C

n∑
i=1

log P (xi|θ)

Regularize with prior bigram LM φ (estimated from BOWs too)

Average KL-divergence over all histories

D(φ,θ) ≡ 1
W

W∑
u=1

KL(φu·‖θu·).

i.e., rows in θ should be similar to rows in prior φ

D(φ,θ) is convex (Cover and Thomas, 1991).
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Regularized Optimization Problem

Our optimization problem:

max
θ

`(θ)− λD(φ,θ)

subject to θ1 = 1, θ ≥ 0

Weight λ controls strength of prior
Constraints ensure valid bigram matrix
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Regularized Optimization Problem

Our optimization problem is non-concave:

max
θ

1
C

n∑
i=1

log
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)− λD(φ,θ)

subject to θ1 = 1, θ ≥ 0

Summation over hidden ordered documents couples the variables.
It’s non-concave, so we use an EM algorithm.
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Derivation of EM algorithm

Let O(θ) ≡ `(θ)− λD(φ,θ)

By Jensen’s inequality, lower-bound O:

O(θ) =
1
C

n∑
i=1

log
∑

z∈σ(xi)

P (z|θ(t−1),x)
P (z|θ)

P (z|θ(t−1),x)
− λD(φ,θ)

≥ 1
C

n∑
i=1

∑
z∈σ(xi)

P (z|θ(t−1),x) log
P (z|θ)

P (z|θ(t−1),x)
− λD(φ,θ)

≡ L(θ,θ(t−1))

Lower bound L involves P (z|θ(t−1),x)
Probability of hidden ordering under previous iteration’s model

Computed in the E-step
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Derivation of EM algorithm

EM iteratively maximizes lower bound

max
θ

L(θ,θ(t−1))

subject to θ1 = 1

Setting the partial derivatives of the Lagrangian to zero leads to the
following update:

θ(t)
uv ≡ P (v|u;θ(t)) ∝

n∑
i=1

∑
z∈σ(xi)

P (z|xi,θ
(t−1))cuv(z) + λ

C

W
φuv

This is the M-step.

First term: expected count of “uv”; Second term: pulls toward prior

cuv(z) is count of “uv” in z

Normalize over v = 1 . . .W
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Approximate E-step

Update equation has a computational problem:

θ(t)
uv ∝

n∑
i=1

∑
z∈σ(xi)

P (z|xi,θ
(t−1))cuv(z) +

C

W
φuv

σ(x) can be huge

Estimate
∑

z∈σ(xi)
P (z|xi,θ

(t−1))cuv(z) with importance sampling

Monte Carlo approximation using re-weighted samples from an
easy-to-sample distribution

Based on sampling/weighting scheme in [Rabbat et al. NIPS 2007]
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EM algorithm recap

Input:

BOW documents {x1, . . . ,xn}
a prior bigram LM φ

weight λ

1 t = 1. Initialize θ(0) = φ.
2 Repeat until the objective O(θ) converges:

1 (E-step) Approximate
∑

z∈σ(xi)
P (z|xi,θ

(t−1))cuv(z), i = 1, . . . , n

2 (M-step) Compute θ(t) using update equation. Let t = t + 1.

Output: The recovered bigram LM θ
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A prior bigram LM φ

Prior LM used to avoid local optima

Our prior uses no extra language knowledge
I (can and should be included for specific domains)

Frequency of document co-occurrence

φuv ≡ P (v|u;φ) ∝
n∑

i=1

δ(u, v|x)

δ(u, v|x) =
I 1, if words u and v both occur in BOW x
I 0, otherwise

Asymmetric because of normalization
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Recovering documents using θ

Formulate document recovery as:

z∗ = argmaxz∈σ(x)P (z|θ)

Use memory-bounded A∗ search with an admissible heuristic

Search space

State = ordered, partial document

Successor state = append one more unused word in x

Goal = any complete document using all the words in x

In our case, A∗ chooses the successor with the highest f = g + h

g = log probability of the successor state

h = heuristic value estimating probability from successor state to goal

Andrew B. Goldberg (UW-Madison) Learning Bigrams from Unigrams 17 / 27



A∗ heuristic

Requirement: upper bound the remaining log probability

Main idea: choose the “best history” for each word

Let (c1, . . . , cW ) = count vector for the remaining BOW

One admissible heuristic is

h = log
W∏

u=1

(max
v

θvu)cu

“Best history” v chosen from unused words or last word in partial doc

Upper bound because, in reality, u usually contributes less than θvu
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Any questions so far?

So far

Problem formulation

EM algorithm for bigram LM recovery

Prior bigram LM based on document co-occurrence

A∗ search for document recovery

Next: experimental results

Andrew B. Goldberg (UW-Madison) Learning Bigrams from Unigrams 19 / 27



Corpora

SVitchboard 1 [King et al. 2005]

Small vocabulary Switchboard, phone conversation transcripts, 6 versions

“okay i enjoyed talking to you”

“take a twenty two and go out”

“you know you can’t you can’t make it”

SumTime-Meteo [Sripada et al. 2003]

Weather forecasts for offshore oil rigs in the North Sea

“Low over the Norwegian Coast will move slowly NNW”

“A weak ridge will move East across the North Sea during Friday”
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Data sets

Smallish, due to efficiency issues

Corpus W − 1 # Docs # Tokens |x| − 1
SV10 10 6775 7792 1.2
SV25 25 9778 13324 1.4
SV50 50 12442 20914 1.7
SV100 100 14602 28611 2.0
SV250 250 18933 51950 2.7
SV500 500 23669 89413 3.8
SumTime 882 3341 68815 20.6

SV10–SV500: SVitchboard using different vocabulary sizes
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We recover sensible bigrams in θ

Most demoted and promoted bigrams in θ compared to prior φ
(sorted by the ratio θhw/φhw on SV500)

h w ↓ w ↑
i yep, bye-bye, ah, goodness,

ahead
mean, guess, think, bet, agree

you let’s, us, fact, such, deal thank, bet, know, can, do

right as, lot, going, years, were that’s, all, right, now, you’re

oh thing, here, could, were, doing boy, really, absolutely, gosh,
great

that’s talking, home, haven’t, than,
care

funny, wonderful, true, inter-
esting, amazing

really now, more, yep, work, you’re sad, neat, not, good, it’s
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Our θ has good test set perplexity

Train on x1 . . .xn, test on ordered documents zn+1 . . . zm

(5-fold cross validation, all differences statistically significant)

“Oracle” bigram trained on z1 . . . zn to provide lower bound
(Good-Turing)

Corpus unigram prior φ θ oracle 1 EM iter

SV10 7.48 6.52 6.47 6.28 <1s

SV25 16.4 12.3 11.8 10.6 0.1s

SV50 29.1 19.6 17.8 14.9 4s

SV100 45.4 29.5 25.3 20.1 11s

SV250 91.8 60.0 47.3 33.7 8m

SV500 149.1 104.8 80.1 50.9 3h

SumTime 129.7 103.2 77.7 10.5 4h
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Our θ reconstructs z from x better

Recall z∗ = argmaxz∈σ(x)P (z|θ or φ)
Document recovery results using memory-bounded A∗ search

Accuracy % whole doc word pair word triple

φ 30.2 33.0 11.4
θ 31.0 35.1 13.3

(SV500, 5-fold CV, all differences statistically significant)

z by φ z by θ

just it’s it’s it’s just going it’s just it’s just it’s going
it’s probably out there else something it’s probably something else out there

the the have but it doesn’t but it doesn’t have the the
you to talking nice was it yes yes it was nice talking to you

that’s well that’s what i’m saying well that’s that’s what i’m saying
a little more here home take a little more take home here
and they can very be nice too and they can be very nice too
i think well that’s great i’m well i think that’s great i’m

but was he because only always but only because he was always
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Discussion

Also experimented with two other priors

Unigram prior, ignores word history φunigram
uv ∝

∑n
i=1 xiv

Permutation-based prior
I Based on expected bigram count in all unique orderings of BOWs

φperm
uv ≡ P (v|u;φperm) ∝

n∑
i=1

Ez∈σ(xi)[cuv(z)]

I Assumes uniform probability over permutations z; Closed form solution

Detailed experimental comparisons in

Jerry Zhu, Andrew B. Goldberg, Michael Rabbat, and Robert Nowak.
Learning bigrams from unigrams. (ACL 2008).

Andrew B. Goldberg (UW-Madison) Learning Bigrams from Unigrams 25 / 27



Conclusions

Summary

Bigram language model recovery from BOWs

EM algorithm

Prior bigram models

A∗ search for document recovery

Recovered bigram LMs outperform other näıve models

Future work

Improve efficiency

Extend to trigram and higher-order models

Include some ordered documents / phrases if available

Adapt a general English LM using only BOWs from a special domain
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