Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin

Andrew B. Goldberg goldberg@cs.wisc.edu

Department of Computer Sciences University of Wisconsin, Madison

Stat 860 November 27, 2007

4 E 5 4

- 2 How Unlabeled Data is Useful
- 3 Using Supervised Methods to Perform Semi-Supervised Learning
- 4 Deriving a Warped Kernel
- 5 Experimental Results

Introduction to Semi-Supervised Learning

- 2 How Unlabeled Data is Useful
- Using Supervised Methods to Perform Semi-Supervised Learning
- 4 Deriving a Warped Kernel
- 5 Experimental Results

- In many real world classification tasks, labeled data is expensive.
- Unlabeled data, however, is often freely and readily available.
 - Examples: crawled Web pages, image search results, speech recordings
- Semi-supervised learning tries to use unlabeled data to learn better classifiers.

Given

- *l* labeled data points $\{(x_1, y_1), (x_2, y_2), ..., (x_l, y_l)\}$, where each $x_i \in X$ and $y_i \in \{-1, +1\}$.
- *u* unlabeled data points $\{x_{l+1}, x_{l+2}, \ldots, x_{l+u}\}$.
- (for future reference, n = l + u)

Do

- (Transduction) Predict labels $\{y_{l+1}, y_{l+2}, \dots, y_{l+u}\}$.
- (True SSL) Learn $f: X \mapsto \mathbb{R}$

< ロ > < 同 > < 回 > < 回 >

Transductive

- Labeled and unlabeled data form point cloud.
- Simply learn a function over the point cloud.
- Classic example (on board)

Semi-supervised

- Also uses both labeled and unlabeled data during training.
- But learns function defined over *entire* space.
- Can make predictions for unseen test data.

Key Assumptions

Most SSL methods make one or both of the following assumptions:

- *Manifold assumption*: classification function is smooth with respect to the underlying marginal data distribution (estimated by unlabeled data).
- Cluster assumption: classes form distinct clusters that are separated by low density regions (i.e., areas where there is no unlabeled data).

A Few Classes of SSL Methods

SSL Methods

- Self-training
- Expectation maximization for Gaussian Mixture Models
- Cluster-then-label
- Co-training or multi-view methods
- Graph-based methods*
- Manifold regularization*
- * closely related to today's talk

See Also

http://pages.cs.wisc.edu/~jerryzhu/research/ssl/semireview.html

イロト イヨト イヨト イヨト

2 How Unlabeled Data is Useful

3 Using Supervised Methods to Perform Semi-Supervised Learning

- 4 Deriving a Warped Kernel
- 5 Experimental Results

Two Concentric Circles Example

(a) two classes on concentric circles

(b) two labeled points

Andrew B. Goldberg (CS Dept)

Beyond the Point Cloud

Stat 860 November 27, 2007 10 / 37

Typical Kernel-Based Approach

- Use Gaussian (RBF) kernel $k(x, z) = e^{-\frac{||x-z||^2}{2\sigma^2}}$. *k* defines RKHS \mathcal{H} .
- Learning involves solving a regularization problem:

$$f = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma ||h||_{\mathcal{H}}^2$$

where $||h||_{\mathcal{H}}$ is the RKHS norm, and *V* is a loss function (square loss for RLS, hinge loss for SVM)

Representer theorem tells us solution has the form:

$$f(x) = \sum_{i=1}^{l} \alpha_i k(x, x_i)$$

Andrew B. Goldberg (CS Dept)

11/37

- For two labeled points, the learned function is a linear combination of two Gaussians: (a) and (b).
- Gaussian kernel has spherical symmetry, so the end result is a linear decision boundary: (c).

(a) gaussian kernel centered on labeled point 1

(c) classifier learnt in the RKHS

Graph-Based Semi-Supervised Learning

 Graph-based SSL creates nearest-neighbor graph of all data (edge weights W_{ii} or 0, if not neighbors). Then solve:

$$\arg\min_{\mathbf{f}} \frac{1}{l} \sum_{i=1}^{l} (f_i - y_i)^2 + \frac{\gamma}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (f_i - f_j)^2$$

Manifold regularization (MR) solves a related RKHS problem:

$$\underset{h \in \mathcal{H}}{\arg\min} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma_A ||h||_{\mathcal{H}}^2 + \frac{\gamma_I}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(h(x_i) - h(x_j))^2$$

This paper solves MR problem using a special kernel.

A (10) + A (10) +

- 2 How Unlabeled Data is Useful
- Using Supervised Methods to Perform Semi-Supervised Learning
- 4 Deriving a Warped Kerne
- 5 Experimental Results

A (10) > A (10) > A (10)

Question

Can we define a kernel \tilde{k} that is adapted to the geometry of the underlying data distribution?

Key properties

- \tilde{k} should be valid kernel and define a new RKHS $\tilde{\mathcal{H}}$.
- \tilde{k} should implement geometric intuitions (separate the two circles)
- Want to solve problem in new RKHS H

$$g = \operatorname*{arg\,min}_{h \in \tilde{\mathcal{H}}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma ||h||_{\tilde{\mathcal{H}}}^2$$

with a solution that's still a kernel expansion using only the labeled points: $g(x) = \sum_{i=1}^{l} \alpha_i \tilde{k}(x, x_i)$.

Two Circles Example: Desired Decision Surface

Want solution that's a kernel expansion using only labeled points.

$$g(x) = \sum_{i=1}^{l} \alpha_i \tilde{k}(x, x_i)$$

but produces a circular decision boundary.

(a) deformed kernel centered on labeled point 1

(c) classifier learnt in the deformed RKHS

• How is this possible? Stay tuned...

Andrew B. Goldberg (CS Dept)

Beyond the Point Cloud

Stat 860 November 27, 2007

< □ > < 同 > < 回 > < 回 > < 回

16/37

General strategy for getting intuitive decision surface with *supervised* kernel methods:

- Deform the original RKHS to obtain $\tilde{\mathcal{H}}$.
- Use unlabeled data to estimate marginal distribution.
- Derive explicit expression for \tilde{k} in terms of unlabeled data.
- Solve regularization problem with only labeled data in $\tilde{\mathcal{H}}$.

Novel contributions:

- First truly data-dependent non-parametric kernel defined over all data points (true semi-supervised learning).
- General class of algorithms that can be customized with different base kernels, loss functions, etc.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 How Unlabeled Data is Useful

3 Using Supervised Methods to Perform Semi-Supervised Learning

- 4 Deriving a Warped Kernel
- 5 Experimental Results

Andrew B. Goldberg (CS Dept)

Beyond the Point Cloud

Stat 860 November 27, 2007 18 / 37

A (10) > A (10) > A (10)

- X is compact domain in Euclidean space or a manifold
- *H* is a complete Hilbert space of functions *X* → ℝ, with inner product ⟨·, ·⟩_{*H*}
- *H* is an RKHS if point evaluation functionals are bounded:

• For any $x \in X, f \in \mathcal{H}, \exists C, \text{ s.t. } |f(x)| \leq C ||f||_{\mathcal{H}}$

• By Riesz representation theorem, can construct symmetric positive semi-definite kernel *k*(*x*, *z*) s.t.

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \quad k(x, z) = \langle k(x, \cdot), k(z, \cdot) \rangle_{\mathcal{H}}$$

Game plan

Show how general procedure to "deform" norm $||\cdot||_{\mathcal{H}}$ creates new RKHS $\tilde{\mathcal{H}}$ with $\tilde{k}(x,z)$

Andrew B. Goldberg (CS Dept)

19/37

- Let V be a linear space with positive semi-definite inner product (i.e., quadratic form)
- Let $S : \mathcal{H} \mapsto \mathcal{V}$ be a bounded linear operator
- Define H
 to be space of the same functions as H but modified inner product:

$$\langle f,g \rangle_{\tilde{\mathcal{H}}} = \langle f,g \rangle_{\mathcal{H}} + \langle Sf,Sg \rangle_{\mathcal{V}}$$

- Proposition: $\tilde{\mathcal{H}}$ is an RKHS (i.e., complete with bounded point evaluations)
- Proof: Straightforward result due to H
 and H
 containing the same elements. (details in paper)

Recall:

$$\langle f,g \rangle_{\tilde{\mathcal{H}}} = \langle f,g \rangle_{\mathcal{H}} + \langle Sf,Sg \rangle_{\mathcal{V}}$$

- In general case, difficult to connect k and \tilde{k} .
- We care only about the case when S and \mathcal{V} depend on the data.
- For "point-cloud norms," we can express the relation explicitly (next few slides).
- Goal is to find modification to standard kernel that relies on the geometry of unlabeled data.

Recall:

$$\langle f,g \rangle_{\tilde{\mathcal{H}}} = \langle f,g \rangle_{\mathcal{H}} + \langle Sf,Sg \rangle_{\mathcal{V}}$$

- Given data x_1, x_2, \ldots, x_n , and let $\mathcal{V} = \mathbb{R}^n$
- Let $S : \mathcal{H} \mapsto \mathbb{R}^n$ be the evaluation map $S(f) = \mathbf{f} = (f(x_1), \dots, f(x_n))$.
- Thus, we can write semi-norm on \mathbb{R}^n using some s.p.d. matrix *M*:

$$||Sf||_{\mathcal{V}}^2 = \mathbf{f}^\top M \mathbf{f}$$

Modified Regularization Problem

• Recall:
$$\langle f, g \rangle_{\tilde{\mathcal{H}}} = \langle f, g \rangle_{\mathcal{H}} + \langle Sf, Sg \rangle_{\mathcal{V}}, \quad ||Sf||_{\mathcal{V}}^2 = \mathbf{f}^{\top} M \mathbf{f}$$

• The regularization problem:

$$f = \operatorname*{arg\,min}_{h \in \tilde{\mathcal{H}}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma ||h||_{\tilde{\mathcal{H}}}^2$$

thus becomes

$$f = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma(||h||_{\mathcal{H}}^2 + \mathbf{h}^{\top} M \mathbf{h})$$

- Note that **h** is based on labeled and unlabeled data. *M* can encode smoothness w.r.t. graph/manifold.
- We'll now show how to solve the first problem directly using an explicit form for *k*.

23/37

Outline for deriving $\tilde{k}(x, z)$:

Show that

$$span\{k(x_i,\cdot)\}_{i=1}^n = span\{\tilde{k}(x_i,\cdot)\}_{i=1}^n$$

This leads to

$$\tilde{k}(x,\cdot) = k(x,\cdot) + \sum_{j=1}^{l+u} \beta_j(x)k(x_j,\cdot)$$

- Solve linear system involving all data to find $\beta_j(x)$ coefficients.
- Then we can compute $\tilde{k}(x, z)$ explicitly.

a 🕨

• Decompose $\tilde{\mathcal{H}}$ orthogonally as:

$$\tilde{\mathcal{H}} = span\{\tilde{k}(x_1, \cdot), \dots, \tilde{k}(x_n, \cdot)\} \oplus \tilde{\mathcal{H}}^{\perp}$$

where $\tilde{\mathcal{H}}^{\perp}$ contains functions equal 0 at all data points.

Thus, for f ∈ ℋ[⊥], Sf = 0, and ⟨f,g,⟩_ℋ = ⟨f,g⟩_ℋ for any g.
As a result, for any f ∈ ℋ[⊥],

$$f(x) = \langle f, \tilde{k}(x, \cdot) \rangle_{\tilde{\mathcal{H}}} = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} = \langle f, k(x, \cdot) \rangle_{\tilde{\mathcal{H}}}$$

• Thus, $\langle f, k(x, \cdot) - \tilde{k}(x, \cdot) \rangle_{\tilde{\mathcal{H}}} = 0$ or $k(x, \cdot) - \tilde{k}(x, \cdot) \in (\tilde{\mathcal{H}}^{\perp})^{\perp}$.

Andrew B. Goldberg (CS Dept)

Deriving the Warped Kernel

• Because
$$k(x,\cdot) - \tilde{k}(x,\cdot) \in (\tilde{\mathcal{H}}^{\perp})^{\perp}$$
, we can write

$$k(x, \cdot) - \tilde{k}(x, \cdot) \in span\{\tilde{k}(x_1, \cdot), \dots, \tilde{k}(x_n, \cdot)\}$$

• But, for any
$$x_i \in X$$
 and $f \in \tilde{\mathcal{H}}^{\perp}$,
 $\langle k(x_i, \cdot), f \rangle_{\tilde{\mathcal{H}}} = \langle k(x_i, \cdot), f \rangle_{\mathcal{H}} = f(x_i) = 0.$

• Thus, $k(x_i, \cdot) \in (\tilde{\mathcal{H}}^{\perp})^{\perp}$. Combining these results, we see

$$span\{k(x_i,\cdot)\}_{i=1}^n \subseteq span\{\tilde{k}(x_i,\cdot)\}_{i=1}^n$$

• Also possible to show that $\tilde{k}(x_i, \cdot) \in (\tilde{\mathcal{H}}^{\perp})^{\perp}$, so

$$span{\tilde{k}(x_i,\cdot)}_{i=1}^n \subseteq span{k(x_i,\cdot)}_{i=1}^n$$

• Therefore, the two spans are the same.

• If $span{\tilde{k}(x_i, \cdot)}_{i=1}^n$ is the same as $span{k(x_i, \cdot)}_{i=1}^n$, we can use the result that $k(x, \cdot) - \tilde{k}(x, \cdot) \in span{\tilde{k}(x_1, \cdot), \dots, \tilde{k}(x_n, \cdot)}$ to write

$$\tilde{k}(x,\cdot) = k(x,\cdot) + \sum_{j} \beta_j(x)k(x_j,\cdot)$$

where the β_i coefficients depend on the data *x*.

- Warped kernel *k* is simply *k* modified by some linear combination of data points.
- If we can find an explicit expression for β_j(x), then we'll have an explicit form for k

- We now find $\beta_j(x)$.
- System of linear equations formed by evaluating $k(x_i, x)$ or $k_{x_i}(x)$:

$$\begin{aligned} k_{x_i}(x) &= \langle k(x_i, \cdot), \tilde{k}(x, \cdot) \rangle_{\tilde{\mathcal{H}}} \quad \text{(repro. prop. of } \tilde{\mathcal{H}}\text{)} \\ &= \langle k(x_i, \cdot), k(x, \cdot) + \sum_j \beta_j(x)k(x_j, \cdot) \rangle_{\tilde{\mathcal{H}}} \\ &= \langle k(x_i, \cdot), k(x, \cdot) + \sum_j \beta_j(x)k(x_j, \cdot) \rangle_{\mathcal{H}} + \mathbf{k_{x_i}}^\top M \mathbf{g} \end{aligned}$$

where $\mathbf{k}_{\mathbf{x}_{i}} = (k(x_{i}, x_{1}), \dots, k(x_{i}, x_{n}))^{\top}$ and \mathbf{g} has n components $g_{m} = k(x, x_{m}) + \sum_{j} \beta_{j}(x)k(x_{j}, x_{m}), m = 1, \dots, n.$

Andrew B. Goldberg (CS Dept)

• Final linear system for coefficients $\beta(x) = (\beta_1(x), \dots, \beta_n(x))^\top$:

$$(I + MK)\beta(x) = -M\mathbf{k}_{\mathbf{x}}$$

where K is the kernel matrix on all *n* data points, and $\mathbf{k}_{\mathbf{x}} = (k(x_1, x), \dots, k(x_n, x))^{\top}$.

• Now solving for $\beta(x)$ gives us an expression for \tilde{k} .

Reproducing Kernel of $\hat{\mathcal{H}}$

$$\tilde{k}(x,z) = k(x,z) - \mathbf{k_x}^{\top} (I + MK)^{-1} M \mathbf{k_z}$$

Andrew B. Goldberg (CS Dept)

Beyond the Point Cloud

Stat 860 November 27, 2007 29 / 37

• • • • • • • • • • • •

- Now that we can express *k* explicitly, we need to choose *M*.
 Want *M* to encode our intuition about the data geometry.
- Choose graph Laplacian associated with the point cloud.
 - Implements smoothness assumption w.r.t. graph over data.
- Let *W* be the graph edge weight matrix with $W_{ij} = e^{-\frac{||x_i x_j||^2}{2\sigma^2}}$, if x_i and x_j are nearest neighbors, and 0 otherwise.
- Let *D* be the diagonal degree matrix with $D_{ii} = \sum_{j} W_{ij}$.
- Laplacian L = D W.

• Note:
$$\mathbf{f}^{\top} L \mathbf{f} = \sum_{i,j=1}^{n} W_{ij} (f(x_i) - f(x_j))^2$$

Using Laplacian as Deformation Matrix

• Thus, using $M = \frac{\gamma_l}{\gamma_A} L$, the problem in modified RKHS $\tilde{\mathcal{H}}$:

$$f = \operatorname*{arg\,min}_{h \in \tilde{\mathcal{H}}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma_A ||h||_{\tilde{\mathcal{H}}}^2$$
(1)

is equivalent to the MR problem in original RKHS \mathcal{H} :

$$f = \operatorname*{arg\,min}_{h \in \mathcal{H}} \frac{1}{l} \sum_{i=1}^{l} V(h, x_i, y_i) + \gamma_A ||h||_{\mathcal{H}}^2 + \gamma_I \sum_{i,j=1}^{n} W_{ij}(h(x_i) - h(x_j))^2$$
 (2)

Thus, solving (1) using *k*(*x*, *z*) in a standard kernel method achieves MR result from (2).

A I > A = A A

Revisiting the Two Circles Example

- Using the Laplacian warped kernel, the result is a combination of kernels that adhere to the geometry of the space.
- Now the decision boundary correctly separates the circles.

(a) deformed kernel centered on labeled point 1

(b) deformed kernel centered on labeled point 2

(c) classifier learnt in the deformed RKHS

- 2 How Unlabeled Data is Useful
- 3 Using Supervised Methods to Perform Semi-Supervised Learning
- 4 Deriving a Warped Kernel

- Use $M = \frac{\gamma_l}{\gamma_A} L^p$ for some integer p
- Methods: Laplacian SVM, Laplacian RLS
- Using the warped kernel, solve both using standard solvers.
- Some parameters fixed to reduce complexity, others chosen by grid search using 5-fold CV.
- Compared against standard SVM and RLS without data-dependent kernel, and to other transductive methods.

・ 同 ト ・ ヨ ト ・ ヨ

Range of tasks:

- artificial two 50-dim Gaussian data
- image and digit recognition data
- text classification data (i.e., classify newsgroup posts by topic)
- Web page classification using page text and/or hyperlink text

Properties:

- 2–20 classes
- 50–7000 dimensions
- 12–50 labeled points
- 500-2000 unlabeled points

- Transductive (in-sample unlabeled data) results
 - Significant gains for LapSVM and LapRLS
- Semi-supervised (out-of-sample generalization) results
 - As good as transductive results
- Study of parameters
 - Larger γ_I leads to much better in-sample performance
 - Need to increase γ_A to maintain out-of-sample performance

- Showed how to derive a "warped kernel" that adapts to the underlying data geometry.
- Allows semi-supervised learning beyond transduction.
- Permits simple training using standard supervised methods.
- General framework: changing deformation matrix *M* allows other forms of unlabeled-data-based regularization.

Demos:

- http://people.cs.uchicago.edu/~mrainey/jlapvis/JLapVis.html
- http://people.cs.uchicago.edu/~vikass/manifoldregularization.html

37/37