
 
 

 
 

Improving Multiprocessor Performance with Coarse-Grain Coherence Tracking 
 
 

 
 

Jason F. Cantin, Mikko H. Lipasti, and James E. Smith 
Department of Electrical and Computer Engineering 

University of Wisconsin, Madison 
{jcantin, mikko, jes}@ece.wisc.edu 

 
 

Abstract 
To maintain coherence in conventional shared-memory 
multiprocessor systems, processors first check other proc-
essors� caches before obtaining data from memory.  This 
coherence checking adds latency to memory requests and 
leads to large amounts of interconnect traffic in broadcast-
based systems. Our results for a set of commercial, scien-
tific and multiprogrammed workloads show that on 
average 67% (and up to 94%) of broadcasts are unneces-
sary.  

Coarse-Grain Coherence Tracking is a new technique 
that supplements a conventional coherence mechanism 
and optimizes the performance of coherence enforcement. 
The Coarse-Grain Coherence mechanism monitors the 
coherence status of large regions of memory, and uses that 
information to avoid unnecessary broadcasts.  Coarse-
Grain Coherence Tracking is shown to eliminate 55-97% 
of the unnecessary broadcasts, and improve performance 
by 8.8% on average (and up to 21.7%).  
 
 
1. Introduction 
 
Cache-coherent multiprocessor systems have wide-ranging 
applications from commercial transaction processing and 
database services to large-scale scientific computing. They 
have become a critical component of internet-based ser-
vices in general. As system architectures have incorporated 
larger numbers of faster processors, the memory system 
has become critical to overall system performance and 
scalability. Improving both coherence and data bandwidth, 
and using them more efficiently, have become key design 
issues.  

To maintain coherence and exploit fast cache-to-cache 
transfers, multiprocessors commonly broadcast memory 
requests to all the other processors in the system [1, 2, 3]. 
While broadcasting is a quick and simple way to find 
cached data copies, locate the appropriate memory control-
lers, and order memory requests, it consumes considerable 
interconnect bandwidth and, as a byproduct, increases 
latency for non-shared data.  To reduce the bottleneck 

caused by broadcasts, high performance multiprocessor 
systems decouple the coherence mechanism from the data 
transfer mechanism, allowing data to be moved directly 
from a memory controller to a processor either over a 
separate data network [1, 2, 3], or separate virtual chan-
nels [4]. This approach to dividing data transfer from 
coherence enforcement has significant performance poten-
tial because the broadcast bottleneck can be sidestepped. 
Many memory requests simply do not need to be broadcast 
to the entire system, either because the data is not currently 
shared, the request is an instruction fetch, the request 
writes modified data back to memory, or the request is for 
non-cacheable I/O data. 
 
1.1. Coarse-Grain Coherence Tracking 
 
In this paper, we leverage the decoupling of the coherence 
and data transfer mechanisms by developing Coarse-Grain 
Coherence Tracking, a new technique that allows a proc-
essor to increase substantially the number of requests that 
can be sent directly to memory without a broadcast and 
without violating coherence. Coarse-Grain Coherence 
Tracking can be implemented in an otherwise conventional 
multiprocessor system. A conventional cache coherence 
protocol (e.g., write-invalidate MOESI [5]) is employed to 
maintain coherence over the processors� caches. However, 
unlike a conventional system each processor maintains a 
second structure for monitoring coherence at a granularity 
larger than a single cache line (Figure 1). This structure is 
called the region coherence array (RCA), and maintains 
coarse-grain coherence state over large, aligned memory 
regions, where a region encompasses a power-of-two 
number of conventional cache lines. 
 On snoop requests, each processor�s RCA is snooped 
along with the cache line state, and the coarse-grain state is 
piggybacked onto the conventional snoop response. The 
requesting processor stores this information in it�s RCA to 
avoid broadcasting subsequent requests for lines in the 
region. As long as no other processors are caching data in 
that region, requests for data in the region can go directly 
to memory and do not require a broadcast. 
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Figure 1. Processor node modified to implement 
Coarse-Grain Coherence. A Region Coherence 
Array is added, and the network interface may 
need modification to send requests directly to the 
memory controller. 
 
As an example, consider a shared-memory multiprocessor 
with two-levels of cache in each processor. One of the 
processors, processor A, performs a load operation. The 
load misses in the L1 cache, and a read request is sent to 
the L2 cache. The L2 cache coherence state and the region 
coherence state are read in parallel to determine the status 
of the line. There is a miss in the L2 cache, and the region 
state is invalid, so the request is broadcast. Each other 
processor�s cache is snooped, and the external status of the 
region is sent back to processor A with the conventional 
snoop response. Because no processors were caching data 
from the region, an entry for the region is allocated in 
processor A�s RCA with an exclusive state for the region. 
Until another processor makes a request for a cache line in 
that region, processor A can access any memory location 
in the region without a broadcast. 
 
1.2. Performance Potential 
 
Figure 2 illustrates the potential of Coarse-Grain Coher-
ence Tracking.  The graph shows the percentage of 
unnecessary broadcast requests for a set of workloads on a 
simulated four-processor PowerPC system. Refer to Sec-
tion 4 for the system parameters and a description of the 
workloads used. On average, 67% of the requests could 
have been handled without a broadcast if the processor had 
oracle knowledge of the coherence state of other caches in 
the system. The largest contribution is from ordinary reads 
and writes (including prefetches) for data that is not shared 
at the time of the request. The next most significant con-
tributor is write-backs, which generally do not need to be 
seen by other processors. These are followed by instruc-
tion fetches, for which the data is usually clean-shared. 
The smallest contributor, although still significant, is Data 

Cache Block (DCB) operations that invalidate, flush, or 
zero-out cached copies in the system. Most of these are 
Data Cache Block Zero (DCBZ) operations used by the 
AIX operating system to initialize physical pages. 
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Figure 2. Unnecessary broadcasts in a four-
processor system. From 15% to 94% of requests 
could have been handled without a broadcast. 
 
If a significant number of the unnecessary broadcasts can 
be eliminated in practice, there will be large reductions in 
traffic over the broadcast interconnect mechanism. This 
will reduce overall bandwidth requirements, queuing de-
lays, and cache tag lookups. Memory latency can be 
reduced because many data requests will be sent directly to 
memory, without first going to an arbitration point and 
broadcasting to all coherence agents. Some requests that 
do not require a data transfer, such as requests to upgrade a 
shared copy to a modifiable state and DCB operations, can 
be completed immediately without an external request.  

As we will show, Coarse-Grain Coherence Tracking 
does, in fact, eliminate many of the unnecessary broadcasts 
and provides the benefits just described.  In effect, it en-
ables a broadcast-based system to achieve much of the 
benefit of a directory-based system (low latency access to 
non-shared data, lower interconnect traffic, and improved 
scalability) without the disadvantage of three-hop cache-
to-cache transfers. It exploits spatial locality, but maintains 
a conventional line size to avoid increasing false-sharing, 
fragmentation, and transfer costs. 
 
1.3. Paper Overview 
 
This paper presents a protocol to implement Coarse-Grain 
Coherence Tracking and provides simulation results for a 
broadcast-based multiprocessor system running commer-
cial, scientific, and multiprogrammed workloads. The 
paper is organized as follows. Related work is surveyed in 
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the next section. Section 3 discusses the implementation of 
Coarse-Grain Coherence Tracking, along with a proposed 
coherence protocol. Section 4 describes evaluation meth-
odology, which is followed by simulation results in 
Section 5. Section 6 concludes the paper and presents 
opportunities for future work. 
 
2. Related Work 
 
Sectored caches provide management of cache data at 
granularities larger than a single line. Sectored caches 
reduce tag overhead by allowing a number of contiguous 
lines to share the same tag [6, 7] (see also the references 
in [8]). However, the partitioning of a cache into sectors 
can increase the miss rate significantly for some applica-
tions because of increased internal fragmentation [7, 8, 9]. 
There have been proposals to fix this problem, including 
Decoupled Sectored Caches [9] and the Pool of Subsectors 
Cache Design [8], both of which achieve lower miss rates 
for the same cache size by allowing sectors to share space 
for cache lines. Coarse-Grain Coherence Tracking is not 
focused on reducing tag overhead and does not signifi-
cantly restrictions on the placement of data in the cache. It 
therefore does not significantly affect cache miss rate. 
Coarse-Grain Coherence Tracking optimizes request rout-
ing by maintaining information for larger regions of data, 
beyond what is in the cache.  

Subline caches have been proposed to exploit more spa-
tial locality while avoiding false-sharing in 
caches [10, 11]. A large transfer line exploits spatial local-
ity, while coherence state is maintained on smaller 
sublines to avoid the increased false-sharing that results 
from a larger line size. However, transferring larger lines 
consumes bandwidth, and, like sectoring, the larger lines 
increase internal fragmentation. Note that the terms �sec-
tored cache� and �subline cache� are often used 
interchangeably in the literature. Coarse-Grain Coherence 
Tracking does not necessarily transfer large numbers of 
cache lines at once. 

Dubnicki and LeBlanc proposed an adjustable cache 
line size [12]. This allows the system to dynamically in-
crease/decrease the line size to tradeoff spatial locality and 
false-sharing based on application needs. However, at any 
given time all lines are the same size, and the best size is 
limited by false-sharing and cache fragmentation. Coarse-
Grain Coherence Tracking does not increase fragmentation 
or false-sharing. 

Some architectures, such as PowerPC [13] provide bits 
that the operating system may use to mark virtual memory 
pages as coherence not required (i.e., the �WIMG� bits). 
Taking advantage of these bits, the hardware does not need 
to broadcast requests for data in these pages. However, in 
practice it is difficult to use these bits because they require 
operating system support, complicate process migration, 

and are limited to virtual-page-sized regions of mem-
ory [14]. 

Moshovos et al. proposed Jetty, a snoop-filtering 
mechanism for reducing cache tag lookups [15]. This 
technique is aimed at saving power by predicting whether 
an external snoop request is likely to hit in the local cache, 
avoiding unnecessary power-consuming cache tag look-
ups. Like our work, Jetty can reduce the overhead of 
maintaining coherence; however Jetty does not avoid send-
ing requests and does not reduce request latency. 

Moshovos has concurrently proposed a technique called 
RegionScout that is based on Jetty, and avoids sending 
snoop requests as well as avoiding tag lookups for incom-
ing snoops [16]. RegionScout uses less precise 
information, and hence can be implemented with less 
storage overhead and complexity than our technique, but at 
the cost of effectiveness.  

Saldanha and Lipasti proposed a speculative snoop-
power reduction technique for systems with a broadcast 
tree for a request network [17]. The different levels of the 
broadcast tree are snooped serially, first checking the near-
est neighbors, and then progressively checking nodes that 
are farther away when necessary. Latency and power are 
reduced for data in the nearest neighbors, however latency 
is increased for data on the farther nodes. Coarse-Grain 
Coherence Tracking, on the other hand, does not increase 
latency for requests to remote nodes. 

Ekman, Dahlgren, and Stenström proposed a snoop-
energy reduction technique for chip-multiprocessors with 
virtual caches based on TLBs [18]. This technique main-
tains a sharing list with each entry in the TLB, and 
broadcasts the list with each snoop request so only proces-
sors known to be sharing the virtual region need to check 
their cache tags and respond. This work is similar to ours 
because it maintains information in the processor that 
optimizes the handling of external requests, however re-
quests are still broadcast. 

There is also recent work in extending SMPs. Isotach 
networks extend SMPs by not requiring an ordered address 
interconnect [19].  These networks allow processors to 
control the timing of message delivery and pipeline mes-
sages without violating sequential consistency. Martin et 
al. proposed Timestamp snooping [20], an improved tech-
nique that introduces the concept of �slack� to cope with 
network delays, and requires fewer messages to imple-
ment. Martin et al. later proposed Token Coherence [21], 
which uses tokens to grant coherence permissions, elimi-
nating the need for ordered networks or logical time, and 
creating a simple correctness substrate onto which specula-
tive optimizations, such as destination-set prediction can 
be implemented [22]. Interestingly, the destination-set 
prediction work keeps information for predictions at a 
larger granularity than a cache line, called a macrob-
lock [22]. This line of research concedes the difficulty of 
building multiprocessor systems with ordered broadcast 
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networks and tries to support the increasing rate of broad-
cast requests, whereas Coarse-Grain Coherence reduces 
unnecessary broadcasts and sends requests directly to 
memory with low latency. 
  
3. Coarse-Grain Coherence Tracking Imple-
mentation 
 
Coarse-Grain Coherence Tracking is implemented with a 
region protocol that monitors coherence events and tracks 
coherence state at a coarse granularity. The coarse-grain 
coherence state is stored in the RCA, and checked by the 
local processor and external snoop requests. In responses 
to requests, the region status is sent back via additional 
snoop response bits. 
 
3.1. Region Protocol 
 
The region protocol observes the same request stream as 
the underlying conventional protocol, updating the region 
state in response to requests from the local processor and 
other processors in the system. The local processor checks 
the region state before broadcasting requests to the rest of 
the system, and sends a request directly to memory if the 
region state indicates that a broadcast is unnecessary. The 
proposed protocol consists of seven stable states, which 
summarize the local and global coherence state of lines in 
the region. The states and their definitions are in Table 1. 
 
Table 1. Region Protocol States. 

Processor Other Processors Broadcast Needed?

Invalid (I) No Cached Copies Unknown Yes

Clean-Invalid (CI) Unmodified Copies Only No Cached Copies No

Clean-Clean (CC) Unmodified Copies Only Unmodified Copies Only For Modifiable Copy

Clean-Dirty (CD) Unmodified Copies Only May Have Modified Copies Yes

Dirty-Invalid (DI) May Have Modified Copies No Cached Copies No

Dirty-Clean (DC) May Have Modified Copies Unmodified Copies Only For Modifiable Copy

Dirty-Dirty (DD) May Have Modified Copies May Have Modified Copies Yes  
 
Invalid indicates that no lines are cached by the processor, 
and the state of lines in other processors� caches is un-
known. The first letter of the name of a valid state 
indicates whether there are clean or modified copies of 
lines in the region cached by the local processor. The sec-
ond letter indicates whether other processors are sharing or 
modifying lines in the region. 

The states CI and DI are the exclusive states, because 
no other processors are caching lines from the region, and 
requests by the processor do not need a broadcast. The CC 
and DC states are externally clean, only reads of shared 
copies (such as instruction fetches) can be performed with-
out a broadcast. Finally, CD and DD are the externally 
dirty states, broadcasts must be performed on requests to 
ensure that cached copies of data are found. 

The state transition diagrams depicted in Figures 3-5 illus-
trate the region protocol. For clarity, the exclusive states 
are solid gray, and the externally clean states are shaded.  
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Figure 3. State transition diagrams for requests 
made by the processor for a given external re-
gion state. 
 
From the Invalid state, the next state depends both on the 
request and the snoop responses (left side of Figure 3). 
Instruction fetches and Reads of shared lines will change 
the region state from Invalid to CI, CC, or CD, depending 
on the region snoop response. Read-For-Ownership (RFO) 
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operations and Reads that bring data into the cache in an 
exclusive state transition the region to DI, DC, or DD. If 
the region is already present in a clean state, than loading a 
modifiable copy updates the region state to the correspond-
ing dirty state. A special case is for CI, which silently 
changes to DI when a modifiable copy of a line is loaded 
(dashed line).  
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Figure 4. State transition diagrams for processor 
requests that upgrade the region state. 
 
The transitions in Figure 4 are upgrades based on the 
snoop response to a broadcast. They not only update the 

status of the region to reflect the state of lines in the cache, 
but also use the region snoop response (if possible) to 
upgrade the region state to an externally clean, or an ex-
clusive state. For example, a snoop is required when in the 
CC state for RFO operations. If the snoop response indi-
cates that no processors are sharing the region anymore, 
the state can be upgraded to DI. 

The top part of Figure 5 shows how external requests to 
lines in the region downgrade the region state to reflect 
that other processors are now reading or modifying lines in 
the region, indicating that a snoop may be required for 
subsequent accesses.  

An important case occurs for external read requests re-
sulting from loads. If the line snoop response is available 
to the region protocol, or if the local processor is caching 
the requested line, then it is known whether the read is 
going to get an exclusive copy of the line. The region 
protocol can transition to an externally clean region state 
(CC, DC) instead of externally dirty (CD, DD). 

The bottom part of Figure 5 shows the state transitions 
for evictions. Also shown is that the protocol implements a 
form of self-invalidation (for the region state, not the cache 
line state as in prior proposals for dynamic self-
invalidation [23]). When broadcasts cannot be avoided, it 
is often because the region is in an externally dirty state. 
Frequently this is overly conservative because there are no 
lines cached by the remote processors (possibly due to 
migratory data). Invalidating regions that have no lines 
cached improves performance significantly for the proto-
col. To accomplish this, a line count is added to each 
region to keep track of the number of its lines that are 
cached by the processor; the count is incremented on allo-
cations and decremented on invalidations. If an external 
request hits in a region and the line count is zero, the re-
gion is invalidated so that later requests may obtain an 
exclusive copy of the region. 

In the protocol loads are not prevented from obtaining 
exclusive copies of lines. In the state diagrams above, 
memory read-requests originating from loads are broadcast 
unless the region state is CI or DI.  An alternative ap-
proach can avoid broadcasts by accessing the data directly 
and putting the line into a shared state, however this can 
cause a large number of upgrades. Future work will inves-
tigate adaptive optimizations to address this issue. 
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Figure 5. State transition diagrams for external 
requests. 
 
3.2. Region Coherence Array 
 
The RCA implements an array in each processor for main-
taining the region state. An RCA is needed at the lowest 
levels of coherence above which inclusion is maintained. 
If the lower levels of the cache hierarchy are not inclusive, 
there should be region state for the higher levels. In sys-
tems with multiple processing cores per chip, only one 
RCA is needed for the chip [2, 3, 24], unless there is 
snooping between the cores and it is desirable to conserve 

on-chip bandwidth. The RCA may be implemented with 
multiple banks as needed to match the bandwidth require-
ments of the cache. 

For processors to respond correctly to external requests, 
inclusion must be maintained between the region state and 
the cache line state. That is, if a line is cached, there must 
be a corresponding RCA entry so that a region snoop re-
sponse does not falsely indicate that no lines in the region 
are cached.  Similarly, every memory request for which 
the requesting processor�s region state is invalid must be 
broadcast to the system to acquire permissions to the re-
gion and to inform other processors that may also be 
accessing lines in the region. Because inclusion is main-
tained, lines must sometimes be evicted from the cache 
before a region can be evicted from the RCA. However, 
the cost can be mitigated. The replacement policy for the 
RCA can favor regions that contain no cached lines. These 
regions are easily found via the line count mechanism. 
Favoring empty regions and using an RCA with 512B 
regions and the same associativity as the cache, yields an 
average of 65.1% empty evicted regions, followed by 
17.2% and 5.1% having only one or two cached lines, 
respectively. The increase in cache miss ratio resulting 
from these evictions is approximately 1.2%. 

For a system like the recent Ultrasparc-IV [1, 24], with 
up to 16GB of DRAM with each processor chip and up to 
72 total processors, the physical address length is at least 
40 bits. Assuming that each processor has a 1MB 2-way 
set-associative on-chip cache with 64-byte lines, each line 
needs 21 bits for the physical address tag, three bits for 
coherence state, and eight bytes to implement ECC. For 
each set there is a bit for LRU replacement and eight bits 
of ECC for the tags and state information (for a total of 23 
bytes per set). The cache area overhead based on this de-
sign point is shown in Table 2 below. 

For the same number of RCA entries as cache entries 
and 512-byte regions, the overhead is 5.9%. If the number 
of entries is halved, the overhead is nearly halved, to 3%. 
The relative overhead is less for systems with larger, 128-
byte cache lines like the current IBM Power systems [2, 3]. 
 
3.3. Direct Access to Memory Controllers 
 
Though systems such as those from Sun [1] and IBM [3] 
have the memory controllers integrated onto the processor 
chip, these controllers are accessed only via network re-
quests. However, a direct connection from the processor to 
the on-chip memory controller should be straightforward 
to implement. To avoid broadcasts for other processors� 
memory, it will be necessary to add virtual channels to the 
data network so that request packets can be sent to the 
memory controllers on other chips in the system. Many 
memory requests are for memory on the same multi-chip 
module or board, and these can potentially be accessed 
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with lower latency than a global broadcast. Also, it is eas-
ier to add bandwidth to an unordered data network than a 
global broadcast network.   

For systems like the AMD Opteron servers [4], no in-
terconnect modifications are needed. The requests and data 
transfers use the same physical network, and requests are 
sent to the memory controller for ordering before being 
broadcast to other processors in the system. To implement 
Coarse-Grain Coherence Tracking in this system, a request 
can be sent to the memory controller as before, but the 
global broadcast can be skipped. The memory data would 
be sent back to the requestor, as it would if no other proc-
essors responded with the data. 
 
3.4. Additional Bits in the Snoop Response 
 
For the protocol described above, two additional bits are 
needed in the snoop response (or two encodings). One bit 
indicates whether the region is in a clean state in other 
processors� caches (Region Clean), and a second bit indi-
cates whether the region is in other processors� caches a 
dirty state (Region Dirty). These bits summarize the region 
as a whole, and not individual lines. They are a logical 
sum of the region status in other processors� caches, ex-
cluding the requestor. This should not be a large overhead, 
because a snoop response packet may already contain 
several bits for an address, line snoop response, ECC bits, 
and other information for routing / request matching. 

A scaled back implementation can use only one addi-
tional bit (or encoding) to signal whether the region is 
cached externally. Such a system would only need three 
region protocol states: exclusive, not-exclusive, or invalid. 
 
4. Evaluation Methodology 
 
Detailed timing evaluation was performed with a multi-
processor simulator [25] built on top of SimOS-PPC [26]. 
The simulator implements the PowerPC ISA, and runs 
both user-level and system code. We modeled a four-
processor system with a Fireplane-like interconnect and 
1.5GHz processors with resources similar to the UltraS-
parc-IV [24]. Unlike the UltraSparc-IV, the processors 
feature out-of-order issue, and an on-chip 2MB L2 cache 
(1MB per processor). For evaluating Coarse-Grain Coher-
ence Tracking, we assume the RCA has the same 

organization as the L2-cache tags, with 8K sets and 2-way 
associative (16K entries). We evaluated region sizes of 
256 Bytes, 512 Bytes, and 1 Kilobyte. A complete list of 
parameters is in Table 3. 
 
Table 3. Simulation Parameters. 
System
Processors Cores Per Processor Chip 2
Processor Chips Per Data Switch 2
DMA Buffer Size 512-Byte
Processor
Processor Clock 1.5GHz
Processor Pipeline 15 stages
Fetch Queue Size 16 instructions
BTB 4K sets, 4-way
Branch Predictor 16K-entry Gshare
Return Address Stack 8 entries
Decode/Issue/Commit Width 4/4/4
Issue Window Size 32 entries
ROB 64 entries
Load/Store Queue Size 32 entries
Int-ALU/Int-MULT 2/1
FP-ALU/FP-MULT 1/1
Memory Ports 1
Caches
L1 I-Cache Size/Associativity/Block-Size/Latency 32KB 4-way, 64B lines, 1-cycle
L1 D-Cache Size/Associativity/Block-Size/Latency 64KB 4-way, 64B lines, 1-cycle (Writeback)
L2 Cache Size/Associativity/Block-Size/Latency 1MB 2-way, 64B lines, 12-cycle (Writeback)
Prefetching Power4-style, 8 streams, 5 line runahead

MIPS R10000-style exclusive-prefetching
Cache Coherence Protocols Write-Invalidate MOESI (L2), MSI (L1)
Memory Consistency Model Sequential Consistency
Interconnect
System Clock 150Mhz
Snoop Latency 106ns (16 cycles)
DRAM Latency 106ns (16 cycles)
DRAM Latency (Overlapped with Snoop) 47ns (7 cycles)
Critical Word Transfer Latency (Same Data Switch) 20ns (3 cycles)
Critical Word Transfer Latency (Same Board) 47ns (7 cycles)
Critical Word Transfer Latency (Remote) 80ns (12 cycles)
Data Network Bandwidth (per processor) 2.4GB/s (16B/cycle)
Coarse-Grain Coherence Tracking
Region Coherence Array 8192 sets, 2-way set-associative
Region Sizes 256B, 512B, and 1KB
Direct Request Latency (Same Memory Controller) 0.7ns (1 cycle)
Direct Request Latency (Same Data Switch) 13ns (2 system cycles)
Direct Request Latency (Same Board) 27ns (4 system cycles)
Direct Request Latency (Remote) 40ns (6 system cycles)  
 
Figure 6 illustrates the timing of the critical word for dif-
ferent scenarios of an external memory request. The 
baseline cases are taken from the Fireplane sys-
tems [1, 24]. For direct memory accesses employed by our 
proposed system, we assume that a request can begin one 
CPU cycle after the L2 access for memory co-located with 
the CPU (memory controller is on-chip), after two system 
cycles for memory connected to the same data switch, after 
four system cycles for memory on the same board, and 
after six system cycles for the memory on other boards. 
The Fireplane system overlaps the DRAM access with the 
snoop; so direct requests see a much longer DRAM la-
tency (9 system cycles). 

 
Table 2. Storage overhead for varying array sizes and region sizes. 

Address Tags (2) State (2) Line Count (2) Mem-Cntrl ID (2) LRU ECC Total Bits Tag Space Overhead Cache Space Overhead
4K-Entries, 256-Byte Regions 21 3 3 6 1 9 76 10.2% 1.6%
4K-Entries, 512-Byte Regions 20 3 4 6 1 9 76 10.2% 1.6%
4K-Entries, 1024-Byte Regions 19 3 5 6 1 9 76 10.2% 1.6%
8K-Entries, 256-Byte Regions 20 3 3 6 1 8 73 19.6% 3.0%
8K-Entries, 512-Byte Regions 19 3 4 6 1 8 73 19.6% 3.0%
8K-Entries, 1024-Byte Regions 18 3 5 6 1 8 73 19.6% 3.0%
16K-Entries, 256-Byte Regions 19 3 3 6 1 8 71 38.2% 5.9%
16K-Entries, 512-Byte Regions 18 3 4 6 1 8 71 38.2% 5.9%
16K-Entries, 1024-Byte Regions 17 3 5 6 1 8 71 38.2% 5.9%

0-7695-2270-X/05/$20.00 (C) 2005 IEEE



 

As one can see, the request latency is shortest for requests 
to the on-chip memory controller; otherwise the reduction 
in overhead versus snooping is offset somewhat by the 
latency of sending requests to the memory controller. This 
makes the results conservative because the version of AIX 
used in the simulations makes no effort at data placement 
based on the non-uniformity of the memory system. 
 

Snoop (16) DRAM (+7)

DRAM (16)

Data Transfer (2)

Request (2) Data Transfer (2)
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Snoop Same-Data Switch 
Memory (25 cycles + 
queuing delays)

Directly Access Same-Data 
Switch Memory (20 cycles + 
queuing delays)

Snoop Same-Board Memory
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Directly Access Same-Board 
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queuing delays)
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Data Transfer (2)

Data Transfer (2)

Snoop Own Memory 
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Directly Access Own Memory 
(~18 cycles + queuing delays)

Request (0.1)

 
Figure 6. Memory request latency. 
 
For benchmarks, we use a combination of commercial 
workloads, scientific benchmarks, and a multiprogrammed 
workload (Table 4). Simulations were started from check-
points taken on an IBM RS/6000 server running AIX, and 
include OS code. Cache checkpoints were included to 
warm the caches prior to simulation. Due to workload 
variability we averaged several runs of each benchmark 
with small random delays added to memory requests to 
perturb the system [27]. The 95% confidence intervals for 
each workload are shown in the timing results that follow. 
 
Table 4. Benchmarks for timing simulations. 
Category Benchmark Comments

Scientific Ocean SPLASH-2 Ocean Simulation, 514 x 514 Grid

Raytrace SPLASH-2 Raytracing application, Car

Barnes SPLASH-2 Barnes-Hut N-body Simulation, 8K Particles

Multiprogramming SPECint2000Rate Standard Performance Evaluation Corporation's CPU 
Integer Benchmarks, Combination of reduced-input runs

Web SPECweb99
Standard Performance Evaulation Corporation's World 
Wide Web Server, Zeus Web Server 3.3.7, 300 HTTP 
Requests

SPECjbb2000
Standard Performance Evaulation Corporation's Java 
Business Benchmark, IBM jdk 1.1.8 with JIT, 20 
Warehouses, 2400 Requests

TPC-W Transaction Processing Council's Web e-Commerce 
Benchmark, DB Tier, Browsing Mix, 25 Web Transactions

OLTP TPC-B
Transaction Processing Council's Original OLTP 
Benchmark, IBM DB2 version 6.1, 20 clients, 1000 
transactions

Decision Support TPC-H
Transaction Processing Council's Decision Support 
Benchmark, IBM DB2 version 6.1, Query 12 on a 512MB 
Database

5. Results 
 
5.1. Effectiveness at Avoiding Broadcasts 
 
Figure 7 shows both the number of requests for which a 
broadcast is unnecessary (from Figure 2) and the number 
of requests that are sent directly to memory or avoided 
altogether by Coarse-Grain Coherence Tracking.  

Except for Barnes and TPC-H, all the applications ex-
perience a large reduction in the number of broadcasts. 
Barnes experiences a 21-22% reduction, while TPC-H 
experiences only a 9-12% reduction. However, even for 
these cases, Coarse-Grain Coherence Tracking is capturing 
a significant fraction of the total opportunity. TPC-H, for 
example, benefits a great deal from Coarse-Grain Coher-
ence Tracking during the parallel phase of the query, but 
later when merging information from the different proc-
esses there are a lot of cache-to-cache transfers, leaving a 
best-case reduction of only 15% of broadcasts. 

We include write-backs in Figure 7, but put them on top 
of the stacks to clearly separate the contribution of the 
other requests. Write-backs do not need to be broadcast, 
strictly speaking, but they are typically broadcast to find 
the appropriate memory controller and simplify ordering. 
Because of the multitude of memory configurations result-
ing from different system configurations, DRAM sizes, 
DRAM slot occupancies, and interleaving factors, it is 
difficult for all the processors to track the mapping of 
physical addresses to memory controllers [14]. And, in a 
conventional broadcast system, there is little benefit in 
adding address decoding hardware, network resources for 
direct requests, and protocol complexity just to accelerate 
write-backs. In contrast, a system that implements Coarse-
Grain Coherence Tracking already has the means to send 
requests directly to memory controllers, and one can easily 
incorporate an index for the memory controller into the 
region state. Consequently, there is a significant improve-
ment in the number of broadcasts that can be avoided, but 
this will only affect performance if the system is network-
bandwidth-constrained (not the case in our simulations). 
 
5.2. Performance Improvement 
 
Figure 8 shows the reduction in execution time for Coarse-
Grain Coherence, with error bars for the 95% confidence 
intervals. The conversion of broadcasts to direct requests 
reduces the average memory latency significantly, particu-
larly for 512B regions, leading to average performance 
gains of 10.4% for the commercial workloads and 8.8% 
for the entire benchmark set. The largest speedup is 21.7% 
for TPC-W with 512B regions. 
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Figure 7. Effectiveness of Coarse-Grain Coherence Tracking for avoiding unnecessary broadcasts and 
eliminating unnecessary external requests in a four-processor system. The leftmost bar for each 
benchmark shows the requests for which broadcasts are unnecessary (from Figure 2), and the adjacent 
bars show the percentage avoided for each region size. 
 
One important design issue is how large the RCA should 
be. In this study, we found that the average number of 
lines cached per region ranges from 2.8 to 5. Therefore, 
one should be able to use half as many sets in the RCA as 
in the cache and still maintain good performance. Figure 9 
shows the runtime for the baseline, 512B regions, and 
512B regions with half the number of sets as the cache 
tags. With half the number of entries (8K) the average 

performance improvement is 9.1% for the commercial 
workloads, and 7.8% for all benchmarks. This is only a 
small decrease in performance for a halved (3% total) 
cache storage overhead. It is a tradeoff between perform-
ance and space overhead that will depend on the 
complexity and actual physical space overhead of the 
implementation. 
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Figure 9. Impact on run time with a region coherence array with half the number of sets as the cache. 
There is only a 1% difference in the average run time reduction for these workloads. 
 
5.3. Scalability Improvement 
 
By reducing the number of broadcasts, scalability is also 
improved. In Figure 10, the number of broadcasts per-
formed during the entire run of each application is divided 
by the number of cycles for both the baseline, and the 
design with 512B regions, and shown as the average num-
ber of broadcasts per 100,000 cycles. Figure 10 also shows 
the same ratio for the peak traffic, where the peak is the 

largest number of broadcasts observed for any 100,000 
cycle interval. Both the average and peak bandwidth re-
quirements of the system have been reduced to less than 
half that of the baseline. Coincidentally, the benchmarks 
used here that have the highest bandwidth requirements are 
also those that most significantly benefit from Coarse-
Grain Coherence Tracking. And, the rate of broadcasts is 
lower for each benchmark despite the execution time also 
being shorter. 
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Figure 10: Average and peak broadcast traffic for the baseline and 512B regions. The highest average 
traffic for the set has gone down from nearly 2,573 broadcasts per 100K cycles for the baseline to 1,103. 
The peak traffic for any 100K interval in any benchmark has been reduced from 7,365 to 2,683. 
 
6. Conclusions and Future Work 
 
Coarse-Grain Coherence Tracking can significantly reduce 
average request latency and bandwidth in a broadcast-
based multiprocessor system, and hence improve the per-
formance of these systems. Coarse-Grain Coherence does 

not increase request latency, and the additional cache line 
evictions needed for maintaining inclusion are negligible. 
Finally, the implementation impact is manageable. In the 
hypothetical system we evaluated, it is only necessary to 
add two bits to the snoop response, and an array for the 
region state that adds 5.9% to the storage requirements of 
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the L2 cache. Furthermore, most of the benefit can be 
achieved with an array nearly half that size. 

We used the region state only to summarize the local 
and remote coherence state of lines in the region. How-
ever, regions may also maintain other information. 
Knowledge of whether data is likely to be cached in the 
system can be used to avoid unnecessary DRAM accesses 
in systems that start the DRAM access in parallel with the 
snoop. The region state can also indicate where cached 
copies of data may exist, creating opportunities for im-
proved cache-to-cache transfers and invalidations. 

An important avenue of future research is in the power-
saving potential of Coarse-Grain Coherence. In this paper 
we only measured performance improvements; however, 
by reducing network activity [17], tag array look-
ups [15, 18], and DRAM accesses power can be saved. 
However, the additional logic may cancel out some of that 
savings. 

Finally, there is potential for extending Coarse-Grain 
Coherence Tracking with prefetching techniques. Though 
our system already uses two standard types of prefetching 
(i.e., MIPS R10000-style exclusive-prefetching [28] and 
IBM Power4-style stream prefetching [2]), there are new 
opportunities. The region coherence state can indicate 
when lines may be externally dirty and hence may not be 
good candidates for prefetching. The region state can help 
identify lines that are good candidates for prefetching by 
indicating when a region of memory is not shared and a 
prefetch can go directly to memory. Furthermore, prefetch-
ing techniques can aid Coarse-Grain Coherence Tracking 
by prefetching the global region state, going after the 4% 
of requests for which a broadcast is unnecessary, but the 
region state was Invalid. 
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