Learning Bigrams from Unigrams

Andrew B. Goldberg
goldberg@cs.wisc.edu
University of Wisconsin-Madison
Joint work with Xiaojin Zhu, Michael Rabbat (McGill University), and Robert Nowak Originally appeared at ACL 2008

Privacy attack through index file

your file

Privacy attack through index file

your file

bag-of-word index

Privacy attack through index file

access
bag-of-word index

Privacy attack through index file

your file

NLP software

bag-of-word index
access

hacker

What can the hacker do?

Privacy attack through index file

your file

bag-of-word index

hacker

What can the hacker do?

- Learn a bigram language model
- Reconstruct your original ordered documents

Bag-of-word (BOW) representation

- A document in its original order $\mathbf{z}_{1}=$ " $\langle\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$
\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 W}\right)=(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots)
$$

- Can the hacker recover word order from \mathbf{x}_{1}, without extra knowledge of the language?

Bag-of-word (BOW) representation

- A document in its original order $\mathbf{z}_{1}=$ " $\langle\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$
\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 W}\right)=(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots)
$$

- Can the hacker recover word order from \mathbf{x}_{1}, without extra knowledge of the language?
- No: x_{1} could be from " $\langle\mathrm{d}\rangle$ really neat really" too

Bag-of-word (BOW) representation

- A document in its original order $\mathbf{z}_{1}=$ " $\langle\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$
\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 W}\right)=(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots)
$$

- Can the hacker recover word order from \mathbf{x}_{1}, without extra knowledge of the language?
- No: \mathbf{x}_{1} could be from " $\langle\mathrm{d}\rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$?

Bag-of-word (BOW) representation

- A document in its original order $\mathbf{z}_{1}=$ " $\langle\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$
\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 W}\right)=(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots)
$$

- Can the hacker recover word order from \mathbf{x}_{1}, without extra knowledge of the language?
- No: \mathbf{x}_{1} could be from " $\langle\mathrm{d}\rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$?
- Traditional wisdom: all it can learn is a unigram LM (word frequencies)

Bag-of-word (BOW) representation

- A document in its original order $\mathbf{z}_{1}=$ " $\langle\mathrm{d}\rangle$ really really neat"
- Its BOW: unigram count vector

$$
\mathbf{x}_{1}=\left(x_{11}, \ldots, x_{1 W}\right)=(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots)
$$

- Can the hacker recover word order from \mathbf{x}_{1}, without extra knowledge of the language?
- No: \mathbf{x}_{1} could be from " $\langle\mathrm{d}\rangle$ really neat really" too
- What if the hacker has $n \gg 1$ BOWs $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$?
- Traditional wisdom: all it can learn is a unigram LM (word frequencies)

Perhaps surprisingly

We will learn a bigram LM from $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, as if we have the ordered documents $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$.

Mission: possible

An example of exact bigram LM recovery:

Mission: possible

An example of exact bigram LM recovery:

Generative model:

Mission: possible

An example of exact bigram LM recovery:

Generative model:
(1) $\mathbf{z} \sim \boldsymbol{\theta}=\{p, q, r\}$

Mission: possible

An example of exact bigram LM recovery:

Generative model:
(1) $\mathbf{z} \sim \boldsymbol{\theta}=\{p, q, r\}$
(2) $\mathrm{z} \rightarrow \mathrm{x}$ by removing word order

Mission: possible

An example of exact bigram LM recovery:

Generative model:
(1) $\mathbf{z} \sim \boldsymbol{\theta}=\{p, q, r\}$
(2) $\mathrm{z} \rightarrow \mathrm{x}$ by removing word order

Probability of a BOW vector:

$$
P(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\mathbf{z} \in \sigma(\mathbf{x})} P(\mathbf{z} \mid \boldsymbol{\theta})=\sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P\left(z_{j} \mid z_{j-1}\right)
$$

$\sigma(\mathbf{x})$ is all unique orderings of \mathbf{x}

- $\sigma(\langle d\rangle: 1, A: 2, B: 1)=\{"\langle d\rangle A A B ", "\langle d\rangle A B A ", "\langle d\rangle B A A "\}$

Mission: possible

An example of exact bigram LM recovery:

Assuming all docs have length $|\mathbf{x}|=4$, then only 4 kinds of BOWs:

$$
\begin{array}{ll}
\mathbf{x} & P(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P\left(z_{j} \mid z_{j-1}\right) \\
\hline(\langle\mathrm{d}\rangle: 1, \mathrm{~A}: 3, \mathrm{~B}: 0) & r p^{2} \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 2, \mathrm{~B}: 1) & r p(1-p)+r(1-p)(1-q)+(1-r)(1-q) p \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 0, \mathrm{~B}: 3) & (1-r) q^{2} \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 1, \mathrm{~B}: 2) & 1 \text {-above }
\end{array}
$$

Mission: possible

Let true $\boldsymbol{\theta}=\{r=0.25, p=0.9, q=0.5\}$
Given $\mathbf{x}_{1} \ldots \mathbf{x}_{n}, n \rightarrow \infty$, the observed frequency of BOWs will be:

$$
\begin{array}{ll}
(\langle\mathrm{d}\rangle: 1, \mathrm{~A}: 3, \mathrm{~B}: 0) & 20.25 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 2, \mathrm{~B}: 1) & 37.25 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 0, \mathrm{~B}: 3) & 18.75 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 1, \mathrm{~B}: 2) & 100 \% \text {-above }
\end{array}
$$

Mission: possible

Let true $\boldsymbol{\theta}=\{r=0.25, p=0.9, q=0.5\}$
Given $\mathbf{x}_{1} \ldots \mathbf{x}_{n}, n \rightarrow \infty$, the observed frequency of BOWs will be:

$$
\begin{array}{ll}
(\langle\mathrm{d}\rangle: 1, \mathrm{~A}: 3, \mathrm{~B}: 0) & 20.25 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 2, \mathrm{~B}: 1) & 37.25 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 0, \mathrm{~B}: 3) & 18.75 \% \\
(\langle\mathrm{~d}\rangle: 1, \mathrm{~A}: 1, \mathrm{~B}: 2) & 100 \% \text {-above }
\end{array}
$$

Matching probability with observed frequency

$$
\left\{\begin{array}{l}
r p^{2}=0.2025 \\
r p(1-p)+r(1-p)(1-q) \\
\quad+(1-r)(1-q) p=0.3725 \\
(1-r) q^{2}=0.1875
\end{array}\right.
$$

exactly recovers $\boldsymbol{\theta}$.

Let's get real

Real documents are not generated from a bigram LM
Maximize log likelihood instead
Parameter $\boldsymbol{\theta}=\left[\theta_{u v}=P(v \mid u)\right]_{W \times W}$ (bigram LM matrix)
Normalized \log likelihood under $\boldsymbol{\theta}$:

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & \equiv \frac{1}{C} \sum_{i=1}^{n} \log P\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P\left(z_{j} \mid z_{j-1}\right) \\
C & =\sum_{i=1}^{n}\left(\left|\mathbf{x}_{i}\right|-1\right)
\end{aligned}
$$

Let's get real

Real documents are not generated from a bigram LM
Maximize log likelihood instead
Parameter $\boldsymbol{\theta}=\left[\theta_{u v}=P(v \mid u)\right]_{W \times W}$ (bigram LM matrix)
Normalized \log likelihood under $\boldsymbol{\theta}$:

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & \equiv \frac{1}{C} \sum_{i=1}^{n} \log P\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P\left(z_{j} \mid z_{j-1}\right) \\
C & =\sum_{i=1}^{n}\left(\left|\mathbf{x}_{i}\right|-1\right)
\end{aligned}
$$

But there are multiple local optima

Regularization

Normalized log likelihood under $\boldsymbol{\theta}$:

$$
\ell(\boldsymbol{\theta}) \equiv \frac{1}{C} \sum_{i=1}^{n} \log P\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)
$$

Regularize with prior bigram LM ϕ (estimated from BOWs too)

- Average KL-divergence over all histories

$$
\mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \equiv \frac{1}{W} \sum_{u=1}^{W} K L\left(\boldsymbol{\phi}_{u .} . \| \boldsymbol{\theta}_{u}\right) .
$$

- i.e., rows in $\boldsymbol{\theta}$ should be similar to rows in prior ϕ
$\mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$ is convex (Cover and Thomas, 1991).

Regularized Optimization Problem

Our optimization problem:

$$
\begin{aligned}
\max _{\boldsymbol{\theta}} & \ell(\boldsymbol{\theta})-\lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \\
\text { subject to } & \boldsymbol{\theta} 1=\mathbf{1}, \quad \boldsymbol{\theta} \geq 0
\end{aligned}
$$

Weight λ controls strength of prior
Constraints ensure valid bigram matrix

Regularized Optimization Problem

Our optimization problem is non-concave:

$$
\begin{aligned}
\max _{\boldsymbol{\theta}} & \frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma(\mathbf{x})} \prod_{j=2}^{|\mathbf{x}|} P\left(z_{j} \mid z_{j-1}\right)-\lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \\
\text { subject to } & \boldsymbol{\theta} \mathbf{1}=\mathbf{1}, \quad \boldsymbol{\theta} \geq 0
\end{aligned}
$$

Summation over hidden ordered documents couples the variables. It's non-concave, so we use an EM algorithm.

Derivation of EM algorithm

Let $\mathcal{O}(\boldsymbol{\theta}) \equiv \ell(\boldsymbol{\theta})-\lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta})$
By Jensen's inequality, lower-bound \mathcal{O} :

$$
\begin{aligned}
\mathcal{O}(\boldsymbol{\theta}) & =\frac{1}{C} \sum_{i=1}^{n} \log \sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \boldsymbol{\theta}^{(t-1)}, \mathbf{x}\right) \frac{P(\mathbf{z} \mid \boldsymbol{\theta})}{P\left(\mathbf{z} \mid \boldsymbol{\theta}^{(t-1)}, \mathbf{x}\right)}-\lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \\
& \geq \frac{1}{C} \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \boldsymbol{\theta}^{(t-1)}, \mathbf{x}\right) \log \frac{P(\mathbf{z} \mid \boldsymbol{\theta})}{P\left(\mathbf{z} \mid \boldsymbol{\theta}^{(t-1)}, \mathbf{x}\right)}-\lambda \mathcal{D}(\boldsymbol{\phi}, \boldsymbol{\theta}) \\
& \equiv \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}\right)
\end{aligned}
$$

Lower bound \mathcal{L} involves $P\left(\mathbf{z} \mid \boldsymbol{\theta}^{(t-1)}, \mathbf{x}\right)$

- Probability of hidden ordering under previous iteration's model
- Computed in the E-step

Derivation of EM algorithm

EM iteratively maximizes lower bound

$$
\begin{aligned}
\max _{\boldsymbol{\theta}} & \mathcal{L}\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t-1)}\right) \\
\text { subject to } & \boldsymbol{\theta} \mathbf{1}=\mathbf{1}
\end{aligned}
$$

Setting the partial derivatives of the Lagrangian to zero leads to the following update:

$$
\theta_{u v}^{(t)} \equiv P\left(v \mid u ; \boldsymbol{\theta}^{(t)}\right) \propto \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\theta}^{(t-1)}\right) c_{u v}(\mathbf{z})+\lambda \frac{C}{W} \phi_{u v}
$$

This is the M-step.

- First term: expected count of " $u v$ "; Second term: pulls toward prior
- $c_{u v}(\mathbf{z})$ is count of " $u v$ " in z
- Normalize over $v=1 \ldots W$

Approximate E-step

Update equation has a computational problem:

$$
\theta_{u v}^{(t)} \propto \sum_{i=1}^{n} \sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\theta}^{(t-1)}\right) c_{u v}(\mathbf{z})+\frac{C}{W} \phi_{u v}
$$

$\sigma(\mathbf{x})$ can be huge

- Estimate $\sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\theta}^{(t-1)}\right) c_{u v}(\mathbf{z})$ with importance sampling
- Monte Carlo approximation using re-weighted samples from an easy-to-sample distribution
- Based on sampling/weighting scheme in [Rabbat et al. NIPS 2007]

EM algorithm recap

Input:

- BOW documents $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- a prior bigram LM ϕ
- weight λ
(1) $t=1$. Initialize $\boldsymbol{\theta}^{(0)}=\boldsymbol{\phi}$.
(2) Repeat until the objective $\mathcal{O}(\boldsymbol{\theta})$ converges:
(1) (E-step) Approximate $\sum_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)} P\left(\mathbf{z} \mid \mathbf{x}_{i}, \boldsymbol{\theta}^{(t-1)}\right) c_{u v}(\mathbf{z}), i=1, \ldots, n$
(1) (M-step) Compute $\boldsymbol{\theta}^{(t)}$ using update equation. Let $t=t+1$.

Output: The recovered bigram LM $\boldsymbol{\theta}$

A prior bigram LM ϕ

Prior LM used to avoid local optima

- Our prior uses no extra language knowledge
- (can and should be included for specific domains)
- Frequency of document co-occurrence

$$
\phi_{u v} \equiv P(v \mid u ; \boldsymbol{\phi}) \propto \sum_{i=1}^{n} \delta(u, v \mid \mathbf{x})
$$

- $\delta(u, v \mid \mathbf{x})=$
- 1, if words u and v both occur in BOW \mathbf{x}
- 0, otherwise
- Asymmetric because of normalization

Recovering documents using $\boldsymbol{\theta}$

Formulate document recovery as:

$$
\mathbf{z}^{*}=\operatorname{argmax}_{\mathbf{z} \in \sigma(\mathbf{x})} P(\mathbf{z} \mid \boldsymbol{\theta})
$$

Use memory-bounded A^{*} search with an admissible heuristic
Search space

- State = ordered, partial document
- Successor state $=$ append one more unused word in \mathbf{x}
- Goal $=$ any complete document using all the words in \mathbf{x}

In our case, A^{*} chooses the successor with the highest $f=g+h$

- $g=\log$ probability of the successor state
- $h=$ heuristic value estimating probability from successor state to goal

A^{*} heuristic

Requirement: upper bound the remaining log probability
Main idea: choose the "best history" for each word

- Let $\left(c_{1}, \ldots, c_{W}\right)=$ count vector for the remaining BOW
- One admissible heuristic is

$$
h=\log \prod_{u=1}^{W}\left(\max _{v} \theta_{v u}\right)^{c_{u}}
$$

- "Best history" v chosen from unused words or last word in partial doc
- Upper bound because, in reality, u usually contributes less than $\theta_{v u}$

Any questions so far?

So far

- Problem formulation
- EM algorithm for bigram LM recovery
- Prior bigram LM based on document co-occurrence
- A* search for document recovery

Next: experimental results

Corpora

SVitchboard 1 [King et al. 2005]

- Small vocabulary Switchboard, phone conversation transcripts, 6 versions
- "okay i enjoyed talking to you"
- "take a twenty two and go out"
- "you know you can't you can't make it"

SumTime-Meteo [Sripada et al. 2003]

- Weather forecasts for offshore oil rigs in the North Sea
- "Low over the Norwegian Coast will move slowly NNW"
- "A weak ridge will move East across the North Sea during Friday"

Data sets

Smallish, due to efficiency issues

Corpus	$W-1$	\# Docs	\# Tokens	$\|\mathbf{x}\|-1$
SV10	10	6775	7792	1.2
SV25	25	9778	13324	1.4
SV50	50	12442	20914	1.7
SV100	100	14602	28611	2.0
SV250	250	18933	51950	2.7
SV500	500	23669	89413	3.8
SumTime	882	3341	68815	20.6

- SV10-SV500: SVitchboard using different vocabulary sizes

We recover sensible bigrams in $\boldsymbol{\theta}$

Most demoted and promoted bigrams in $\boldsymbol{\theta}$ compared to prior ϕ (sorted by the ratio $\theta_{h w} / \phi_{h w}$ on SV500)

h	$w \downarrow$	$w \uparrow$
i	yep, bye-bye, ah, goodness, ahead	mean, guess, think, bet, agree
you	let's, us, fact, such, deal	thank, bet, know, can, do
right	as, lot, going, years, were	that's, all, right, now, you're
oh	thing, here, could, were, doing	boy, really, absolutely, gosh, great
that's	talking, home, haven't, than, care	funny, wonderful, true, inter- esting, amazing
really	now, more, yep, work, you're	sad, neat, not, good, it's

Our $\boldsymbol{\theta}$ has good test set perplexity

- Train on $\mathbf{x}_{1} \ldots \mathbf{x}_{n}$, test on ordered documents $\mathbf{z}_{n+1} \ldots \mathbf{z}_{m}$ (5-fold cross validation, all differences statistically significant)
- "Oracle" bigram trained on $\mathbf{z}_{1} \ldots \mathbf{z}_{n}$ to provide lower bound (Good-Turing)

Corpus	unigram	prior $\boldsymbol{\phi}$	$\boldsymbol{\theta}$	oracle	1 EM iter
SV10	7.48	6.52	6.47	6.28	$<1 \mathrm{~s}$
SV25	16.4	12.3	11.8	10.6	0.1 s
SV50	29.1	19.6	17.8	14.9	4 s
SV100	45.4	29.5	25.3	20.1	11 s
SV250	91.8	60.0	47.3	33.7	8 m
SV500	149.1	104.8	80.1	50.9	3 h
SumTime	129.7	103.2	77.7	10.5	4 h

Our $\boldsymbol{\theta}$ reconstructs \mathbf{z} from \mathbf{x} better

- Recall $\mathbf{z}^{*}=\operatorname{argmax}_{\mathbf{z} \in \sigma(\mathbf{x})} P(\mathbf{z} \mid \boldsymbol{\theta}$ or $\boldsymbol{\phi})$
- Document recovery results using memory-bounded A^{*} search

Accuracy \%	whole doc	word pair	word triple
$\boldsymbol{\phi}$	30.2	33.0	11.4
$\boldsymbol{\theta}$	31.0	35.1	13.3

$$
\mathrm{z} \text { by } \phi \quad \mathrm{z} \text { by } \theta
$$

just it's it's it's just going it's just it's just it's going it's probably out there else something it's probably something else out there
the the have but it doesn't
you to talking nice was it yes that's well that's what i'm saying a little more here home take and they can very be nice too i think well that's great i'm but was he because only always
but it doesn't have the the yes it was nice talking to you well that's that's what i'm saying a little more take home here and they can be very nice too well i think that's great i'm but only because he was always

Discussion

- Also experimented with two other priors
- Unigram prior, ignores word history $\phi_{u v}^{u n i g r a m} \propto \sum_{i=1}^{n} x_{i v}$
- Permutation-based prior
- Based on expected bigram count in all unique orderings of BOWs

$$
\phi_{u v}^{\text {perm }} \equiv P\left(v \mid u ; \phi^{\text {perm }}\right) \propto \sum_{i=1}^{n} \mathrm{E}_{\mathbf{z} \in \sigma\left(\mathbf{x}_{i}\right)}\left[c_{u v}(\mathbf{z})\right]
$$

- Assumes uniform probability over permutations z; Closed form solution

Detailed experimental comparisons in

Jerry Zhu, Andrew B. Goldberg, Michael Rabbat, and Robert Nowak. Learning bigrams from unigrams. (ACL 2008).

Conclusions

Summary

- Bigram language model recovery from BOWs
- EM algorithm
- Prior bigram models
- A* search for document recovery
- Recovered bigram LMs outperform other naïve models

Conclusions

Summary

- Bigram language model recovery from BOWs
- EM algorithm
- Prior bigram models
- A* search for document recovery
- Recovered bigram LMs outperform other naïve models

Future work

- Improve efficiency
- Extend to trigram and higher-order models
- Include some ordered documents / phrases if available
- Adapt a general English LM using only BOWs from a special domain

We thank

Wisconsin Alumni Research Foundation NSF CCF-0353079, CCF-0728767 NSERC of Canada

and you.

