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Abstract
The traditional approach for characterizing complex systems

is to run standard workloads and measure the resulting perfor-
mance as seen by the end user. However, unique opportunities
exist when characterizing a system that is itself constructed from
standardized components: one can also look inside the system it-
self by instrumenting each of the components. In this paper,we
show howintra-boxinstrumentation can help one understand the
behavior of a large-scale storage cluster, the EMC Centera.

In our analysis, we leverage standard tools for tracing boththe
disk and network traffic emanating from each node of the cluster.
By correlating this traffic with the running workload, we areable
to infer the structure of the software system (e.g., its write update
protocol) as well as its policies (e.g., how it performs caching,
replication, and load-balancing). Further, by imposing variable
intra-box delays on network and disk traffic, we can confirm the
causal relationships between network and disk events. Thus, we
are able to infer the semantics of the messages between nodes
without examining a single line of source code.

1 Introduction
The systems community has long understood the benefits
of separating architecture and implementation [2]. Given
this clean separation, clients are assured a consistent, stan-
dard interface, while designers have the freedom to inno-
vate behind that interface. The common result is that a
rather simple interface hides a growing amount of inter-
nal implementation complexity. This trend has occurred
not only in the implementation of microprocessors behind
their instruction sets, but in storage systems as well.

Modern storage systems have simple interfaces that
hide a great deal of internal complexity. Many high-end
storage servers continue to use the SCSI interface, a sim-
ple read/write interface exporting an array of blocks to the
client. However, storage servers now implement a range
of complex functionality and contain tens of processors,
gigabytes of memory, and hundreds of disks. For exam-
ple, the EMC Symmetrix 8000 storage server [19] imple-
ments redundant data paths, end-to-end checksumming,
machinery to fence off portions of caches under failure,
and disk scrubbing technology to discover latent errors
proactively – all behind the standard SCSI interface.

Today, a fundamental change is occurring in storage
systems. Whereas, in the past, storage systems were built
from specialized parts, they are now being assembled
from commodity components. High-end storage servers

are now being built from collections of commodity PCs,
each running a commodity operating system, and con-
nected together by an Ethernet network [17, 20, 23, 28].
Hence, many modern storage systems are simply in-
stances of a “cluster of workstations” [3, 31].

Across all domains, users often want to understand the
behavior of the systems they use. This understanding en-
ables critical evaluation of the design and implementa-
tion choices; it allows users to build better models of how
the system behaves under different workloads and to tune
and debug their performance; it enables administrators to
identify when the system is not behaving correctly. Un-
fortunately, one of the drawbacks of standard interfaces
is that they can hide interesting information about inter-
nal behavior. Currently, one can measure and evaluate
systems using application-level benchmarks [9, 15, 33] or
microbenchmarks [4, 14, 22, 27, 30]; however, these tra-
ditional approaches assume one can only observe the be-
havior of a system from its external interface.

The shift in storage system design to leverage com-
modity components greatly increases our ability to ana-
lyze how the storage system behaves. In effect, building a
system from commodity components “opens the box” and
allows users to directly observe what is occurring inside.
Furthermore, users can often leverage existing, standard-
ized tools to perform their analysis.

In this paper, we develop a set ofintra-box techniques
to analyze the structure and policies of commodity-based
storage clusters. Our analysis contains two major com-
ponents. First, we monitor and perturb network and disk
traffic internal to the storage cluster in order to deduce the
structure of the main communication protocols. Second,
we build upon this protocol knowledge to dissect inter-
nal policy decisions, such as caching, prefetching, write
buffering, and load balancing.

We apply these techniques to a new and important in-
stance of a commodity storage cluster, the EMC Cen-
tera Content-Addressable Storage System. Centera is de-
signed to provide low-cost, easy-to-manage, scalable stor-
age for “fixed content” data, such as medical images, elec-
tronic documents, and email archives [17]. With content
addressability, Centera can take advantage of the massive
redundancy often present in data (e.g., email attachments)
and reduce capacity requirements.

One main contribution of this paper is our analysis of
the Centera’s protocols and policies. Note that our results
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were achieved entirely without assistance from EMC; to
verify their accuracy and relevance, we include a meta-
analysis of our results from EMC (§5).

Overall, we find that the Centera chooses simplicity
and reliability over sophisticated performance optimiza-
tion, perhaps a good choice for an early implementation.
Our analysis reveals the structure of the write update pro-
tocol as a standard two-phase commit with writes com-
mitted synchronously to the disks. As for policies, Cen-
tera uses caching and prefetching mechanisms of the com-
modity file systems within storage nodes, leaving more
complicated caching schemes to client applications. We
also derive some interesting properties of load balancing.
For example, Centera storage nodes gather and disperse
load information locally; global effects (such as network
link performance) are not taken into account.

The other main contribution of this paper is the de-
velopment of our intra-box techniques; although applied
solely to Centera, we believe our techniques are widely
applicable. One general lesson we draw is on the power
of probe points within a system; observation of internal
cluster network and disk traffic is crucial to our approach.
Perhaps future I/O systems should consider architectural
support to enable this type of detailed analysis.

The paper is structured as follows. We first present our
methodology (§2), structural analysis of Centera protocols
(§3), and policy inference (§4). We then analyze our re-
sults (§5), including accuracy confirmation by an EMC
engineer, discuss related work (§6), and conclude (§7).

2 Methodology
In this section, we begin by presenting a general overview
of the storage cluster under test, the EMC Centera. We
then describe our intra-box techniques for analyzing both
the structure and policies of distributed systems.

2.1 System Overview
The EMC Centera is a Content Addressable Storage
(CAS) cluster designed for storing and retrieving fixed
content information. The Centera handles the manage-
ment of the physical storage resources transparently to ap-
plications and is designed as a highly scalable, “no-single-
point-of-failure” platform. Centera usescontent address-
ing in which applications access data objects (also known
as BLOBs for “Binary Large Objects”) with a 128- or
256-bit content address derived from the contents of the
object (e.g., via a hash function applied over the data).

The architecture of the Centera cluster is a Redundant
Array of Independent Nodes (RAIN) [7]. Nodes are con-
nected via a private LAN. Each node runs CentraStar soft-
ware on a Linux kernel and operates as either astorage
nodeor anaccess node. The storage nodes hold the ob-
jects on their local disks, whereas the access nodes man-
age read and write requests between an externalclient
(i.e., an application server) and the storage nodes.

The general protocol followed by Centera is as fol-
lows [11]. First, an application contacts an access node

and delivers a data object (i.e., a file) to the Centera with
a write (i.e., using theFP BlobWrite API). The Cen-
tera calculates the unique content address (CA) for the ob-
ject and records the CA along with other metadata for the
object in a separate file, called a C-Clip Descriptor File
(CDF). The CA for the CDF is then calculated and re-
turned to the application after two copies of both the CDF
and the BLOB have been stored. Data objects can be re-
trieved by contacting an access node via a read (i.e., the
FP BlobRead API), providing the C-Clip’s CA.

we evaluate a Centera cluster containing two access
and six storage nodes, sometimes utilizing smaller clus-
ters for experimental purposes. Each node runs Linux
2.4.19 and CentraStar version 2.0 and contains second-
generation hardware: a 1-GHz Pentium 3 with 512 MB of
memory, three Intel EtherExpress Pro 100 Mb/s Ethernet
ports, and four 250 GB Maxtor 5A250J0 ATA disks. Each
access node is connected to clients via 100 Mb/s Ethernet.

2.2 Intra-Box Analysis
The traditional approach for understanding the behavior
of systems is to run standard workloads and measure the
resulting performance as seen by the end user. However,
unique opportunities exist when characterizing a system
that is itself constructed from standardized components:
one can also useintra-box analysisto look inside the sys-
tem by instrumenting each of the constituent components.

To analyze the behavior of a distributed storage server
we use two intra-box techniques:observationanddelay
of traffic to nodes and disks. Passive observation of net-
work and disk traffic allows us to track correlations across
different requests and thus gives us a general idea of the
protocol structure and internal policies. However, obser-
vation alone does not enable us to definitively conclude
the causality between different requests; to infer that one
message depends upon a specific previous event, we must
also delay messages and disk requests.

2.2.1 Observation
To derive the general protocol structure and policies, we
begin by simply observing the traffic to each node or disk.
In each case, the traffic can be observed using straight-
forward tools. To trace both TCP and UDP communi-
cation between nodes, we usetcpdump. To trace disk
traffic, we insert into the kernel a pseudo-device driver as-
sociated with each disk and mount the file system upon
it; the driver records the start time, end time, and block
number of each read or write request.

To collect suitable observations, we run a simple work-
load on the client application server (e.g., the workload
repeatedly creates new objects) and trace all of the traf-
fic seen at the network and at the disk. We assume that
there is no other workload running on the Centera and we
perform multiple trials so that we can filter out traffic that
does not occur consistently. Analysis is performed off-
line, to avoid interference with system activity.

Our analysis allows us to determine general proper-
ties of the communication and disk activity in the system:
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which nodes send messages to which other nodes, which
nodes read or write to local disk, the size of each network
message, and the time delay between network and disk
events. We also can infer properties that are specific to
the Centera,e.g., which nodes in the cluster act as access
nodes versus primary and secondary storage nodes.

2.2.2 Delay
Passive observation of network and disk events allows us
to correlate events with one another; however, observation
alone does not enable us to determine the exact dependen-
cies between events. More precisely, even when one re-
peatedly observes that eventX occurs after eventA, one
cannot infer thatX depends onA.

Using correlation to derive causality can be success-
ful [1], but has a number of potential weaknesses. First,
unrelated events may consistently occur in the same order
simply due to performance characteristics of the system.
Second, a large number of iterations are required to ob-
serve which event orderings occur consistently and to fil-
ter out background noise. Finally, it is difficult to discover
that an event is dependent on multiple preceding events.

To derive the causal relationships across events, we de-
lay each network and disk event and then observe which
subsequent events are delayed as well. For example, if
we delay the receipt of a messageA and then observe that
sending messageX is also delayed, we infer thatX is de-
pendent (perhaps indirectly) onA; however, ifX is not
delayed, we infer thatX is independent ofA.

One complicating factor is determining the amount by
which an event should be delayed; this is an important
issue when later events may be dependent upon multiple
events. For example, suppose that sending messageX

is dependent upon receiving messagesA andB and that
B usually arrives 20 ms afterA. If we delayA by only
10 ms,B will still arrive later (at its usual time) and will
be the event that triggersX ; thus, we will incorrectly con-
clude thatX is independent ofA. To avoid this situation,
we inject a relatively large delay of 500 ms that exceeds
the other durations in the system (this value must be tuned
to the system of interest). Thus, delayingA will cause all
dependent events to be delayed as well, as desired.

To delay network traffic, we employ NistNet [10]; our
modified version sits on top oftcpdump and delays only
incoming packets. Our framework allows us to select
the amount of delay and define criteria for which pack-
ets should be delayed. On Centera, most messages can
be uniquely identified by their size; thus, we use size and
protocol type (i.e., TCP or UDP) to determine which mes-
sages should be delayed. We also utilize other fields in the
protocol headers such as IP addresses and port numbers.

To delay disk traffic, we use the same pseudo-device
driver as for tracing requests. One can configure the dura-
tion of the delay as well as which requests should be de-
layed (e.g., reads or writes). Delayed requests are placed
in a separate queue until the delay time expires.

3 Deducing System Structure
In this section, we apply intra-box analysis to derive the
internal structural protocols employed by the EMC Cen-
tera. We begin by using passive observations to infer the
basic protocol for both storing and accessing objects. We
then actively delay network and disk events to determine
the relationships across events when storing objects.

3.1 Passive Observations
In our first step, we passively trace the network and disk
traffic within the EMC Centera. We analyze two distinct
protocols: the events that occur when the user stores ob-
jects via writes and the events that occur when the user
later accesses objects through reads. Most of our analysis
is focused on writes because they are more complex.

3.1.1 Object Write Protocol
Figure 1 is a pictorial representation of our findings for the
Centera protocol when writing objects. The figure shows
the network and disk events that occur between the client
and Centera nodes for each request. Figure 2 reports the
duration of intervals between each TCP message.

Our analysis as presented in the diagram allows us to
infer the basic Centera protocol for storing objects. Note
that in our description, we tend to say that nodes perform
actionX after actionY (e.g., send a UDP message af-
ter a disk operation completes); however, until we have
verified the causal relationship across events as we do in
Section 3.2, these sequences are only conjectures.

The object write protocol begins when the client con-
tacts an access node directly, sending a 299-byte message
(va1). The access node then issues a disk read, sets up a
new TCP connection with the primary storage node (ab0),
and communicates with it (ab1). The primary storage
node also performs a disk read, sets up a connection with
the secondary storage node (bc0), and communicates with
it (bc1). Thus, each time a client stores an object, a new
TCP connection is created between the access node and
the appropriate storage nodes. In this structural analysis
of the protocol, we do not determinewhichaccess node or
whichstorage nodes are selected; this selection is a policy
decision, which we will explore in Section 4.

A series of messages then propagates back from the
secondary storage node all the way to the client (bc2, ab2,
va2). After the client receives this response, it sends a
variable number of messages to the access node. We infer
that these messages contain the data object since their size
varies with the size of the objects. The access node for-
wards this data to the primary storage node, which again
forwards the data to the secondary storage node. After
sending a transfer acknowledgment (ab4, bc4), each stor-
age node writes to its local disk and communicates us-
ing UDP with two other Centera storage nodes (udpX1,
udpY 1). After these events, the storage nodes propagate a
series of 90-byte (ab5, bc5) and 4-byte acknowledgments
(ab6, ab7, bc6, bc7) to each other and to the access node.
Finally, the access node informs the client that the request

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���������
���������
���������

���������
���������
���������

����������
����������
����������
����������

����������
����������
����������
����������

���������
���������
���������

���������
���������
������������������

���������
���������
���������

���������
���������
���������

���������
���������
���������

B2

B3

B1

C2

C3

[161]
C4

C5

B4

B5

B6

B7

B8

B9

B10

B11

C7

SN2−commit

[299]

[289]

[509]

[509]

[321]

[375]

[539]

Node
Access Primary

va4

va3

ab1

ab2

ab4

bc1

bc3

[321]bc4

AN−commit
[4]

[4]

commit−ack

t

C10

C9

C8

bc7

C6

ab0
setup
TCP conn.

[0]

bc0
TCP conn.

[0]

A1 A2

C1

B12

B13

B14

B15

B16

B17
B18

B19A13

A12

A11

A10

A9

A8

A6

A7

A5

A4

A3

va1

abE

bcE

va2 [577]

req−complete

TCP conn.

ab7

ab6 [4]

[4]

[90]ab5

transfer−ack

req−ack

write−req

write−req

bc2
req−ack

[161]

transfer−ack

ab3 [375]
transfer−fin

bc5 [90]

bc6
SN1−commit

tear−down
TCP conn.

write−req

req−ack

transfer−fin

SN1−commit

commit−ack

tear−down

transfer−fin

setup

Client Storage
Secondary

Storage

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

������

���
���
���
���

disk
writes

sync

timeout
1 second

ab3/bc3

Storage Node
Secondary
Primary and

t
Storage
Node X

Storage
Node Y

transfer−ack

data transfer

transfer−fin

udpY1

ab4/bc4

udpY2 [180]
update−ack

write−update
udpX1 [350]

udpX1
udpX2

ab5/bc5
SNx−commit

B12 and
C7

Figure 1:Anatomy of the Centera Write Protocol.
The figure on the left provides a pictorial representation of
our findings and shows the network and disk events thatoc-
cur between the client and Centera nodes on a 16-KB object
write through theFP BlobWrite API. TCP messages are
labeled with three values. First, each message has a unique
label identifying the endpoints and a simple message id; for
example,ab0 indicates the initial message between nodesa

and b, wherea is the access node andb is the primary stor-
age node. Second, the average size in bytes of each protocol
message is shown. Third, each message is assigned a label
reflecting our understanding of its semantic purpose in the
protocol. The interval between TCP events on each Centera
node is labeled with a unique identifier (e.g.A4); the dura-
tion of each of the intervals is reported in Figure 2. Single
block disk reads sometimes occur around intervals A1, B3,
and C3. The figure on the top shows in more detail events that
occur around intervals B12 and C7. UDP messages shown
above are designated with a label identifying the destination
node and a simple message id (e.g.,udpX1 is the first UDP
message sent to storage node X in this round of the protocol).

is complete (va4) and the Centera nodes tear down their
TCP connections (abE, bcE).

The timing results reported in Figure 2 reveal where
most of the time is spent when storing 16-KB objects. We
note that the client sees that the object has been stored
after a latency of approximately 150 ms, which is roughly
the sum of the times A1 to A10. The figure shows that
most of this latency occurs during intervals A4, A7, and
A9. Matching these intervals with Figure 1, we see that
A4 corresponds to when the access node is waiting for
the storage nodes to read from disk; A7 to when the data
object is being transferred to the access node; and A9 to
when the storage nodes are writing the object to disk.

3.1.2 Object Read Protocol
Again for reads, the client node communicates only with
the access node, which in turn reads from disk, and es-
tablishes a new TCP connection with one of the storage
nodes. After the storage node receives the request, it reads
from disk and sends the data object back to the access

node. The access node transmits this object to the client,
exchanges acknowledgments with the storage node, tears
down the TCP connection with the storage node, and fi-
nally informs the client that the request is complete (Fig-
ure not shown due to space limitation).

3.2 Delaying Events
Observing network and disk events enables us to learn
much about the internal protocol of the Centera. How-
ever, from these observations, we cannot conclude which
events must occur after one another. We now delay events
to infer the dependencies across network and disk events
for the write protocol. Due to space constraints we do not
present similar analysis for the read protocol.

For each message in the protocol, we determine the set
of events that it depends upon by delaying the preceding
events on that node and observing which delay the subse-
quent sending of that message. We structure our discus-
sion by investigating each type of event in turn: TCP traf-
fic, UDP traffic, and completion of disk reads and writes.
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TCP Traffic: We begin by investigating the most straight-
forward case of a dependency: whether an outgoing TCP
packet depends on any of the previously-arriving TCP
packets. Note that we do not need to determine if an
outgoing message is dependent on multiple TCP packets
from the same node due to the nature of TCP; because
TCP is a reliable byte-stream protocol, the receiver is
guaranteed to see packets in the same order that the sender
transmitted them, even if some packets are delayed or lost
and subsequently resent. For example, we check whether
ab5 is dependent on receivingbc5 or on receivingbc4, but
not whether it is dependent on receiving both; sincebc5

is guaranteed to arrive afterbc4, even ifab5 depends on
bothbc4 andbc5, then waiting forbc5 is sufficient.

Figure 3 shows the impact of delaying an interesting
subset of the TCP packets (i.e., bc2, ab2, bc4, bc5, ab6,
andbc7). Across the three pairs of graphs, we report the
send or receive time of each packet for the three Cen-
tera nodes involved: the access, primary storage, and sec-
ondary storage nodes. We note that a sharp increase in
the send or receive time of packetX when packetA is
delayed indicates that packetX depends on packetA.

These measurements imply the following dependen-
cies. First, in the initial request exchange, sendingab2
from the primary storage node depends upon first receiv-
ing bc2 from the secondary storage node; thus,ab2 serves
as an acknowledgment that both the primary and sec-
ondary storage nodes have received the request. Second,

sendingab4 from the primary storage node depends upon
receivingbc4; thus,ab4 acknowledges that both the pri-
mary and secondary storage nodes have received the data
object. Third, sendingab5 from the primary storage node
depends upon receivingbc5 from the secondary; thus,ab5
serves as an acknowledgment that both storage nodes have
written the object to disk (further details below).

Finally, the measurements show an interesting set of re-
lationships after the request is complete. Specifically, we
see that delayingab6 impactsab7 and delayingbc6 im-
pactsbc7, but delayingbc7 does not impactab7. Thus,
in the protocol, packetab7 serves only as an acknowledg-
ment that the primary storage node has received the packet
from the access node and not from the secondary storage
node. This independence could not be confirmed without
the delay technique because our passive measurements al-
ways observed thatab7 followedbc7.
UDP Traffic: We next isolate the events that are depen-
dent upon arriving UDP traffic. Interesting UDP traf-
fic occurs during intervalsB12 and C7 on the primary
and secondary storage nodes, respectively. A non-trivial
amount of additional UDP traffic occurs throughout our
measurements, but this UDP traffic is filtered because it
does not occur at regular points in the write protocol.
Furthermore, we have found that delaying other proto-
col events has no impact on this background UDP traffic;
therefore, we can conclude that this other UDP traffic is
not related to the write protocol.
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Figure 4 addresses the relationship between UDP traffic
and other events. These measurements were performed on
the primary storage node, but the relationships are identi-
cal for the secondary storage node. In each graph, for
40 independent trials, we show the time at which the two
udp1 packets were sent to the other storage nodes, when
the twoudp2 packets were received, and when the TCP
packetab5 was sent back to the access node.

The first graph reports our observed timings for the de-
fault Centera system with no delays of UDP traffic. This
figure shows that there is no ordering between sending
a UDP packet to storage nodeY and receiving the UDP
packet from storage nodeX ; in fact,udpX1 andudpY 1

are sent in parallel. Thus, passive observations can be suf-
ficient to show there is no dependency between messages.

The first graph does show thatudp2 always arrives after
udp1 is sent and thatab5 is always sent afterudp2 arrives.
However, to confirm whether these are true dependencies,
we must delay UDP messages. In the second graph we de-
lay the requestudp1 by 1.5 seconds. These results show
thatudp2 andab5 are also delayed. Thus,udp2 is indeed
an acknowledgment ofudp1. However, another interest-
ing property is apparent as well. Since UDP is an unre-
liable protocol, the Centera software implements its own
timeout-retry policy to resend messages when a response
is not received. In this graph, we see that the Centera im-
plements a timeout of one second for theudp1 packets, at
which point it resends those packets.

We explore the impact of the timeout policy in more
depth in the third graph; in these experiments we in-
crease the delay ofudp1 to 4.5 seconds. In these circum-
stances, the storage node never receives the acknowledg-
ment packet ofudp2. Instead, the Centera protocol per-
forms three timeout-retry intervals and then stops retry-
ing; at this point, the storage node sends the finalab5 TCP
packet without receivingudp2. Thus,ab5 depends on ei-
ther receiving bothudpX2 andudpY 2, or waiting for a
time-out of approximately three seconds.
Disk Events: We now determine which TCP and UDP
messages are dependent on the completion of disk reads
or disk writes. Disk read operations occur on three Cen-
tera nodes when the request is first initiated (i.e., during
intervalsA1, B3, andC3); disk write operations occur on

the two storage nodes after the data object has been re-
ceived (i.e., during intervalsB12+B13andC7).

Figure 6 shows whether delaying the disk reads and
writes on the storage nodes impact the subsequent mes-
sages; across the three graphs, we examine the access
node, primary storage node, and secondary storage node,
respectively. We make two observations from these mea-
surements. First, on the storage nodes, the TCP message
immediately following the disk read is in fact dependent
upon that disk read (i.e., the send times ofbc0 and bc2
both increase when the disk read is delayed); this con-
firms our initial intuition. On a related note, delaying the
reads on both nodes causes subsequent events to be de-
layed by 1 second, further indicating that these reads are
not overlapped. Second, on the storage nodes, delaying
the disk writes also delays sending theudpX1 packet;
further, given that the send time ofudpX1 is delayed by
nearly 2.5 seconds, the storage nodes appear to perform
five disk writes in succession.

Conclusion: Delaying network and disk events within the
Centera write protocol allows us to identify which events
are dependent upon which others. In two cases, this anal-
ysis would not have been possible with passive observa-
tions and correlations alone.

The first case occurs at the end of the write protocol:
when the primary storage node sends acommit-ACK(ab7)
message to the access node, this indicates that it received
theAN-commit(ab6) message from the access node, not
that it received thecommit-ACK(bc7) from the second
storage node. Relying on correlations alone, we could not
determine thatcommit-ACKfrom the primary was inde-
pendent of thecommit-ACKfrom the secondary, because
the one always occurred after the other.

The second case occurs on the storage nodes after they
have written to disk: when the storage nodes send a TCP
message, this indicates that the data has been committed
to disk and that the node has attempted to communicate
using UDP with other storage nodes, but not that the UDP
messages have succeeded. Again, relying only on corre-
lations, we would have inferred that storage nodes must
receive UDP replies before sending the TCP commit.
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Figure 6: Impact of Delaying Disk Activity on Write Protocol. We delay reading or writing from disk by 500 ms. Across the three
graphs, we consider each of the three involved Centera nodes: the access, primary storage, and secondary storage nodes.Along the y-axis of each
graph, we report the send or receive time of each packet relative to the start of the request;UDP indicates the sending ofudpX1. A sharp increase
in the send or receive time of packetX when the disk eventA is delayed indicates that packetX depends on disk eventA.

4 Inferring Policies
In the previous section, we analyzed the protocol struc-
ture of the Centera for write and read operations. In this
section, we infer the policy decisions within each of those
protocols. In our analysis, we focus on the most impor-
tant functionality one would expect in a storage system:
replication, load balancing, caching, and prefetching.

One key to our approach is that we can utilize the
derived structure of the write (Figure 1) and read (not
shown) protocols to fine-tune our analysis. For exam-
ple, in our analysis of caching, we use this information to
enable fine-grained accounting of disk accesses, thus en-
abling us to filter out traffic in the system that is unrelated
to the current request.

4.1 Object Write Policies
We begin by analyzing the decisions that occur during the
write protocol, originally shown in Figure 1. We continue
to assume that we are able to observe and delay both net-
work and disk traffic.

4.1.1 Content Addressability
We begin by inferring a very basic decision: how large are
the units of data? Centera segments each file into multiple
BLOBs, each of which is stored, replicated, and accessed
independently. A BLOB is the unit of granularity at which
both content hashing (and hence duplicate detection) is
performed and storage is allocated across storage nodes.

To determine the size of a BLOB, we write a file con-
taining the same byte repeated throughout. When the
size of the file being written is exactly twice the BLOB
size, the file will internally be comprised of two identical
BLOBs; thus, the amount of traffic should be halved. In-
deed, this behavior should be observed at all multiples of
the BLOB size.

Figure 5 shows the amount of data transferred to the
storage nodes (both primary and secondary) across the
network as we increase the size of the file being writ-
ten. As one can see, the amount of data transferred climbs
steadily from around 100 MB to around 200 MB as the
x-axis increases from 100 MB to 200 MB, at which point
it drops to 100 MB again. This cyclical pattern repeats at
200 MB, 300 MB, and so on, indicating that the unit of
content addressability is 100 MB.

4.1.2 Level of Replication
The Centera uses data replication to protect against data
unavailability or corruption in the face of failures. One
fundamental choice is thelevel of replication, or number
of copies, for data objects. This level is readily apparent
from our previous structural analysis. Figure 1 shows that
two replicas are made of the object being written. Further
experimentation (not shown) across a range of object sizes
reveals that the level of replication is two for all objects.

4.1.3 Load Balancing
We now dissect the load balancing strategy under writes.
When a write enters the system, Centera first chooses the
primary storage node for the data; the primary storage
node then chooses the secondary location. We now infer
the load balancing policy: what factors determine which
storage nodes are selected? Many factors may influence
the decision of which two nodes to place a given data
item upon, including current performance or the amount
of available space. In our analysis, we focus on four per-
formance factors: CPU utilization, disk usage, network
connections, and network delay. We vary these factors
one at a time in a controlled manner. For CPU, we run a
high priority while loop with a varying fraction of sleep
time. The network delay is varied using modified Nist-
Net. For disk usage, we generate background traffic using
a file copy program. We also open varying number of TCP
connections between the primary and secondary nodes.

We then observe internal message traffic to determine
whether the induced load has an impact on Centera’s
placement decisions. Figure 7 plots the amount of data
written to each node under different load experiments.

From the figure, we can see that three factors influ-
ence the selection of nodes under writes, heavily skewing
writes to other unloaded nodes: the CPU load, the disk
load, and the number of network connections to that node.
Interestingly, we also observe that increasing the network
delay of an incoming link to a storage node doesnotaffect
load balancing; performance for writes decreases dramat-
ically (not shown) when we increase the latency of the in-
coming link to a storage node, because Centera does not
incorporate this delay into its load balancing strategy.

We hypothesize that Centera is collecting performance
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statistics on each storage node, distributing that informa-
tion throughout the system periodically, and basing its
load balancing decisions upon it. To confirm our belief,
we run another experiment, in which we again increase
the load on a particular storage node (the CPU load in
this case), but also delay UDP message traffic within the
cluster. As we saw in our protocol analysis, TCP is used
within Centera for writes and reads, and UDP for virtually
all other inter-node communication. Hence, by slowing
various UDP messages down, we hope to slow the spread
of load information, and confirm our hypothesis.

Figure 8 reveals the method by which load information
is dispersed. From the figure, we can see that the longer
UDP message traffic is delayed, the longer it takes for the
load balancing decision to be affected by the increased
CPU load on a particular storage node. Hence, we confirm
our hypothesis about load information dispersal.

Finally, additional constraints appear to determine the
primary and secondary copies of a data item. To isolate
these constraints, across experiments, we placed identical
CPU loads on different pairs of the four storage nodes.
Figure 9 shows the results. In most cases, when a greater
CPU load is placed on a pair of nodes, then a greater
fraction of writes are sent to the unloaded storage nodes.
However, in some cases, the number of writes does not
adjust to the CPU load. In particular, when either the
pair of nodes (1, 3) or nodes (2, 4) are unloaded, then the
load balancing policy does not react: writes are allocated
roughly evenly across the loaded and unloaded pairs.

Hence, the Centera ensures that a data item has one
copy on either node 1 or node 3, and the other copy on
either node 2 or node 4. Our inspection of power distribu-
tion within Centera reveals the reason: each pair of these
nodes uses a separate power supply. Hence, while Centera
write load balancing is sensitive to performance factors, it

is constrained by factors that influence reliability, such as
the power source.

4.1.4 Caching and Buffering
Another important performance optimization present in
most storage systems iswrite buffering, also known as
write behind. By transforming writes into asynchronous
operations, application-perceived latency is greatly re-
duced, as copying data into an in-memory buffer is much
faster than committing it to disk [26]. The trade-off comes
in terms of reliability: by delaying the commit to disk, the
chance of data loss under failure increases.

Our protocol analysis shown in Figure 1 revealed that
the access and client nodes are notified only after the disk
write has been committed on both storage nodes. Hence,
we conclude the Centera performs all write operations
synchronously. Thus, the Centera developers chose safety
and reliability over performance.

4.2 Object Read Policies
We now turn our attention to the read protocol. Although
reads are not as complex, their performance characteris-
tics may be crucial for some applications.

4.2.1 Caching
We begin by determining whether or not caching of data
objects is performed within the Centera read protocol. To
demonstrate the benefits of intra-box techniques, we begin
by assuming that wecannotaccess the internals of the
Centera and can only observe performance at the client.

We begin with a simple workload that repeatedly reads
the same file. By comparing the difference in time
between the first read and subsequent reads, in many
environments, one can determine whether caching is
present [27]. From the identical latency numbers in the
first row of Table 1a, one might conclude that there is no
caching taking place; in this case, one would be wrong.
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Client
Latency (s)
1st 2nd ...

No Delay 0.52 0.51
w/ Delay 32.39 0.55

(a)

Data Read
(MB)

1st 2nd ...
AN-Cli 4.04 4.04
SN-AN 4.04 4.04
Disk-SN 4.04 0.00

(b)
Table 1:Read caching. The table on the left shows the time taken
to read a 4 MB file from Centera; the first column shows the time for the
first read and the second column shows the average time for thesecond
and subsequent reads. The second row shows the same experiment, ex-
cept with a large (800ms) disk delay induced. The table on the right
shows the breakdown of traffic from access node to client, storage node
to access node, and from the disk to the storage node.

We now leverage our ability to observe and delay events
inside Centera. In particular, we insert a substantial disk
delay for every read that is sent to the disk of a storage
node. The second row in Table 1a illustrates this, as the
numbers now show a large difference between the time
taken for the first read and subsequent reads of the same
file. Hence, caching must be taking place within Centera.

The presence of caching is not observable in Centera
because the 100 Mbit/s Ethernet delivers data as quickly
as the IDE disks. By inserting delay into the disks, we
change the relative ratios between the network and disk,
and hence can observe that caching is taking place within
the system. However, the experiment does not reveal
wherein the system caching is occurring.

To complete our read caching analysis, we monitor both
network and disk traffic during the previously-described
experiment. The results of this analysis are presented in
Table 1b. The table shows how much data is transferred
from the access node to the client, the storage node to the
access node, and the disk to the storage node for both the
first and subsequent file accesses. The table shows that,
across requests, the same amount of data is transferred
between the access node and the client and between the
storage node and the access node; thus, the client and the
access nodes are not performing caching. However, the ta-
ble shows that no data is transferred between the disk and
the storage node on the second and subsequent requests;
therefore, the storage node performs in-memory caching.

4.2.2 Prefetching
Prefetching is an important optimization for storage sys-
tems [24]. In these experiments, we determine whether
Centera performs prefetching, and if so, which compo-
nents perform the prefetching.

In our first experiment, we read data sequentially from
a file in small chunks (i.e., 1 KB), and time each read at
the client. We again slow down the disks to exacerbate the
difference between on-disk and in-memory accesses. The
first graph of Figure 10 shows the results of this experi-
ment. From the graph, we observe that the first 1 KB read
takes a significant amount of time, followed by seven re-
quests that are completed more rapidly. From this client-
perceived timing result, we can conclude that prefetch-
ing is taking place within Centera; specifically, Centera
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Figure 10:Prefetching. The graph on the left shows the time taken
for each 1 KB sequential read of a file. The graph on the right shows the
amount of bytes transferred across the network (either fromthe storage
node to the access node, or from access node to client) under such a
workload; however, in the rightmost graph, we run multiple tests, vary-
ing the size of the request from 1 byte up to 64 KB.

prefetches an 8 KB block when the first 1 KB is read.
As with caching, we also wish to unearthwherein the

system prefetching occurs. The second graph of Figure 10
plots the network traffic for the same experiment. Along
the x-axis, we vary the size of each read to the file, and
along the y-axis, we plot how much data was transferred
per request. The graph shows that the amount of data
transferred between Centera nodes is just slightly more
than the size of the requested data. Specifically, if the
client requestsx bytes from Centera,x+368 bytes will be
sent from the storage node to the access node, andx+167

bytes will be sent from the access node to the client.
From these results, we draw two conclusions. First,

given that few extra bytes are passed between Centera
nodes, prefetching is not occuring across the network.
Thus, the prefetching must be occuring at the storage
node. Second, some extra information (roughly 200
bytes) is passed in a header from the storage node to the
access node node that is not then passed on to the client.

4.2.3 Load Balancing

We now examine load balancing under reads. For load
balancing, writes have a great deal of flexibility: in a
large-scale system, a primary copy may go to any half
of the nodes and the secondary to any node in the other
half. However, reads are more constrained: the read in
can go to only one of the two storage nodes where the
data is located. In these experiments, we seek to under-
stand the factors Centera uses to determine which copy of
data is accessed. We again examine the performance fac-
tors of CPU utilization, disk usage, network connections,
and network delay.

Surprisingly, we found that the Centera read balancing
policy is completely insensitive to any and all loads we in-
duced (not shown). Hence, even if a node responds much
more slowly to read requests than other nodes, read re-
quests are still just as likely to be directed its way.
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5 Analysis
We now analyze the design and implementation of the
Centera storage server. In each subsection, we present
perspectives from Wisconsin followed by EMC; by
adding the EMC perspective, we offer insight as to the
accuracy and relevance of the Wisconsin analysis.

5.1 Protocol Structure
Wisconsin: The protocol structure reveals many basic el-
ements of the Centera design. First, we can observe a
basic two-phase commit protocol under writes [18]. Sec-
ond, we also see that the generation of the secondary copy
is handled by the primary storage node; a different imple-
mentation would have the access node send the data to
both storage nodes itself. The trade-off here is clear and
likely a reasonable one – in Centera, latency is potentially
higher, but the load on the access node is decreased.

Finally, we can also see how TCP and UDP are used
for different purposes in the Centera communication sys-
tem. TCP is used for the most important aspects of data
transfer, both on writes and reads. UDP, in contrast, is pre-
sumably used for traffic such as periodic heartbeats and,
as we see in load balancing, for propagating load informa-
tion. We also observe that a new TCP connection is cre-
ated per data transfer; although not a large cost in the cur-
rent generation system, future Centera implementations
should consider caching connections to storage nodes and
avoiding costly three-way TCP handshake and teardown.
EMC: The analysis correctly identifies the majority of
protocol features and illuminates Centera design princi-
ples and the workload characteristics. Centera is designed
for on-line archival of fixed content with mostly-write op-
erations of medium- and large-sized objects. Therefore,
reliability and write-ingest is more important than read
performance and lower latency. The extra latency for
writes introduced by using a storage node as a relay is
typically very small; congestion occurs rarely because the
internal network has dual paths with two switches and is
shielded from outside traffic. Finally, the cost of setting
up and tearing down a TCP connection for each write was
initially deemed negligible, given targeted object sizes.
Moreover, it provided a simple and scalable solution for
clusters of 8–256 nodes. More recent CentraStar versions
reuse TCP connections and tune the number of open con-
nections based on the cluster size and load.

Theudp messages in the write protocol are updates of a
distributed hash table, translating content address to loca-
tion in constant time. Even if the message is not delivered
after three attempts, the write transaction reports success,
logs this exceptional case, and retries the update at a later
time (not observed). The occasional disk reads observed
in theA1, B3, andC3 intervals are not directly related to
the write transaction. However, witha priori knowledge
of the content address, the write protocol first performs a
lookup in the distributed hash table; if found, no data is
transferred to the cluster (not observed in the analysis).

5.2 Read Caching and Prefetching
Wisconsin: Our analysis reveals that only the storage
nodes perform caching and prefetching. Indeed, one
would expect these nodes to do so, as each runs a com-
modity file system. We also saw that no caching or
prefetching is performed on either the client or access
nodes. This decision seems reasonable, as there would
probably be little benefit to the client (in terms of latency)
if data were fetched from an access node instead of a stor-
age node; in both cases, the data must still cross the net-
work. As for the client host, one must remember that the
user application which accesses the data is also running
upon that host. Perhaps the designers did not want to con-
sume precious memory resources on the client node for
caching and prefetching.
EMC: With emphasis on leveraging commodity com-
ponents (i.e., storage node’s file system and disk drive
caches) and less emphasis on access latencies, the extra
hop on the internal network does not warrant the impact
(both in complexity and performance) on access nodes.
For file server-like environments, where repeated reads of
the same objects are more likely, Centera offers a separate
gateway, which sits in front of the cluster. It translates
NFS and CIFS requests to Centera API operations and
implements caching, so it avoids accesses to the cluster
altogether. The design goal is to provide a light-weight
Centera API library; applications can use their existing
caches or implement their own. In short, both the gate-
way and application-specific caching reduce the need for
caching at the access nodes.

5.3 Write Caching and Buffering
Wisconsin: Our analysis shows that Centera is a syn-
chronous system under writes – no write buffering is per-
formed. Once again, Centera leans towards simplicity and
reliability; if a write completes successfully, this means
that is has been reliably committed to two disks on dif-
ferent storage nodes. However, synchronous writing is
slow. Hence, a next-generation Centera might consider
other options to improve performance, such as a NVRAM
that is found in other higher-end EMC products.
EMC: Through a patch developed with the Linux com-
munity, Centera ensures that data is reliably written to the
media. Using (arguably non-commodity) NVRAM would
increase complexity when handling exceptional states as
well as hardware costs. Other EMC products that include
NVRAM make the trade-off in favor of increased perfor-
mance of read-modify-write workloads.

5.4 Replication and Load Balancing
Wisconsin: Our investigation of Centera replication re-
veals its uniform approach: all objects can be found on
two disks in the system. Perhaps more control could be
given to applications, enabling them to create more copies
of particularly valuable data.

The Centera was further found to perform load balanc-
ing across storage nodes under writes. However, all de-
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cisions are based on what is locally observable by stor-
age nodes. Hence, as we demonstrated by inducing a de-
lay on an incoming network link, the Centera approach
to load balancing may not perform well when the load is
not measurable from the perspective of the storage node.
In the future, we believe it is important to gather infor-
mation for load balancing decisions at higher levels in the
system, perhaps measuring each write from the perspec-
tive of an access node, and using this measured history to
make more robust placement decisions. We also saw that
Centera takes the power distribution network into account.
Hence, the system is built similar to “orthogonal” RAID
designs [13], which take the many sources of failure into
account when placing data and its replicas across disks.

Finally, despite the clear presence of load balancing
machinery under writes, the Centera does not seem to
perform load balancing for reads. Hence, if a node is
performing poorly, read performance of the system as a
whole suffers. Future versions of Centera should consider
correcting this oversight.
EMC: Network delays are not an issue as there are two
paths from any node to any other node and the load is
balanced between the two paths. Load observations local
to the node are propagated to other nodes both by peri-
odic broadcasts (observations of additional UDP traffic)
and piggybacked onto various messages (observations of
extra data transfers in Section 4.2.2). Access nodes use
this information when selecting storage nodes.

Because of the nature of content addresses and the dis-
tribution of data across storage nodes, reads are likely
to be spread equally across all the nodes, balancing the
load in aggregate. Given the emphasis on write opera-
tions and the fact that network delays due to congestion
almost never occur, the CentraStar version 2.0 analyzed
here did not employ load balancing ofindividual read op-
erations. This has been added to later versions and is sim-
ilar to the load balancing of writes. The intra-box analy-
sis could have also observed that each node balances load
across its internal disks. Finally, the current hardware uses
a different power distribution system which eliminates the
constraints on placing replicas on nodes.

5.5 Content Addressability
Wisconsin: We observed that Centera uses a BLOB size
of 100 MB, potentially missing out on opportunities for
capacity savings achieved by using smaller BLOBs [25].
Of course, smaller BLOBs imply more metadata for
BLOB tracking, which may not be desirable. Hence, if an
application wishes to maximize its usage of content ad-
dressability, it must do so itself, not expecting the system
to find more detailed content similarity among the objects.
EMC: Implementing single-instance storage at the ob-
ject level (or 100 MB chunks) allows efficient storage and
management of hundreds of millions of objects. Many
applications take advantage of the single-instance feature
and combine it with fast lookup to potentially eliminate
unnecessary data transfer.

6 Related Work
Our intra-box techniques are similar to a recent line
of work in the performance debugging of complex sys-
tems [1, 5, 6, 8, 12]. The major difference between our
work and all related work is the level of detail that we can
infer; because we assume knowledge of how storage sys-
tems generally function (e.g., that they support caching,
prefetching, and other domain-specific functions), we are
able to discover specific structural and policy details that
more general techniques cannot. Further, the goals of our
work and much of the related work differ; specifically,
while our work seeks to understand the structure and poli-
cies of a storage system, other approaches are primarily
aimed at performance debugging.

More specifically, Aguileraet al. infer causal paths
in distributed systems using message level traces. Their
techniques are particularly useful for finding a compo-
nent that is a performance bottleneck. However, their
approach is limited in that they assume each message is
dependent upon the arrival of exactly one previous mes-
sage; more complex dependencies are found in storage
systems. Similarly, Chenet al.[12] detect failures and di-
agnose performance problems using runtime path analy-
sis; unlike Aguileraet al.and our own analysis, Chenet al.
assume the existence of message tags within the system
to help track dependencies. One advantage of these two
approaches over our intra-box techniques is that they are
able to run while the system of interest is online and run-
ning a real workload. In contrast, our approach must be
applied to a quiesced system with controlled workloads.
In the future, we hope to extend our approach within op-
erational systems.

Previous research characterizing the behavior of stor-
age systems has operated in different domains. Some
work has focused on a single disk [29, 32, 34]. For ex-
ample, Worthingtonet al. identify various characteristics
of a disk, such as the mapping of logical block numbers
to physical locations, the size of the prefetch window, the
prefetching algorithm, and the caching policy [34]. In
our own previous work, we characterize traditional RAID
systems, for which we are able to automatically infer the
number of disks, chunk size, level of redundancy, and lay-
out scheme [16].

Some related work has taken a similar approach to ours
in slowing components down to learn more about the be-
havior of a system [5, 8, 21]. For example, Brownet
al.[8] use table locking to infer the dependence of various
higher-level queries on database tables. In comparison,
we slow network and disk traffic to better understand var-
ious aspects of the storage system under test. Our commu-
nication slowdown mechanism is similar to that presented
by Martin et al.[21]; however, their approach is used to
learn which aspects of network performance affects appli-
cation performance, whereas we use network slowdown
to infer dependencies within components of our storage
cluster.
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7 Conclusion
In this paper, we have shown how intra-box techniques
can be applied to deconstruct the protocols and policies
of a modern commodity-based storage cluster, the EMC
Centera. Through our analysis, we can infer much about
the design and implementation of the system, without ac-
cess to a single line of the source code. In general, we
believe our study demonstrates the power of probe points
within the system – by observing and slowing down var-
ious system components, much can be learned about the
structure of a complex system.

As systems continue to grow in complexity, we believe
that intra-box techniques are a much-needed addition to
the toolbox of systems analysts. Not only should such
techniques be developed further; rather, we hope that sys-
tems themselves are built with the intra-box approach in
mind – the more externally visible probe points, the bet-
ter. By “opening up the box”, such systems will be more
readily understood, analyzed, and debugged. The result
will be a generation of higher performing, more robust,
more reliable computer systems.

Centera is now in its third generation of hardware and
four CentraStar releases have taken place since version
2.0. Therefore, some of the observations made here may
no longer apply. Nonetheless, this work, and in particular
the slow-down causality analysis, helped EMC fine-tune
some aspects of the Centera protocols.
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