Deconstructing Commodity Storage Clusters

Haryadi S. Gunawi, Nitin Agrawal,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, an&diindlef

Computer Sciences Department, ¥ EMC Corporation
University of Wisconsin, Madison Hopkinton, Massachusett

Abstract are now being built from collections of commaodity PCs,
. . each running a commodity operating system, and con-
The traditional approach for characterizing complex syste nected together by an Ethernet network [17, 20, 23, 28].
is to run standard workloads and measure the resulting rr—)erf|qenCe many modern storage systems are simply in-
mance as seen by the end user. However, unique opportunigf\énce’S of a “cluster of workstations” [3, 31].
exist when characterizing a system that is itself constdiiom Across all domains. users often Want,to understand the
standar.dized components: one can also look inside t.hmsyste behavior of the syster,ns they use. This understanding en-
self by instrumenting each of the components. In this paer, ¢ critical evaluation of the design and implementa-
show howintra-boxinstrumentation can help one understand tl'ﬁ?on choices: it allows users to build better models of how
behavior of a large-scale storage cluster, the EMC Centera. o sctem behaves under different workloads and to tune
_Inouranalysis, we leverage standard tools for tracing B@h o, jepg their performance; it enables administrators to
disk and network traffic emanating from each node of the ehJStidentify when the system is not behaving correctly. Un-
By correlating this traffic with the running workload, we afiile ¢, ,nately one of the drawbacks of standard interfaces
toinfer the structure of the software systeery, its write update o o+ they can hide interesting information about inter-
protocol) as well as its policie®(g, how it performs caching, 5 hehayior. Currently, one can measure and evaluate
replication, and load-balancing). Further, by imposingalae systems using application-level benchmarks [9, 15, 33] or
intra-box delays on network and disk traffic, we can confirm ﬂ}nicrobenchmarks [4, 14, 22, 27, 30]; however, thése tra-
causal relationships between network and disk events., Weus i1 approaches assume one can only observe the be-
are able to infer the semantics of the messages between n%or of a system from its external interface
without examining a'smgle line of source code. The shift in storage system design to leverage com-
1 Introduction modity components greatly increases our ability to ana-

The systems community has long understood the bendii#s how the storage system behaves. In effect, building a
of separating architecture and implementation [2]. Givéystem from commodity components “opens the box” and
this clean separation, clients are assured a consistent, stllows users to directly observe what is occurring inside.
dard interface, while designers have the freedom to inrfgirthermore, users can often leverage existing, standard-
vate behind that interface. The common result is thaiZgd tools to perform their analysis.
rather simple interface hides a growing amount of inter-In this paper, we develop a setiotra-boxtechniques
nal implementation complexity. This trend has occurrdd analyze the structure and policies of commodity-based
not only in the implementation of microprocessors behisgorage clusters. Our analysis contains two major com-
their instruction sets, but in storage systems as well. ponents. First, we monitor and perturb network and disk
Modern storage systems have simple interfaces thaffic internal to the storage cluster in order to deduce the
hide a great deal of internal complexity. Many high-ergfructure of the main communication protocols. Second,
storage servers continue to use the SCSI interface, a sivg-build upon this protocol knowledge to dissect inter-
ple read/write interface exporting an array of blocks to thl policy decisions, such as caching, prefetching, write
client. However, storage servers now implement a rangéffering, and load balancing.
of complex functionality and contain tens of processors, We apply these techniques to a new and important in-
gigabytes of memory, and hundreds of disks. For exagstance of a commodity storage cluster, the EMC Cen-
ple, the EMC Symmetrix 8000 storage server [19] impléera Content-Addressable Storage System. Centera is de-
ments redundant data paths, end-to-end checksummaéigned to provide low-cost, easy-to-manage, scalable stor
machinery to fence off portions of caches under failurage for “fixed content” data, such as medical images, elec-
and disk scrubbing technology to discover latent errdronic documents, and email archives [17]. With content
proactively — all behind the standard SCSl interface. addressability, Centera can take advantage of the massive
Today, a fundamental change is occurring in storatgdundancy often present in dagag, email attachments)
systems. Whereas, in the past, storage systems were lauitt reduce capacity requirements.
from specialized parts, they are now being assembleddne main contribution of this paper is our analysis of
from commodity components. High-end storage servdéhe Centera’s protocols and policies. Note that our results

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

were achieved entirely without assistance from EMC; tnd delivers a data objedtd,, a file) to the Centera with
verify their accuracy and relevance, we include a metawrite (.e., using theFP_Bl obW i t e API). The Cen-
analysis of our results from EMGY). tera calculates the unique content address (CA) for the ob-
Overall, we find that the Centera chooses simplicifgct and records the CA along with other metadata for the
and reliability over sophisticated performance optimizabject in a separate file, called a C-Clip Descriptor File
tion, perhaps a good choice for an early implementatiq@DF). The CA for the CDF is then calculated and re-
Our analysis reveals the structure of the write update ptorned to the application after two copies of both the CDF
tocol as a standard two-phase commit with writes cormnd the BLOB have been stored. Data objects can be re-
mitted synchronously to the disks. As for policies, Cettrieved by contacting an access node via a réad the
tera uses caching and prefetching mechanisms of the céif-Bl obRead API), providing the C-Clip’s CA.
modity file systems within storage nodes, leaving morewe evaluate a Centera cluster containing two access
complicated caching schemes to client applications. \&Bd six storage nodes, sometimes utilizing smaller clus-
also derive some interesting properties of load balancingrs for experimental purposes. Each node runs Linux
For example, Centera storage nodes gather and disp@rdel9 and CentraStar version 2.0 and contains second-
load information locally; global effects (such as networggeneration hardware: a 1-GHz Pentium 3 with 512 MB of
link performance) are not taken into account. memory, three Intel EtherExpress Pro 100 Mb/s Ethernet
The other main contribution of this paper is the degports, and four 250 GB Maxtor 5A250J0 ATA disks. Each
velopment of our intra-box techniques; although appli€gcess node is connected to clients via 100 Mb/s Ethernet.
solely to Centera, we believe our techniques are widely. Intra-Box Analysis

applicable. One general lesson we draw is on the po . . .
pp d P e traditional approach for understanding the behavior

of probe points within a system; observation of intern . dard Kload d h
cluster network and disk traffic is crucial to our approacf! SYStems Is to run standard workloads and measure the
ulting performance as seen by the end user. However,

Perhaps future 1/0 systems should consider architectfa o) o
support to enable this type of detailed analysis. unique opportunities exist when characterizing a system

The paper is structured as follows. We first present oﬂat is itself constructed from standardized components:

methodology§2), structural analysis of Centera protocol‘%ne can also UsetTa'bOX analysi¢o Iook inside the sys-
(53), and policy inferences@). We then analyze our re.lem by instrumenting each of the constituent components.

sults §5), including accuracy confirmation by an EMC To analyze the behavior of a distributed storage server

engineer. discuss related wol6], and conclud ' we use two intra-box tec_:hniquesbservationand_delay
9 6] &) of traffic to nodes and disks. Passive observation of net-

2 Methodology work and disk traffic allows us to track correlations across

. . ; : .different requests and thus gives us a general idea of the
In this section, we begin by presenting a general overV|®y

otocol structure and internal policies. However, obser-
of the storage cluster under test, the EMC Centera, Féion alone does not enable us to definitively conclude

:Eznst?ﬁitcljlrte)eacr)wlér 'gﬁirgébsogftgf;?ﬂéqulizz fsors?grilgzmg bq causality between different requests; to infer that one
P Y : message depends upon a specific previous event, we must

2.1 System Overview also delay messages and disk requests.

The EMC Centera is a Content Addressable Storag@.1 Observation

(CAS) cluster designed for storing and retrieving fixeTo derive the general protocol structure and policies, we
content information. The Centera handles the mana@egin by simply observing the traffic to each node or disk.
ment of the physical storage resources transparently to epeach case, the traffic can be observed using straight-
plications and is designed as a highly scalable, “no-singferward tools. To trace both TCP and UDP communi-
point-of-failure” platform. Centera use®ntent address- cation between nodes, we usepdunp. To trace disk

ing in which applications access data objects (also knowvaffic, we insert into the kernel a pseudo-device driver as-
as BLOBs for “Binary Large Objects”) with a 128- orsociated with each disk and mount the file system upon
256-bit content address derived from the contents of titethe driver records the start time, end time, and block
object .9, via a hash function applied over the data). number of each read or write request.

The architecture of the Centera cluster is a RedundanTo collect suitable observations, we run a simple work-
Array of Independent Nodes (RAIN) [7]. Nodes are cortead on the client application serves.g, the workload
nected via a private LAN. Each node runs CentraStar saftpeatedly creates new objects) and trace all of the traf-
ware on a Linux kernel and operates as eithstaiage fic seen at the network and at the disk. We assume that
nodeor anaccess nodeThe storage nodes hold the obthere is no other workload running on the Centera and we
jects on their local disks, whereas the access nodes maarform multiple trials so that we can filter out traffic that
age read and write requests between an exteliet does not occur consistently. Analysis is performed off-
(i.e., an application server) and the storage nodes. line, to avoid interference with system activity.

The general protocol followed by Centera is as fol- Our analysis allows us to determine general proper-
lows [11]. First, an application contacts an access natikes of the communication and disk activity in the system:

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

which nodes send messages to which other nodes, with Deducing System Structure

nodes read or write to local disk, the size of each netwqgkihis section, we apply intra-box analysis to derive the
message, and the time delay between network and difrnal structural protocols employed by the EMC Cen-
events. We also can infer properties that are specificyf®a. \Wwe begin by using passive observations to infer the
the Centerag.g, which nodes in the cluster act as acceggsic protocol for both storing and accessing objects. We
nodes versus primary and secondary storage nodes. then actively delay network and disk events to determine

the relationships across events when storing objects.
2.2.2 Delay

Passive observation of network and disk events allows%sl PaSSIVe Obser\(at'ons)

to correlate events with one another; however, observatlrur first step, we passively trace the network and disk
alone does not enable us to determine the exact dependéffic within the EMC Centera. We analyze two distinct
cies between events. More precisely, even when one PERtocols: the events that occur when the user stores ob-

peatedly observes that evelitoccurs after eventl, one Jects via writes and the events that occur when the user
cannot infer that{ depends on. later accesses objects through reads. Most of our analysis

Using correlation to derive causality can be succed§focused on writes because they are more complex.

ful [1], but has a number of potential weaknesses. Firgtq ¢ Object Write Protocol

u_nrelated events may consistently oceurin the same Orgf\dure lis a pictorial representation of our findings for the
simply due to performance gharqcter|st|cs of the SyStéBhntera protocol when writing objects. The figure shows
Second, a large number of iterations are required to I e network and disk events that occur between the client

;serve tvéh'cl? even':jord_ermlg:_s o?lcuitgogilf_stelr;ttly g_nd 0 a4 Centera nodes for each request. Figure 2 reports the
eroutbackgroundnoise. Finally, IL1S difliCUltio dISCOVE \.~iiq of intervals between each TCP message.

that an event is dependent on multiple preceding events. Our analysis as presented in the diagram allows us to

To derive the causal relationships across events, we flgar the basic Centera protocol for storing objects. Note
lay each network and disk event and then observe whigh; i our description, we tend to say that nodes perform
subsequent events are delayed as well. For example,dfion x after actionY’ (e.g, send a UDP message af-
we delay the receipt of a messag@nd then observe thatigr 5 gisk operation completes); however, until we have

sending messagg is also delayed, we infer thaf is de- \erified the causal relationship across events as we do in
pendent (perhaps indirectly) o, however, if.X' is not gection 3.2, these sequences are only conjectures.
delayed, we mfer_thaK IS '”F’epe”der_‘t_c’ﬁ- The object write protocol begins when the client con-
One complicating factor is determining the amount kycts an access node directly, sending a 299-byte message
which an event should be delayed; this is an important,1). The access node then issues a disk read, sets up a
issue when later events may be depender!t upon mMultipé&y TCP connection with the primary storage nadéyj,
events. For example, suppose that sending mes¥ag@nd communicates with itz1). The primary storage
is dependent upon receiving messageand B and that node also performs a disk read, sets up a connection with
B usually arrives 20 ms aftet. If we delay A by only the secondary storage node(), and communicates with
10 ms,B will still arrive later (at its usual time) and will j; (bel). Thus, each time a client stores an object, a new
be the event that triggers; thus, we will incorrectly con- TCp connection is created between the access node and
clude thatX is independent ofl. To avoid this situation, the appropriate storage nodes. In this structural analysis
we inject a relatively large delay of 500 ms that exceeggthe protocol, we do not determimenichaccess node or
the other durations in the system (this value must be tungflichstorage nodes are selected; this selection is a policy
dependent events to be delayed as well, as desired. A series of messages then propagates back from the
To delay network traffic, we employ NistNet [10]; oukecondary storage node all the way to the cliéet,(ab2,
modified version sits on top ¢fcpdunp and delays only y42). After the client receives this response, it sends a
incoming packets. Our framework allows us to seleghriable number of messages to the access node. We infer
the amount of delay and define criteria for which packhat these messages contain the data object since their size
ets should be delayed. On Centera, most messages\egies with the size of the objects. The access node for-
be uniquely identified by their size; thus, we use size afrds this data to the primary storage node, which again
protocol type i.e., TCP or UDP) to determine which mesforwards the data to the secondary storage node. After
sages should be delayed. We also utilize other fields in #¥hding a transfer acknowledgmemti4, be4), each stor-
protocol headers such as IP addresses and port numbeige node writes to its local disk and communicates us-
To delay disk traffic, we use the same pseudo-devicg UDP with two other Centera storage nodegyX1,
driver as for tracing requests. One can configure the dut@pY1). After these events, the storage nodes propagate a
tion of the delay as well as which requests should be dmries of 90-bytedb5, bch) and 4-byte acknowledgments
layed €.g, reads or writes). Delayed requests are plac&t6, ab7, bc6, be7) to each other and to the access node.
in a separate queue until the delay time expires. Finally, the access node informs the client that the request

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

Access Primary Secondary

Clent __Node _Storage Storage swevorie et oy D
[0] transfer—fin ~— "1 mm c7
val [299]
write—req B1 ab4/bc4
,,,,,,,,, o - bCO 0] transfer—ack =
N ync
abi [509] £ B\> WY TCP conn. disk
write-req N \é},\ %5157 _S?Euip_ L Udel P writes
A4 s b cl [509] write-update
B6 write-req
Vaz (5771 ‘/ﬁBL bcz (161] 1second tjpddgleY—ch-SO]
req-ack AS ab?2 161 req-ack timeout
<« adl reg-ack B8 c4 ;
B9
va3 [289] A cs
transfer—fin ab3 [375] ‘ ty SNx-commit v
A8 Rl 510 ‘,wi e Storage Primary and Storage
</FJJL bc4a [321] 7 Node X Secondary Node Y
1
ab4 [321] transfer-ack Z Storage Node

transfer—ack ﬁ/
Figure 1:Anatomy of the Centera Write Protocol.

7 7 The figure on the left provides a pictorial representation of
A9 B12 c77 our findings and shows the network and disk eventsdhat

7 cur between the client and Centera nodes on a 16-KB object
write through theFP_Bl obW i t e API. TCP messages are

7 labeled with three values. First, each message has a unique
label identifying the endpoints and a simple message id; for
example,abOindicates the initial message between nodes
and b, whereaq is the access node artds the primary stor-

S
N

W

7

N

o bc5 |90
A7) SNz-commit

N

b 77 e age node. Second, the average size in bytes of each protocol
abs e0 B13 message is shown. Third, each message is assigned a label
SNi-commit ‘.47 bCO [4] c8 g ’ N : ge | gned
vad [s39) e 514 SN1-commit reﬂfctmlg %l:r @Jr:dersltagm:mg of Tlté Psemanttlc purpOﬁeCm ihe
req—complete A10 T protocol. The interval between events on each Centera
. ab6 [4] Bls‘%lﬂz’ “® node is labeled with a unique identifier (e44); the dura-
W- »»»»»»»»»»»» S | €10 tion of each of the intervals is reported in Figure 2. Single
A12 ab7 Bt bcE block disk reads sometimes occur around intervals Al, B3,
aL3 commit—ack 19 TCP conn. and C3. The figure on the top shows in more detail events that
tear—down i
I -l occur around intervals B12 and C7. UDP messages shown
abE above are designated with a label identifying the destimati
TCP . i i i i
vt Y s c o Y Y node and a simple message id (ewgipX1is the first UDP

message sent to storage node X in this round of the protocol).

is complete ¢a4) and the Centera nodes tear down theaiiode. The access node transmits this object to the client,
TCP connectionsap E, beE). exchanges acknowledgments with the storage node, tears
The timing results reported in Figure 2 reveal whewn the TCP connection with the storage node, and fi-
most of the time is spent when storing 16-KB objects. Wally informs the client that the request is complete (Fig-
note that the client sees that the object has been staseginot shown due to space limitation).
after a latency of approximately 150 ms, which is roughl .
the sum of the times Al to A10. The figure shows thgy’t-2 Delaying Events
most of this latency occurs during intervals A4, A7, ar@@bserving network and disk events enables us to learn
A9. Matching these intervals with Figure 1, we see thatuch about the internal protocol of the Centera. How-
A4 corresponds to when the access node is waiting f#er, from these observations, we cannot conclude which
the storage nodes to read from disk; A7 to when the d&eents must occur after one another. We now delay events
object is being transferred to the access node; and Agadnfer the dependencies across network and disk events
when the storage nodes are writing the object to disk. for the write protocol. Due to space constraints we do not
present similar analysis for the read protocol.
3.1.2 Object Read Protocol For each message in the protocol, we determine the set
Again for reads, the client node communicates only witif events that it depends upon by delaying the preceding
the access node, which in turn reads from disk, and esents on that node and observing which delay the subse-
tablishes a new TCP connection with one of the storageent sending of that message. We structure our discus-
nodes. After the storage node receives the request, it resida by investigating each type of eventin turn: TCP traf-
from disk and sends the data object back to the accéssUDP traffic, and completion of disk reads and writes.

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

Access Node Primary Storage Node Secondary Storage Node

=
o
o
=
o
o
=
o
o

~
ol
~
[9)]

Latency (ms)
«a
o
Latency (ms)
(42
o

N
ol
N
ol

.

123456789 10111213 1 3 5 7 9 11 13 15 17 19 1 2 3 4 5 6 7 8 9 10
A-xx (Period) B-xx (Period) C-xx (Period)

o

o

Figure 2:Intervals when Writing Objects. The figures report the average duration for each of the irttsrbetween TCP message events.
Across the three graphs, we examine the access node, tharpritorage node, and the secondary storage node, resplctiWithin each graph,
we examine the intervals within a node, where the x-labelsimthose used in Figure 1.

. Access Node Primary Storage Node Secondary Storage Node
2 800 Lo e e
= 53— 35— NoD — - NoD — -
2 %_g% B-g-88 0% - mEEEEEER | 100 T BB
E A NoD — Dab2 - Y-E-R-8-8 Dab2 & R
2 400 / Dbc2 - | Dbcd —O— [/ L | Dbc4 O /,/
5 Dab2 I
/ /
é 200 Dbc4 —O— | | | /
°
c
Q
n

800

600 { DBeS —x— R | D be5 Ko (R
D ab6 i / 1 Dab6 3 /
Dbc7 O / D bc7 O f]

400 4

Send/Receive Time (ms)

— -

ab0 bcO bc2 ab3 bed bes bee beE ab7 bcO bel bc2 bc3 bed bes be bo7 boE
abl va2 ab3 abs ab6 abE abl bcl ab2 bc3 ab4 ab5 bc7 ab6 abE
Packet Name Packet Name Packet Name

Figure 3:Impact of Delaying TCP Packets on Write Protocol. We delay an interesting subset of the TCP packets 2, ab2, be4,
beb, ab6, andbcT) by 500 ms. Across the three pairs of graphs, we consider efitte three involved Centera nodes: the access, primarageo
and secondary storage nodes. Along the y-axis, we reposithé or receive time of each packet relative to the startofdélquest. A sharp increase
in the send or receive time of packEtwhen packetA is delayed indicates that packa&t depends on packet. “D” stands for delay.

TCP Traffic: We begin by investigating the most straightsendingzb4 from the primary storage node depends upon
forward case of a dependency: whether an outgoing T@&Reivingbc4; thus, ab4 acknowledges that both the pri-
packet depends on any of the previously-arriving TGRary and secondary storage nodes have received the data
packets. Note that we do not need to determine if abject. Third, sendingb5 from the primary storage node
outgoing message is dependent on multiple TCP packa¢pends upon receivirtg5 from the secondary; thugb5
from the same node due to the nature of TCP; becasseves as an acknowledgmentthat both storage nodes have
TCP is a reliable byte-stream protocol, the receiver ugitten the object to disk (further details below).
guaranteed to see packets in the same order that the sendeihally, the measurements show an interesting set of re-
transmitted them, even if some packets are delayed or lggionships after the request is complete. Specifically, we
and subsequently resent. For example, we check whetégs that delayingb6 impactsab7 and delayinghc6 im-
abb is dependent on receivirig5 or on receivinged, but pactsbe?, but delayingbe7 does not impactb?. Thus,
not whether it is dependent on receiving both; sibe€® in the protocol, packetb7 serves only as an acknowledg-
is guaranteed to arrive aftér4, even ifab5 depends on mentthat the primary storage node has received the packet
bothbcd andbeb, then waiting forbes is sufficient. from the access node and not from the secondary storage
Figure 3 shows the impact of delaying an interestimgpde. This independence could not be confirmed without
subset of the TCP packetse(, bc2, ab2, bed, beb, ab6, the delay technique because our passive measurements al-
andbcT7). Across the three pairs of graphs, we report tiveays observed thaith7 followed be7.
send or receive time of each packet for the three CappPp Traffic: We next isolate the events that are depen-
tera nodes involved: the access, primary storage, and $Rtt upon arriving UDP traffic. Interesting UDP traf-
ondary storage nodes. We note that a sharp increas¢ignoccurs during interval®12 and C7 on the primary
the send or receive time of pack& when packetd is and secondary storage nodes, respectively. A non-trivial
delayed indicates that pack&tdepends on packet. amount of additional UDP traffic occurs throughout our
These measurements imply the following dependemeasurements, but this UDP traffic is filtered because it
cies. First, in the initial request exchange, sendihg does not occur at regular points in the write protocol.
from the primary storage node depends upon first receisrthermore, we have found that delaying other proto-
ing be2 from the secondary storage node; thuf serves col events has no impact on this background UDP traffic;
as an acknowledgment that both the primary and sdélerefore, we can conclude that this other UDP traffic is
ondary storage nodes have received the request. Secantrelated to the write protocol.

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

Understanding CAS
No Delay Delay udpl - 1.5 sec Delay udp1 - 4.5 sec

Send udpl ¥
Recvudp2 O
Sendab5_ 4

Send udpl X
Recvudp2 O
Sendab5 4

Send udpl X
Recvudp2 O
Sendab5 4 .

200

40
30
20
10

0

100

Trial #

§ *
0 25 50 75 100 0.5 15 0 1 2 3
Time (ms) Time (sec) Time (sec)) . .
Figure 4:Impact of Delaying UDP Packets on Write Protocol. The three graphs Figure 5:Content Addressability. The fig-
show the time at which the primary storage node sends anilesctne UDP packetsdpl and Ure plots the amount of data written to the storage
udp2, respectively, and sends the TCP packei. In the first graph, we consider the defaufiodes storing a file as the file size is increased.
case in which there is no extra delay; in the second graph, eleydidp1 by 1 second; in the The file is filled with a single repeated byte, and
third graph, we delay.dp1 by 4.5 seconds. Each experiment is repeated 40 times. hence is a candidate for space-savings due to
content-based addressing.

Figure 4 addresses the relationship between UDP traffie two storage nodes after the data object has been re-
and other events. These measurements were performedaved (.e., during interval812+B13andC7).
the primary storage node, but the relationships are identi-_. . .
cal for the secondary storage node. In each graph, fof '9ure GhShOWS wheth((jer delaying ;]he d|§k reads and
40 independent trials, we show the time at which the (g 't€s on the storage nodes impact the subsequent mes-

udpl packets were sent to the other storage nodes, wif@ges: across the three graphs, we examine the access

the twoudp2 packets were received, and when the TCPPde, primary storage node, and secondary storage node,

packetab5 was sent back to the access node. respectively. We make two observations from these mea-
: . surements. First, on the storage nodes, the TCP message
The first graph reports our observed timings for the de- diatelv followina the disk read is in fact d d
fault Centera system with no delays of UDP traffic. Thig'me lately following the disk read Is in fact dependent
gpon that disk readi.e., the send times ofc0 and bc2

figure shows that there is no ordering pgtween send|b h increase when the disk read is delayed); this con-
a UDP packet to storage nogeand receiving the UDP firms our initial intuition. On a related note, delaying the

packet fr_om storage nodk; in f‘?‘Ct' udpX1 gndudel re?ds on both nodes causes subsequent events to be de-
are sentin parallel. Thus, passive observations can be s

o . aeyed by 1 second, further indicating that these reads are

ficient tp showthere is no dependency betwegn messa%o%'overlapped. Second, on the storage nodes, delaying
The first graph does show thadp2 always arrives after y,q qisk writes also delays sending thépX 1 packet:

udpl is sent and thatb5 is always sent afterdp2 arrives. further, given that the send time oflpX 1 is delayed by

However, to confirm whether these are true dependenc rly 2.5 seconds, the storage nodes appear to perform
we must delay UDP messages. Inthe second graph Weﬂfé'disk.writes in su'ccession.

lay the requestidpl by 1.5 seconds. These results show
thatudp2 andab5 are also delayed. Thugdp?2 is indeed Conclusion: Delaying network and disk events within the
an acknowledgment afdpl. However, another interest-Centera write protocol allows us to identify which events
ing property is apparent as well. Since UDP is an unrare dependent upon which others. In two cases, this anal-
liable protocol, the Centera software implements its owsis would not have been possible with passive observa-
timeout-retry policy to resend messages when a respotises and correlations alone.

is not received. In this graph, we see that the Centera im-

plements a timeout of one second for thiy1 packets, at The first case occurs at the end of the write protocol:
which point it resends those packets. when the primary storage node sendemmit-ACK(ab7)

. . C message to the access node, this indicates that it received
we explore the Impact O.f the timeout p_ollcy n mor.‘taheAN—commit(ab6) message from the access node, not
depth in the third graph; in these experiments we "hat it received theommit-ACK(bc7) from the second

crease the delay afdpl to 4.5 seconds. In these circums, rage node. Relying on correlations alone, we could not

stances, the storage node never receives the acknowlg 0= rmine thatommit-ACKfrom the primary was inde-

ment packet 0 fudp2. Instead, the Centera protocol P€T5endent of theommit-ACKfrom the secondary, because
forms three timeout-retry intervals and then stops retry-

ing; at this point, the storage node sends the fihalTCP e one always occurred after the other.

packet without receivingdp2. Thus,ab5 depends on ei- The second case occurs on the storage nodes after they
ther receiving bothudp X2 andudpY'2, or waiting for a have written to disk: when the storage nodes send a TCP
time-out of approximately three seconds. message, this indicates that the data has been committed
Disk Events: We now determine which TCP and UDRo disk and that the node has attempted to communicate
messages are dependent on the completion of disk reasiag UDP with other storage nodes, but not that the UDP
or disk writes. Disk read operations occur on three Cemessages have succeeded. Again, relying only on corre-
tera nodes when the request is first initiated.(during lations, we would have inferred that storage nodes must
intervalsAl, B3, andC3); disk write operations occur onreceive UDP replies before sending the TCP commit.

0

Total Data Received at SN (MB)

100 200 300 400 500
File Size (MB)

0-7695-2270-X/05/$20.00 (C) 2005 | EEE

Access Node Primary (Pri) Storage Node Secondary (Sec) Storage Node

T ot e 58880 1 om s B T
D Write Pri £ D Write Pri —&— N Pl o e
D wiite Sec Q) D Write Sec g [9POOTO0 DWiite See 5 oo Y
2 D Read Pri 2 D Read Pri —4 Vi D hesd b A ;

D Read Sec --—-w--

D Read Sec ---w--
D Read Both --4#-- -

D Read Sec ---w--
D Read Both --4--

D Read Both --4#--

Send/Receive Time (second)

Send/Receive Time (second)
Send/Receive Time (second)

,;:;'”fx:'f,x:f:: N

0 = 0 0 el
ab0 ab2 va3 ab4 va4 ab7
bcO bcl bc2 be3 bcd udp be5 bcé bc7 bcE
abl va2 ap3 abs5 ab6 abE abl bcl ab2 bcd abd bo5 b6 boE ab? P
Packet Name Packet Name Packet Name

Figure 6:Impact of Delaying Disk Activity on Write Protocol. We delay reading or writing from disk by 500 ms. Across theehr
graphs, we consider each of the three involved Centera nadesccess, primary storage, and secondary storage ndslesg the y-axis of each
graph, we report the send or receive time of each packetivel&b the start of the requestiDP indicates the sending efdpX 1. A sharp increase

in the send or receive time of pack€twhen the disk evet is delayed indicates that pack&t depends on disk everit

4 Inferring Policies 4.1.2 Level of Replication

In the previous section, we analyzed the protocol struthe Centera uses data replication to protect against data
ture of the Centera for write and read operations. In tHigavailability or corruption in the face of failures. One
section, we infer the policy decisions within each of thoggndamental choice is thievel of replication or number
protocols. In our analysis, we focus on the most impaf copies, for data objects. This level is readily apparent
tant functionality one would expect in a storage systeifiom our previous structural analysis. Figure 1 shows that
replication, load balancing, caching, and prefetching. two replicas are made of the object being written. Further
One key to our approach is that we can utilize trexperimentation (notshown) across a range of object sizes
derived structure of the write (Figure 1) and read (ntgveals that the level of replication is two for all objects.
shown) protocols to fine-tune our analysis. For exam- .
ple, in our analysis of caching, we use this information fp 13 L0ad Balancing _ _
enable fine-grained accounting of disk accesses, thus ¥g now dissect the load balancing strategy under writes.

abling us to filter out traffic in the system that is unrelateffnen a write enters the system, Centera first chooses the
to the current request. primary storage node for the data; the primary storage

. . . . node then chooses the secondary location. We now infer

4.1 QbJeCt Write Policies the load balancing policy: what factors determine which
We begin by analyzing the decisions that occur during tBgyrage nodes are selected? Many factors may influence
write protocol, originally shown in Figure 1. We continugne decision of which two nodes to place a given data
to assume that we are able to observe and delay both fgfn upon, including current performance or the amount
work and disk traffic. of available space. In our analysis, we focus on four per-
4.1.1 Content Addressability formance factors: CPU utilization, disk usage, network
We begin by inferring a very basic decision: how large ag@nnections, and network delay. We vary these factors
the units of data? Centera segments each file into multiplee at a time in a controlled manner. For CPU, we run a
BLOBs, each of which is stored, replicated, and accesd#gh priority while loop with a varying fraction of sleep
independently. A BLOB is the unit of granularity at whiciime. The network delay is varied using modified Nist-
both content hashing (and hence duplicate detection)Nit. For disk usage, we generate background traffic using
performed and storage is allocated across storage nodagile copy program. We also open varying number of TCP

To determine the size of a BLOB, we write a file conconnections between the primary and secondary nodes.
taining the same byte repeated throughout. When theNVe then observe internal message traffic to determine
size of the file being written is exactly twice the BLOBvhether the induced load has an impact on Centera’s
size, the file will internally be comprised of two identicaplacement decisions. Figure 7 plots the amount of data
BLOBs; thus, the amount of traffic should be halved. Invritten to each node under different load experiments.
deed, this behavior should be observed at all multiples ofFrom the figure, we can see that three factors influ-
the BLOB size. ence the selection of nodes under writes, heavily skewing

Figure 5 shows the amount of data transferred to thites to other unloaded nodes: the CPU load, the disk
storage nodes (both primary and secondary) across libad, and the number of network connections to that node.
network as we increase the size of the file being writaterestingly, we also observe that increasing the network
ten. As one can see, the amount of data transferred clindlegay of an incoming link to a storage node doesaffect
steadily from around 100 MB to around 200 MB as thiead balancing; performance for writes decreases dramat-
x-axis increases from 100 MB to 200 MB, at which poiritally (not shown) when we increase the latency of the in-
it drops to 100 MB again. This cyclical pattern repeats abming link to a storage node, because Centera does not
200 MB, 300 MB, and so on, indicating that the unit afhcorporate this delay into its load balancing strategy.
content addressability is 100 MB. We hypothesize that Centera is collecting performance

0-7695-2270-X/05/$20.00 (C) 2005 | EEE

Variety of Pertubation Delay in Reaction Distribution of Writes Across Storage Nodes

->

i 200 L . £}
1.2 b SN-1 o] No del T 10e i e
SN-3 —— 4 15 ouo detay] Unloaded mmmmm
s 1 z 30 sec dela T 08 Loaded =
2 gv wo 60 sec dela g
§ 0.8 § H Z 06
= s 0 13
g o6 5. g £ o4
Qo
% 04 Eo ?_ 0.2
4 z2 100] .
02 & 2
; &
0 y 200 T . . . T . T 113 112 1|2 2|1 2|1 3|1
B A B A B A B A 0 20 40 60 80 100 120 140 2|4 3|4 4|3 3|4 4]3 4|2
CPU Disk Load TCP Conn Net Delay N o
Time (s) Unload-Load Combination of Storage Nodes

Figure 7:Write Load Balancing. The re- Figure 8:Impact of delaying UDP mes- Figure 9: Write Constraints. The graph
sults from four experiments are shown. In eackage traffic. The graph illustrates the imshows the percentage of writes directed to a
we first run the system in normal mode for sorpect of delaying distribution of load informaparticular pair of nodes in a system configured
time (labeled B for Before), and then add loagbn. The y-axis plots the difference of nurwith four storage nodes. Each pair of storage
to one resource of a storage node (labeled ber of writes to SN-1 and SN-3. Initially writegodes is either “loaded” (i.e., has a CPU load
for After). Along the y-axis, we plot the norare served by SN-3. The bold vertical line &iduced upon it) or “unloaded” (i.e., does not
malized ratio of traffic across the two primary=10sec marks the CPU load addition to SN-Bave a load induced upon it) for the given ex-
storage nodes in a four storage node configurathe arrows point to the times when the writgriment, as varied across the x-axis (e.g. pair
tion. Before the load addition, we expect arglvitch from the loaded node (SN-3) to the usf nodes (1, 2) and (3, 4) are unloaded and
see that writes are roughly balanced across theaded node (SN-1) due to the write load babaded respectively in the first pair of bars). The
two nodes; after, we expect to see an imbalane@cing strategy. We vary the UDP traffic delayaxis plots the percentage of writes that are di-
skewing towards the unloaded primary node. by 15, 30, and 60 seconds. rected to the loaded and unloaded pair.

statistics on each storage node, distributing that inferma constrained by factors that influence reliability, sush a
tion throughout the system periodically, and basing itise power source.
load balancing decisions upon it. To confirm our belie ,51‘4 Caching and Buffering

we run another experiment, in which we again increa . o .
the load on a particular storage node (the CPU load’i other important perf(_)rr_nance optimization present in
st storage systems verite buffering also known as

this case), but also delay UDP message traffic within tHE® | X NI
cluster. As we saw in our protocol analysis, TCP is usdf'te b'ehlnd By fcran.sformlng writes into asynchronous

within Centera for writes and reads, and UDP for virtual perations, application-perceived latency is greatly re-
all other inter-node communication. Hence, by slowi ced, as copying data into an in-memory buffer is much

various UDP messages down, we hope to slow the spr er than cqmmi_tting itto disl_< [26]. The trqde-off comes
of load information, and confirm our hypothesis. in terms of reliability: by dela_ylng t.he commit to disk, the

i) ; _ chance of data loss under failure increases.
Figure 8 reveals the method by which load information oy protocol analysis shown in Figure 1 revealed that

is dispersed. From the figure, we can see that the longg{ access and client nodes are notified only after the disk
UDP message traffic is delayed, the longer it takes for thgite has been committed on both storage nodes. Hence,
load balancing decision to be affected by the increasgd conclude the Centera performs all write operations
CPU load on a particular storage node. Hence, we confighchronouslyThus, the Centera developers chose safety
our hypothesis about load information dispersal. and reliability over performance.

Finally, additional constraints appear to determine tlz*e . .
primary and secondary copies of a data item. To isol& e2 Object Read POl'C'eS
these constraints, across experiments, we placed ident¥/g§ NoW turn our attention to the read protocol. Although
CPU loads on different pairs of the four storage nodé§.ad3 are not as complex, their perf_ormance characteris-
Figure 9 shows the results. In most cases, when a gre&if& may be crucial for some applications.
CPU load is placed on a pair of nodes, then a greaiep 1 Caching

fraction of writes are sent to the unloaded storage nodgg. begin by determining whether or not caching of data
However, in some cases, the number of writes does Befects is performed within the Centera read protocol. To
adjust to the CPU load. In particular, when either theonstrate the benefits of intra-box techniques, we begin
pair of nodes (1, 3) or nodes (2, 4) are unloaded, then {2 45suming that weannotaccess the internals of the
load balancing policy does not react: writes are allpcat@gntera and can only observe performance at the client.
roughly evenly across the loaded and unloaded pairs. \ye begin with a simple workload that repeatedly reads
Hence, the Centera ensures that a data item has tivee same file. By comparing the difference in time
copy on either node 1 or node 3, and the other copy between the first read and subsequent reads, in many
either node 2 or node 4. Our inspection of power distribanvironments, one can determine whether caching is
tion within Centera reveals the reason: each pair of thggesent [27]. From the identical latency numbers in the
nodes uses a separate power supply. Hence, while Certfiesarow of Table 1a, one might conclude that there is no
write load balancing is sensitive to performance factérscaching taking place; in this case, one would be wrong.

0-7695-2270-X/05/$20.00 (C) 2005 | EEE

Client Data Read

Client-Perceived Prefetching No Access Node Prefetching
Latency (s) (MB) 15 41 s s e
ist 2nd... ist 2nd ... pisk Delay B00mS e § el midion s |
NoDelay| 052 051 ~ ANCli | 4.04 404 g
w/ Delay | 32.39 0.55 SN-AN | 4.04 4.04 2 1 L S 16kB A 8
Disk-SN | 4.04 0.00 s
@) (b) & B 4 I
Table 1:Read caching. The table on the left shows the time taken £ 05 - Ty L
to read a 4 MB file from Centera,; the first column shows the tionéhfe £
first read and the second column shows the average time farettend www HHH WH 4 3698 1 M
and subsequent reads. The second row shows the same exypigeme 0) ‘ ‘ @ 16881 o)
cept with a large (80f:s) disk delay induced. The table on the right 0 10 20 30 40 1 1 4 16 64
shows the breakdown of traffic from access node to clientaggonode Iteration Byte KB KB KB KB

Size of Read Request
100 such Sequential Requests

We now leverage our ability to observe and delay eveligjure 10:Prefetching. The graph on the left shows the time taken
inside Centera. In particular, we insert a substantial diskeach 1 KB sequential read of a file. The graph on the righishithe
delay for every read that is sent to the disk of a Stora@@ount of bytes transferred across the network (eithe_r floerstorage
node. The second row in Table 1a illustrates this, as {}fg¢ t© the access node, or from access node to client) unbr

. ! . workload; however, in the rightmost graph, we run multigsts, vary-
numbers now show a large difference between the tifeye size of the request from 1 byte up to 64 KB.
taken for the first read and subsequent reads of the same
file. Hence, caching must be taking place within Centeff€fetches an 8 KB block when the first 1 KB is read.

The presence of caching is not observable in Centeras with caching, we also wish to uneastterein the
because the 100 Mbit/s Ethernet delivers data as quickjstem prefetching occurs. The second graph of Figure 10
as the IDE disks. By inserting delay into the disks, waots the network traffic for the same experiment. Along
change the relative ratios between the network and ditke x-axis, we vary the size of each read to the file, and
and hence can observe that caching is taking place withlang the y-axis, we plot how much data was transferred
the system. However, the experiment does not revpal request. The graph shows that the amount of data
wherein the system caching is occurring. transferred between Centera nodes is just slightly more

To complete our read caching analysis, we monitor bétran the size of the requested data. Specifically, if the
network and disk traffic during the previously-describedient requests bytes from Centera;+368 bytes will be
experiment. The results of this analysis are presented@nt from the storage node to the access nodey a7
Table 1b. The table shows how much data is transferfdes will be sent from the access node to the client.
from the access node to the client, the storage node to thErom these results, we draw two conclusions. First,
access node, and the disk to the storage node for bothdgiven that few extra bytes are passed between Centera
first and subsequent file accesses. The table shows thatles, prefetching is not occuring across the network.
across requests, the same amount of data is transfeTiegls, the prefetching must be occuring at the storage
between the access node and the client and betweemibde. Second, some extra information (roughly 200
storage node and the access node; thus, the client andthes) is passed in a header from the storage node to the
access nodes are not performing caching. However, thesiecess node node that is not then passed on to the client.
ble shows that no data is transferred between the disk and
the storage node on the second and subsequent requgsj

therefore, the storage node performs in-memory caching. 3 Load B_alancmg _
We now examine load balancing under reads. For load

4.2.2 Prefetching balancing, writes have a great deal of flexibility: in a
Prefetching is an important optimization for storage sylerge-scale system, a primary copy may go to any half
tems [24]. In these experiments, we determine whetlgéithe nodes and the secondary to any node in the other
Centera performs prefetching, and if so, which compbalf. However, reads are more constrained: the read in
nents perform the prefetching. can go to only one of the two storage nodes where the
In our first experiment, we read data sequentially frofi@ta is located. In these experiments, we seek to under-
a file in small chunksi(e., 1 KB), and time each read astand the factors Centera uses to determine which copy of
the client. We again slow down the disks to exacerbate ff@ia is accessed. We again examine the performance fac-
difference between on-disk and in-memory accesses. Toig of CPU utilization, disk usage, network connections,
first graph of Figure 10 shows the results of this expefind network delay.
ment. From the graph, we observe that the first 1 KB readSurprisingly, we found that the Centera read balancing
takes a significant amount of time, followed by seven rpelicy is completely insensitive to any and all loads we in-
guests that are completed more rapidly. From this cliedticed (not shown). Hence, even if a node responds much
perceived timing result, we can conclude that prefetaimore slowly to read requests than other nodes, read re-
ing is taking place within Centera; specifically, Centerguests are still just as likely to be directed its way.

to access node, and from the disk to the storage node.

0-7695-2270-X/05/$20.00 (C) 2005 | EEE

5 Analysis 5.2 Read Caching and Prefetching

We now analyze the design and implementation of tiMisconsin: Our analysis reveals that_only the storage
Centera storage server. In each subsection, we pre§i@ftes perform caching and prefetching. Indeed, one
perspectives from Wisconsin followed by EMC:; b>yvould expect these nodes to do so, as each runs a com-

adding the EMC perspective, we offer insight as to tBodity file system. We also saw that no caching or
accuracy and relevance of the Wisconsin analysis. prefetchmg_ is pelrf.ormed on either the client or access
nodes. This decision seems reasonable, as there would

probably be little benefit to the client (in terms of latency)
5'_1 PrOtOCOI Structure . if data were fetched from an access node instead of a stor-
Wisconsin: The protocol structure reveals many basic e4ge node; in both cases, the data must still cross the net-
ements of the Centera design. First, we can observggrk. As for the client host, one must remember that the
basic two-phase commit protocol under writes [18]. Segser application which accesses the data is also running
ond, we also see that the generation of the secondary cgpyn that host. Perhaps the designers did not want to con-
is handled by the primary storage node; a differentimplggme precious memory resources on the client node for
mentation would have the access node send the datg4ghing and prefetching.
both storage nodes itself. The trade-off here is clear aaghc: with emphasis on leveraging commodity com-
likely a reasonable one —in Centera, latency is potentiafynents (i.e., storage node’s file system and disk drive
higher, but the load on the access node is decreased. caches) and less emphasis on access latencies, the extra
Finally, we can also see how TCP and UDP are usgép on the internal network does not warrant the impact
for different purposes in the Centera communication sygoth in complexity and performance) on access nodes.
tem. TCP is used for the most important aspects of digr file server-like environments, where repeated reads of
transfer, both on writes and reads. UDP, in contrast, is ptRe same objects are more likely, Centera offers a separate
sumably used for traffic such as periodic heartbeats agdteway, which sits in front of the cluster. It translates
as we see in load balancing, for propagating load informQFs and CIFS requests to Centera API operations and
tion. We also observe that a new TCP connection is Cigiplements caching, so it avoids accesses to the cluster
ated per data transfer; although not a large cost in the cglfogether. The design goal is to provide a light-weight
rent generation system, future Centera implementatiabéntera API library; applications can use their existing
should consider caching connections to storage nodes gaghes or implement their own. In short, both the gate-
avoiding costly three-way TCP handshake and teardowgay and application-specific caching reduce the need for
EMC: The analysis correctly identifies the majority o€aching at the access nodes.
protocol features and illuminates Centera design princi-
ples and the workload characteristics. Centera is desiged Write Caching and Buffering
for on-line archival of fixed content with mostly-write opWisconsin: Our analysis shows that Centera is a syn-
erations of medium- and large-sized objects. Therefootronous system under writes — no write buffering is per-
reliability and write-ingest is more important than reafbrmed. Once again, Centera leans towards simplicity and
performance and lower latency. The extra latency frgliability; if a write completes successfully, this means
writes introduced by using a storage node as a relaythat is has been reliably committed to two disks on dif-
typically very small; congestion occurs rarely because tf@ent storage nodes. However, synchronous writing is
internal network has dual paths with two switches andstow. Hence, a next-generation Centera might consider
shielded from outside traffic. Finally, the cost of settingther options to improve performance, such as a NVRAM
up and tearing down a TCP connection for each write wimt is found in other higher-end EMC products.
initially deemed negligible, given targeted object sizeEMC: Through a patch developed with the Linux com-
Moreover, it provided a simple and scalable solution fetunity, Centera ensures that data is reliably written to the
clusters of 8-256 nodes. More recent CentraStar versiomedia. Using (arguably non-commodity) NVRAM would
reuse TCP connections and tune the number of open cigitrease complexity when handling exceptional states as
nections based on the cluster size and load. well as hardware costs. Other EMC products that include
Theudp messages in the write protocol are updates oN&VRAM make the trade-off in favor of increased perfor-
distributed hash table, translating content address & lomance of read-modify-write workloads.
tion in constant time. Even if the message is not delivered L .
after three attempts, the write transaction reports ssccés4 Replication and Load Balancing
logs this exceptional case, and retries the update at a I8ftésconsin: Our investigation of Centera replication re-
time (not observed). The occasional disk reads obserwedgls its uniform approach: all objects can be found on
in the Al, B3, andC3 intervals are not directly related totwo disks in the system. Perhaps more control could be
the write transaction. However, withpriori knowledge given to applications, enabling them to create more copies
of the content address, the write protocol first performoéparticularly valuable data.
lookup in the distributed hash table; if found, no data is The Centera was further found to perform load balanc-
transferred to the cluster (not observed in the analysis)ing across storage nodes under writes. However, all de-

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

cisions are based on what is locally observable by st@- Related Work
age nodes. Hence, as we demonstrated by inducing a de- . . - .
lay on an incoming network link, the Centera approa ur mtrg—box techniques are S|m|l_ar to a recent line
to load balancing may not perform well when the load worl1< |r51 tgespelrfzorn:nrahnce dgbuc??flng of cgn:plex Sys-
not measurable from the perspective of the storage no 1S [1. 5, 6, 8, 12]. € major difierence between our
In the future, we believe it is important to gather info?f"ork and all related work is the level of detail that we can

! ; mefer; because we assume knowledge of how storage sys-

: . ns generally functione(g, that they support caching,
system, perhaps measuring each write from the perSptSEnetching, and other domain-specific functions), we are

tive of an access node, and using this measured histor k f . .) |
make more robust placement decisions. We also saw B to discover spe_cmc structural and policy details that
pjore general techniques cannot. Further, the goals of our

Centera takes the power distribution network into accou o o
Hence, the system is built similar to “orthogonal” RAI o_rk and much of the related work differ; specmcally,_
! %hlle our work seeks to understand the structure and poli-

designs [13], which take the many sources of failure in fa st i th h naril
account when placing data and its replicas across disk§!€s Of a storage system, othér approaches are primarily
ed at performance debugging.

Finally, despite the clear presence of load balanciﬁlljn o .]
machinery under writes, the Centera does not seem td/ore specifically, Aguileraet al. infer causal paths
perform load balancing for reads. Hence, if a node I} distributed systems using message level traces. Their
performing poorly, read performance of the system adeghniques are particularly useful for finding a compo-
whole suffers. Future versions of Centera should considént that is a performance bottleneck. However, their
correcting this oversight. approach is limited in that they assume each message is
EMC: Network delays are not an issue as there are tg§Pendent upon the arrival of exactly one previous mes-
paths from any node to any other node and the loadSRJ€; more complex dependencies are found in storage
balanced between the two paths. Load observations loe4ttems. Similarly, Cheet al[12] detect failures and di-
to the node are propagated to other nodes both by p@§nose performance problems using runtime path analy-
odic broadcasts (observations of additional UDP traffie}s: Unlike Aguileraet aland our own analysis, Chetal.
and piggybacked onto various messages (observation8%Ume the existence of message tags within the system
extra data transfers in Section 4.2.2). Access nodes [8€lp frack dependencies. One advantage of these two
this information when selecting storage nodes. approaches over our intra-box techniques is that they are

Because of the nature of content addresses and the @€ t0 run while the system of interest is online and run-
tribution of data across storage nodes, reads are likBIf§9 & real workload. In contrast, our approach must be
to be spread equally across all the nodes, balancing lied to a quiesced system with controlled workloads.

load in aggregate. Given the emphasis on write opel3.the future, we hope to extend our approach within op-
tions and the fact that network delays due to congestioitional systems.

almost never occur, the CentraStar version 2.0 analyzedrevious research characterizing the behavior of stor-
here did not employ load balancingiofiividualread op- age systems has operated in different domains. Some
erations. This has been added to later versions and is sivark has focused on a single disk [29, 32, 34]. For ex-
ilar to the load balancing of writes. The intra-box analy@mple, Worthingtoret al. identify various characteristics
sis could have also observed that each node balances Rfa@ disk, such as the mapping of logical block numbers
across its internal disks. Finally, the current hardwagsudo physical locations, the size of the prefetch window, the
a different power distribution system which eliminates tHerefetching algorithm, and the caching policy [34]. In

constraints on placing replicas on nodes. our own previous work, we characterize traditional RAID
systems, for which we are able to automatically infer the
5.5 Content Addressability number of disks, chunk size, level of redundancy, and lay-

Wisconsin: We observed that Centera uses a BLOB sigélt scheme [16].

of 100 MB, potentially missing out on opportunities for Some related work has taken a similar approach to ours
capacity savings achieved by using smaller BLOBs [25) slowing components down to learn more about the be-
Of course, smaller BLOBs imply more metadata fdravior of a system [5, 8, 21]. For example, Browh
BLOB tracking, which may not be desirable. Hence, if aal.[8] use table locking to infer the dependence of various
application wishes to maximize its usage of content aldigher-level queries on database tables. In comparison,
dressability, it must do so itself, not expecting the systeme slow network and disk traffic to better understand var-
to find more detailed content similarity among the objecisus aspects of the storage system under test. Our commu-
EMC: Implementing single-instance storage at the ohication slowdown mechanism is similar to that presented
ject level (or 100 MB chunks) allows efficient storage artsy Martin et al[21]; however, their approach is used to
management of hundreds of millions of objects. Margarn which aspects of network performance affects appli-
applications take advantage of the single-instance featoation performance, whereas we use network slowdown
and combine it with fast lookup to potentially eliminatéo infer dependencies within components of our storage
unnecessary data transfer. cluster.

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

7 Conclusion 8]

In this paper, we have shown how intra-box techniques
can be applied to deconstruct the protocols and policies
of a modern commodity-based storage cluster, the EME
Centera. Through our analysis, we can infer much about
the design and implementation of the system, without ds]
cess to a single line of the source code. In general, we
believe our study demonstrates the power of probe poi 5
within the system — by observing and slowing down var-

A. Brown, G. Kar, and A. Keller. An Active Approach to Char
acterizing Dynamic Dependencies for Problem Determinatio

a Distributed Environment. IThe 7th IFIP/IEEE International
Symposium on Integrated Network Managembstaty 2001.

J. F. Cantin and M. D. Hill. Cache Performance for Sele G®EC
CPU2000 Benchmarks. Computer Architecture News (CAN),
September 2001.

M. Carson and D. Santay. NIST Network Emulation Tool.
shad.ncsl.nist.gov/nistnet, January 2001.
CAS-Community. http://www.cascommunity.org.

M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fand

E. Brewer. Path-Based Failure and Evolution Management. In

ious system components, much can be learned about the NSDI '04 San Francisco, CA, March 2004.

structure of a complex system. (3]
As systems continue to grow in complexity, we believe
that intra-box techniques are a much-needed additiontq
the toolbox of systems analysts. Not only should such
techniques be developed further; rather, we hope that sys-
tems themselves are built with the intra-box approachiirs

mind — the more externally visible probe points, the bet-
ter. By “opening up the box”, such systems will be morﬁ
readily understood, analyzed, and debugged. The re ueﬂ
will be a generation of higher performing, more robust,
more reliable computer systems. (17]
Centera is now in its third generation of hardware al

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.tBat
son. RAID: High-performance, Reliable Secondary Stordgem
Computing Survey26(2):145-185, June 1994.

P. M. Chen and D. A. Patterson. A New Approach to I/O Per-
formance Evaluation—Self-Scaling 1/0 Benchmarks, Ptedi/O
Performance. IIBIGMETRICS '93pages 1-12, Santa Clara, CA,
May 1993.

R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. hitec-
tural Requirements of Parallel Scientific Applicationshnixplicit
Communication. IHSCA '93 San Diego, CA, May 1993.

T. E. Denehy, J. Bent, F. |. Popovici, A. C. Arpaci-Duaseand
R. H. Arpaci-Dusseau. Deconstructing Storage ArraysASP-
LOS X| pages 59-71, Boston, Massachusetts, October 2004.

EMC. EMC Centera: Content Addressed Storage System.
http://www.emc.com/, 2004.

J. Gray and A. Reuter.Transaction Processing: Concepts and

four CentraStar releases have taken place since version TechniquesMorgan Kaufmann, 1993.
2.0. Therefore, some of the observations made here i@y J. L. Hennessy and D. A. Patterson, edito@omputer Architec-

no longer apply. Nonetheless, this work, and in particular
the slow-down causality analysis, helped EMC fine-tung
some aspects of the Centera protocols.

8 Acknowledgments

We would like to thank Lakshmi Bairavasundaram, Todgb)
Jones, James Nugent, Florentina Popovici, Vijayan Prab-
hakaran, and Muthian Sivathanu for their helpful discug3l
sions and comments on this paper. We would also like 19
thank Ana Bizarro for her assistance in setting up acc sé
to the Centera. Finally, we thank the anonymous review-
ers for their many helpful suggestions. (25]
This work is sponsored by NSF CCR-0133456, CCR-
0098274, NGS-0103670, ITR-0086044, ITR-032526[26]
IBM, Network Appliance, and EMC.

References [27]
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and

A. Muthitacharoen. Performance Debugging for DistribuBaa- [28]

tems of Black Boxes. I8OSP '03Bolton Landing, NY, 2003.

G. Amdahl, G. Blaauw, and J. F.P. Brooks. Architecturethaf

IBM System 360. IBM Journal of Research and Development[zg]

8(2):87-101, April 1964.

[3] T. E. Anderson, D. E. Culler, D. A. Patterson, and the NOW
Team. A Case for NOW (Networks of WorkstationstEE Micro, 30

15(1):54-64, February 1995. (30]

R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. Steingerand

K. Yelick. Empirical Evaluation of the CRAY-T3D: A Compiler (31]

Perspective. INSCA '95 Santa Margherita Ligure, Italy, 1995.

S. Bagchi, G. Kar, and J. Hellerstein. Dependency Ansalys [32]

Distributed Systems Using Fault Injection. 12th International

Workshop on Distributed Systendancy, France, October 2001.

P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magp

Real-Time Modeling and Performance-Aware SystemdddiOS

IX, Lihue, Hawaii, May 2003.

[7] V. Bohossian, C. C. Fan, P. S. LeMahieu, M. D. Riedel, L., le[34
and J. Bruck. Computing in the RAIN: A Reliable Array of Inde]
pendent Nodes. IFEEEE Transactions on Parallel and Distributed
Computing 2001.

[21]

(2]

[4]

(5]

[6] |[33]

ture: A Quantitative Approach, 3rd editionMorgan-Kaufmann,
2002.

E. K. Lee and C. A. Thekkath. Petal: Distributed Virtizisks. In
ASPLOS VIICambridge, MA, October 1996.

R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. AndenscEf-
fects of Communication Latency, Overhead, and Bandwidth in
Cluster Architecture. InSCA '97, Denver, CO, May 1997.

L. McWoy and C. Staelin. Imbench: Portable Tools for fleer
mance Analysis. IRVSENIX 1996San Diego, CA, January 1996.

Panasas, Inc. Panasas Active-Scale Storage Cluster.
http://www.panasas.com, 2004.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolskyd J. Ze-
lenka. Informed Prefetching and Caching. 3®SP '95 pages
79-95, Copper Mountain Resort, CO, December 1995.

C. Policroniades and I. Pratt. Alternatives for DeitegtRedun-
dancy in Storage Systems Data. WSENIX '04 Boston, MA,
June 2004.

M. Rosenblum and J. Ousterhout. The Design and Impléatien

of a Log-Structured File SysterACM Transactions on Computer
Systemsl10(1):26-52, February 1992.

R. H. Saavedra and A. J. Smith. Measuring Cache and TiB Pe
formance and Their Effect on Benchmark Runtim=EE Trans-
actions on Computergl4(10):1223-1235, 1995.

Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. SpenFAB:
building reliable enterprise storage systems on the chi@afpSP-
LOS X| Boston, Massachusetts, October 2004.

J. Schindler and G. Ganger. Automated Disk Drive Cherata-
tion. Technical Report CMU-CS-99-176, Carnegie Mellon -Uni
versity, November 1999.

C. Staelin and L. McVoy. mhz: Anatomy of a micro-benchina
In USENIX '98 pages 155-166, New Orleans, LA, June 1998.

T. Sterling, editor. Beowulf Cluster Computing with LinuxMIT
Press, October 2001.
N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.

Microbenchmark-based . Extraction of Local and Glgobal Disk
Characteristics. Technical Report CSD-99-1063, Uniwersf

California, Berkeley, 1999.

S. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta.e Th
SPLASH-2 Programs: Characterization and Methodologieai-C
siderations. IHSCA '95 Santa Margherita Ligure, Italy, 1995.

B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilke8n-

Line Extraction of SCSI Disk Drive Parameters. SIGMETRICS
‘95, pages 146-156, Ottawa, Canada, May 1995.

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

