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Abstract

This paper presents a hardware-based dynamic opti-
mizer that continuously optimizes an application’s instruc-
tion stream. In continuous optimization, dataflow optimiza-
tions are performed using simple, table-based hardware
placed in the rename stage of the processor pipeline. The
continuous optimizer reduces dataflow height by perform-
ing constant propagation, reassociation, redundant load
elimination, store forwarding, and silent store removal. To
enhance the impact of the optimizations, the optimizer in-
tegrates values generated by the execution units back into
the optimization process. Continuous optimization allows
instructions with input values known at optimization time
to be executed in the optimizer, leaving less work for the
out-of-order portion of the pipeline. Continuous optimiza-
tion can detect branch mispredictions earlier and thus re-
duce the misprediction penalty. In this paper, we present a
detailed description of a hardware optimizer and evaluate it
in the context of a contemporary microarchitecture running
current workloads. Our analysis of SPECint, SPECfp, and
mediabench workloads reveals that a hardware optimizer
can directly execute 33% of instructions, resolve 29% of
mispredicted branches, and generate addresses for 76% of
memory operations. These positive effects combine to pro-
vide speed ups in the range 0.99 to 1.27.

1. Introduction

Dynamic optimization offers opportunities beyond static
compiler optimization because of its ability to dynamically
identify hot execution paths and adapt to changes in pro-
gram behavior. Many dynamic optimizers [1, 2, 5, 7, 8, 9,
11, 20] share a common overall structure: they (1) select
regions (functions, traces, hyperblocks, etc.) through some
form of dynamic profiling, (2) optimize the selected re-
gions, (3) cache the optimized versions, and (4) exchange
future occurrences of the original regions with the opti-
mized versions. We propose a dynamic optimization sys-
tem, which we callcontinuous optimization, that does not

require profiling of the instruction stream or caching of the
optimized instructions. Instead, dataflow optimizations are
applied to each fetched instruction using a table-based hard-
ware optimizer located directly in the processor pipeline.

RetireFetch Decode Rename Schedule ExecuteReg. Read

OptimizerRAT

Figure 1. High-level view of optimizer inte-
grated into a dynamically-scheduled proces-
sor pipeline.

As depicted in Figure 1, continuous optimization is inte-
grated with the register alias table (RAT) in the rename stage
of a dynamically-scheduled processor. The continuous op-
timizer uses the hardware tables described in Sections 2
and 3 to perform constant propagation, reassociation, redun-
dant load elimination, store forwarding, and silent store re-
moval. Execution results are fed back to, and exploited by,
the optimizer to enhance performance. This feedback com-
bined with optimization allows 33% of retired instructions
to be non-speculatively executed early in the pipeline by
the optimizer. The optimizer’s objectives are (1) to reduce
dataflow height, and (2) to execute simple instructions dur-
ing optimization. These objectives are symbiotic, and com-
bine to provide an average speed up of 1.11 over a standard
pipeline.

Some previously proposed hardware-based dynamic op-
timizers [1, 9] perform classical compiler optimizations of-
fline using an abstract optimizer operating on discrete in-
struction traces. Although continuous optimization can be
adapted for optimizing instruction traces, it is not limited
to discrete regions, i.e., it can impact a greater span of in-
structions. There have been numerous in-pipeline optimiza-
tion techniques [4, 6, 21, 23, 24, 27]. Continuous optimiza-
tion subsumes and extends many of them by aggressively
optimizing dataflow through registers and memory to re-
duce dataflow height and to increase instruction-level par-
allelism (ILP).

This paper makes several contributions. First, the no-
tion of continuous optimization is presented along with a

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



detailed description of a hardware implementation of such
an optimizer. Second, continuous optimization’s impact and
sensitivity to design choices are characterized. Third, con-
tinuous optimization’s contributing performance factors are
analyzed. Finally, a quantitative comparison is made with
other in-pipeline optimization techniques, and continuous
optimization is shown to provide significantly higher per-
formance.

This paper is organized as follows. Section 2 provides
motivation and high-level details for continuous optimiza-
tion. Hardware requirements are discussed in Section 3.
Section 4 presents our experimental infrastructure. Sec-
tion 5 provides the performance characterization, and Sec-
tion 6 presents sensitivity studies. Section 7 presents related
work along with comparisons to previously proposed in-
pipeline optimization techniques. Section 8 provides a sum-
mary of the findings.

2. Continuous optimization
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Figure 2. Architectural view of optimizer.

Figure 2 provides more details of the optimizer. Con-
stant propagation (CP) and reassociation (RA) are imple-
mented with additional logic integrated into the register
alias table (RAT). Redundant load elimination (RLE), store
forwarding (SF), and silent store removal (SSR) are per-
formed with a separate, cache-like structure accessed af-
ter the RAT. Following their decoding, all instructions have
their inputs and outputs renamed while being simultane-
ously transformed to a more parallel form. The crux of the
optimizer is asymbolicrepresentation of each architectural
register value, which is maintained in the optimization ta-
bles. The symbolic representation is leveraged to increase
dataflow parallelism and to reduce memory accesses. As
an enhancement, execution results are fed back to the op-
timizer to increase effectiveness. We call this processvalue
feedback, and call the values fed backknown valuesto dif-
ferentiate them from symbolic information available before
instructions execute. Instruction optimization does not stall
waiting for value feedback because symbolic values suffice
for correctness. Bekerman et al [4] was first to propose value
feedback for early load address resolution.

We now discuss the operation of the optimizer, explain
and motivate its design, and discuss positive and negative
implications of continuous optimization.

2.1. Symbolic register values

All optimizations operate onsymbolic register values
of the form(reg<<scale)±offset, wherereg is a
physical register,scale is a two-bit left shift quantity1, and
offset is a 64-bit immediate field. The symbolic expres-
sion was chosen because it enables a variety of optimiza-
tions, as described in the next section, and approximately
55% of instructions executed match its form2.

2.2. Optimizations

The optimizations performed are described below:
Constant propagation (CP) propagates known val-

ues from producers to consumers. Simple instructions
with known constant inputs can be executed in the opti-
mizer. If, for example,add r3, 4 -> r4 is being op-
timized, andr3 is known to be3, the add is performed
and7 is moved intor4. This optimization subsumes con-
stant folding.

Reassociation (RA)transitively flattens symbolic ex-
pressions, reducing dataflow height and increasing ILP
by transferring dependences to earlier producers. A con-
sumer’s input is copied from its producer’s input, and
its offset andscale are recalculated. This optimiza-
tion subsumes copy propagation.

Redundant load elimination (RLE) combines load op-
erations accessing identical memory locations; the loads af-
ter the first are converted to move operations, which are then
optimized away in a manner similar to [11, 15].

Store forwarding (SF) converts loads referencing re-
cently stored values into move operations, which are then
optimized away as in redundant load elimination.

Silent store removal (SSR)removes store operations
that write a value identical to the currently stored value.

RLE/SF/SSR follow CP/RA because constant propa-
gation and reassociation simplifyreg±offset address
specifications, enabling effective redundant load elimina-
tion, store forwarding, and silent store removal. Multiple
optimization passes are not performed, but the benefits of
doing so are achieved by feeding redundant and store for-
warded load information back to the CP/RA stage; CP/RA
then copy propagates the information through subsequent
instructions.

Our memory optimizations are not speculative. There-
fore, removed load and store instructions are safely elimi-
nated with respect to a single thread of execution. We as-
sume that memory-mapped I/O is identifiable. In a real sys-
tem, where another thread of execution may disturb a mem-
ory location unbeknownst to the thread being optimized,

1 Left shifts of 0, 2, and 3 corresponding to addx, s4addx, and s8addx
of the Alpha ISA are the only allowed shift values.

2 Removingscale decreases coverage to 54%. Expressions can be 32-
bit or 64-bit; without 32-bit support, coverage decreases to 50%.
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such optimizations may not be possible. We evaluate the im-
pact of performing strictly safe optimization in Section 5.2.

2.3. Performing other optimizations

Low-level compiler optimizations can be divided
into two categories3: backward and forward optimiza-
tions. Backward optimizations, such as dead code elimi-
nation, are efficiently performed by analyzing instructions
in reverse sequential order. We do not remove dead code
for two reasons. First, when performed non-speculatively,
dead code removal requires instruction buffering to iden-
tify consumers and anti-dependences. Since continuous
optimization is timing critical and buffering instruc-
tions impacts timing, dead code elimination is probably
not a good design choice. Additionally, dead code elim-
ination’s primary benefit, from our experience, is reduc-
tion of fetch bandwidth requirements. Since instructions
have already been fetched, much of the benefit of re-
moving them is lost. We believe dead code should be re-
moved in an off-the-critical-path dynamic optimizer,
such as in [9], where latency is less critical. A specula-
tive, in-pipeline technique for dead code removal [6] was
shown to improve performance on a resource-bound ma-
chine. Including this technique, however, more than dou-
bles our required chip real estate, but is a plausible addition
for a resource-bound machine.

Forward optimizations operate on instructions in sequen-
tial order. They can be subdivided intodisconnectedand
connecteddataflow optimizations. Disconnected dataflow
optimizations identify and connect similar operations that
are not linked through dataflow. Connected dataflow opti-
mizations reduce dataflow height, increase ILP, and increase
dead code by cutting dataflow dependences. Constant prop-
agation, reassociation, and store forwarding are examples
of connected dataflow optimizations. We include the dis-
connected dataflow optimizations, redundant load elimina-
tion and silent store removal, because they are simple exten-
sions to our store forwarding optimization. We could have
also included general instruction reuse [24], which is an in-
pipeline technique for optimizing common subexpressions.
Adding it could enhance continuous optimization, and con-
tinuous optimization canonicalizes instructions, potentially
making instruction reuse more powerful. Their combination
is the subject of future work.

Continuous optimization subsumes and extends some
previous in-pipeline optimization approaches. Reverse in-
tegration [24] uses a clever trick to extend general instruc-
tion reuse to optimize limited instances of store forward-
ing and reassociation, i.e., mostly stack references and stack

3 This categorization applies for basic block optimization, trace-based
optimization, and optimization on the dynamic instruction stream like
that performed here. It may not be directly applicable to general static
compiler optimizations.

pointer updates. Early load address resolution [4] uses a
limited form of constant propagation and reassociation to
pre-compute memory addresses to issue loads earlier in
the pipeline. Load and store reuse [23] and speculative
memory bypassing [21] are alternative approaches to per-
forming redundant load elimination, store forwarding, and
silent store removal in the pipeline. Continuous optimiza-
tion extends these approaches by aggressively optimizing
all dataflow, i.e., through registers and memory, to reduce
dataflow height and increase ILP. Additionally, continuous
optimization pre-executes 29% of mispredicted branches,
which reduces misprediction penalty. To our knowledge,
this important optimization is unique. In Section 7.1, we
compare continuous optimization with reverse integration,
speculative memory bypassing, and early load address res-
olution and demonstrate that continuous optimization’s ad-
ditional benefits provide significant performance improve-
ments over these prior works.

2.4. Value feedback

Integrating execution results into the optimization tables
allows symbolic values to be converted intoknown values,
which can then be propagated as constants to consumers.
For example, ifadd r3, 4 -> r4 generates the result
15 in physical registerpr22, andpr22 is still referenced
in the optimizer tables, expressions referencingpr22 are
updated with the value15. Subsequent instructions using
expressions containingpr22 use the value15 for pr22
and potentially execute during optimization. The latency re-
quired for a symbolic expression to become a known value
depends on the pipeline length between the optimization
and execution stages and the time required to transmit the
result back to the optimization stage once the instruction
producing the result has executed.

2.5. Motivating example

To demonstrate the opportunities for continuous opti-
mization, we use the code example in Figure 3.Static Code
is the static representation of a loop that sums the elements
of an array. Assume that the loop counter is initialized to
some value that is not statically computable. On each it-
eration, an array element is loaded and added to the sum,
the loop counter is decremented, and the next array index
is computed. The loop ends when the loop counter reaches
zero.Dynamic Data Flowillustrates producer-consumer re-
lationships for the loop instructions as they execute. Each
array index addition and array element load within each iter-
ation are fed by a loop-carried dependence. Similarly, each
iteration’s branch is dependent on a chain of subtractions
equal in length to the chain of array index additions.

The instruction sequence emitted by the continuous op-
timizer is labeledOptimized Data Flow. The arcs modified
by optimization are shaded. Although the dataflow height of
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add r3, r2 −> r3

ld [r4] −> r2

ld [r30] −> r4

ld [r29] −> r1

mov 0 −> r3

LOOP:

ld

r29

mov

0

Figure 3. Motivating example.

the accumulate chain is not significantly reduced, the com-
putation chains for the array index, load, and loop counter
have been eliminated.

Consider what happens whensub r1, 1 -> r1
from the first iteration enters the optimization stage. The
CP/RA tables are accessed by the source architectural reg-
ister numberr1, and the previous mapping ofr1 is dis-
covered (previously generated byld [r29] -> r1).
For example, assumer1 was previously mapped to phys-
ical registerpr35. Because thesub also writesr1, r1’s
mapping is updated with the symbolic valuepr35-1.
When sub r1, 1 -> r1 from the second itera-
tion is optimized,r1 maps topr35-1, and the opti-
mizer replaces this withpr35-2. If the physical regis-
ter destination for the secondsub is pr37, it becomes
sub pr35, 2 -> pr37.

By the 100
th iteration, instructions in the loop’s pro-

logue have probably completed execution, in which case
their results are in the optimization tables (value feedback).
The column labeledwith Value Feedbackshows changes in
the100

th iteration that result from incorporating execution
results into optimization. In particular, both the iteration
counter load (ld [r29] -> r1) and the array base load
(ld [r30] -> r4) have their results integrated into the
optimization tables because both are still live. The shaded
instructions can be executed during optimization because
their inputs are constant. The out-of-order portion of the
pipeline does not need to execute them. Additionally, the
memory address for the load can be computed, which al-
lows it to bypass the out-of-order portion of the pipeline
and immediately become eligible to access the cache.

This example does not use redundant load elimination,
store forwarding or silent store removal, but a similar pro-
cess applies to these optimizations.

2.6. Impact of continuous optimization

For new microarchitectural features, both positive and
negative aspects must be considered. We now discuss con-
tinuous optimization’s potential impacts.

2.6.1. Positives.Continuous optimization can improve
performance or power or both.

Dataflow height reduction is provided by most opti-
mizations and is beneficial because it increases ILP.

Early execution, i.e., executing instructions during opti-
mization, has multiple advantages. First, it creates a syner-
gistic effect: execution results are propagated to consumers,
which might also execute early. Additionally, it relieves
pressure on the out-of-order part of the pipeline because
instructions executed early only need to retire, i.e., they
do not pass through the scheduler, dispatch, register read,
and execute stages. For the benchmarks we evaluate, 33%
of retired instructions execute early, and 29% of mispre-
dicted branches resolve during optimization. A recent Pen-
tium 4 [13] has a minimum branch misprediction penalty
of over 30 cycles (the majority occur after rename). Almost
all post-rename cycles can be saved when a mispredicted
branch executes early.

Load and store reduction is provided by redundant
load elimination, store forwarding, and silent store removal.
These optimizations exploit provable short-term data reuse
to remove an average of 21% of load and 2% of store in-
structions, potentially reducing power because optimizer ta-
ble reads likely consume less power than cache accesses.

2.6.2. Negatives.The positive aspects come at some cost.
We now list potentially negative aspects of continuous opti-
mization.

Increased pipeline depthis a potential drawback, how-
ever, the number of stages required for optimization is
likely to be small, on the order of two to four. Adding
pipeline stages increases misprediction penalty, and, con-
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versely, early branch resolution reduces the penalty for
branches resolved during optimization. These effects coun-
teract each other; the resulting impact depends on the num-
ber of branches recovered early.

Design complexity potentially increases. Fast, simple
ALUs are required for each instruction that can pass through
rename in a single cycle (e.g., four in a four-wide re-
name stage), plus bypass logic for optimization. Addition-
ally, value feedback carries execution results back to the re-
name stage, which requires forwarding logic absent in cur-
rent processors. It might appear as if more physical registers
are required with continuous optimization. However, be-
cause of value feedback and early execution, physical reg-
ister pressure almost always decreases, often significantly
(physical register pressure increased for 2 of 23 bench-
marks, g721 decode and g721 encode). The optimization ta-
bles require approximately 2K bytes of storage plus storage
for recovering optimization state on branch mispredictions.
The CP/RA table requires a 100–150 bit entry per architec-
tural register and read and write ports equivalent to the RAT.
The RLE/SF/SSR stage is a small cache, modeled with 32
entries of 100–150 bits; it requires read and write ports for
each load and store capable of being optimized each cycle.
The complexity described here is the worst case. Since op-
timization improves performance, but is not necessary for
correctness, design complexity is an implementation vari-
able, i.e., there is a tradeoff between performance and de-
sign complexity.

Power implications for the additional pipeline
stages [12] and increased rename complexity are un-
clear. Certainly, without simplifying the out-of-order por-
tion of the pipeline, power increases; however, optimiza-
tions simplify and pre-compute instructions. Thus, opportu-
nity exists to scale back the design of the out-of-order core,
potentially reducing dynamic power. We leave this sub-
ject for future work.

3. Microarchitectural details

The optimization process consists of two sequen-
tial steps. CP/RA are performed first and concurrently
with register renaming; RLE/SF/SSR are second. Fig-
ure 4 shows the logic slice needed to process one instruc-
tion in a multi-instruction rename bundle.

3.1. CP/RA

Constant propagation and reassociation require sym-
bolic expressions per architectural register. Upon en-
tering rename, instructions’ input source operands ac-
cess the RAT and read renamed register mappings
along with symbolic expressions. The optimizer pro-
cesses the symbolic sources and either (1) executes the
instruction (early execution), (2) derives a new sym-
bolic form of the output (optimization), or (3) rules the

output’s symbolic form to be unexpressable (no optimiza-
tion). The result is stored in the RAT for future instructions.
Implementation-wise, constant propagation and reassoci-
ation are equivalent transformations. For constants,reg
of the symbolic expression (base phys. reg. in Fig-
ure 4) is a hard-wired zero register, and a 64-bit constant is
stored in thebase reg. val. field.

The symbolic inputs are passed to an ALU, which ex-
ecutes the instruction if all values are known. Otherwise,
depending on opcode, a new offset or physical register in-
put(s) or both may be produced for the instruction. Nothing
is done if the instruction’s result cannot be encoded symbol-
ically. The destination’s RAT entry is updated with the in-
struction’s physical register output and symbolic represen-
tation.

Careful consideration reveals that processing multiple
instructions per cycle may be problematic. An instruction’s
optimized symbolic form may be required as input for an
instruction in the same rename bundle. For a four-wide re-
namer, the implication is that four serial additions are re-
quired. For example, assume the following instruction se-
quence is a single rename bundle.

add r1, 1 -> r2
add r2, 1 -> r3
add r3, 1 -> r4
add r4, 1 -> r5

This sequence can be converted into four parallel instruc-
tions, but only through multiple serial additions. In the de-
sign we evaluate in Section 5, we only optimized the first
addition in a chain of additions. Section 6.1 examines the
implications of this choice.

A second subtlety arises regarding physical register life-
time. Physical register deallocation schemes, such as those
in the MIPS R10000 and Alpha 21264, deallocate physical
registers after retirement of the next instruction that over-
writes the architectural destination. Optimizations can ex-
tend physical register lifetime beyond this point. Therefore,
we instead use a reference counter algorithm like that pro-
posed by [15].

3.2. RLE/SF/SSR

Redundant load elimination, store forwarding, and
silent store removal transform loads and remove unnec-
essary stores. Fundamentally, this stage works precisely
like CP/RA, except that instead of indexing with archi-
tectural register inputs, it is indexed with the data ad-
dress for the memory operation. Load and store instructions
check the table for previous memory operations that ac-
cessed the same memory location. At rename, memory
addresses are generally unknown, however, CP/RA in-
creases known data addresses to 76%. If a load has a known
data address, it is looked up in a small table called the Mem-
ory Bypass Cache (MBC). A hit provides the symbolic
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Figure 4. Microarchitecture of the optimizer showing the logic slice to optimize one instruction.

representation of the data for the load (no data cache ac-
cess is required). If the load’s data address misses the
MBC, a symbolic expression of the load’s destination is in-
serted into the table (for redundant load elimination).
If the load’s data address is unknown (i.e., not com-
puted by CP/RA), no lookup is performed and nothing
happens.

If a store with a known address hits in the MBC and the
symbolic expression matches the store’s symbolic expres-
sion of the data (propagated from CP/RA), the store is elim-
inated (for silent store removal). If the symbolic data does
not match or the store’s data address misses, then a symbolic
representation of the store data (propagated from CP/RA)
is inserted (for store forwarding). If an unknown store ad-
dress is encountered, no lookup is performed, and the MBC
is flushed.

Excluding MBC tag information, the MBC and CP/RA
entries are identical. For simplicity, MBC addresses are 8-
byte aligned. Tag matching compares the standard address
tag, the offset from the 8-byte alignment, and access size. If
a load hits, the data (symbolic expression) is forwarded to
all intermediate references (instructions in the current and
previous pipeline stages), written back to the CP/RA table
updating the load destination information, and used to con-
vert the load into the symbolic expression. As with sequen-
tial additions for CP/RA, dependences across instructions
within a rename packet are not satisfied with RLE/SF/SSR
either. We use a 32 entry MBC by default. We experi-
mented with MBC sizes varying from 32 to 256 entries and
found no difference in average performance. We also exper-
imented with variable alignments (i.e., besides 8-byte align-
ments), but found that performance only improved for a sin-
gle application, untoast.

Rather than flushing the MBC on unknown store ad-
dresses, we could proceed speculatively. Additionally,
we could track unknown memory addresses by hash-
ing reg±offset address expressions. We evaluated
both extensions and found that misspeculations over-

shadow the improvements in memory bypassing. We have
not yet evaluated predictive techniques that could re-
duce these misspeculations. We leave this analysis for
future work. For brevity, we omit our detailed analy-
sis on various MBC configurations from this paper.

3.3. Miscellaneous issues

In this section, we discuss some details that complicate
the implementation for the proposed hardware optimizer.
They are abstracted away during evaluation, but a real im-
plementation must consider them, as they are necessary for
the optimization hardware.

Store forwarding and redundant load elimination for-
ward symbolic expressions through memory. For effective-
ness, the newly found dataflow must be copy propagated.
To avoid multiple optimization iterations while achieving
its benefits, forwarded symbolic expressions are transmit-
ted back to the CP/RA stage. Doing so in a straightforward
manner adds write ports to the RAT (CP/RA table), a poten-
tially objectionable requirement. However, the CP/RA ta-
ble can be split into two structures. One structure, the RAT,
is updated by instructions currently being renamed (as it is
normally). The second structure, the Copy Propagation Ta-
ble (CPT), is updated by feedback from the RLE/SF/SSR
stage. When instructions enter rename, they read their input
registers’ symbolic expressions from both tables in paral-
lel. For each input, a MUX determines the symbolic expres-
sion to use. When an instruction updates the RAT with its
physical register and symbolic expression, it also invalidates
the corresponding entry in the CPT. Splitting the CP/RA ta-
ble avoids the additional write ports to the RAT at the ex-
pense of complexity and additional delay in evaluating in-
structions.

Another implementation obstacle to consider is value
feedback. Execution results are forwarded back to the op-
timizer to enhance optimization. However, physical reg-
ister value updates are problematic because a physical
register may be referenced multiple times in the optimiza-
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tion tables. To update multiple locations simultaneously
with the same value, either a content-addressable struc-
ture or a level of indirection is required. When a phys-
ical register value arrives, each entry can perform a
content-addressable match with itsbase phys. reg.
If it matches, thebase phys. reg. is set to the
zero register and thebase reg. val. is set to
the incoming value. With the indirection approach,
the base phys. reg. can be examined in a sepa-
rate value table, but this adds extra latency to the optimizer,
potentially complicating the intra-optimizer bypass net-
work.

3.4. Continuous vs. discrete optimization

Although the optimizations have been described for con-
tinuous optimization, the hardware can be adapted for of-
fline hardware-based optimizers, such as rePLay [9], PAR-
ROT [1], and trace-cache-based schemes [11, 14]. The ba-
sic structure remains identical. The difference between on-
line and offline optimization is that optimization tables are
invalidated at the start of each trace (or frame); offline opti-
mizations are discrete per region as opposed to continuous
across the execution stream. Furthermore, real-time value
feedback for discrete optimization does not occur. On the
other hand, multipass, reverse pass (dead code removal),
and complex optimizations are easier offline.

4. Experimental setup

In this section, we describe the benchmark suites we use
for evaluation and our default processor model.

4.1. Experimental workload

We use the SPEC2000 integer, SPEC2000 floating point,
and mediabench benchmarks in Table 1. We provide re-
sults for all benchmarks working in our infrastructure. For
SPECint, we modified the input sets to allow simulation
through program completion, and we believe our modifica-
tions preserve original input set characteristics. The C and
C++ benchmarks were compiled at optimization level -O4
with the Compaq Alpha C V5.9 and Compaq Alpha C++
V6.5 compilers (bzip2 used -O3 because -O4 produced an
incorrect program). At level -O4, both compilers perform
loop unrolling, software pipelining, vectorization, inline ex-
pansion, and other optimizations. The Fortran benchmarks
were compiled with the HP Alpha Fortran V5.5A compiler
with optimization level -O5. At this level, the compiler per-
forms the same optimizations as the C and C++ compilers
and also adds loop transformation optimizations.

4.2. Performance model

Our default processor model, outlined in Table 2, resem-
bles the Pentium 4 [13] and is built using the SimpleScalar
3.0 framework. We believe that CP/RA can be overlapped

with rename, which is modeled with two pipeline stages.
Therefore, when continuous optimization is simulated, only
two pipeline stages are added to rename for RLE/SF/SSR,
which adds two cycles to the branch misprediction penalty
for branches not resolved during optimization. For mispre-
dicted branches resolved early, recovery happens after the
extended rename stage. Execution results being fed back to
the optimizer require one cycle for transmission. Only one
level of addition dependence is evaluated in a cycle. If one
addition feeds another addition within a rename bundle, the
dependent is not optimized. Similarly, if the result of one
load is used for the address of another within a rename bun-
dle, the dependent is not optimized. Sensitivity to this con-
figuration is examined in Section 6. For all optimizations,
correctness is ensured through expression and value check-
ing to avoid faulty optimizations.

5. Performance characterization

In this section, we evaluate several performance aspects
of continuous optimization.

5.1. Speedup over the baseline

Figure 5 demonstrates speed up of continuous optimiza-
tion compared to the baseline processor. Average speed
up is the rightmost bar. Despite additional pipeline stages,
continuous optimization improves almost all benchmarks.
Speed ups range from 0.99 to 1.27. On the low side, bzip2
and vortex have the largest baseline IPCs, and both have
few branch mispredictions. Such high baseline performance
leaves little room for improvement. For the SPECfp bench-
mark ammp (amp), IPC is low due to data cache misses,
i.e., improvements are dwarfed by memory miss cycles.
Several benchmarks demonstrate significant improvements.
Perl (prl), gap, and eon have the highest percentage of dy-
namic instructions that can be optimized using the symbolic
expression. These benchmarks derive most of their bene-
fit from reducing dataflow height rather than early load ad-
dress resolution, early branch resolution, or early execution.
In contrast, mesa (msa), SPECfp’s top performer, derives
most of its benefit from memory bypassing.

Table 3 presents characteristics of continuous optimiza-
tion.Exec. earlyis the percentage of retired instructions ex-
ecuted by the optimizer.Recov. mispred. brs.is the percent-
age of mispredicted branches recovered through optimiza-
tion. Ld/st addr. gen.is the percentage of load and store
instructions for which the optimizer generated addresses.
Lds removedis the percentage of loads converted to move
operations by redundant load elimination or store forward-
ing. Sts removedis the percentage of stores removed as
silent.
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Application Type Name Total Insts. Application Type Name Total Insts.

bzip2 (bzp) 293M ammp (amp) 1000M
crafty (cra) 625M applu (app) 198M
eon (eon) 110M art (art) 1000M
gap (gap) 500M SPECfp equake (eqk) 1000M
gcc (gcc) 284M mesa (msa) 1000M

SPECint gzip (gzp) 869M mgrid (mgd) 1000M
mcf (mcf) 411M g721 decode (g721d) 751M
perlbmk (prl) 1000M g721 encode (g721e) 406M
twolf (twf) 595M untoast (gsm decode) (untst) 84M
vortex (vor) 272M mediabench toast (gsm encode) (tst) 268M
vpr (vpr) 1000M mpeg2 decode (mp2d) 164M

mpeg2 encode (mp2e) 1000M

Table 1. Experimental workload.
Pipeline Fetch/Decode/Rename 4 insts/cycle, Retire 6 insts/cycle, 128 physical regs,

160 max inflight insts, 20(22 for continuous optimization)cycles (min) for BR res(if not executed early)

Branch Predictor 64Kbit hybrid predictor(RAS, global, local, and loop predictors), 4K-entry BTB
Load/Store Queues 48 entry load queue, 48 entry store queue(memory dependence prediction using store sets)

Scheduler 3 16-entry schedulers(int, complex int, fp), 2 8-entry schedulers(load, store)

– speculative wakeup and instruction replay

ExeUnits 4 Simple IALUs,1 Complex IALU, 2 FPALUs, 1 Ld Agen, 1 St Agen
L1 I Cache 64KB, 4-way assoc., 64B line size, 1 cycle
L1 D Cache 32KB, 2-way assoc., 32B line size, 1 read port, 1 write port, 2 cycles
L2 Unified Cache 1MB, 2-way assoc., 128B line size, 10 cycles
Memory 100 cycle latency

Optimizer MBC of 32 entries, 4 rd/4wr ports, 1 cycle value feedback delay

Table 2. Simulated machine configuration.
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Figure 5. Speedup of continuous optimization over baseline.

Benchmark exec. early recov. mispred. brs. ld/st addr. gen. lds removed sts removed
SPECint 32% 16% 61% 13% 2%
SPECfp 31% 45% 76% 23% 2%
mediabench 36% 26% 93% 27% 2%
Average 33% 29% 76% 21% 2%

Table 3. Performance characteristics of continuous optimizer.
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Figure 6. Performance contributions of indi-
vidual optimizations.

5.2. Performance of safe optimization

By default, continuous optimization removes load
and store instructions. Although optimizations are non-
speculative, real systems may be unable to remove mem-
ory accesses if volatile locations or shared memory are not
identifiable. To examine performance with only safe op-
timizations, we evaluated continuous optimization perfor-
mance while forcing all memory instructions to access the
cache, verify the optimization, and initiate a recovery sim-
ilar to branch misprediction recovery if a misspeculation
occurs. Because we only have single threaded applica-
tions and our optimizations are non-speculative with re-
spect to a single thread, misspeculations never occur in
our experiments. Even though removing memory ac-
cess instructions is important, performance improvements
are large despite conservative optimization. Perform-
ing only safe optimizations reduced average speed up by
0.02x to 0.03x.

5.3. Contributing performance factors

We now look at performance contributing components
of continuous optimization. Specifically, we measure con-
tributions of the five optimizations and the impact of con-
tinuous optimization’s various benefits.

5.3.1. Individual optimization impact. To measure indi-
vidual optimization impact, we gathered five measurements
where only one optimization was turned off for each mea-
surement. Because of the co-dependent nature of optimiza-
tions, we found that evaluating performance when individ-
ual optimizations are disabled is a meaningful way of iden-
tifying the individual optimizations’ contributions. Figure 6
shows the results from this experiment.opt has all op-
timizations on,noCP has no constant propagation,noRA
has no reassociation,noRLE has no redundant load elimi-
nation,noSF has no store forwarding, andnoSSR has no
silent store removal.noCP indicates that constant propaga-
tion is the most important optimization. Without it, mem-
ory addresses can not be computed, RLE/SF/SSR do not
work, instructions cannot execute early, and branches can-
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Figure 7. Performance contributions from
continuous optimization benefits.

not resolve early. Store forwarding, demonstrated bynoSF,
is the second most important optimization.

5.3.2. Impact of continuous optimization benefits.The
benefits of continuous optimization are early load address
resolution, early branch resolution, early instruction exe-
cution, and dataflow height reduction. Because dataflow
height reduction is an integral part of continuous optimiza-
tion, we begin with our default continuous optimizer and
successively remove all other benefits until it is the only re-
maining benefit. Although feedback is not a benefit, we ad-
ditionally remove it to demonstrate the importance of value
feedback to reducing dataflow height. Figure 7 demon-
strates the impact of successively removing benefits.opt is
the default configuration with all benefits.noEAR removes
early load address resolution.noBR additionally removes
early branch resolution.noEE additionally removes early
execution.noFB additionally removes value feedback. For
SPECint, dataflow height reduction is roughly half of the
improvement. For SPECint and mediabench, nearly all fac-
tors contribute to overall performance. For SPECfp, im-
provements are primarily from memory bypassing, which
is significantly improved by value feedback.

6. Performance sensitivities

In this section, we evaluate continuous optimization’s
sensitivity to various implementation parameters.

6.1. Dependence depth

Since multiple instructions are processed in paral-
lel (e.g., four in a four-wide machine), it may be difficult to
optimize instructions when dependences exist within a re-
name bundle. By default, only the first in a chain of
dependent additions is optimized, and, for chained mem-
ory accesses, only the first access in a chain queries
the MBC. We now measure missed opportunities result-
ing from our conservatism by evaluating three additional
scenarios: (1) one level of chained additions, (2) three lev-
els of chained additions, and (3) three levels of chained ad-
ditions and one chained memory operation. Figure 8 has
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dent instructions in parallel.
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Figure 9. Optimizer latency sensitivity.

bars for the default optimizer and for the three new scenar-
ios. For SPECfp, performance improves only with one level
of dependence. SPECint and mediabench, however, ben-
efit from processing multiple dependent instructions in
parallel. Note that compiler scheduling of rename bun-
dles could potentially provide comparable performance to
the most aggressive case without additional hardware com-
plexity. For ISAs with smaller register sets, like x86,
processing multiple levels of dependence will be more im-
portant.

6.2. Optimizer latency

Continuous optimization has been assumed to add two
stages to a twenty stage pipeline. We now evaluate the sen-
sitivity to this latency. Since optimization occurs in the
pipeline, this latency elongates the branch recovery critical
loop, potentially reducing performance. As shown in Fig-
ure 9, continuous optimization performance varies based on
the additional pipeline stages, but even at eight additional
pipeline stages (i.e.,2

5
of the baseline branch recovery cost),

there is still an average 1.05 speed up for all benchmark
suites. For all experiments including this one, instructions
not in the same rename bundle as their producer can be op-
timized.

6.3. Value feedback latency

Implementation constraints may complicate value feed-
back, potentially making the transmission take multiple cy-
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Figure 10. Importance of optimizer state re-
covery following branch mispredictions.

cles. If delay is too high, values may no longer be useful.
By default, we assume that once an instruction executes,
its value requires one cycle to be transmitted to the opti-
mizer before it can be used for optimization. We evaluated
delays of zero, five, and ten cycles. Only at ten cycles is per-
formance affected, and, even then, the impact is minor (re-
duces average speed up by 0.01x)4. The source of this la-
tency tolerance is because physical registers usually are ei-
ther referenced for a long period of time or not at all. Recall
the example from Section 2.5: the initial loop counter and
array address load were in the loop’s prologue. Optimiza-
tion extended their live range to include all iterations. Un-
der such a scenario, the transmission delay of the values has
little impact. We also observed how often forwarded values
were used and found that only 21% of executed values from
the out-of-order part of the pipeline update optimization ta-
ble expressions, which indicates opportunity for simplify-
ing the value forwarding network or reducing power dissi-
pation by forwarding only necessary values. We leave this
study for future work.

6.4. Misprediction recovery

We have not yet discussed the impact of branch mis-
predictions on optimizer state. By default, the CP/RA and
RLE/SF/SSR tables are recovered following branch mis-
predictions. Because CP/RA is an extension of the RAT,
adding state recovery for it may be easier than adding state
recovery for RLE/SF/SSR. Therefore, in Figure 10 we show
both the impact of recovering only the CP/RA table and the
impact of not recovering any optimization state. Flushing
the CP/RA table on branch mispredictions significantly re-
duces the effectiveness of continuous optimization. Recov-
ering the RLE/SF/SSR table only impacts average perfor-
mance for mediabench.

7. Related work

Prior works that significantly overlap with continuous
optimization were discussed in Sections 1 and 2.3. Here
we discuss only more remotely related works. Physical reg-

4 A five cycle transmission reduced mediabench speed up by 0.01x.
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Figure 11. Comparison with competing tech-
nologies.

ister reuse [15] identifies instructions producing identical
results to prior instructions and maps their outputs to the
prior instructions’ outputs. A part of continuous optimiza-
tion implements a form of safe physical register reuse. Flea-
Flicker [3] and continuous optimization both pre-execute
instructions early in the pipeline, but Flea-Flicker’s pri-
mary purpose is to allow in-order machines to absorb cache
misses. Continuous optimization’s primary purpose is to op-
timize the instruction stream; early execution is a subset of
what continuous optimization offers. Physical register inlin-
ing [18] incorporates some physical register values into the
RAT. Continuous optimization’s value feedback is a simi-
lar concept. RENO [25] is a follow-on implementation of
continuous optimization (in its original form [10]) that pro-
vides a subset of the benefits discussed here and adds in-
struction fusion [11, 14].

There are complimentary works that could provide a syn-
ergistic effect when combined with continuous optimiza-
tion. Scheduling optimizations [16] can be layered onto
continuous optimization. In [26], power consumption is re-
duced by avoiding architectural register file updates for
short-lived values. Early register deallocation [19, 22] could
be more effective with continuous optimization because of
early execution.

Although continuous program optimization [17, 28] has
a similar name to our work, it is a different topic. Continu-
ous program optimizers are software systems that tune the
performance of applications.

7.1. Quantitative comparison to prior work

Continuous optimization subsumes some previ-
ous in-pipeline optimization techniques. We now com-
pare continuous optimization with speculative memory
bypassing, reverse integration, and early load address res-
olution. To ensure a fair comparison, we implemented
the prior works optimistically. For example, specula-
tive memory bypassing and reverse integration are al-
lowed to perfectly bypass between memory operations
that are still in the pipeline. Reverse integration is also al-
lowed to perfectly bypass opposite operation-pairs that

are still in the pipeline. Early load address resolution op-
timizes all dependence levels, handles all expressions
identified by the prior work, and also handles expres-
sions of the form(reg<<scale)±offset (the original
work only handled reg±offset operations). Fig-
ure 11 compares these works with our default continuous
optimizer, which does not perfectly bypass memory or op-
timize multiple dependence levels within a pipeline stage.
SMB is speculative memory bypassing,RI is reverse inte-
gration,EAR is early load address resolution,SMB+EAR
is speculative memory bypassing combined with early
load address resolution, andopt is our default continu-
ous optimizer. Although prior works used different simula-
tors (even different ISAs for early load address resolution),
we feel that our evaluations of prior work are at least com-
parable to (if not better than) the results provided by the
authors. With the exception ofSMB+EAR on SPECint, con-
tinuous optimization outperforms all others. Continu-
ous optimization’s performance advantage can be attributed
to more aggressive optimization and early branch resolu-
tion.

8. Summary

In this paper, we present and evaluate continuous opti-
mization. Our table-based optimizer integrates with the re-
name stage of a dynamically-scheduled processor. It per-
forms dataflow optimizations by representing register val-
ues symbolically. The optimizer performs constant propa-
gation, reassociation, redundant load elimination, store for-
warding, and silent store removal. We enhance optimization
with values generated during execution. The optimizer’s
hardware budget is modest, requiring approximately 2K
bytes of additional multi-ported storage and 4 simple ALUs.

Continuous optimization produces speed ups ranging
from 0.99 to 1.27 on a pipelined processor similar to the
Pentium 4. The optimizer provides many benefits: it re-
duces dataflow height, executes many instructions, resolves
branch mispredictions, and determines memory instruction
addresses and values at rename. Each of these components
is important to the overall performance improvement of
continuous optimization.
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