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Abstract require profiling of the instruction stream or caching of the
optimized instructions. Instead, dataflow optimizatiores a
This paper presents a hardware-based dynamic opti- applied to each fetched instruction using a table-basett har
mizer that continuously optimizes an application’s instru ~ ware optimizer located directly in the processor pipeline.
tion stream. In continuous optimization, dataflow optimiza
tions are performed using simple, table-based hardware
placed in the rename stage of the processor pipeline. The

’ Fetch |Decpdé| Rename[ﬁchqdule| Reg. Read |Execute| Retire‘

continuous optimizer reduces dataflow height by perform- ’ RAT |Optimizer\
ing constant propagation, reassociation, redundant load  Figure 1. High-level view of optimizer inte-
elimination, store forwarding, and silent store removal. T grated into a dynamically-scheduled proces-

enhance the impact of the optimizations, the optimizer in-  sor pipeline.

tegrates values generated by the execution units back into

the optimization process. Continuous optimization allows ~As depicted in Figure 1, continuous optimization is inte-
instructions with input values known at optimization time 9rated withthe register alias table (RAT) in the renamesstag
to be executed in the optimizer, leaving less work for the Of @ dynamically-scheduled processor. The continuous op-
out-of-order portion of the pipeline. Continuous optimiza timizer uses the hardware tables described in Sections 2
tion can detect branch mispredictions earlier and thus re- &nd 3 to perform constant propagation, reassociationnredu
duce the misprediction penalty. In this paper, we present adant load elimination, store forwarding, and silent st@re r
detailed description of a hardware optimizer and evaluatei Moval. Execution results are fed back to, and exploited by,
in the context of a contemporary microarchitecture running the optimizer to enhance performance. This feedback com-
current workloads. Our analysis of SPECint, SPECfp, and bined with optimization allows 33% of retired instructions
mediabench workloads reveals that a hardware optimizer t0 be non-speculatively executed early in the pipeline by
can directly execute 33% of instructions, resolve 29% of the optimizer. The optimizer's objectives are (1) to reduce
mispredicted branches, and generate addresses for 76% oflataflow height, and (2) to execute simple instructions dur-

memory operations. These positive effects combine to proiNg optimization. These objectives are symbiotic, and com-
vide speed ups in the range 0.99 to 1.27. bine to provide an average speed up of 1.11 over a standard

pipeline.

Some previously proposed hardware-based dynamic op-
timizers [1, 9] perform classical compiler optimizatiorfs o
fline using an abstract optimizer operating on discrete in-

Dynamic optimization offers opportunities beyond static struction traces. Although continuous optimization can be
compiler optimization because of its ability to dynamigall adapted for optimizing instruction traces, it is not linite
identify hot execution paths and adapt to changes in pro-to discrete regions, i.e., it can impact a greater span of in-
gram behavior. Many dynamic optimizers [1, 2, 5, 7, 8, 9, structions. There have been numerous in-pipeline optimiza
11, 20] share a common overall structure: they (1) selecttion techniques [4, 6, 21, 23, 24, 27]. Continuous optimiza-
regions (functions, traces, hyperblocks, etc.) througheso  tion subsumes and extends many of them by aggressively
form of dynamic profiling, (2) optimize the selected re- optimizing dataflow through registers and memory to re-
gions, (3) cache the optimized versions, and (4) exchangeduce dataflow height and to increase instruction-level par-
future occurrences of the original regions with the opti- allelism (ILP).
mized versions. We propose a dynamic optimization sys- This paper makes several contributions. First, the no-
tem, which we callcontinuous optimizatigrthat does not  tion of continuous optimization is presented along with a

1. Introduction
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detailed description of a hardware implementation of such2.1. Symbolic register values
an optimizer. Second, continuous optimization’s impact and
sensitivity to design choices are characterized. Third, con-
tinuous optimization’s contributing performance factors are
analyzed. Finally, a quantitative comparison is made with
other in-pipeline optimization technigues, and continuous
optimization is shown to provide significantly higher per-
formance.

This paper is organized as follows. Section 2 provides
motivation and high-level details for continuous optimiza- 2 2. Optimizations
tion. Hardware requirements are discussed in Section 3.
Section 4 presents our experimental infrastructure. Sec- | he optimizations performed are described below:
tion 5 provides the performance characterization, and Sec- Constant propagation (CP) propagates known val-
tion 6 presents sensitivity studies. Section 7 presents related@/®S from producers to consumers. Simple instructions
work along with comparisons to previously proposed in- with known constant inputs can be executed in the opti-

pipeline optimization techniques. Section 8 provides a sum-mizer. If, for exampleadd r3, 4 -> r4is being op-
mary of the findings. timized, andr 3 is known to be3, the add is performed

and7 is moved intor 4. This optimization subsumes con-
stant folding.
2. Continuous optimization Reassociation (RA)transitively flattens symbolic ex-
pressions, reducing dataflow height and increasing ILP
by transferring dependences to earlier producers. A con-
sumer’s input is copied from its producer’s input, and

All optimizations operate orsymbolicregister values
of the form(r eg<<scal e) +of f set, wherereg is a
physical registesscal e is a two-bit left shift quantity, and
of f set is a 64-bit immediate field. The symbolic expres-
sion was chosen because it enables a variety of optimiza-
tions, as described in the next section, and approximately
55% of instructions executed match its fdrm

| RAT |Optimizer|“\\\\

T its of f set andscal e are recalculated. This optimiza-
RAT tion subsumes copy propagation.
e | & RLE/SF/Im™ opt Redundant load elimination (RLE) combines load op-
~LCPIRA SSR value erations accessing identical memory locations; the loads af-
t : Toaute ter the first are converted to move operations, which are then
Figure 2. Architectural view of optimizer. optimized away in a manner similar to [11, 15].

Store forwarding (SF) converts loads referencing re-

Figure 2 provides more details of the optimizer. Con- cently stored values into move operations, which are then
stant propagation (CP) and reassociation (RA) are imple-optimized away as in redundant load elimination.
mented with additional logic integrated into the register  Silent store removal (SSR)removes store operations
alias table (RAT). Redundant load elimination (RLE), store that write a value identical to the currently stored value.
forwarding (SF), and silent store removal (SSR) are per- RLE/SF/SSR follow CP/RA because constant propa-
formed with a separate, cache-like structure accessed afgation and reassociation simplifyeg+-of f set address
ter the RAT. Following their decoding, all instructions have specifications, enabling effective redundant load elimina-
their inputs and outputs renamed while being simultane- tion, store forwarding, and silent store removal. Multiple
ously transformed to a more parallel form. The crux of the optimization passes are not performed, but the benefits of
optimizer is asymbolicrepresentation of each architectural doing so are achieved by feeding redundant and store for-
register value, which is maintained in the optimization ta- warded load information back to the CP/RA stage; CP/RA
bles. The symbolic representation is leveraged to increasahen copy propagates the information through subsequent
dataflow parallelism and to reduce memory accesses. ASnstructions.
an enhancement, execution results are fed back to the op- Our memory optimizations are not speculative. There-
timizer to increase effectiveness. We call this prosedse  fore, removed load and store instructions are safely elimi-
feedbackand call the values fed baékown valueso dif- nated with respect to a single thread of execution. We as-
ferentiate them from symbolic information available before sume that memory-mapped I/O is identifiable. In a real sys-
instructions execute. Instruction optimization does not stall tem, where another thread of execution may disturb a mem-
waiting for value feedback because symbolic values sufficeory location unbeknownst to the thread being optimized,
for correctness. Bekerman et al [4] was first to propose value
feedback for_early load addres_s resolution. Lo .1 Leftshifts of 0, 2, and 3 corresponding to addx, s4addx, and s8addx

We now discuss the operation of the optimizer, explain of the Alpha ISA are the only allowed shift values.

and motivate its design, and discuss positive and negative2 Removingscal e decreases coverage to 54%. Expressions can be 32-
implications of continuous optimization. bit or 64-bit; without 32-bit support, coverage decreases to 50%.
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such optimizations may not be possible. We evaluate the im-pointer updates. Early load address resolution [4] uses a
pact of performing strictly safe optimization in Section 5.2. limited form of constant propagation and reassociation to
pre-compute memory addresses to issue loads earlier in
the pipeline. Load and store reuse [23] and speculative
Low-level compiler optimizations can be divided memory bypassing [21] are alternative approaches to per-
into two categories backward and forward optimiza- forming redundant load elimination, store forwarding, and
tions. Backward optimizations, such as dead code elimi- silent store removal in the pipeline. Continuous optimiza-
nation, are efficiently performed by analyzing instructions tion extends these approaches by aggressively optimizing
in reverse sequential order. We do not remove dead codall dataflow, i.e., through registers and memory, to reduce
for two reasons. First, when performed non-speculatively, dataflow height and increase ILP. Additionally, continuous
dead code removal requires instruction buffering to iden- optimization pre-executes 29% of mispredicted branches,
tify consumers and anti-dependences. Since continuousvhich reduces misprediction penalty. To our knowledge,
optimization is timing critical and buffering instruc- this important optimization is unique. In Section 7.1, we
tions impacts timing, dead code elimination is probably compare continuous optimization with reverse integration,
not a good design choice. Additionally, dead code elim- speculative memory bypassing, and early load address res-
ination’s primary benefit, from our experience, is reduc- olution and demonstrate that continuous optimization’s ad-
tion of fetch bandwidth requirements. Since instructions ditional benefits provide significant performance improve-
have already been fetched, much of the benefit of re-ments over these prior works.
moving them is lost. We believe dead code should be re-
moved in an off-the-critical-path dynamic optimizer, 2-4. Value feedback

such as in [9], where latency is less critical. A specula-  |nteqgrating execution results into the optimization tables
tive, |n—p|p_eI|ne technique for dead code removal [6] was 4)jows symbolic values to be converted iaown values
shown to improve performance on a resource-bound Ma-hich can then be propagated as constants to consumers.
chine. Including this technique, however, more than dou- gq, example, ifadd r3, 4 -> r4 generates the result
bles our required chip real gstate, but is a plausible addition g i physical registepr 22, andpr 22 is still referenced
fora resource—_bo_unq machine. ) , , in the optimizer tables, expressions referengm@?2 are

_ Forward optimizations operate on instructions in sequen-pqated with the valud5. Subsequent instructions using
tial order. They can be subdivided inthsconnectedind  gypressions containingr 22 use the valuels for pr 22
connectedataflow optimizations. Disconnected dataflow 54 potentially execute during optimization. The latency re-
optlmlza_nons identify and connect similar operations thgt quired for a symbolic expression to become a known value
are not linked through dataflow. Connected dataflow opti- yenends on the pipeline length between the optimization
mizations reduce dataflow height, increase ILP, and increaseynq execution stages and the time required to transmit the

dead code by cutting dataflow dependences. Constant propregyjt back to the optimization stage once the instruction
agation, reassociation, and store forwarding are example%roducing the result has executed.

of connected dataflow optimizations. We include the dis-
connected dataflow optimizations, redundant load elimina-2.5. Motivating example
tion and silent store removal, because they are simple exten-
sions to our store forwarding optimization. We could have
also included general instruction reuse [24], which is an in-
pipeline technique for optimizing common subexpressions.
Adding it could enhance continuous optimization, and con-
tinuous optimization canonicalizes instructions, potentially
making instruction reuse more powerful. Their combination
is the subject of future work.

Continuous optimization subsumes and extends som

2.3. Performing other optimizations

To demonstrate the opportunities for continuous opti-
mization, we use the code example in Figur&tatic Code

is the static representation of a loop that sums the elements
of an array. Assume that the loop counter is initialized to
some value that is not statically computable. On each it-
eration, an array element is loaded and added to the sum,
the loop counter is decremented, and the next array index

eis computed. The loop ends when the loop counter reaches
previous in-pipeline optimization approaches. Reverse in- 2ero.Dynamic Data Flowllustrates producer-consumer re-

tegration [24] uses a clever trick to extend general instruc- [2tionships for the loop instructions as they execute. Each
tion reuse to optimize limited instances of store forward- array index addition and array element load within each iter-

ing and reassociation, i.e., mostly stack references and stacﬁt'on_are fed by a I_oop-carrled dependenc_:e. Similarly, gach
iteration’s branch is dependent on a chain of subtractions

. o . . o equal in length to the chain of array index additions.

3 This categorization applies for basic block optimization, trace-based . . . .
optimization, and optimization on the dynamic instruction stream like | h€ instruction sequence emitted by the continuous op-
that performed here. It may not be directly applicable to general static timizer is labeledOptimized Data FlowThe arcs modified
compiler optimizations. by optimization are shaded. Although the dataflow height of
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Static Code . denamic Data Flow Optimized Data Flow with Value Feedback
9 0

mov 0 -> r3
1d [z29] -> rl
1d [r30] —> r4
LOOP:1d [r4] -> r2
add r3, r2 -> r3
sub rl, 1 —> rl
add r4, 4 —> r4
bne rl, LOOP

********

Figure 3. Motivating example.

the accumulate chain is not significantly reduced, the com-2.6. Impact of continuous optimization
putation chains for the array index, load, and loop counter
have been eliminated.

Consider what happens whesub r1, 1 ->r1l
from the first iteration enters the optimization stage. The
CP/RA tables are accessed by the source architectural regs 6.1, Positives.Continuous optimization can improve

For new microarchitectural features, both positive and
negative aspects must be considered. We now discuss con-
tinuous optimization’s potential impacts.

ister number 1, and the previous mapping ofl is dis- performance or power or both.

covered (previously generated Byd [r29] -> r1). Dataflow height reduction is provided by most opti-
For example, assunmel was previously mapped to phys-  mjzations and is beneficial because it increases ILP.

ical registerpr 35. Because theub also writesr 1, r 1's Early execution, i.e., executing instructions during opti-
mapping is updated with the symbolic valye 35- 1. mization, has multiple advantages. First, it creates a syner-
When sub r1, 1 ->r1 from the second itera- jstic effect: execution results are propagated to consumers,
tion is optimized,r 1 maps topr35-1, and the opti-  \hich might also execute early. Additionally, it relieves

mizer replaces this witpr 35- 2. If the physical regis-  pressure on the out-of-order part of the pipeline because
ter destination for the secorslub is pr37, it becomes  instructions executed early only need to retire, i.e., they
sub pr35, 2 -> pr37. do not pass through the scheduler, dispatch, register read,
By the 100" iteration, instructions in the loop’s pro-  and execute stages. For the benchmarks we evaluate, 33%
logue have probably completed execution, in which case of retired instructions execute early, and 29% of mispre-
their I‘eSU|tS are in the Optimization tables (Value feedback).dicted branches reso've during optimization. A recent Pen-
The column labeledvith Value Feedbackhows changesin  tjym 4 [13] has a minimum branch misprediction penalty
the 100" iteration that result from incorporating execution f gver 30 cycles (the majority occur after rename). Almost
results into optimization. In particular, both the iteration )| post-rename cycles can be saved when a mispredicted
counter loadl(d [r29] -> rl)andthe array baseload pranch executes early.
(Id [r30] -> r4)have their results integrated intothe | pad and store reduction is provided by redundant
optimization tables because both are still live. The shaded|oaq elimination, store forwarding, and silent store removal.
instructions can be executed during optimization becauseThese optimizations exploit provable short-term data reuse
their inputs are constant. The out-of-order portion of the g remove an average of 21% of load and 2% of store in-
pipeline does not need to execute them. Additionally, the stryctions, potentially reducing power because optimizer ta-

memory address for the load can be computed, which al-pje reads likely consume less power than cache accesses.
lows it to bypass the out-of-order portion of the pipeline

and immediately become eligible to access the cache. 2.6.2. Negatives.The positive aspects come at some cost.
This example does not use redundant load elimination, We now list potentially negative aspects of continuous opti-

store forwarding or silent store removal, but a similar pro- mization.
cess applies to these optimizations. Increased pipeline depthis a potential drawback, how-

ever, the number of stages required for optimization is
likely to be small, on the order of two to four. Adding
pipeline stages increases misprediction penalty, and, con-

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



versely, early branch resolution reduces the penalty foroutput’s symbolic form to be unexpressable (no optimiza-
branches resolved during optimization. These effects coun-tion). The result is stored in the RAT for future instructions.
teract each other; the resulting impact depends on the numimplementation-wise, constant propagation and reassoci-
ber of branches recovered early. ation are equivalent transformations. For constaney
Design complexity potentially increases. Fast, simple of the symbolic expressiorbése phys. reg. in Fig-
ALUs are required for each instruction that can pass throughure 4) is a hard-wired zero register, and a 64-bit constant is
rename in a single cycle (e.g., four in a four-wide re- storedinthébase reg. val . field.
name stage), plus bypass logic for optimization. Addition-  The symbolic inputs are passed to an ALU, which ex-
ally, value feedback carries execution results back to the re-ecutes the instruction if all values are known. Otherwise,
name stage, which requires forwarding logic absent in cur- depending on opcode, a new offset or physical register in-
rent processors. It might appear as if more physical registersgput(s) or both may be produced for the instruction. Nothing
are required with continuous optimization. However, be- is done if the instruction’s result cannot be encoded symbol-
cause of value feedback and early execution, physical regdically. The destination’s RAT entry is updated with the in-
ister pressure almost always decreases, often significantlystruction’s physical register output and symbolic represen-
(physical register pressure increased for 2 of 23 bench-tation.
marks, g721 decode and g721 encode). The optimizationta- Careful consideration reveals that processing multiple
bles require approximately 2K bytes of storage plus storageinstructions per cycle may be problematic. An instruction’s
for recovering optimization state on branch mispredictions. optimized symbolic form may be required as input for an
The CP/RA table requires a 100-150 bit entry per architec-instruction in the same rename bundle. For a four-wide re-
tural register and read and write ports equivalent to the RAT. namer, the implication is that four serial additions are re-
The RLE/SF/SSR stage is a small cache, modeled with 32quired. For example, assume the following instruction se-
entries of 100-150 bits; it requires read and write ports for quence is a single rename bundle.

each load and store capable of being optimized each cycle. add r1, 1 ->7r2

The complexity described here is the worst case. Since op- add r2, 1 ->r3

timization improves performance, but is not necessary for add r3, 1 ->r4

correctness, design complexity is an implementation vari- add r4, 1 ->7r5

able, i.e., there is a tradeoff between performance and de- Thjs sequence can be converted into four parallel instruc-
sign complexity. tions, but only through multiple serial additions. In the de-

Power implications for the additional pipeline gign we evaluate in Section 5, we only optimized the first
stages [12] and increased rename complexity are uUn-aqgition in a chain of additions. Section 6.1 examines the
clear. Certainly, without simplifying the out-of-order por- implications of this choice.
tion of the pipeline, power increases; however, optimiza- A second subtlety arises regarding physical register life-
tions simplify and pre-compute instructions. Thus, opportu- time Physical register deallocation schemes, such as those
nity ex_ists to scal_e back the _design of the out-of-ord_er COre,in the MIPS R10000 and Alpha 21264, deallocate physical
potentially reducing dynamic power. We leave this sub- regjsters after retirement of the next instruction that over-
ject for future work. writes the architectural destination. Optimizations can ex-
3. Microarchitectural details ten(_i physical register lifetime beyond this _point._Therefore,

we instead use a reference counter algorithm like that pro-

The optimization process consists of two sequen- posed by [15].
tial steps. CP/RA are performed first and concurrently
with register renaming; RLE/SF/SSR are second. Fig- 3.2. RLE/SF/SSR
ure 4 shows the logic slice needed to process one instruc- Redundant load elimination, store forwarding, and
tion in a multi-instruction rename bundle. silent store removal transform loads and remove unnec-
31. CP/RA essary stores. Fundamentally, this stage works precisely

like CP/RA, except that instead of indexing with archi-

Constant propagation and reassociation require sym-tectural register inputs, it is indexed with the data ad-
bolic expressions per architectural register. Upon en-dress for the memory operation. Load and store instructions
tering rename, instructions’ input source operands ac-check the table for previous memory operations that ac-
cess the RAT and read renamed register mappingscessed the same memory location. At rename, memory
along with symbolic expressions. The optimizer pro- addresses are generally unknown, however, CP/RA in-
cesses the symbolic sources and either (1) executes thereases known data addresses to 76%. If a load has a known
instruction (early execution), (2) derives a new sym- dataaddress, itislooked up in a small table called the Mem-
bolic form of the output (optimization), or (3) rules the ory Bypass Cache (MBC). A hit provides the symbolic
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Feedback from execution stage

! \ Feedback to |
' RAT - Feedback to CP/RA |
'3 D ! .
) D 4 —~ 4 |
! Memory Bypass 1
L2 instruction’s offset _ o — Cache (MBC) — |
! updated offset !
: + updated |
: srca val d ™ phy: hys |
3 [ phys reg fpase phys reg | offset] base reg val | scate |—~ | “;E‘y::e“; an RAT entry| phys reg [ base p,)}i rf% |
: > ass offset| base reg val | scale i
: + Byp: ) carly ‘
i addq 13,16 —>rl2 etworl i:leuc:le optimized updated L 3
! -+ 1 instruction instruction cache entry '
! srcb val and mi i
i Lo{ phys reg fpase phys reg | offset] base reg val [ scale |—={ =1 Steb val an Bypass optimized I .
: - phys reg N YP " instruction |
| new sical re, dest register !
: physical reg i ; etwor |
| Optimizer

Free Register List L Logic b b

| T optimization and renaming N optimization e
: updates from this cycle final updates to updates from this cycle updated entries from
i N RAT instructions optimized
i CP/RA (2 stages) }RLE/SF/SSR (2 Stages) in same cycle

Figure 4. Microarchitecture of the optimizer showing the logic slice to optimize one instruction.

representation of the data for the load (no data cache acshadow the improvements in memory bypassing. We have
cess is required). If the load’'s data address misses thenot yet evaluated predictive techniques that could re-
MBC, a symbolic expression of the load’s destination is in- duce these misspeculations. We leave this analysis for
serted into the table (for redundant load elimination). future work. For brevity, we omit our detailed analy-
If the load’s data address is unknown (i.e., not com- sis on various MBC configurations from this paper.

puted by CP/RA), no lookup is performed and nothing . )

happens. 3.3. Miscellaneous issues

If a store with a known address hits in, the MBC and the |, this section, we discuss some details that complicate
symbolic expression matches the store’s symbolic expres+e jmplementation for the proposed hardware optimizer.
sion of the data (propagated from CP/RA), the store is elim- They are abstracted away during evaluation, but a real im-

inated (for silent store removal). If the symbolic data does plementation must consider them, as they are necessary for
notmatch or the store’s data address misses, then a symbolig, o optimization hardware.

representation of the store data (propagated from CP/RA)  gtore forwarding and redundant load elimination for-
is inserted (for store forwarding). If an unknown store ad- \yard symbolic expressions through memory. For effective-
dress is encountered, no lookup is performed, and the MBCpegs the newly found dataflow must be copy propagated.
is flushed. . . To avoid multiple optimization iterations while achieving
Excluding MBC tag information, the MBC and CP/RA s benefits, forwarded symbolic expressions are transmit-
entries are identical. For simplicity, MBC addresses are 8- (a4 pack to the CP/RA stage. Doing so in a straightforward
byte aligned. Tag matching compares the standard addresganner adds write ports to the RAT (CP/RA table), a poten-
tag, the offset from the 8-byte alignment, and access size. lftja|ly objectionable requirement. However, the CP/RA ta-
a load hits, the data (symbolic expression) is forwarded 0 pje can be split into two structures. One structure, the RAT,
all intermediate references (instructions in the current and;s yndated by instructions currently being renamed (as it is
previous pipeline stages), written back to the CP/RA table ormajly). The second structure, the Copy Propagation Ta-
updating the load destination information, and used to con-p|e (CPT), is updated by feedback from the RLE/SF/SSR

vert the load into the symbolic expression. As with sequen- giage. When instructions enter rename, they read their input
tial additions for CP/RA, dependences across mstructlonsregisters- symbolic expressions from both tables in paral-

within a rename packet are not satisfied with RLE/SF/SSR || For each input, a MUX determines the symbolic expres-

either. We use a 32 entry MBC by default. We experi- sjon to use. When an instruction updates the RAT with its
mented with MBC sizes varying from 32 to 256 entries and ppysical register and symbolic expression, it also invalidates
found no difference in average performance. We also exper+pe corresponding entry in the CPT. Splitting the CP/RA ta-
imented with variable alignments (i.e., be_sides 8-byte align- ble avoids the additional write ports to the RAT at the ex-
ments), but found that performance only improved for a sin- hense of complexity and additional delay in evaluating in-
gle application, untoast. structions.

Rather than flushing the MBC on unknown store ad-  another implementation obstacle to consider is value
dresses, we could proceed speculatively. Additionally, feedhack. Execution results are forwarded back to the op-
we could track unknown memory addresses by hash-imizer to enhance optimization. However, physical reg-
ing reg+tof fset address expressions. We evaluated ister value updates are problematic because a physical
both extensions and found that misspeculations over-register may be referenced multiple times in the optimiza-
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tion tables. To update multiple locations simultaneously with rename, which is modeled with two pipeline stages.

with the same value, either a content-addressable strucTherefore, when continuous optimization is simulated, only

ture or a level of indirection is required. When a phys- two pipeline stages are added to rename for RLE/SF/SSR,

ical register value arrives, each entry can perform a which adds two cycles to the branch misprediction penalty

content-addressable match with base phys. reg. for branches not resolved during optimization. For mispre-

If it matches, thebase phys. reg. is set to the dicted branches resolved early, recovery happens after the

zero register and thebase reg. val. is set to extended rename stage. Execution results being fed back to

the incoming value. With the indirection approach, the optimizer require one cycle for transmission. Only one

the base phys. reg. can be examined in a sepa- level of addition dependence is evaluated in a cycle. If one

rate value table, but this adds extra latency to the optimizer,addition feeds another addition within a rename bundle, the

potentially complicating the intra-optimizer bypass net- dependent is not optimized. Similarly, if the result of one

work. load is used for the address of another within a rename bun-

dle, the dependent is not optimized. Sensitivity to this con-

figuration is examined in Section 6. For all optimizations,
Although the optimizations have been described for con- correctness is ensured through expression and value check-

tinuous optimization, the hardware can be adapted for of-ing to avoid faulty optimizations.

fline hardware-based optimizers, such as rePLay [9], PAR-

ROT [1], and trace-cache-based schemes [11, 14]. The ba-

sic structure remains identical. The difference between on-5. Performance characterization

line and offline optimization is that optimization tables are . )

invalidated at the start of each trace (or frame): offline opti- !N this section, we evaluate several performance aspects

mizations are discrete per region as opposed to continuou&f continuous optimization.

across the execution stream. Furthermore, real-time value

feedback for discrete optimization does not occur. On the .

other hand, multipass, reverse pass (dead code removal)'f_"l' Speedup over the baseline

and complex optimizations are easier offline.

3.4. Continuous vs. discrete optimization

Figure 5 demonstrates speed up of continuous optimiza-
4. Experimental setup tion compared to the baseline processor. Average speed
] ] . ) up is the rightmost bar. Despite additional pipeline stages,
In this section, we describe the benchmark suites we Us€continuous optimization improves almost all benchmarks.
for evaluation and our default processor model. Speed ups range from 0.99 to 1.27. On the low side, bzip2
4.1. Experimental workload and vortex hz?lve th_e Igrgest base!ine IPC;, and both have
few branch mispredictions. Such high baseline performance
We use the SPEC2000 integer, SPEC2000 floating point,leaves little room for improvement. For the SPECfp bench-
and mediabench benchmarks in Table 1. We provide re-mark ammp (amp), IPC is low due to data cache misses,
sults for all benchmarks working in our infrastructure. For j.e., improvements are dwarfed by memory miss cycles.
SPECint, we modified the input sets to allow simulation Several benchmarks demonstrate significant improvements.
through program completion, and we believe our modifica- Perl (prl), gap, and eon have the highest percentage of dy-
tions preserve original input set characteristics. The C andnamic instructions that can be optimized using the symbolic
C++ benchmarks were compiled at optimization level -O4 expression. These benchmarks derive most of their bene-
with the Compag Alpha C V5.9 and Compag Alpha C++ fit from reducing dataflow height rather than early load ad-
V6.5 compilers (bzip2 used -O3 because -O4 produced andress resolution, early branch resolution, or early execution.
incorrect program). At level -O4, both compilers perform |n contrast, mesa (msa), SPECfp’s top performer, derives
loop unrolling, software pipelining, vectorization, inline ex- most of its benefit from memory bypassing.
pansion, and other optimizations. The Fortran benchmarks Table 3 presents characteristics of continuous optimiza-
were compiled with the HP Alpha Fortran V5.5A compiler tion. Exec. earlyis the percentage of retired instructions ex-
with optimization level -O5. At this level, the compiler per-  ecuted by the optimizeRecov. mispred. brss the percent-
forms the same optimizations as the C and C++ compilersage of mispredicted branches recovered through optimiza-
and also adds loop transformation optimizations. tion. Ld/st addr. genis the percentage of load and store
instructions for which the optimizer generated addresses.
Lds removeds the percentage of loads converted to move
Our default processor model, outlined in Table 2, resem- operations by redundant load elimination or store forward-
bles the Pentium 4 [13] and is built using the SimpleScalar ing. Sts removeds the percentage of stores removed as
3.0 framework. We believe that CP/RA can be overlappedsilent.

4.2. Performance model

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



| Application Type | Name | Total Insts. | Application Type | Name | Total Insts. |

bzip2 (bzp)| 293M ammp (amp)| 1000M
crafty (cra)| 625M applu (app)| 198M
eon (eon)| 110M art (art)| 1000M
gap (gap)| 500M SPECTp equake (egk) 1000M
gcc (gcc)| 284M mesa (msa) 1000M
SPECint gzip (gzp)| 869M mgrid (mgd)| 1000M
mcf (mcf) 411M g721 decode (g721d) 751M
perlbomk  (prl)| 1000M g721 encode (g721g9) 406M

twolf (twf) 595M untoast (gsm decode) (untst) 84M
vortex (vor) 272M mediabench | toast (gsm encode) (tst) 268M
vpr (vpr) | 1000M mpeg2 decode (mp2d) 164M
mpeg2 encode (mp2g) 1000M

Table 1. Experimental workload.

Pipeline Fetch/Decode/Rename 4 insts/cycle, Retire 6 insts/cycle, 128 physical regs,
160 max inflight insts, 2@2 for continuous optimizationﬁlydes (min) for BR resf not executed early)
Branch Predictor | 64Kbit hybrid predictokras, giobal, local, and loop predictoyjstK-entry BTB
Load/Store Queues 48 entry load queue, 48 entry store quehkghory dependence prediction using store sets)
Scheduler 3 16-entry scheduleist, complexint, fp) 2 8-entry schedulef®ad, store)
— speculative wakeup and instruction replay
ExeUnits 4 Simple 1ALUs,1 Complex IALU, 2 FPALUSs, 1 Ld Agen, 1 St Agen
L1 I Cache 64KB, 4-way assoc., 64B line size, 1 cycle
L1 D Cache 32KB, 2-way assoc., 32B line size, 1 read port, 1 write port, 2 cycles
L2 Unified Cache | 1MB, 2-way assoc., 128B line size, 10 cycles
Memory 100 cycle latency
| Optimizer | MBC of 32 entries, 4 rd/4wr ports, 1 cycle value feedback delay
Table 2. Simulated machine configuration.
117 1.23 127
11‘2‘ T3] SPECint
g 11 1| 110 110 it
3 1.08 — 1.08
2106 S
104 1103 - 1.04 1.04
1.02 + —
. SIS i 0.99
bzp cra eon gap gcc gzp mcf prl twf  vor vpr avg
1.23
1.14 113 1.14 - -
112 SPECp 112 | qq b2 T 112 112 mediabench
11 1.09 140 g 11
T 1.08 o7 =108
él.os 106 él.oe 105
1.04 @ 1.04
1.02 10T 1.02
1 *4‘:"7 T 1
amp app art egk msa mgd avg g721dg721e untst tst mp2d mp2e avg

Figure 5. Speedup of continuous optimization over baseline.

Benchmark | exec. early| recov. mispred. brs| Id/st addr. gen| Ids removed| sts removed
SPECint 32% 16% 61% 13% 2%
SPECfp 31% 45% 76% 23% 2%
mediabench  36% 26% 93% 27% 2%
Average 33% 29% 76% 21% 2%

Table 3. Performance characteristics of continuous optimizer.
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Figure 6. Performance contributions of indi- Figure 7. Performance contributions from
vidual optimizations. continuous optimization benefits.
5.2. Performance of safe optimization not resolve early. Store forwarding, demonstrated bgF,

By default, continuous optimization removes load is the second most important optimization.

and store instructions. Although optimizations are non- 5.3.2. Impact of continuous optimization benefits. The
speculative, real systems may be unable to remove mempenefits of continuous optimization are early load address
ory accesses if volatile locations or shared memory are notresolution, early branch resolution, early instruction exe-
identifiable. To examine performance with only safe op- cution, and dataflow height reduction. Because dataflow
timizations, we evaluated continuous optimization perfor- height reduction is an integral part of continuous optimiza-
mance while forcing all memory instructions to access the tjon, we begin with our default continuous optimizer and
cache, verify the optimization, and initiate a recovery sim- syccessively remove all other benefits until it is the only re-
ilar to branch misprediction recovery if a misspeculation maining benefit. Although feedback is not a benefit, we ad-
occurs. Because we only have single threaded applicagitionally remove it to demonstrate the importance of value
tions and our optimizations are non-speculative with re- feedback to reducing dataflow height. Figure 7 demon-
spect to a single thread, misspeculations never occur instrates the impact of successively removing benefjis. is
our experiments. Even though removing memory ac- the default configuration with all benefitsoEAR removes
cess instructions is important, performance improvementsearly load address resolutionoBR additionally removes
are large despite conservative optimization. Perform- early branch resolutiomoEE additionally removes early
ing only safe optimizations reduced average speed up byexecutionnoFB additionally removes value feedback. For
0.02x to 0.03x. SPECint, dataflow height reduction is roughly half of the
5.3. Contributing performance factors improvem_ent. For SPECint and mediabench, nearly all _fac—
tors contribute to overall performance. For SPECfp, im-
We now look at performance contributing components provements are primarily from memory bypassing, which
of continuous optimization. Specifically, we measure con- s significantly improved by value feedback.

tributions of the five optimizations and the impact of con- L
tinuous optimization’s various benefits. 6. Performance sensitivities

5.3.1. Individual optimization impact. To measure indi- In this section, we evaluate continuous optimization’s
vidual optimization impact, we gathered five measurementssensitivity to various implementation parameters.

where only one optimization was turned off for each mea- 6.1
surement. Because of the co-dependent nature of optimiza-
tions, we found that evaluating performance when individ-  Since multiple instructions are processed in paral-
ual optimizations are disabled is a meaningful way of iden- lel (e.g., four in a four-wide machine), it may be difficult to
tifying the individual optimizations’ contributions. Figure 6 optimize instructions when dependences exist within a re-
shows the results from this experimeopt has all op- name bundle. By default, only the first in a chain of
timizations on,noCP has no constant propagatiampRA dependent additions is optimized, and, for chained mem-
has no reassociationoRLE has no redundant load elimi- ory accesses, only the first access in a chain queries
nation,noSF has no store forwarding, amtbSSR has no the MBC. We now measure missed opportunities result-
silent store removahoCP indicates that constant propaga- ing from our conservatism by evaluating three additional
tion is the most important optimization. Without it, mem- scenarios: (1) one level of chained additions, (2) three lev-
ory addresses can not be computed, RLE/SF/SSR do notls of chained additions, and (3) three levels of chained ad-
work, instructions cannot execute early, and branches canditions and one chained memory operation. Figure 8 has

Dependence depth
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SPECint SPECfp mediabench Figure 10. Importance of optimizer state re-
[Edepth 0 (default) mdepth 1 Odepth 3 Odepth 3 & 1 mem| covery foIIowing branch mispredictions.
Figure 8. Importance of processing depen-
dent instructions in parallel. cles. If delay is too high, values may no longer be useful.

By default, we assume that once an instruction executes,
its value requires one cycle to be transmitted to the opti-
mizer before it can be used for optimization. We evaluated

12
a delays of zero, five, and ten cycles. Only at ten cycles is per-
: formance affected, and, even then, the impact is minor (re-
duces average speed up by 0.d1%)he source of this la-

1

tency tolerance is because physical registers usually are ei-
ther referenced for a long period of time or not at all. Recall
the example from Section 2.5: the initial loop counter and

sPECint  SPECT mediabench array address load were in the loop’s prologue. Optimiza-
[Edelay 0 mdelay 2 (default) O delay 4 Didelay 8] tion extended their live range to include all iterations. Un-
Figure 9. Optimizer latency sensitivity. der such a scenario, the transmission delay of the values has

o little impact. We also observed how often forwarded values
bars for the default optimizer and for the three new scenar-\yere used and found that only 21% of executed values from
ios. For SPECfp, performance improves only with one level e out-of-order part of the pipeline update optimization ta-
of dependence. SPECint and mediabench, however, benp|e expressions, which indicates opportunity for simplify-
efit from processing multiple dependent instructions in ing the value forwarding network or reducing power dissi-

parallel. Note that compiler scheduling of rename bun- hation py forwarding only necessary values. We leave this
dles could potentially provide comparable performance to study for future work.

the most aggressive case without additional hardware com- _ o
plexity. For ISAs with smaller register sets, like x86, 6.4. Misprediction recovery
processing multiple levels of dependence will be more im- We have not yet discussed the impact of branch mis-
portant. predictions on optimizer state. By default, the CP/RA and
6.2. Optimizer latency RLE/SF/SSR tables are recovered following branch mis-
) L predictions. Because CP/RA is an extension of the RAT,
Continuous optimization has been assumed t0 add tWo i state recovery for it may be easier than adding state
stages to a twenty stage pipeline. We now evaluate the Senz . ey for RLE/SF/SSR. Therefore, in Figure 10 we show
sitivity to this latency. Since optimization occurs in the o the impact of recovering only the CP/RA table and the
pipeline, this latency elongates the branch recovery criticaljna ot of not recovering any optimization state. Flushing
loop, poterjtlally redupmg performance. As shQWn In Fig- the CP/RA table on branch mispredictions significantly re-
ure 9, continuous optimization performance varies based ony o4 the effectiveness of continuous optimization. Recov-

the additional pipeline stages, but even at eight additionalermg the RLE/SF/SSR table only impacts average perfor-
pipeline stages (i.e%, of the baseline branch recovery cost), mance for mediabench.

there is still an average 1.05 speed up for all benchmark
suites. For all experiments including this one, instructions 7. Related work
not in the same rename bundle as their producer can be op-

timized. Prior works that significantly overlap with continuous

optimization were discussed in Sections 1 and 2.3. Here
6.3. Value feedback latency we discuss only more remotely related works. Physical reg-

Implementation constraints may complicate value feed- ' — _
back, potentially making the transmission take multiple cy- 4 A five cycle transmission reduced mediabench speed up by 0.01x.
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are still in the pipeline. Early load address resolution op-
timizes all dependence levels, handles all expressions
identified by the prior work, and also handles expres-
sions of the forn{ r eg<<scal e) +of f set (the original
work only handled r eg+of f set operations). Fig-

ure 11 compares these works with our default continuous
optimizer, which does not perfectly bypass memory or op-
timize multiple dependence levels within a pipeline stage.
SPECInt SpECH mediabench SMB is speculative memory bypassirig, is reverse inte-

[E15MB BRI CIEAR (1SMB+EAR Mopt] gration, EAR is early load address resolutioBVB+EAR

is speculative memory bypassing combined with early
load address resolution, arapt is our default continu-
ous optimizer. Although prior works used different simula-
tors (even different ISAs for early load address resolution),
we feel that our evaluations of prior work are at least com-
parable to (if not better than) the results provided by the
authors. With the exception &vB+EAR on SPECint, con-
tinuous optimization outperforms all others. Continu-
ous optimization’s performance advantage can be attributed

instructions early in the pipeline, but Flea-Flicker’s pri- o more agaressive optimization and earlv branch resol
mary purpose is to allow in-order machines to absorb cachetion 99 Ve optimizall y u

misses. Continuous optimization’s primary purpose is to op- '
timize the instruction stream, early execution is a subset of8. Summary
what continuous optimization offers. Physical register inlin-

ing [18] incorporates some physical register values into the .In Fh|s paper, we present a.nd. evqluate contmyous opti-
RAT. Continuous optimization’s value feedback is a simi- mization. Our table-based optimizer integrates with the re-

lar concept. RENO [25] is a follow-on implementation of N@me stage of a dynamically-scheduled processor. It per-
continuous optimization (in its original form [10]) that pro- forms dataflow optimizations by representing register val-

vides a subset of the benefits discussed here and adds ir{®> symbolically. The optimizer performs constant propa-
struction fusion [11, 14] gation, reassociation, redundant load elimination, store for-

There are complimentary works that could provide a syn- wgrding, and silent store removal. We gnhance optir_ni;ation
ergistic effect when combined with continuous optimiza- With values generated during execution. The optimizer's
tion. Scheduling optimizations [16] can be layered onto hardware b‘ﬂFjget IS mpdest, requiring apprquately 2K
continuous optimization. In [26], power consumption is re- bytes of additional multi-ported storage and 4 simple ALUs.

duced by avoiding architectural register file updates for Cogtgnguousl ggtimizatiqn lproguces speed _“P_ls rangLng
short-lived values. Early register deallocation [19, 22] could rom 0.99 to 1.27 on a pipelined processor similar to the

be more effective with continuous optimization because of Pentium 4. The o_pt|m|zer provides many be_neﬁts: It re-
early execution. duces dataflow height, executes many instructions, resolves

Although continuous program optimization [17, 28] has branch mispredictions, and determines memory instruction
a similar name to our work, it is a different topic. Continu- gd_dresses and values at rename. Each of_these components
ous program optimizers are software systems that tune thdS Important to the qverall performance improvement of
performance of applications. continuous optimization.
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Figure 11. Comparison with competing tech-
nologies.

ister reuse [15] identifies instructions producing identical
results to prior instructions and maps their outputs to the
prior instructions’ outputs. A part of continuous optimiza-

tion implements a form of safe physical register reuse. Flea-
Flicker [3] and continuous optimization both pre-execute

7.1. Quantitative comparison to prior work
. Lo . We thank the other members of the Advanced Com-

Continuous optimization subsumes some previ- . . o
ous in-pipeline optimization techniques. We now com- puting Systems group. This material is based upon work
) supported by the National Science Foundation under Grant

pare cpntmuous opt|m|zat!on with speculative memory Nos. 0092740 and 9984492 with very gracious support from
bypassing, reverse integration, and early load address res:

. . . . Intel Corporation and Sun Microsystems.
olution. To ensure a fair comparison, we implemented
the prior works optimistically. For example, specula-
tive memory bypassing and reverse integration are al-
lowed to perfectly bypass between memory operations
that are still in the pipeline. Reverse integration is also al-
lowed to perfectly bypass opposite operation-pairs that
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