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Abstract—In this paper we introduce a technique for applying textual labels to 3D surfaces. An effective labeling must balance the
conflicting goals of conveying the shape of the surface while being legible from a range of viewing directions. Shape can be conveyed
by placing the text as a texture directly on the surface, providing shape cues, meaningful landmarks and minimally obstructing the
rest of the model. But rendering such surface text is problematic both in regions of high curvature, where text would be warped, and
in highly occluded regions, where it would be hidden. Our approach achieves both labeling goals by applying surface labels to a
’text scaffold’, a surface explicitly constructed to hold the labels. Text scaffolds conform to the underlying surface whenever possible,
but can also float above problem regions, allowing them to be smooth while still conveying the overall shape. This paper provides
methods for constructing scaffolds from a variety of input sources, including meshes, constructive solid geometry, and scalar fields.
These sources are first mapped into a distance transform, which is then filtered and used to construct a new mesh on which labels
are either manually or automatically placed. In the latter case, annotated regions of the input surface are associated with proximal
regions on the new mesh, and labels placed using cartographic principles.

Index Terms—surface labeling, computational cartography, text authoring, annotation

1 INTRODUCTION

Text labels are useful to annotate features when viewing 3D mod-
els. Good labelings must address several sometimes conflicting is-
sues: they must be legible (the text is readable), visible (the text can
be seen), proximal (the labels are visually connected to the feature
they annotate), and shape-conveying (they should help, not hinder the
understanding of the underlying data). Cartographers have considered
similar issues on 2D maps for millennia, forming a highly developed
art. However, for viewing of 3D models, especially free-form mod-
els or applications where the user controls the viewpoint, many of the
issues become more challenging. In this paper, we introduce Text Scaf-
folds, an approach for textual labeling in 3D model visualization that
offers better control over the tradeoffs, often allowing all 4 goals to be
met simultaneously.

There are two general strategies for annotating 3D models: plac-
ing the text on screen-aligned “billboards” or applying the text as a
surface-adhering label (i.e. as a texture). The former easily meets
the goals of legibility and visibility and is easy to implement. How-
ever, connection to the model can be difficult, especially as the shapes
grow more complex or the number of annotations grows, and they can
detract from the perception of shape (by occluding it) without the po-
tential for elucidating it.

In contrast to screen-aligned labels, surface labels can add to shape
perception by providing texture cues and motion cues (if the viewpoint
is moved). However, text placed on curved surfaces may be warped
(hurting legibility), or occluded (hurting visibility). Sometimes there
may not even be an appropriate surface at the scale of a feature. Fi-
nally, applying the labels to free form surfaces can be challenging as it
requires low-distortion parameterizations and anti-aliasing to give the
crisp edges helpful for text legibility.

In this paper, we introduce a new approach for the display of textual
labels to annotate features on 3D models. Our key insight is that sur-
face labels are best at roughly conveying large-scale shape, and that the
issues are most challenging when the features are small. Effectively,
surface text labels work well on some surfaces, and not on others. Our
basic premise is to construct a surface that is similar to the original
yet amenable to surface labeling and apply surface labels to this new
surface. We call such surfaces text scaffolds.
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Figure 1 shows some examples of labels that illustrate the advan-
tages of our approach. Unlike screen-space labels, our scaffold labels
convey a sense of the rough shape of the underlying model and fea-
tures, especially when the viewpoint is moved. While they do not pre-
cisely show where the feature lies on the surface, they are often close
enough to provide a visual connection. Their proximity also helps with
managing clutter as the number of labels increases. Unlike direct sur-
face labeling (Fig 2), the scaffold text retains its legibility over small
surfaces features as it is not warped by curvature details. Small pock-
ets or bumps do not cause occlusion problems, and the label is visible
when the feature is visible. Scaffolds can be constructed even when
there is no obvious surface for the label (Figure 1c), and our methods
can construct scaffolds from a wide variety of data.
Our discussion of the text scaffold approach begins by consider-

ing how the goals for good labeling dictate the kinds of surfaces that
should be used as scaffolds. §3 introduces an approach for producing
such surfaces from various source data. The approach uses signed dis-
tance fields internally, but produces a smooth triangle mesh that both
approximates the original data yet is amenable for labeling. §4 then
considers the problem of creating the labels on this surface. Methods
are described that automatically choose paths for text to follow along
the surfaces. Finally, we present an implementation that uses recent
advances in surface parametrization and texture filtering to display the
labels in an efficient and visually crisp manner.

1.1 Contributions

The core contribution of this paper is a novel approach to present-
ing textual annotations on arbitrary 3D surfaces, one which conveys
shape and maintains readability to a degree not possible with prior
approaches. In creating this approach, we make the following contri-
butions:

• we explore the issues in effectively presenting text on surfaces,
defining the types of surfaces that are likely to be amenable for
labeling;

• we introduce a methodology for constructing surfaces with these
properties that is efficient enough to allow for experimentation,
yet flexible enough to work from a wide-variety of source data;

• we consider the problem of label placement on 3D surfaces, pro-
viding an extension of cartographic principles and algorithms;

• we consider the problem of rendering textual labels on 3D sur-
faces, providing an implementation that is simple and efficient.

2 RELATED WORK

Many papers deal with the task of automated label placement as 2D
external labels, some for non-interactive cartographic applications [4]



(a) labeling MRI volume data (b) labeling a protein surface (c) labeling atomic structure (d) labeling an alien

Fig. 1. Examples illustrate Text Scaffold Labeling on a variety of data types and application domains. In all figures, wa = 1.0 and wd = 2.0.

others for interactive 3D illustrations [1, 27]. These techniques can
generally work independently from underlying geometry, and have
the advantage of being generalizable across a wide range of structures
[25].

Work by Ropinski, et al., most resembles our own [31]. Their
method fits labels to segmented regions of a smooth approximation
of the depth map of a particular view. Unlike our method, which con-
siders the surface as a whole, this optimizes for only one viewpoint,
and further, does not allow label placement over disconnected regions,
such as those of Figure 1 (a, c and d).

Papers by Götzelmann, et al., have dealt with the concerns of data
management for annotation [15], integrating internal and external la-
bels [12] and the need for methods to annotate animated 3D objects
[16].

While most cartography texts (c.f. [35]) discuss the issues in textual
labeling on maps, the work of Imhof [22] is often considered the sem-
inal authority. The guidelines are typically very specific to 2D maps,
although cartographers are beginning to consider their extension to in-
teractive of animation maps [17], and 3D flyovers [18, 19]. We have
used these discussions to inform our design.

While there has been considerable interest in automating carto-
graphic label placement, the focus has generally been on labeling large
numbers of point features to provide labels that are as close as possible,
without overlap. We do not consider interactions between labels (yet),
although this problem may be considered in our framework in the fu-
ture. Automating the labeling of lineal and areal features in order to
achieve legible labels that convey feature shape has received much less
attention. An early, but comprehensive solution was demonstrated by
Freeman and Ahn [8]. Plumer, et al. [7] consider several approaches
for automatically placing labels in areal regions, and suggest the skele-
tonisation approach of Freeman and Ahn as the most effective at con-
veying shape. We employ this approach in §4.4.2.
Quantitative metrics for assessing labeling, such as [38] and [20],

have been proposed. However, these mainly consider interactions be-
tween labels, and the aesthetic issues particular to 2D maps.

3 TEXT SCAFFOLDS

The key element of our approach is to create a scaffold surface specif-
ically designed to accept labels. This surface is constructed such that
labels applied anywhere on it will meet our goals for good labels. Con-
versely, the specific goals dictate the properties this surface must have:

• For the labels to be legible, the surface must be smooth (or de-
velopable) enough that text on it will not be distorted.

• For the labels to be visible from a wide range of viewpoints, all
points on the surface should be visible from a range of directions.
Holes and divots should be eliminated to avoid highly-occluded
regions. The scaffold must remain outside of the initial surface
(otherwise the surface would occlude it).

• For the labels to be proximal, the scaffold must be close to the
original surface. This is important to facilitate connection be-
tween the label and the feature it annotates.

• For the labels to be shape conveying they should follow the basic
shape of the original surface. Approximation partially implies
shape conveyance. There is evidence that texture can help in
shape perception (c.f. [5, 26, 11]), particularly when then object
moves. Textures (particularly ones not specifically designed to
convey shape) primarily convey low frequency shape informa-
tion. This suggests the use of texture to convey low frequency
shape by applying it to a smoothed version of the surface (i.e.
one that only has the low frequencies).

These goals necessarily conflict when the surface has high frequency
detail. The scaffolds, and therefore the labels applied to them, deviate
from the original surface and do not convey its high frequency details.
Control of this tradeoff is a key element in our design.
To meet our goals, scaffold generation must create a smooth ap-

proximation to the input surface where all points on the scaffold are
visible from a wide range of directions. The process of scaffold gen-
eration takes as input a description of the initial surface in a variety
of forms (our implementation supports triangle meshes, constructive
solid geometry and scalar fields). Triangle meshes are used as the out-
put as they facilitate the application of text in later phases.
Figure 3 provides an overview of our process. The key idea in

the method is to use a signed distance field to represent this surface.
This representation simplifies the processing to create smooth, highly-
visible surfaces. In particular, it is able to fill holes and make other
topological alterations more simply than can be achieved using meth-
ods such as [14, 39]. Signed distance fields also facilitate our drastic
contraction-proof smoothing. As a final step, the distance field is con-
verted to a triangle mesh.
For our application, the drawbacks of distance fields are not impor-

tant. In particular, distance fields have limited resolution, and there-
fore cannot provide perfect reconstructions of the source data. This
problem does not affect us as we only seek approximations. However,
our implementation uses sub-voxel precision throughout to allow for
better representations and smoother surfaces.

3.1 Distance Fields

The first step of our approach converts the source data to a distance
field. To do this, we first create an implicit representation of the source
data, and then transform it to a distance field.
For data provided as a scalar field, conversion is straight-forward,

requiring only resampling to the desired dimensions of a scaffold field.
Specific iso-contours can be set as the surface by subtracting that value
over the field. Constructive solid geometry is also straightforward to
handle. Currently, we allow for union, subtraction, intersection of
cylinders and spheres. These operations are achieved by first raster-
izing each object into a separate distance field [9].



(a) Brain, with text rendered directly onto the surface. (b) Our approach, rendering text onto a scaffold.

Fig. 2. Labeling the brain surface: labels placed directly on the surface (a) can be illegible as the surface details cause the text to be distorted and
partially occluded. Text scaffolds (b) avoid these issues, while still conveying the overall shape.
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Fig. 3. The text scaffold generation algorithm.

For triangle meshes, a scan-line conversion method similar to [6] is
used, where first triangles are scanned in raster order into the field to
find intersections. Voxels that are determined to intersect with a trian-
gle are given a value according to the signed distance from the center
of that voxel to that triangle. For voxels containing multiple triangles,
we take advantage of the fact that scaffolds must bound the surface
itself. We also do not require strict fidelity, so so our system can sim-
ply find the minimum signed distance over all triangles, and assign
that value to the voxel. This avoids costly inside/outside tests, at the
expense of having a scaffold boundary that slightly deviates outward
from the original surface.

Once the boundary is established, all other voxels are scan con-
verted by casting rays along rows. Voxels are given values as in Eq. 2.
Those encountered after passing an odd number of boundary points
are given an initial value of -1 to mark them as inside the surface. Re-
maining voxels are given a value of 1 to mark them as outside. To

be robust against meshes that do not form closed two-manifold sur-
faces, our system casts rays from multiple projections, as in [29], and
assigns to each voxel the most probable value given by voting among
the results of each projection.
After loading our source surface, the band of voxels closest to the

surface are considered to contain a valid distance to the nearest point
on that surface.
In our method, we will need to retain the original field as well as the

field which will be operated on throughout the text scaffold generation
process. These will be designated Forig and Fcur , respectively, in the
following sections.

3.1.1 Building the Distance Field

Once obtained, the scalar field must be converted to a distance field.
In other words, for a given bounded solid S, we require each voxel to
contain its distance to the boundary ∂S. We use the following form
for the signed distance function [24]:

d(p) = sgn(p) inf
x∈∂S

‖x − p‖ (1)

where

sgn(p) =

{

−1 if p ∈ S
1 otherwise

(2)

During each pass of the algorithm, the distance field will need to
be updated. Our system assumes that the narrow band around the zero
isocontour, also known as the set of boundary cells, contains a valid
distance value. Remaining cells are then filled in using the Vector-City
Vector Distance Transform [33]. In this scheme, a vector is maintained
for each voxel which points to the nearest point on the surface. This
allows for higher accuracy than Euclidean techniques (such as Cham-
fer distance [2, 3]), which tend to amplify the discretization errors that
arise as distance is propagated away from the surface boundary.
Our method initializes boundary-cell distance vectors to be the gra-

dient vector for each cell, weighted by its field value. This gives a
starting set of vectors, which are then propagated outward using a
sweeping scheme. This is first done for interior voxels, then repeated
for exterior voxels, producing a signed distance transform.

3.2 Scaffold Generation

Once a distance transform is generated, our algorithm constructs a fi-
nal scaffold by performing the following sequence of steps, described
in more detail below. First, Forig is copied into Fcur . Then, ambient
visibility values are calculated on Fcur , which are used to expand the
surface to close up regions of high occlusion. Fcur may be further
dilated at this point, to close up any small topological holes.

Fcur is smoothed to remove creases and other artifacts that may
have crept in, and then eroded back, contracting as far as possible
while still remaining above the original surface. Finally, a scaffold
is generated by first performing marching cubes [28] on the field to



Fig. 4. Holes in the source mesh, such as in the handle of this coffee cup, can be closed by either increasing the dilation constant or by increasing
the ambient weight term. Depicted here are the results of increasing, from left to right, the ambient weight term. Note that in the figure on the right,
the hole formed by the handle has completely closed up in the scaffold. In this example, wd = 0, while wa = 0, 1.0 and 3.0, from left to right.

produce an initial mesh, and then a final pass of Taubin smoothing
[37] is applied to produce a final, smooth mesh.

After every step above, Fcur likely no longer represents a valid
distance transform. So its distance field is regenerated according to
the scheme described in §3.1.1.
Another subtlety is that, especially when dilating, the surface may

expand outside of the bounds of the field itself. Our system handles
this problem by first computing how far the surface would leave the
field during an operation. The boundaries of the field are then ex-
panded (or padded) by adding new cells before actually performing
that operation. This ensures that the zero surface is still contained
within the field at all times.

3.2.1 Dilate Surface and Weight by Ambient Visibility

Dilation of a surface in a distance transform can be accomplished by
simply subtracting the desired expansion constant value wd from the
scalar value in every voxel. This effectively moves the zero-surface of
Fcur outward to lie on the surface cutting throughwd. After recomput-
ing the distance transform, small pockets and holes may disappear, and
components separated by a distance less than wd will become joined.

Our algorithm further dilates Fcur to force it to avoid occlusion.
To accomplish this, it first calculates ambient visibility for each voxel
by traversing the grid in the direction of each of 26 neighbors. For
each direction, if the edge of the field is reached before an interior
voxel, then that voxel’s ambient visibility value viscur(x, y, z) is in-
cremented.

Once all ambient values are computed, ambient field values are
combined with the dilation constant to produce a dilated surface in
the following way:

amb(x, y, z) = max

(

0, visthresh −
viscur(x, y, z)

26

)

(3)

Fcur(x, y, z) = Fcur(x, y, z) − wa ∗ amb(x, y, z) − wd (4)

Here, visthresh corresponds to the minimum percentage of rays
that must intersect the surface to consider the voxel to be occluded.
Values for vis higher than this number are not considered to be in a
pocket, and so will not contribute to the dilation of the field. In this
paper, we set visthresh = .5, which leaves voxels unaffected that
are mostly outside the mesh, but dilates those voxels that are inside
proportionally to their degree of occlusion.

Weights wa and wd can be adjusted to tune the desired degree of
occlusion-avoidance and dilation, respectively. Figures 4 and 6 show
the effects of different parameters on a surface.

Using ambient occlusion allows our method to directly improve
overall text visibility, as surface regions that are not visible will be
pushed outward, while the outer boundary remains unaffected. In con-
trast to dilation, areas that are within significant pockets, but never-
theless far from any part of the surface, are still filled in by utilizing
ambient occlusion.

Original Field Occlusion Weight New Field

Fig. 5. Shown here is a 2D representation of the results of adding ambi-
ent weight to the field surrounding a pocket. At left, the original field, with
black depicting voxels interior to the mesh, and white depicting exterior
voxels. Occlusion weight, shown at center is calculated for all voxels and
subtracted from these values. External voxels close to the surface of the
mesh may now be negative, causing them to become internal voxels.

Fig. 6. Shown here is a cutaway view of a protein surface with multiple
scaffolds, each with a different visibility weight. Note that the cleft, inside
which voxels are highly occluded, is followed most closely by the orange
surface, which has no ambient weight applied. Each successive surface
is generated by an increasingly larger ambient weight (wd = 0 and
wa = 0, 2, 4, 8 and 12, respectively), causing the surface to be pushed
out of the cleft.

Fcur now no longer represents a valid distance field, so our method
now follows the same steps as in §3.1.1 by throwing away all distances
except those within the narrow band around the zero-surface and reini-
tializing the field.

3.2.2 Smooth Field

By dilating Fcur , our method has now satisfied our visibility goal,
but it still needs to ensure a smooth scaffold on which to place text.
Though a separate mesh smoothing pass is applied later in §3.2.4, we
desire to have our field as smooth as possible, as we find that this both
improves field quality after erosion, as well as the quality of the mesh
that we can extract from the field.

In this step, smoothing is a Gaussian filter of size σb is convolved
with the scalar field values of Fcur , which affects them in much the
same way that it would affect an ordinary image: values blur with their
neighbors, and sharp features tend to diffuse into surrounding areas.

σb is another user-controllable parameter, and its effect is to smooth



Fig. 7. Problem cases for traditional text rendering: at left, a bumpy surface, with text placed directly over surface noise. At center, text is allowed
to flow over the hole. At right, text is allowed to lift off a set of peaks. In these examples, wd = 1.0 and wa = 2.0.

out peaks and fill in valleys. Larger values for σb, then, reduce undula-
tion in the scaffold, which contributes to the overall visibility of labels
placed on that scaffold, at the expense of less fidelity: the scaffold
will diverge from the original surface in high-frequency regions. All
figures in this paper are generated with σb = .8.
As is the case after §3.2.1, Fcur no longer represents a distance field

after smoothing, so again the field is regenerated §3.1.1.

3.2.3 Erode Surface

The surface contained in Fcur now avoids pockets, and is smooth, but
due to dilation, it no longer tightly bounds the original surface. The
next step is to erode Fcur back as far as is possible without intersecting
the surface contained in Forig .
In order to accomplish this, we want to find the isosurface contained

within Fcur with the smallest value that is still completely contains
Forig . This amounts to searching for the largest field value of Fcur

over all positive boundary voxels in Forig . This value is subtracted
from Fcur to produce a final bounding surface, and again the distance
field is recomputed.

3.2.4 Create Scaffold Mesh

The final step in creation of a scaffold mesh is to convert the distance
transform into a triangular mesh. Our algorithm uses marching cubes
[28] for this purpose. Since the field now defines a set of smooth
isosurfaces, marching cubes will produce a mesh that is smooth at
larger scales, but it still contains minor stair-step artifacts along each
voxel boundary.
To remove these artifacts, Taubin smoothing [37] is applied. We

find that two iterations suffice, using λ = .8 and µ = .87, to flatten any
residual stair steps. Care should be taken to avoid scaffold intersection
with the underlying model, which would cause text to disappear under
the surface. In practice, because these vertices are not moving far, we
have not found this to be a problem, though the smoothing process can
be halted if such a condition occurred.
One small issue with marching cubes is that the method often pro-

duces irregular surfaces. While our system could process the mesh to
correct this, as in [40], we find that for the purposes of text layout, the
irregularity of our scaffold meshes does not cause any issues.

4 CARTOGRAPHIC LABELING

After creating the scaffold surface, the system must place the text on
the surface. This task requires first choosing where the labels should
be placed, and then drawing the letters on the surface. Our approach
divides the task by having a first phase provide a smooth curve that
the letters should follow to a second phase that constructs parameteri-
zations along this curve that allow for texture mapping, and a display
component that enhances the display of the textures. In keeping with
cartographic terminology, We refer to the first task as labeling and the
latter as lettering.
Cartographic labeling considers three types of features: point fea-

tures, lineal features, and areal features. For each feature type, our
approach generates a smooth path on the scaffold surface onto which
lettering is applied. In our implementation, features can be either sup-
plied manually, or taken from the data.

In traditional cartographic labeling, the preferred “up” direction of
the map suggests that most labels are placed on straight horizontal
lines, unless there is good reason to do otherwise [22]. For surface la-
beling, there is often no “up” direction (as the object may be rotated),
or even “straight horizontals.” Additionally, there are often other con-
cerns for directionality, such as conveying shape or maximizing visi-
bility in non-flat regions.

4.1 Smooth Paths

Because the scaffold surface was explicitly constructed to have neces-
sary smoothness and visibility properties, labeling methods can place
text anywhere on the surface. For this text to be legible, the path that it
follows should be smooth. Because the mesh representing the scaffold
surfaces may be coarsely and irregularly triangulated, paths limited to
the vertices of the mesh are often not smooth enough, leading to letter-
ing that looks irregular and jagged. Therefore, paths are represented as
a series of nodes, each lying on a triangle face. Pairs are implicitly con-
nected by a path running along the surface. This representation keeps
nodes on the scaffold (necessary as it is this scaffold onto which labels
are applied), while providing more flexibility for path placement.

To create a smooth path given a (potentially not-smooth) input path,
our approach first adds additional nodes along the path by linear in-
terpolation where necessary to insure sufficient sampling of the path.
This path is then smoothed by first smoothing the curve in 3D, un-
constrained by the mesh, and then projecting the points back onto the
mesh. These smoothing steps are iterated a fixed number of times.
While this procedure only approximates smooth curves on the surface,
it is sufficient in practice.

4.2 Point Labels

When the feature to be labeled is a point on the surface, we create a
path by fitting a path along the smallest axis of principle curvature.
This corresponds to a vector pointing to the flattest local direction of
travel from that point. That vector is expanded in both directions.
Points are then sampled along the line segment, and projected back
onto the surface, where they are iteratively smoothed using the method
in §4.1.

4.3 Labeling Lineal Features

Lineal features have two forms: “lines” connecting two endpoints, and
strokes, where more detail about a lineal feature is given. Either type
may be provided interactively (the former by specifying two vertices,
the latter by sketching), or may come from an annotation in the data.

The connection between two points is not necessarily a line be-
cause the path must follow the surface. In principle, the straightest
path would minimize text curving (which increases readability) and
may appear to be the most direct. On a mesh, the straightest path is
not necessarily the shortest path [30]. In practice, shortest paths are
easier to compute and seem close enough for our application. Our im-
plementation uses the geodesic distance algorithm of Surazhsky, et al.,
[36] to find the shortest path between the two vertices. This algorithm
“cuts across” the faces of triangles, where necessary, to create paths.
These paths require no further smoothing.



(a) Region, in red, to be labeled (b) After distance transform

(c) Path fit to longest medial axis (d) Resulting text

Fig. 8. Our automatic labeling algorithm first applies a distance trans-
form to the 2D parameterization of a region. A path is then fit along the
longest medial axis of that transform, smoothed, and text placed in the
center of that path. The resulting label fits the contours of the region,
while avoiding proximity to region boundaries.

For many lineal features, a more complete curve is provided. For
example, there might be a lineal feature in the data (such as a ridge)
or the user might sketch a curve to indicate a shape to convey with the
label. These curves may not provide good paths for labels, as they may
not be smooth enough which would lead to unattractive or illegible
text. Therefore, our system smooths the provided curve (using the
method described §4.1) to create the text paths.

4.4 Labeling Areal Features

Areal features (regions on the surface) are marked in our system as a
collection of vertices on the initial mesh. Our system uses a variant of
the method of Freeman and Ahn [8] (detailed in Plumer, et al. [7]) to
convert an areal region into a path as described below.

4.4.1 Mapping Regions To Scaffolds

The first step in this process is to, for each annotated region, find an
associated region on each scaffold. This is done by projecting each
point in a region onto the nearest few vertices on the surface. The new
scaffold region, then, is the union of these projections. Our system
uses Approximate Nearest Neighbors [23] to speed up this process.

After the region is created, it may contain small holes due to sam-
pling artifacts. Their presence can foil the path-creation process, so a
“close” morphological operator [10] is applied, which first dilates the
region two vertices outward along the mesh, and then erodes by two
vertices.

4.4.2 Building The Path

Now that regions have been built on each scaffold, the next step is to
construct a path that conforms to the contours of a region. We desire
this path to take the form of the underlying region: if the region is
long and thin, it should lie along the major axis. If the region is more
circular, it should stay roughly in the center. In either case, the path
should avoid boundaries whenever possible.

A well-known technique in automatic 2D map-labeling [7, 8] is to
construct such a path from the medial-axis transform. The idea is to
first construct a distance transform of the region as a 2D texture. Then,
a connected graph, or skeleton, is built by finding all maximal points

in that transform. This skeleton can be noisy, but the longest path will
approximate the “spine” of the region.
We adapt this technique for finding text paths on the surface, as de-

picted in Figure 8. First, a region is parameterized into a 2D texture. A
spine is found, as described above. This spine is then placed back onto
the surface, according to the same parameterization, and smoothed us-
ing the same method as described in §4.3.

4.5 Applying letters

Regardless of which method is used to construct label paths on the
surface, our system parameterizes each character individually. This
choice, rather than parameterizing the label as a whole or even the
entire surface, allows for flexibility over character placement, and en-
sures that even long strings of text are unlikely to suffer from a bad
parameterization. We have found the Exponential Maps method [34]
to be well suited to the creation of small, local character parameteriza-
tions.
One downside of this decision, however, is that it becomes harder

to choose a good relative orientation for letters, as parameterization
of one letter cannot be used to inform the others. Our system orients
letters by averaging over all piecewise-linear path segments that are
contained within a given letter’s parameterization.
As text may be displayed at any size, letters need to be legible at

high magnification, with minimal pixelation or other artifacts. Since a
surface labeling could contain an arbitrary number of labels, memory
footprint was also a concern, so we wanted to keep texture usage to a
minimum.
We chose to use Green’s alpha-tested magnification [13] method,

which uses texture hardware to subsample the distance transform of
the shape of a given character. Both character boundaries and stroke
boundaries are established at specific isocontours of this distance
transform. The primary advantage of this method is that it avoids the
characteristic step-blurring effect that results from bilinear filtering of
a hard boundary edge, and produces sharp boundaries from relatively
small textures.
All characters are packed into one texture, which is 1024x1024

pixels in dimension. When rendering a character, our system adjusts
the parameterization to sample the correct character from this texture.
Screen space anti-aliasing, if available in hardware, is used to further
smooth character edges.

5 RESULTS

We have implemented our text scaffolding techniques in a visualiza-
tion testbed that runs under Windows. For all molecular examples in
this paper, we use MSMS [32] to generate an initial molecular surface
as a triangle mesh, and some regions are identified using an implemen-
tation of Ligsite [21] to identify putative binding pockets.
Figures throughout the paper show the effectiveness of our ap-

proach in legibly conveying annotations on a complex surface. Fig-
ure 7 shows several problem cases for traditional surface text render-
ing, and how our solution handles them. Figure 9 shows how our
system can automatically construct a path to place an label for an an-
notated input region. Figures 10 and 11 show more examples of how
our system handles various types of input surfaces.
In all figures, the original model was inserted into 40x40x40 voxel

field. We found that a field of this size results in good labels for a
wide range of model sizes. Larger fields, in general, remain more
faithful to the original surface, but at the cost of increased runtimes.
All figures also used values of −1 for wd, and varying values for wa.
In our experience, higher values for wd produce a smoother result, as
isocontours tend to smooth out farther from the surface. This is not
always desirable, as a smoother surface is necessarily a less-faithful
surface, and further, its results are often not as intuitive as with other
parameters. For this reason, we chose to fix this value.
We have found our scaffold-generation algorithm to take time

roughly linear in the number of voxels in the distance field. Scan-line
rasterization of a triangle mesh is also linear in the number of voxels
and the number of triangles. In our un-optimized implementation, all
figures in this paper took less than a five seconds to finish this step,



most less than two. In practice, this is efficient enough that manual
specification of the small number of parameters is feasible. However,
our approach is not currently suitable for dynamic surface adjustment,
such as changing transfer functions in a volumetric model.

Text path planning and smoothing also take a few seconds, though
the geodesic algorithm may take as long as ten seconds to find the
shortest path between two vertices that lie a long distance from one
another along the surface. We implement the exact form of Hoppe’s
geodesics algorithm [36]; the approximate form would reduce this
time significantly.

All performance testing was done on a HP dv2500t laptop, with a
Intel T7100 CPU and Nvidia 8400M graphics processor. Text ren-
dering is implemented using pixel shaders in only a few dozen in-
structions, so on this machine, our implementation can render several
hundred labels with no perceptible loss of performance over rendering
without the labels.

6 DISCUSSION

Our initial prototype shows that Text Scaffolds can provide for labels
that give shape cues for curved surfaces, yet remain legible despite
surface features.

Labeling by its nature involves tradeoffs. While the text scaffold
approach provides some control over these tradeoffs through its pa-
rameters, other tradeoffs have been made explicitly in its design. For
example, we have chosen to fix the labels on the surface rather than
have them move as the viewpoint changes. This means that text may
be presented at undesirable orientations, but also means it is better able
to serve as a shape cue and positional landmark. The “correct” solution
to these tradeoffs depends on the viewer’s perception, their subjective
preference, and the needs of the particular data. Therefore, true as-
sessment of the effectiveness of the approach, in particular to guide
the choice of when it is appropriate, will require user evaluation.

To date, we have not studied user reactions to text scaffold labeling.
Anecdotally, domain collaborators (particularly structural biologists),
have shown interest in better surface labeling and have reacted posi-
tively to our prototypes. However, user studies are required to confirm
that Text Scaffolds provide for effective labeling. In particular, studies
can provide better understanding of the readability of text on curved
surfaces and how well it conveys shape. A better understanding of how
proximity fosters mental connection will be useful not only in tuning
our methods, but also in understanding where the method is more ap-
propriate than disembodied billboards or direct surface labeling.

At present we have not explored automating the process of tun-
ing the algorithm to control tradeoffs. In principle, smaller text and
smaller features may suggest scaffolds that are closer approximations
to the data. We find that tuning wa to produce text that either avoids or
follows pockets seems to allow for enough flexibility to label a wide
variety of scenarios, including all depicted in this paper.

Our current implementation contains limited methods for automatic
label placement on the surfaces. Future work should extend this to bet-
ter place labels in effective ways. Such an extension will require more
consideration of how the rules of cartography extend to surfaces in
3D, as well as the development of algorithms that create labelings to
follow these rules. In particular, our current approach considers each
label separately. A more global approach could prevent overlapping
labels, control label density, and provide consistency between labels.
Cartographic aesthetic principles, such as constant-curvature areal la-
bels could also be translated to 3D surfaces. We have not yet consid-
ered issues in the lettering itself, such as choosing text sizes, breaking
long labels into multiple lines, or how to handle multi-line labels.

Our implementation strategy also introduces potential limitations.
Because we divide the process into three independent steps, scaffold
generation, path formation, and lettering, the steps have limited op-
portunity to influence each other. For example, the needs of a partic-
ular path might suggest places where surface should be altered, or the
placement of letters may place additional restrictions on the smooth-
ness of the path. Similarly, our consideration of letter positions in
parametric space makes font hinting or precise control of kerning in
3D difficult.

Fig. 9. A ligand shadow, with an automatically generated label. Its path,
depicted here in green, is constructed by following the medial axis of the
underlying region.

Fig. 10. An adenylate kinase cleft, with text avoiding regions of high
occlusion. Here wd = 1.0, while wa = 5.0.

Despite these limitations, text scaffolding does provide an alterna-
tive to existing labeling techniques for providing annotations on 3D
models. The approach uniquely provides legibility, visibility and prox-
imity to the feature, while conveying of shape cues across a variety of
data sources and model types. The approach affords an efficient im-
plementation. The results of an initial prototype show that the text
scaffold provides a compelling method for surface labeling that com-
plements existing approaches.
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P. Olivier, editors, 6th International Symposium on Smart Graphics 2006,

LNCS 4073, pages 24–35. Springer Verlag, 2006.

[13] C. Green. Improved alpha-tested magnification for vector textures and

special effects. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses,

pages 9–18, New York, NY, USA, 2007. ACM.

[14] I. Guskov and Z. J. Wood. Topological noise removal. In GRIN’01:

No description on Graphics interface 2001, pages 19–26, Toronto, Ont.,

Canada, Canada, 2001. Canadian Information Processing Society.

[15] T. Gtzelmann, M. Gtze, K. Ali, K. Hartmann, and T. Strothotte. An-

notating Images through Adaptation: An Integrated Text Authoring and

Illustration Framework. Journal of the WSCG, 15(1), 2007.

[16] T. Gtzelmann, K. Hartmann, and T. Strothotte. Annotation of Animated

3D Objects. In Simulation and Visualization, 2007.

[17] M. Harrower. Tips for designing effective animated maps. Cartographic

Perspectives, 44:63–65, 2003.

[18] M. Harrower and B. Sheesley. Moving beyond novelty: creating effective

3-d fly-over maps. In XXII International Cartographic Conference, pages

40–47, 2005.

[19] M. Harrower and B. Sheesley. Utterly lost: Methods for reducing disori-

entation in 3-d fly-over maps. Cartography and Geographic Information

Science, 34(1):19–29, 2007.
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