Learning Bigrams from Unigrams

Andrew B. Goldberg goldberg@cs.wisc.edu

University of Wisconsin-Madison

Joint work with Xiaojin Zhu, Michael Rabbat (McGill University), and Robert Nowak Originally appeared at ACL 2008

くほと くほと くほと

your file

- 4 週 ト - 4 三 ト - 4 三 ト

NLP software

your file

くほと くほと くほと

くほと くほと くほと

What can the hacker do?

< 回 ト < 三 ト < 三 ト

What can the hacker do?

- Learn a bigram language model
- Reconstruct your original ordered documents

A B F A B F

- \bullet A document in its original order $\mathbf{z}_1 = `` \langle d \rangle$ really really neat"
- Its BOW: unigram count vector

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1W}) = (1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots)$$

• Can the hacker recover word order from x₁, without extra knowledge of the language?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- \bullet A document in its original order $\mathbf{z}_1 = ``\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1W}) = (1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots)$$

- Can the hacker recover word order from x₁, without extra knowledge of the language?
 - \blacktriangleright No: \mathbf{x}_1 could be from " $\langle d \rangle$ really neat really" too

- A document in its original order $\mathbf{z}_1 = ``\langle d \rangle$ really really neat"
- Its BOW: unigram count vector

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1W}) = (1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots)$$

- Can the hacker recover word order from x₁, without extra knowledge of the language?
 - \blacktriangleright No: \mathbf{x}_1 could be from " $\langle d \rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_1, \ldots, \mathbf{x}_n$?

- A document in its original order $\mathbf{z}_1 = ``\langle d \rangle$ really really neat"
- Its BOW: unigram count vector

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1W}) = (1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots)$$

- Can the hacker recover word order from x₁, without extra knowledge of the language?
 - \blacktriangleright No: \mathbf{x}_1 could be from " $\langle d \rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_1, \ldots, \mathbf{x}_n$?
 - Traditional wisdom: all it can learn is a unigram LM (word frequencies)

- A document in its original order $\mathbf{z}_1 = ``\langle d
 angle$ really really neat"
- Its BOW: unigram count vector

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1W}) = (1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots)$$

- Can the hacker recover word order from x₁, without extra knowledge of the language?
 - \blacktriangleright No: \mathbf{x}_1 could be from " $\langle d \rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_1, \ldots, \mathbf{x}_n$?
 - Traditional wisdom: all it can learn is a unigram LM (word frequencies)

Perhaps surprisingly . . .

We will learn a bigram LM from x_1, \ldots, x_n , as if we have the ordered documents z_1, \ldots, z_n .

An example of exact bigram LM recovery:

3

- 4 目 ト - 4 日 ト - 4 日 ト

An example of exact bigram LM recovery:

Generative model:

э

くほと くほと くほと

An example of exact bigram LM recovery:

Generative model:

$$\mathbf{0} \ \mathbf{z} \sim \boldsymbol{\theta} = \{p, q, r\}$$

э

くほと くほと くほと

An example of exact bigram LM recovery:

Generative model:

- 2 $\mathbf{z} \to \mathbf{x}$ by removing word order

通 ト イヨ ト イヨト

An example of exact bigram LM recovery:

Generative model:

2 $\mathbf{z} \to \mathbf{x}$ by removing word order

Probability of a BOW vector:

$$P(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{z}\in\sigma(\mathbf{x})} P(\mathbf{z}|\boldsymbol{\theta}) = \sum_{\mathbf{z}\in\sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P(z_j|z_{j-1})$$

 $\sigma(\mathbf{x}) \text{ is all unique orderings of } \mathbf{x}$ • $\sigma(\langle d \rangle:1, A:2, B:1) = \{ (\langle d \rangle A A B'', (\langle d \rangle A B A'', (\langle d \rangle B A A A'')) \}$

An example of exact bigram LM recovery:

Assuming all docs have length $|\mathbf{x}| = 4$, then only 4 kinds of BOWs:

$$\begin{array}{lll} \mathbf{x} & P(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P(z_j|z_{j-1}) \\ \hline (\langle \mathbf{d} \rangle :1, \ \mathbf{A} :3, \ \mathbf{B} :0) & rp^2 \\ (\langle \mathbf{d} \rangle :1, \ \mathbf{A} :2, \ \mathbf{B} :1) & rp(1-p) + r(1-p)(1-q) + (1-r)(1-q)p \\ (\langle \mathbf{d} \rangle :1, \ \mathbf{A} :0, \ \mathbf{B} :3) & (1-r)q^2 \\ (\langle \mathbf{d} \rangle :1, \ \mathbf{A} :1, \ \mathbf{B} :2) & 1\text{-above} \end{array}$$

くほと くほと くほと

Let true $\theta = \{r = 0.25, p = 0.9, q = 0.5\}$

Given $\mathbf{x}_1 \dots \mathbf{x}_n, n o \infty$, the observed frequency of BOWs will be:

イロト 不得下 イヨト イヨト 二日

Let true $\theta = \{r = 0.25, p = 0.9, q = 0.5\}$

Given $\mathbf{x}_1 \dots \mathbf{x}_n, n o \infty$, the observed frequency of BOWs will be:

Matching probability with observed frequency

$$\begin{cases} rp^2 = 0.2025\\ rp(1-p) + r(1-p)(1-q)\\ +(1-r)(1-q)p = 0.3725\\ (1-r)q^2 = 0.1875 \end{cases}$$

exactly recovers θ .

イロト 不得下 イヨト イヨト 二日

Let's get real

Real documents are not generated from a bigram LM Maximize log likelihood instead

Parameter $\boldsymbol{\theta} = [\theta_{uv} = P(v|u)]_{W \times W}$ (bigram LM matrix) Normalized log likelihood under $\boldsymbol{\theta}$:

$$\ell(\boldsymbol{\theta}) \equiv \frac{1}{C} \sum_{i=1}^{n} \log P(\mathbf{x}_i | \boldsymbol{\theta}) = \frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P(z_j | z_{j-1})$$
$$C = \sum_{i=1}^{n} (|\mathbf{x}_i| - 1)$$

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Let's get real

Real documents are not generated from a bigram LM Maximize log likelihood instead

Parameter $\boldsymbol{\theta} = [\theta_{uv} = P(v|u)]_{W \times W}$ (bigram LM matrix) Normalized log likelihood under $\boldsymbol{\theta}$:

$$\ell(\boldsymbol{\theta}) \equiv \frac{1}{C} \sum_{i=1}^{n} \log P(\mathbf{x}_i | \boldsymbol{\theta}) = \frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P(z_j | z_{j-1})$$
$$C = \sum_{i=1}^{n} (|\mathbf{x}_i| - 1)$$

But there are multiple local optima

イロト 不得下 イヨト イヨト 二日

Regularization

Normalized log likelihood under θ :

$$\ell(\boldsymbol{\theta}) \equiv \frac{1}{C} \sum_{i=1}^{n} \log P(\mathbf{x}_i | \boldsymbol{\theta})$$

Regularize with prior bigram LM ϕ (estimated from BOWs too)

• Average KL-divergence over all histories

$$\mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \equiv \frac{1}{W} \sum_{u=1}^{W} KL(\boldsymbol{\phi}_{u \cdot} \| \boldsymbol{\theta}_{u \cdot}).$$

• i.e., rows in heta should be similar to rows in prior ϕ

 $\mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$ is convex (Cover and Thomas, 1991).

Regularized Optimization Problem

Our optimization problem:

$$\begin{array}{ll} \max & \quad \ell(\boldsymbol{\theta}) - \lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \\ \boldsymbol{\theta} & \quad \text{subject to} & \quad \boldsymbol{\theta} \mathbf{1} = \mathbf{1}, \quad \boldsymbol{\theta} \geq 0 \end{array}$$

Weight λ controls strength of prior Constraints ensure valid bigram matrix

• • = • • = •

Regularized Optimization Problem

Our optimization problem is non-concave:

$$\begin{array}{ll} \max & \quad \frac{1}{C}\sum_{i=1}^{n}\log\sum_{\mathbf{z}\in\sigma(\mathbf{x})}\prod_{j=2}^{|\mathbf{x}|}P(z_{j}|z_{j-1})-\lambda\mathcal{D}(\phi,\boldsymbol{\theta})\\ \text{subject to} & \quad \boldsymbol{\theta}\mathbf{1}=\mathbf{1}, \quad \boldsymbol{\theta}\geq 0 \end{array}$$

Summation over hidden ordered documents couples the variables. It's non-concave, so we use an EM algorithm.

Derivation of EM algorithm

Let $\mathcal{O}(\boldsymbol{\theta}) \equiv \ell(\boldsymbol{\theta}) - \lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$

By Jensen's inequality, lower-bound \mathcal{O} :

$$\mathcal{O}(\boldsymbol{\theta}) = \frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z}|\boldsymbol{\theta}^{(t-1)}, \mathbf{x}) \frac{P(\mathbf{z}|\boldsymbol{\theta})}{P(\mathbf{z}|\boldsymbol{\theta}^{(t-1)}, \mathbf{x})} - \lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$$

$$\geq \frac{1}{C} \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z}|\boldsymbol{\theta}^{(t-1)}, \mathbf{x}) \log \frac{P(\mathbf{z}|\boldsymbol{\theta})}{P(\mathbf{z}|\boldsymbol{\theta}^{(t-1)}, \mathbf{x})} - \lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$$

$$\equiv \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)})$$

Lower bound \mathcal{L} involves $P(\mathbf{z}|\boldsymbol{\theta}^{(t-1)}, \mathbf{x})$

• Probability of hidden ordering under previous iteration's model

Computed in the E-step

Derivation of EM algorithm

EM iteratively maximizes lower bound

$$egin{array}{c} \max & \mathcal{L}(oldsymbol{ heta},oldsymbol{ heta}^{(t-1)}) \ \mathbf{ heta} & \mathbf{ heta} \ \mathbf{$$

Setting the partial derivatives of the Lagrangian to zero leads to the following update:

$$\theta_{uv}^{(t)} \equiv P(v|u; \boldsymbol{\theta}^{(t)}) \propto \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z}|\mathbf{x}_i, \boldsymbol{\theta}^{(t-1)}) c_{uv}(\mathbf{z}) + \lambda \frac{C}{W} \phi_{uv}$$

This is the M-step.

- First term: expected count of "uv"; Second term: pulls toward prior
- $c_{uv}(\mathbf{z})$ is count of "uv" in \mathbf{z}
- Normalize over $v = 1 \dots W$

Approximate E-step

Update equation has a computational problem:

$$\theta_{uv}^{(t)} \propto \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z} | \mathbf{x}_i, \boldsymbol{\theta}^{(t-1)}) c_{uv}(\mathbf{z}) + \frac{C}{W} \phi_{uv}$$

 $\sigma(\mathbf{x})$ can be huge

- Estimate $\sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z} | \mathbf{x}_i, \boldsymbol{\theta}^{(t-1)}) c_{uv}(\mathbf{z})$ with importance sampling
- Monte Carlo approximation using re-weighted samples from an easy-to-sample distribution
- Based on sampling/weighting scheme in [Rabbat et al. NIPS 2007]

(本間) (本語) (本語) (語)

EM algorithm recap

Input:

- BOW documents $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$
- ullet a prior bigram LM ϕ
- weight λ
- **1** t = 1. Initialize $\theta^{(0)} = \phi$.
- **2** Repeat until the objective $\mathcal{O}(\boldsymbol{\theta})$ converges:
 - **(E-step)** Approximate $\sum_{\mathbf{z} \in \sigma(\mathbf{x}_i)} P(\mathbf{z}|\mathbf{x}_i, \boldsymbol{\theta}^{(t-1)}) c_{uv}(\mathbf{z}), i = 1, \dots, n$
 - **2** (M-step) Compute $\theta^{(t)}$ using update equation. Let t = t + 1.

Output: The recovered bigram LM heta

A prior bigram LM ϕ

Prior LM used to avoid local optima

- Our prior uses no extra language knowledge
 - (can and should be included for specific domains)
- Frequency of document co-occurrence

$$\phi_{uv} \equiv P(v|u; \phi) \propto \sum_{i=1}^{n} \delta(u, v | \mathbf{x})$$

• $\delta(u, v | \mathbf{x}) =$

- \blacktriangleright 1, if words u and v both occur in BOW ${\bf x}$
- 0, otherwise
- Asymmetric because of normalization

• • = • • = •

Recovering documents using heta

Formulate document recovery as:

$$\mathbf{z}^* = \operatorname{argmax}_{\mathbf{z} \in \sigma(\mathbf{x})} P(\mathbf{z}|\boldsymbol{\theta})$$

Use memory-bounded A^* search with an admissible heuristic Search space

- State = ordered, partial document
- Successor state = append one more unused word in \mathbf{x}
- Goal = any complete document using all the words in ${\bf x}$

In our case, A^* chooses the successor with the highest f=g+h

- $g = \log \text{ probability of the successor state}$
- h = heuristic value estimating probability from successor state to goal

A* heuristic

Requirement: upper bound the remaining log probability Main idea: choose the "best history" for each word

- Let $(c_1, \ldots, c_W) = \text{count vector for the remaining BOW}$
- One admissible heuristic is

$$h = \log \prod_{u=1}^{W} (\max_{v} \theta_{vu})^{c_u}$$

- "Best history" v chosen from unused words or last word in partial doc
- Upper bound because, in reality, u usually contributes less than $heta_{vu}$

Any questions so far?

So far

- Problem formulation
- EM algorithm for bigram LM recovery
- Prior bigram LM based on document co-occurrence
- A* search for document recovery

Next: experimental results

Corpora

SVitchboard 1 [King et al. 2005]

- Small vocabulary Switchboard, phone conversation transcripts, 6 versions
- "okay i enjoyed talking to you"
- "take a twenty two and go out"
- "you know you can't you can't make it"

SumTime-Meteo [Sripada et al. 2003]

- Weather forecasts for offshore oil rigs in the North Sea
- "Low over the Norwegian Coast will move slowly NNW"
- "A weak ridge will move East across the North Sea during Friday"

Data sets

Smallish, due to efficiency issues

Corpus	W-1	# Docs	# Tokens	$ {\bf x} - 1$
SV10	10	6775	7792	1.2
SV25	25	9778	13324	1.4
SV50	50	12442	20914	1.7
SV100	100	14602	28611	2.0
SV250	250	18933	51950	2.7
SV500	500	23669	89413	3.8
SumTime	882	3341	68815	20.6

• SV10–SV500: SVitchboard using different vocabulary sizes

- 4 3 6 4 3 6

We recover sensible bigrams in heta

Most demoted and promoted bigrams in θ compared to prior ϕ (sorted by the ratio θ_{hw}/ϕ_{hw} on SV500)

h	$w\downarrow$	$w\uparrow$
i	yep, bye-bye, ah, goodness, ahead	mean, guess, think, bet, agree
you	let's, us, fact, such, deal	thank, bet, know, can, do
right	as, lot, going, years, were	that's, all, right, now, you're
oh	thing, here, could, were, doing	boy, really, absolutely, gosh,
		great
that's	talking, home, haven't, than,	funny, wonderful, true, inter-
	care	esting, amazing
really	now, more, yep, work, you're	sad, neat, not, good, it's

くほと くほと くほと

Our θ has good test set perplexity

- Train on x₁...x_n, test on ordered documents z_{n+1}...z_m (5-fold cross validation, all differences statistically significant)
- "Oracle" bigram trained on $\mathbf{z}_1 \dots \mathbf{z}_n$ to provide lower bound (Good-Turing)

Corpus	unigram	prior ϕ	θ	oracle	1 EM iter
SV10	7.48	6.52	6.47	6.28	< 1s
SV25	16.4	12.3	11.8	10.6	0.1s
SV50	29.1	19.6	17.8	14.9	4s
SV100	45.4	29.5	25.3	20.1	11s
SV250	91.8	60.0	47.3	33.7	8m
SV500	149.1	104.8	80.1	50.9	3h
SumTime	129.7	103.2	77.7	10.5	4h

Our $\boldsymbol{\theta}$ reconstructs \mathbf{z} from \mathbf{x} better

- Recall $\mathbf{z}^* = \mathrm{argmax}_{\mathbf{z} \in \sigma(\mathbf{x})} P(\mathbf{z} | \boldsymbol{\theta} \text{ or } \boldsymbol{\phi})$
- Document recovery results using memory-bounded A* search

	Accuracy %	whole doc	word pair	word triple
	ϕ	30.2	33.0	11.4
	$\boldsymbol{ heta}$	31.0	35.1	13.3
(SV500, 5-fold (V, all differe	nces statistic	ally significant

${f z}$ by ϕ	${f z}$ by ${m heta}$
just it's it's it's just going	it's just it's just it's going
it's probably out there else something	it's probably something else out there
the the have but it doesn't	but it doesn't have the the
you to talking nice was it yes	yes it was nice talking to you
that's well that's what i'm saying	well that's that's what i'm saying
a little more here home take	a little more take home here
and they can very be nice too	and they can be very nice too
i think well that's great i'm	well i think that's great i'm
but was he because only always	but only because he was always

イロト 不得下 イヨト イヨト 二日

Discussion

- Also experimented with two other priors
- Unigram prior, ignores word history $\phi_{uv}^{unigram} \propto \sum_{i=1}^n x_{iv}$
- Permutation-based prior
 - Based on expected bigram count in all unique orderings of BOWs

$$\phi_{uv}^{perm} \equiv P(v|u; \boldsymbol{\phi}^{perm}) \propto \sum_{i=1}^{n} \mathsf{E}_{\mathbf{z} \in \sigma(\mathbf{x}_i)}[c_{uv}(\mathbf{z})]$$

Assumes uniform probability over permutations z; Closed form solution

Detailed experimental comparisons in

Jerry Zhu, Andrew B. Goldberg, Michael Rabbat, and Robert Nowak. *Learning bigrams from unigrams.* (ACL 2008).

Conclusions

Summary

- Bigram language model recovery from BOWs
- EM algorithm
- Prior bigram models
- A* search for document recovery
- Recovered bigram LMs outperform other naïve models

3 K K 3 K

Conclusions

Summary

- Bigram language model recovery from BOWs
- EM algorithm
- Prior bigram models
- A* search for document recovery
- Recovered bigram LMs outperform other naïve models

Future work

- Improve efficiency
- Extend to trigram and higher-order models
- Include some ordered documents / phrases if available
- Adapt a general English LM using only BOWs from a special domain

We thank

Wisconsin Alumni Research Foundation NSF CCF-0353079, CCF-0728767 NSERC of Canada

and you.

3

通 ト イヨ ト イヨト