
Beyond the Point Cloud:
From Transductive to Semi-Supervised Learning

Vikas Sindhwani, Partha Niyogi, Mikhail Belkin

Andrew B. Goldberg
goldberg@cs.wisc.edu

Department of Computer Sciences
University of Wisconsin, Madison

Stat 860 November 27, 2007

Andrew B. Goldberg (CS Dept) Beyond the Point Cloud Stat 860 November 27, 2007 1 / 37



Outline

1 Introduction to Semi-Supervised Learning

2 How Unlabeled Data is Useful

3 Using Supervised Methods to Perform Semi-Supervised Learning

4 Deriving a Warped Kernel

5 Experimental Results

Andrew B. Goldberg (CS Dept) Beyond the Point Cloud Stat 860 November 27, 2007 2 / 37



Outline

1 Introduction to Semi-Supervised Learning

2 How Unlabeled Data is Useful

3 Using Supervised Methods to Perform Semi-Supervised Learning

4 Deriving a Warped Kernel

5 Experimental Results

Andrew B. Goldberg (CS Dept) Beyond the Point Cloud Stat 860 November 27, 2007 3 / 37



Introduction to Semi-Supervised Learning (SSL)

In many real world classification tasks, labeled data is expensive.
Unlabeled data, however, is often freely and readily available.

Examples: crawled Web pages, image search results, speech
recordings

Semi-supervised learning tries to use unlabeled data to learn
better classifiers.
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Typical SSL Setup

Given
l labeled data points {(x1, y1), (x2, y2), . . . , (xl , yl)},
where each xi ∈ X and yi ∈ {−1,+1}.

u unlabeled data points {xl+1, xl+2, . . . , xl+u}.

(for future reference, n = l + u)

Do
(Transduction) Predict labels {yl+1, yl+2, . . . , yl+u}.

(True SSL) Learn f : X 7→ R
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Transductive vs. Semi-Supervised

Transductive
Labeled and unlabeled data form point cloud.

Simply learn a function over the point cloud.

Classic example (on board)

Semi-supervised
Also uses both labeled and unlabeled data during training.

But learns function defined over entire space.

Can make predictions for unseen test data.
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Why SSL Algorithms (May) Work

Key Assumptions
Most SSL methods make one or both of the following assumptions:

Manifold assumption: classification function is smooth with
respect to the underlying marginal data distribution (estimated by
unlabeled data).

Cluster assumption: classes form distinct clusters that are
separated by low density regions (i.e., areas where there is no
unlabeled data).
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A Few Classes of SSL Methods

SSL Methods
Self-training

Expectation maximization for Gaussian Mixture Models

Cluster-then-label

Co-training or multi-view methods

Graph-based methods*

Manifold regularization*

* closely related to today’s talk

See Also
http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html
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Two Concentric Circles Example

(a) two classes on
concentric circles (b) two labeled points

(a) two classes on
concentric circles (b) two labeled points
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Typical Kernel-Based Approach

Use Gaussian (RBF) kernel k(x, z) = e−
||x−z||2

2σ2 . k defines RKHS H.

Learning involves solving a regularization problem:

f = arg min
h∈H

1
l

l∑
i=1

V(h, xi , yi) + γ||h||2H

where ||h||H is the RKHS norm, and V is a loss function
(square loss for RLS, hinge loss for SVM)

Representer theorem tells us solution has the form:

f (x) =
l∑

i=1

αik(x, xi)
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Result Using a Gaussian Kernel

For two labeled points, the learned function is a linear combination
of two Gaussians: (a) and (b).

Gaussian kernel has spherical symmetry, so the end result is a
linear decision boundary: (c).

(c) classifier learnt
in the RKHS

(a) gaussian kernel centered
on labeled point 1

(b) gaussian kernel centered
on labeled point 2
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Graph-Based Semi-Supervised Learning

Graph-based SSL creates nearest-neighbor graph of all data
(edge weights Wij or 0, if not neighbors). Then solve:

arg min
f

1
l

l∑
i=1

(fi − yi)2 +
γ

n2

n∑
i=1

n∑
j=1

Wij (fi − fj)2

Manifold regularization (MR) solves a related RKHS problem:

arg min
h∈H

1
l

l∑
i=1

V(h, xi , yi) + γA||h||2H +
γI

n2

n∑
i=1

n∑
j=1

Wij (h(xi)− h(xj))2

This paper solves MR problem using a special kernel.
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Properties of New Kernel

Question

Can we define a kernel k̃ that is adapted to the geometry of the
underlying data distribution?

Key properties

k̃ should be valid kernel and define a new RKHS H̃.

k̃ should implement geometric intuitions (separate the two circles)

Want to solve problem in new RKHS H̃:

g = arg min
h∈H̃

1
l

l∑
i=1

V(h, xi , yi) + γ||h||2H̃

with a solution that’s still a kernel expansion using only the labeled
points: g(x) =

∑l
i=1 αi k̃(x, xi).
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Two Circles Example: Desired Decision Surface

Want solution that’s a kernel expansion using only labeled points.

g(x) =
l∑

i=1

αi k̃(x, xi)

but produces a circular decision boundary.

(c) classifier learnt
in the deformed RKHS

(a) deformed kernel centered
on labeled point 1

(b) deformed kernel centered
on labeled point 2

How is this possible? Stay tuned...
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Properties of New Kernel

General strategy for getting intuitive decision surface with supervised
kernel methods:

Deform the original RKHS to obtain H̃.

Use unlabeled data to estimate marginal distribution.

Derive explicit expression for k̃ in terms of unlabeled data.

Solve regularization problem with only labeled data in H̃.

Novel contributions:

First truly data-dependent non-parametric kernel defined over all
data points (true semi-supervised learning).

General class of algorithms that can be customized with different
base kernels, loss functions, etc.
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Review of RKHS Background

X is compact domain in Euclidean space or a manifold

H is a complete Hilbert space of functions X 7→ R, with inner
product 〈·, ·〉H
H is an RKHS if point evaluation functionals are bounded:

For any x ∈ X, f ∈ H,∃C, s.t. |f (x)| ≤ C||f ||H
By Riesz representation theorem, can construct symmetric
positive semi-definite kernel k(x, z) s.t.

f (x) = 〈f , k(x, ·)〉H k(x, z) = 〈k(x, ·), k(z, ·)〉H

Game plan
Show how general procedure to “deform” norm || · ||H creates new
RKHS H̃ with k̃(x, z)
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Defining the warped RKHS H̃

Let V be a linear space with positive semi-definite inner product
(i.e., quadratic form)

Let S : H 7→ V be a bounded linear operator

Define H̃ to be space of the same functions as H but modified
inner product:

〈f , g〉H̃ = 〈f , g〉H + 〈Sf, Sg〉V

Proposition: H̃ is an RKHS (i.e., complete with bounded point
evaluations)

Proof: Straightforward result due to H̃ and H containing the same
elements. (details in paper)
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Point-Cloud Norms

Recall:
〈f , g〉H̃ = 〈f , g〉H + 〈Sf, Sg〉V

In general case, difficult to connect k and k̃.

We care only about the case when Sand V depend on the data.

For “point-cloud norms,” we can express the relation explicitly
(next few slides).

Goal is to find modification to standard kernel that relies on the
geometry of unlabeled data.
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Incorporating the Data in the Kernel

Recall:
〈f , g〉H̃ = 〈f , g〉H + 〈Sf, Sg〉V

Given data x1, x2, . . . , xn, and let V = Rn

Let S : H 7→ Rn be the evaluation map S(f ) = f = (f (x1), . . . , f (xn)).
Thus, we can write semi-norm on Rn using some s.p.d. matrix M:

||Sf||2V = f>Mf
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Modified Regularization Problem

Recall: 〈f , g〉H̃ = 〈f , g〉H + 〈Sf, Sg〉V , ||Sf||2V = f>Mf

The regularization problem:

f = arg min
h∈H̃

1
l

l∑
i=1

V(h, xi , yi) + γ||h||2H̃

thus becomes

f = arg min
h∈H

1
l

l∑
i=1

V(h, xi , yi) + γ(||h||2H + h>Mh)

Note that h is based on labeled and unlabeled data. M can
encode smoothness w.r.t. graph/manifold.

We’ll now show how to solve the first problem directly using an
explicit form for k̃.
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Deriving an Explicit form for k̃(x, z)

Outline for deriving k̃(x, z):
Show that

span{k(xi , ·)}n
i=1 = span{k̃(xi , ·)}n

i=1

This leads to

k̃(x, ·) = k(x, ·) +
l+u∑
j=1

βj(x)k(xj , ·)

Solve linear system involving all data to find βj(x) coefficients.

Then we can compute k̃(x, z) explicitly.
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Deriving an Explicit form for k̃(x, z)

Decompose H̃ orthogonally as:

H̃ = span{k̃(x1, ·), . . . , k̃(xn, ·)} ⊕ H̃⊥

where H̃⊥ contains functions equal 0 at all data points.

Thus, for f ∈ H̃⊥, Sf = 0, and 〈f , g, 〉H̃ = 〈f , g〉H for any g.

As a result, for any f ∈ H̃⊥,

f (x) = 〈f , k̃(x, ·)〉H̃ = 〈f , k(x, ·)〉H = 〈f , k(x, ·)〉H̃

Thus, 〈f , k(x, ·)− k̃(x, ·)〉H̃ = 0 or k(x, ·)− k̃(x, ·) ∈ (H̃⊥)⊥.
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Deriving the Warped Kernel

Because k(x, ·)− k̃(x, ·) ∈ (H̃⊥)⊥, we can write

k(x, ·)− k̃(x, ·) ∈ span{k̃(x1, ·), . . . , k̃(xn, ·)}

But, for any xi ∈ X and f ∈ H̃⊥,
〈k(xi , ·), f 〉H̃ = 〈k(xi , ·), f 〉H = f (xi) = 0.

Thus, k(xi , ·) ∈ (H̃⊥)⊥. Combining these results, we see

span{k(xi , ·)}n
i=1 ⊆ span{k̃(xi , ·)}n

i=1

Also possible to show that k̃(xi , ·) ∈ (H̃⊥)⊥, so

span{k̃(xi , ·)}n
i=1 ⊆ span{k(xi , ·)}n

i=1

Therefore, the two spans are the same.
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Deriving the Warped Kernel

If span{k̃(xi , ·)}n
i=1 is the same as span{k(xi , ·)}n

i=1, we can use the
result that k(x, ·)− k̃(x, ·) ∈ span{k̃(x1, ·), . . . , k̃(xn, ·)} to write

k̃(x, ·) = k(x, ·) +
∑

j

βj(x)k(xj , ·)

where the βj coefficients depend on the data x.

Warped kernel k̃ is simply k modified by some linear combination
of data points.

If we can find an explicit expression for βj(x), then we’ll have an
explicit form for k̃!
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Deriving the Warped Kernel

We now find βj(x).
System of linear equations formed by evaluating k(xi , x) or kxi (x):

kxi (x) = 〈k(xi , ·), k̃(x, ·)〉H̃ (repro. prop. of H̃)

= 〈k(xi , ·), k(x, ·) +
∑

j

βj(x)k(xj , ·)〉H̃

= 〈k(xi , ·), k(x, ·) +
∑

j

βj(x)k(xj , ·)〉H + kxi
>Mg

where kxi = (k(xi , x1), . . . , k(xi , xn))> and g has n components
gm = k(x, xm) +

∑
j βj(x)k(xj , xm), m = 1, . . . , n.
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Deriving the Warped Kernel

Final linear system for coefficients β(x) = (β1(x), . . . , βn(x))>:

(I + MK)β(x) = −Mkx

where K is the kernel matrix on all n data points, and
kx = (k(x1, x), . . . , k(xn, x))>.

Now solving for β(x) gives us an expression for k̃.

Reproducing Kernel of H̃

k̃(x, z) = k(x, z)− kx
>(I + MK)−1Mkz
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Choosing Deformation Matrix M

Now that we can express k̃ explicitly, we need to choose M.
Want M to encode our intuition about the data geometry.

Choose graph Laplacian associated with the point cloud.
Implements smoothness assumption w.r.t. graph over data.

Let W be the graph edge weight matrix with Wij = e−
||xi−xj ||

2

2σ2 ,
if xi and xj are nearest neighbors, and 0 otherwise.

Let D be the diagonal degree matrix with Dii =
∑

j Wij .

Laplacian L = D − W.

Note: f>Lf =
∑n

i,j=1 Wij (f (xi)− f (xj))2
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Using Laplacian as Deformation Matrix

Thus, using M = γI
γA

L, the problem in modified RKHS H̃:

f = arg min
h∈H̃

1
l

l∑
i=1

V(h, xi , yi) + γA||h||2H̃ (1)

is equivalent to the MR problem in original RKHS H:

f = arg min
h∈H

1
l

l∑
i=1

V(h, xi , yi)+ γA||h||2H+ γI

n∑
i,j=1

Wij (h(xi)−h(xj))2 (2)

Thus, solving (1) using k̃(x, z) in a standard kernel method
achieves MR result from (2).
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Revisiting the Two Circles Example

Using the Laplacian warped kernel, the result is a combination of
kernels that adhere to the geometry of the space.

Now the decision boundary correctly separates the circles.

(c) classifier learnt
in the deformed RKHS

(a) deformed kernel centered
on labeled point 1

(b) deformed kernel centered
on labeled point 2
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Summary of Methods

Use M = γI
γA

Lp for some integer p

Methods: Laplacian SVM, Laplacian RLS

Using the warped kernel, solve both using standard solvers.

Some parameters fixed to reduce complexity, others chosen by
grid search using 5-fold CV.

Compared against standard SVM and RLS without
data-dependent kernel, and to other transductive methods.
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Summary of Datasets

Range of tasks:
artificial two 50-dim Gaussian data
image and digit recognition data
text classification data (i.e., classify newsgroup posts by topic)
Web page classification using page text and/or hyperlink text

Properties:
2–20 classes
50–7000 dimensions
12–50 labeled points
500–2000 unlabeled points
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Summary of Results

Transductive (in-sample unlabeled data) results
Significant gains for LapSVM and LapRLS

Semi-supervised (out-of-sample generalization) results
As good as transductive results

Study of parameters
Larger γI leads to much better in-sample performance
Need to increase γA to maintain out-of-sample performance
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Conclusions

Showed how to derive a “warped kernel” that adapts to the
underlying data geometry.

Allows semi-supervised learning beyond transduction.

Permits simple training using standard supervised methods.

General framework: changing deformation matrix M allows other
forms of unlabeled-data-based regularization.

Demos:

http://people.cs.uchicago.edu/~mrainey/jlapvis/JLapVis.html

http://people.cs.uchicago.edu/~vikass/manifoldregularization.html
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