
BugNet: Continuously Recording Program Execution for
Deterministic Replay Debugging

Satish Narayanasamy Gilles Pokam Brad Calder

Department of Computer Science and Engineering
University of California, San Diego
{satish,gpokam,calder}@cs.ucsd.edu

Abstract

Significant time is spent by companies trying to reproduce
and fix the bugs that occur for released code. To assist develop-
ers, we propose the BugNet architecture to continuously record
information on production runs. The information collected be-
fore the crash of a program can be used by the developers work-
ing in their execution environment to deterministically replay the
last several million instructions executed before the crash.

BugNet is based on the insight that recording the register file
contents at any point in time, and then recording the load values
that occur after that point can enable deterministic replaying of
a program’s execution. BugNet focuses on being able to replay
the application’s execution and the libraries it uses, but not the
operating system. But our approach provides the ability to re-
play an application’s execution across context switches and in-
terrupts. Hence, BugNet obviates the need for tracking program
I/O, interrupts and DMA transfers, which would have otherwise
required more complex hardware support. In addition, BugNet
does not require a final core dump of the system state for replay-
ing, which significantly reduces the amount of data that must be
sent back to the developer.

1 Introduction

The last few decades witnessed exponential growth in proces-
sor performance. Sophisticated software systems were built to
leverage the performance growth, but unfortunately at the cost of
software reliability. The Tandem OS had 4 million lines of code
in 1986, while Windows XP had 40-50 million lines of code in
2003 [4]. Unfortunately, software engineering and verification
techniques are complex, and a software system even after un-
dergoing rigorous Quality Assurance is bound to have bugs. In
addition, with the explosion of the Internet, it has become trivial
to distribute software patches, and this has encouraged vendors
to have more rapid release schedules, which results in released
software with more bugs.

Tracking down and fixing bugs in released software can be
a nightmare, costing a significant amount of time and money.
The main difficulty lies in being able to reproduce the bug at the
developer site. Most of the current debugging systems rely on a
core dump [8, 7], which represents the final state of the system
before the crash. Unfortunately, this solution has been woefully
inadequate as it is difficult to determine the source of error that
was actually responsible for the program to end up with the state

represented by the core dump.
A good solution to this problem will be to provide architec-

ture support to capture enough information during a production
run that can be used by the developer to deterministically re-
play the program’s execution like it happened moments before
the program crashed. Deterministic Replay Debugging (DRD)
is the ability to replay exactly the same sequence of instructions
that led up to the bug. We believe DRD to be an effective way
to isolate the source of the problem and fix it. The Flight Data
Recorder (FDR) [24] system is one of the first proposals toward
an architecture to enable DRD.

FDR builds on top SafetyNet [21]. SafetyNet is a check-
pointing scheme used to provide reliability in shared memory
multiprocessor systems. FDR employs additional hardware to
track data races, program I/O, interrupts and DMA accesses
which are all required for deterministic replay of the full system
from the beginning of the checkpoint. Using the information
recorded in FDR, it is possible to replay the entire system execu-
tion, which includes interrupt handler and system call routines,
in addition to user code.

In this paper we present an architecture focused on continu-
ously tracing program execution called BugNet. BugNet focuses
on deterministically replaying the instructions executed in user
code and shared libraries. A significant number of application
level bugs can be replayed using this approach, which makes
it an attractive software development tool. Since BugNet fo-
cuses only on application level bugs, it cannot replay the full
systems execution as in FDR. Even so, BugNet allows replay-
ing across interrupts and system calls, and the log sizes gener-
ated and amount of hardware used is significantly less than FDR,
since the focus is on application level bugs.

2 Related Work

Microsoft’s Dr. Watson tool [8] and Mozilla’s Talkback [7] are
examples of current solutions to gather and analyze the reason
for a program crash. All these tools collect information that rep-
resent the final snapshot of execution state when the program
crashed. While these crash reports have some utility, it is highly
desirable to have the ability to exactly replay the sequence of
instructions executed before the crash. An example of such a re-
player is from Ronsse and De Bosschere [19]. They built a soft-
ware debugger that logs all the information that would enable
one to go back in time and repeatedly re-execute the program

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

through the same sequence of instructions.

2.1 Checkpoint Schemes

To enable replaying, much of the prior work uses some form of
checkpointing. There is a body of prior work on various check-
pointing schemes for designing Checkpoint and Restart (CPR)
systems to improve reliability [10]. On encountering a fault
(transient error in hardware or a software error) the system can
rollback to the previous checkpoint and continue execution from
thereon. The purpose of checkpointing schemes in CPR systems
is to provide a mechanism to retrieve a consistent full system
state from where execution can be continued without error. They
usually involve mechanisms to retrieve the full system state at
the beginning of a checkpoint. CPR could be done either with
OS support [9] or hardware support as in SafetyNet [21] and Re-
vive [16].

FDR [24] adopts the SafetyNet [21] checkpoint mechanism
to retrieve a consistent full system state corresponding to a prior
instance in time. Additionally, it records all the inputs coming
into the system (I/O, interrupts, DMA transfers) to enable re-
playing. With this recorded information, starting from the re-
trieved full system state, the original program execution can be
replayed.

The checkpointing scheme we propose does not retrieve a
consistent full system state. Instead it concentrates on just track-
ing the input to the program read through load instructions. We
show that this information, along with a record of the register
state at the beginning of a checkpoint, is sufficient to replay the
instructions executed. Since our checkpoint scheme does not
recreate a consistent full system state it is not suitable for using
in Checkpoint and Restart systems, but is useful for reproducing
application level bugs.

2.2 Deterministic Replayers for Debugging Multithreaded
Applications

In the past, there have been studies that presented deterministic
replayers where the goal was to provide support to debug mul-
tithreaded applications. InstantReplay [11] is a software based
deterministic replayer that records the memory access order, and
a hardware-assisted version was presented by Bacon and Gold-
stein [1]. The amount of information that needs to be logged to
record memory access ordering can be reduced by applying tran-
sitive properties [14]. If one assumes that the multithreaded ap-
plication is running on a single processor, then one can limit the
amount of recording to just the scheduler decisions [5]. Another
alternative is to just record the control flow of the threads [23].

There are also proposals to record the necessary information
to detect data races. RecPlay [18] logs synchronization races
and the races are detected through offline analysis. Eraser [20]
takes a slightly different approach in that it tries to find the er-
rors arising due to incorrect usage of locks for shared variables.
ReEnact provides an approach for rolling back and replaying the
execution using thread level speculation support [15]. In ReEn-
act, upon detection of data races, it can rollback to a previously
logged checkpoint and replay the execution. Flashback [22] pro-
vides lightweight OS support for fine grained rollback and re-
playing the program execution.

As opposed to all of the these techniques, only FDR provides
a complete history of what happened before the program crash
that enables one to deterministically replay the program execu-
tion [24]. This is needed in order to communicate back to the
developer a trace to faithfully reproduce the problem.

2.3 Architecture Support for Debugging
Recently there has been a great interest in providing support to
enable better software reliability and correctness. iWatcher [27]
provides sophisticated watchpoints to debug applications. It as-
sociates tags with memory locations, and when these locations
are accessed, a specific function is executed to perform monitor-
ing. SafeMem [17] and AccMon [26] are other recent propos-
als that provide architectural support to catch memory violations
dynamically during program execution. Architecture support for
efficiently implementing breakpoints and watchpoints in an of-
fline debugger is also discussed by Corliss et. al. [6].

3 Flight Data Recorder

The goal of FDR [24] is to provide architectural support for col-
lecting enough information to enable one to deterministically
replay the last one second of full system execution before the
crash. FDR strives to replay the full system by having sup-
port to replay interrupts and system call routines. In contrast,
BugNet limits its focus on replaying only execution in user code
and shared libraries, but it can still deterministically replay the
application across interrupts.

FDR continuously records three kinds of information:

• Checkpoint - FDR uses the SafetyNet checkpoint mecha-
nism [21] to retrieve a consistent system state to start the re-
playing of execution.

• Interrupts and External Inputs - In order to perform determin-
istic replay, FDR records all the interrupts, memory mapped
I/O and DMA transfers.

• Memory Races - To support debugging data races in mul-
tithreaded applications, shared memory access ordering is
recorded using an additional Memory Race Buffer (MRB).

The combined sizes of logs needed for replay in FDR is
about 34 MB [24]. The hardware complexity in FDR to collect
all the required information to enable full system replay is about
1.3 MB of on-chip hardware and 34 MB of main memory space.
In addition, the final snapshot of the entire physical memory im-
age, to be communicated to the developer, can be on the order
of 1 GB, depending on the memory footprint of the application
and the main memory sizes used. Since BugNet focuses on just
capturing application level bugs, the amount of information that
needs to be recorded for replay can be significantly reduced. In
addition, smaller trace sizes will encourage even those users with
network bandwidth constraints to communicate the trace back to
the developer.

4 BugNet Architecture

BugNet provides architecture support to record enough informa-
tion to deterministically replay a window of instructions preced-
ing a program’s crash. We first give an overview of the architec-
ture, and then discuss each component in detail.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Memory
R ace B uffer

(MR B)

Checkpoint
B uffer (CB)

Dictionary L 2L 1
Main
Memory

Control

Cache coherence
ControllerPC R egisters

Pipeline

Figure 1: BugNet Architecture.

4.1 BugNet Architecture Overview

The goal of BugNet is to record the information that needs to be
communicated back to a developer to enable deterministic replay
debugging. Unlike FDR [24], we limit our focus on replaying
just the user code and shared libraries to enable the debugging
of application level bugs. BugNet supports deterministic replay
across interrupts and system calls, but the developer will not be
able to analyze what goes on during the execution of these inter-
rupts and systems call routines.

In BugNet, a new checkpoint is created at the beginning of
each checkpoint interval to allow execution to be replayed start-
ing at the first instruction of the interval. Therefore, a check-
point interval represents a window of committed instructions
that is captured by the checkpoint being logged. During tracing,
a maximum size (number of committed instructions) is speci-
fied for the checkpoint interval. When this limit is reached,
a new checkpoint interval is initiated, but a checkpoint can be
prematurely terminated on encountering an interrupt or a con-
text switch. During a checkpoint interval, enough information is
recorded in a log to start the replay of the program’s execution
at the start of that checkpoint interval.

BugNet is built on the observation that a program’s execu-
tion is essentially driven by the values read when executing load
instructions. Hence, in order to replay a checkpoint interval, one
needs to record just the initial register state and then record the
values of load instructions executed in that interval. During a
checkpoint interval, the memory values could have been modi-
fied by interrupts, especially I/O interrupts and DMA transfers.
In addition, in the case of shared memory multithreaded pro-
grams, the shared memory can be modified by other threads dur-
ing a checkpoint interval. However, by logging the load values,
we ensure that we have recorded information required for deter-
ministic replay including any memory values that were updated
by the interrupt handlers or by other threads in a shared memory
processor.

Figure 1 represents the major components in the BugNet ar-
chitecture. Components shaded in gray are the new additions to
the baseline architecture. BugNet operates by creating check-
points at the beginning of checkpoint intervals. At the start of
a checkpoint interval, a snapshot of the architectural state is

recorded in the Checkpoint Buffer (CB). The recorded architec-
tural state includes the program counter and register values. Af-
ter initialization, whenever a load instruction is executed a new
log entry is created to record the load value and this is also stored
into the CB.

Recording the result value of every load instruction would
clearly be expensive. But we note that a load value needs to be
recorded only if it is the first access to the memory location in
the checkpoint interval. The result value of the other loads can
be trivially generated during replay. Therefore, we associate a
bit with every word in the cache, to identify these temporal hits,
which are not recorded. When applying this optimization, spe-
cial care needs to be taken to handle interrupts and shared mem-
ory accesses by remote threads. If a memory address is modified
by these external entities, we make sure that the future load ref-
erence to that address is logged. In order to further optimize the
trace size, we employ a dictionary based compressor shown in
the Figure 1, which exploits the frequent value locality in load
values [25].

The log that contains the load values and the initial architec-
tural state information for a checkpoint interval is referred to as
the First-Load Log (FLL). The information recorded in the FLL
for a checkpoint interval is sufficient to replay that interval. This
allows us to re-execute the instructions with exactly the same
input and output register and memory values as in the original
execution. This is true even in the case of multithreaded pro-
grams, because the FLL for a thread contains the necessary in-
formation to replay each thread independent of the other threads.
In order to debug data races between these threads, we need to
record synchronization information to reproduce the ordering of
memory operations across the threads. We use the Memory Race
Buffer (MRB) to record synchronization information building on
the approach used in FDR [24], which are kept in Memory Race
Logs (MRL).

The CB and MRB are FIFO queues that are memory backed
to allow the collection of larger logs than can be stored in these
dedicated hardware buffers. The operating system provides sup-
port for managing the memory space that needs to be allocated
for BugNet’s use. The goal is to continuously log program ex-
ecution into memory overwriting older logs in memory, and to
only dump the logs to disk when a bug is found. Therefore, the
memory can contain logs corresponding to multiple consecutive
checkpoints and logs from many different threads. When the
allocated memory space fills up, the logs corresponding to the
oldest checkpoint for a thread are discarded.

Enough FLLs are kept in memory for the threads being
traced to at least replay tens of millions of instructions of ex-
ecution for each thread. A developer is interested in replaying
enough instructions to determine the cause of a bug. This num-
ber of instructions should be less than the replay window, cap-
tured by BugNet. The replay window is the number of instruc-
tions that can be replayed for a thread given a sequence of FLLs
and MRLs stored in memory.

When the operating system detects that a program has en-
countered a fault, before terminating the application it first
records the instruction count of the current FLL and the program
counter of the faulting instruction in the current FLL and then

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

stores all the logs collected for that application to a persistent
storage device. The logs are then sent back to the developer for
debugging.

4.2 Checkpoint Scheme
For checkpointing, the program’s execution is divided into mul-
tiple checkpoint intervals, where the interval length is specified
in terms of the number of instructions executed. At the end of
a program interval, the current checkpoint would be terminated
and a new one will be created. In addition, interrupts and sys-
tem calls can also terminate a checkpoint interval, which we will
describe later. Finally, a fault in execution will terminate the
checkpoint interval and initiate the collection of logs to be sent
back to the developer for debugging.

A new checkpoint is recorded by creating a new FLL delim-
inator in the Checkpoint Buffer (CB) and initializing the check-
point interval’s FLL with the following header information:

• Process ID and Thread ID - are required to associate the
FLL with the thread of execution for which it was created.

• Program Counter and Register File contents - are needed
to represent the architectural state at the beginning of the
checkpoint interval. This information will later be used by
the replayer to initialize the architectural states before begin-
ning to replay the program execution using the recorded load
values.

• Checkpoint Interval Identifier (C-ID) - is used to iden-
tify the checkpoint interval (and MRL) corresponding to this
FLL.

• Timestamp - is the system clock timer when the checkpoint
was created. This is useful for ordering the FLLs collected
for a thread according to their time of creation.

When a checkpoint interval is created, a C-ID is generated
to provide a unique identifier for the interval. The C-ID is in-
cremented whenever a new checkpoint interval is created. The
number of bits used for this counter and the C-ID is dependent
on the maximum number of checkpoints that can reside in mem-
ory at any instant of time. The counter is set to zero when it
overflows.

The FLL after getting initialized with the above information
will be appended with the output values of the load instructions
executed during the checkpoint interval.

4.3 Tracking Load Values
Within a checkpoint interval, a load accessing a memory location
needs to be logged only if it is the first access to that memory
location. The values of other loads can be re-generated during
replay. Logging just the “first-loads” to a memory location will
significantly reduce the number of load values that need to be
recorded. In order to do this optimization, we associate a first-
load bit with every word in the L1 and L2 caches. At the start
of a checkpoint interval all these bits will be cleared. When a
load accesses a word for which the bit is not set, then the load
value will be logged in the Checkpoint Buffer, and the bit will be
turned on. If the bit is set for a word in the cache, then it implies
that the value of that word has already been logged and hence
future load accesses to it need not be logged.

This approach is adapted from FDR [24]. FDR’s goal was
to track during a checkpoint interval the first store to a particular
location and to log the value that is overwritten. They focus on
stores, since they use the store values to repair the final core im-
age to retrieve memory state at the start of a checkpoint interval.
For BugNet, if the first access to a particular memory location
is a store then we would set the bit and not log the value of the
store. The future load accesses to this memory location would
not be logged as well, as the bit would be set. The store values
are not logged, and this mechanism works because the stores will
be generated by the execution of instructions during replay.

When a cache block is replaced from the L2 cache, all the
first-load bits associated with the words in that cache block will
be cleared. Therefore, logged values for addresses (blocks)
evicted from the L2 will be relogged when the block is brought
back in and those same addresses are accessed again. The first-
load bits in the L2 cache are used to initialize the first-load bits
in the L1 cache when bringing in a block to the L1 from the L2.
When an L1 block is evicted, its first-load bits are stored into the
first-load bits of the L2 cache.

The above first-load optimization will be effective for long
checkpoint intervals. This is because the greater the number of
loads/stores executed, the higher the probability that a memory
location has already been logged. As a result, the amount of
information recorded to replay an instruction will decrease with
longer checkpoint intervals.

During replay, we need to determine whether the value for a
load instruction is recorded in the log or not. If it is recorded,
then the load executed during replay needs to get its value from
the FLL. If it was not recorded then it is certainly not the first
access to the memory location that it is accessing. By simulat-
ing memory state during replay, the value can be obtained by
reading from the simulated memory state. To determine when to
consume a load value during replay, as part of each log entry we
have a field to specify the number of load instructions that were
skipped since the last load instruction was logged. The follow-
ing is the format of each log entry in the checkpoint to record the
information for the load instruction:

(LC-Type, Reduced/Full L-Count,
LV-Type, Encoded/Full Load-Value)

The second field, Reduced/Full L-Count, represents the num-
ber of load instructions skipped (not logged) between the cur-
rent load instruction being logged and the last load instruction
logged. To record the full L-Count value, one would require
log(checkpoint interval length) bits, since the L-
Count cannot be greater than the maximum checkpoint interval
size used. We found that the majority of L-Count values can be
represented using just 5 bits. Hence, we record L-Count using
5 bits whenever its value is less than 32. If the L-Count value
exceeds 32, then we resort to recording the full L-Count value.
The logs that contain the full L-Count values are distinguished
from the logs that contain the 5-bit L-Count values by using one
additional bit, the LC-Type.

The fourth field, Encoded/Full Load-Value, is used to record
the load value. Again, we try to avoid recording the full 32-bit
load value. To achieve this, we use a 64-entry dictionary that

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

captures the most frequently occurring load values. If the load
value is found in the dictionary, then we use 6 bits to represent
the position of the value in the dictionary. If the load value is not
found, then the full 32-bit value is recorded. LV-Type is the bit
that is used to distinguish between the two cases.

To track load instructions we just record their output values
in the log. Neither the effective address nor the address of the
PC of the load instruction is logged, since they can be produced
during replay of the thread’s execution. In Section 5 we describe
the replaying mechanism in detail.

4.3.1 Dictionary-based Compressor
In BugNet, the load values are compressed using a dictionary
based compression scheme. It has been shown in [25] that the
load values exhibit frequent value locality. That is, over 50%
of all the load values can be captured using a small number of
frequently occurring values. In addition, value predictors have
been shown to provide impressive compression ratios [3].

In our approach, a 64-entry fully associative table, called the
Dictionary Table, is used to capture these frequently occurring
load values. The dictionary table is emptied at the beginning of
the checkpoint interval and is updated with the execution of each
load instruction. Before logging a load value into the FLL, the
value is looked up in the dictionary table. If there is a hit, instead
of storing the full 32-bit value, we will store a 6-bit encoding.
The 6-bit encoding corresponds to the rank of the value in the
dictionary table. In our design, the rank corresponds to the index
into the dictionary table used to find the matching value.

In a checkpoint interval, the dictionary table will be continu-
ously updated as load instructions are executed. As a result, the
position of a value in the dictionary table can keep changing dur-
ing an interval. Therefore, the encoding that we use to compress
a value can change over the course of a FLL. This is valid since
we simulate the dictionary state during replay. During replay we
know the initial dictionary state (which is the empty state) at the
start of a checkpoint interval, and all the subsequent executed
load instructions update the table. Therefore, at any instant of
time, while executing a load instruction during the replay, the
state of the dictionary table will be the same as its state during
the original execution.

For every load that gets executed within the interval, the dic-
tionary table will be updated as follows. Each entry in the table
has a 3-bit saturating counter to keep track of the frequency of
the value stored in the entry. When a load value is found in an
entry in the dictionary table, the 3-bit saturating counter corre-
sponding to that entry is incremented until it saturates. If the up-
dated counter value is greater than or equal to the counter value
of the previous entry in the table, then the two values will swap
their positions (rankings) in the table. This ensures that very fre-
quently occurring values will percolate to the top of the table.
When a load value is not found in the dictionary table, then it is
inserted into the entry with the smallest counter value. If there
are multiple candidates, then the entry occupying the lowest po-
sition in the table is chosen for replacement.

4.4 Handling Interrupts and Context Switches
Interrupts can be either asynchronous or synchronous. Asyn-
chronous interrupts are caused by sources external to the exe-

cuting application code, like I/O and timer interrupts. On the
other hand, synchronous interrupts (also commonly referred to
as traps) are triggered while executing program instructions.
Reasons for traps include arithmetic overflow exceptions, invok-
ing a system call or an event like a page fault.

Since our goal is to replay and debug only the application
code, we do not record what goes on during any interrupts. So
we do not record the output of load instructions executed as part
of the interrupt handler and operating system routines servic-
ing the interrupts. Nevertheless, we need to track how the inter-
rupt affects the execution of the application. Interrupts are likely
to modify the memory state (e.g. I/O interrupt) and they can
even change the architectural state of the program’s execution
by modifying the program counter or registers.

A straight forward solution is to solve this problem by pre-
maturely terminating the current checkpoint interval on encoun-
tering an interrupt and create a new one when the control returns
to the application code. If we create a new checkpoint after ser-
vicing the interrupt, we are guaranteed to have the right program
counter value, as it will be initialized in the header of the new
FLL. Also, the bits used to track the first-loads would have been
reset, thus ensuring that the necessary load values are logged
to replay the instructions that were executed after the interrupt.
The architecture that we model while discussing our results in
Section 6 assumes this approach.

A more aggressive solution would be to allow the first-load
bits to be tracked across the checkpoints and interrupts. This
would help in reducing the number of load instructions logged,
when restarting a new checkpoint after the interrupt. The solu-
tion needs to make sure that the first-load bits are correctly in-
validated when the memory state is updated during the interrupt
or context switch. Examining this approach in more detail is left
for future research.

4.5 Handling External Input
The mechanism described in the previous section to handle in-
terrupts is adequate to handle I/O interrupts as well. A memory
mapped I/O mechanism works by mapping the address space of
a device to the program’s virtual address space. The values are
read from the device through load instructions using the virtual
address corresponding to the program’s address space.

The OS can initiate a DMA transfer to service an I/O system
call. In such cases, the control will return to the application code
but the DMA transfer can proceed in parallel. Like in FDR [24],
we assume that a DMA write would use a directory based cache
coherence protocol and invalidate the cache block in the pro-
cessor executing the application. This would ensure that the bits
used for the first-load optimization are reset and hence the values
in the modified memory location would be recorded later when
they get referenced by an application load.

Our scheme of recording only the first-load values avoids
logging the data copied into the process’s address space until it
is referenced in the application. Even though a large amount of
data can get copied into the process’s address space, not all of it
will necessarily be used by the program execution preceding the
crash. Our scheme ensures that we log just the necessary values
that are in fact consumed by those instructions that need to be
replayed later.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

4.6 Support for Multithreaded Applications
We assume a shared memory multiprocessor system to execute
multithreaded programs. In shared memory multithreaded appli-
cations, remote threads executing on other processors can mod-
ify the shared data within a checkpoint interval. This problem
is the same as the one that we discussed regarding DMA trans-
fers. When a shared memory location is modified by a remote
thread, the corresponding cache block will be invalidated before
the update. This would reset all the bits used to track first-loads
to that cache block. As a result, future load references to the
same cache block would result in recording the value written by
the remote thread in the FLL.

The FLL corresponding to a checkpoint interval is sufficient
to replay the instructions executed in that interval. This is true
even in the case of multithreaded applications. Any thread can
be replayed independent of the other threads as we would have
recorded all the input values required for executing that thread.
However, in order to assist debugging data races one would re-
quire an ability to infer the order of instructions executed across
the threads. To record synchronization information we adapt the
mechanism proposed in FDR [24], and record them in a separate
Memory Race Buffer (MRB).

4.6.1 Memory Model
As in FDR, we assume a shared memory multiprocessor with
a sequential consistency memory model using a directory based
cache coherence protocol. In a sequential consistency memory
model, all the memory accesses appear to occur one at a time.
Thus, the execution of the program can be represented by inter-
leaving the instructions from different threads into a sequential
order. In order to get this valid sequential order during replay,
we adapt the mechanism used by FDR [24] to record the order
of memory operations across the threads.

4.6.2 Asynchronous Checkpointing in Multithreaded pro-
grams

FDR’s [24] checkpoint mechanism uses barrier synchroniza-
tion to support shared memory multithreaded applications. The
mechanism ensures that the checkpoint intervals across all the
threads start at the same instant of time. This approach is not
desirable in our BugNet architecture because of its overhead in
terms of performance, especially when we want to create check-
points with a smaller interval length. Moreover, we want to have
the flexibility of terminating a checkpoint independent of other
threads, like when interrupt events are encountered. Hence, we
allow the threads to create and terminate checkpoints intervals
independent of the other threads. As a result, the checkpoint in-
tervals across different threads may not start at the same time.
To support asynchronous checkpoints across threads, we record
checkpoint identifiers as part of every memory race log entry, as
described in the next section.

4.6.3 Memory Race Log
Whenever a new checkpoint is created, in addition to creating
a new FLL as explained before, we also create a new Mem-
ory Race Log (MRL) stored in the memory race buffer. Every
thread records synchronization information in its local MRL. For
a given thread, the MRLs are kept in synchronization with the
FLLs. When a new checkpoint interval is created, in addition to

creating a new FLL, a new MRL is also created and is initialized
with the following header information:

• Process ID and Thread ID (T-ID) - is used to associate this
memory race log with the thread that it corresponds to.

• Checkpoint Interval Identifier (C-ID) - is used to iden-
tify the checkpoint interval (and FLL) corresponding to this
memory race log.

• Timestamp - is the system clock timer when the checkpoint
was created. The Timestamp is used to order the MRLs dur-
ing replay across the different threads.

The goal of the memory race log is to track shared memory
ordering among threads. FDR’s proposal for creating an MRL is
to piggy-back the coherence reply messages (write invalidation
acknowledgment while executing writes and write update reply
while executing load) from the remote thread with its execution
state. An entry in the MRL would be created whenever there
is a coherence reply message for a shared memory access. No
MRL entry would be logged while executing a load or store to a
memory location that is in non-shared or exclusive state, since no
coherence reply would be received for those memory operations.

For BugNet, an MRL is initialized with the above informa-
tion at the beginning of a checkpoint interval. After that, the log
is appended with the following information when a coherence
reply message is received:

(local.IC, remote.TID, remote.CID, remote.IC)

The purpose of each record is to synchronize the execution
of the remote thread, which is sending the coherence reply mes-
sage, with the execution of the local thread by recording both of
their instruction counts. Having this information allows us to re-
trieve the ordering of memory operations across all the threads.
The remote thread sends its execution state, as part of its coher-
ence reply, to the local thread that executed the memory opera-
tion.

The local.IC represents the number of instructions executed
from the beginning of the current checkpoint interval till the cur-
rent memory operation in the local thread. Hence the size of
local.IC needs to be only as large as log(checkpoint in-
terval length). The other three fields are used to represent
the state of a remote thread. The remote.T ID identifies the
thread ID. The size of this field is as large as log(max live
threads). The remote.CID represents the checkpoint in-
terval identifier corresponding to the checkpoint interval that is
currently active in the remote thread. The number of bits re-
quired for the checkpoint identifier is dependent on the number
of checkpoints that can simultaneously reside in memory. The
remote.IC represents the instruction count of the remote thread
when the coherence reply is sent. A detailed description of how
to use the FLLs with the MRLs to order the replaying of multiple
threads will be discussed later in Section 5.2.

FDR optimizes the size of memory race logs by providing ar-
chitecture support to implement Netzer’s algorithm [14], which
we also assume. See FDR [24] for the details on this memory
race log optimization.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

4.7 Memory Backing
The First-Load Logs stored in the Checkpoint Buffer and the
Memory Race Logs stored in the Memory Race Buffer (MRB)
are memory backed at two different locations in memory. The
amount of memory space devoted for this purpose can be man-
aged by the user and/or the operating system to ensure that the
performance impact is within tolerable limits. The amount of
memory space and disk space devoted will determine the num-
ber of instructions that can be replayed.

The contents in the buffer are lazily written back to memory
whenever the memory bus is idle. Since we can compress the
log entries as they are generated, the contents in the buffer can
be lazily written back to memory at any point. This memory
backed solution can potentially impact the memory bandwidth
requirements due to extra traffic to main memory. When the
processor is accessing main memory on encountering a cache
miss, it will most probably be stalled waiting for data to be ob-
tained from the main memory. Thus, the rate at which loads are
logged in the FLL will be reduced. We found when simulating
the SPEC benchmarks that there is sufficient bandwidth to write
the logs back to memory when the memory bus is idle, and the
on-chip buffers need to be only large enough to hold bursts in
the logging.

4.8 On Detecting a Fault
The operating system will know when the program executes an
instruction that causes the thread to be terminated. An arith-
metic exception due to division by zero or a memory operation
accessing an invalid address are some examples that can trigger
the program to crash. Once the operating system detects that
the program has executed a faulting instruction, it records in the
FLL the current instruction count in the checkpoint interval and
the program counter of the faulty instruction. This is used to
determine when to stop replaying and to correctly identify the
faulty instruction.

In addition, the OS collects the FLLs and MRLs correspond-
ing to the application from the main memory and hardware
buffers. It scans through the headers of all the logs and uses
the process identifier in the header to identify the logs that cor-
respond to the application. The collected logs are then stored to
persistent storage and sent to the developer for debugging.

5 Replayer

We implemented a prototype of a replayer as a proof of concept
for BugNet using Virtutech Simics [13]. In this section we will
describe how the BugNet replayer works and our experiences in
building the replayer system using Simics.

5.1 Replaying Single Thread
We used the Pin Dynamic Instrumentation tool [12] running on
Fedora Linux OS to collect the FLLs that were described in Sec-
tion 4.2 for the programs listed in Table 1. Multiple FLLs were
collected per thread leading up to the program crash. The goal
of the replayer is to use these FLLs and execute the instructions
in the checkpoint interval leading up to the bug. For replaying a
program’s execution, our replayer has to have access to the exact
same binaries for the application and shared libraries used when
creating the FLL.

To replay a FLL, we start the program execution under Red
Hat Linux simulated by Simics and break the execution before
executing the first instruction. We then clear all of the data mem-
ory locations, and make sure all of the shared libraries needed for
replay are loaded into the virtual address space. We then use the
header information in the FLL to initialize the register values
and program counter. Finally, the execution of the application is
allowed to proceed, breaking before the execution of every load
instruction.

On encountering a load instruction, the replayer has to make
sure that the memory location accessed by the load contains the
right value. To achieve this, it first needs to decompress the next
record in the FLL, whose format was described in Section 4.3.
Using the bit LC − type, we decode the value of LC − Count
recorded in the second field of the record in FLL and use it to
determine if a load should retrieve its value from the FLL or
memory.

If the load value is to come from the log, we use the next full
32-bit value in the log if the LV − Type bit is set. If not, the
next 6-bits represent the dictionary entry to provide the value as
described in Section 4.3.1. The corresponding dictionary entry
is then read and that value is used for the load. Note, to generate
the correct values in the dictionary table, we update the dictio-
nary with every executed load and it is simulated during replay
exactly the same as described in Section 4.3.1.

Given the above, we can obtain the correct values for the
load instructions, and once replay starts, all the instructions ex-
ecuted will update the register file and memory as in normal ex-
ecution, allowing us to deterministically replay a thread of exe-
cution. During replay we will encounter synchronous interrupts,
which will be turned into NOPs, since we need not simulate what
goes on during an interrupt. To replay past the interrupt, we just
continue replaying the next FLL recorded for the thread’s execu-
tion.

5.2 Replaying Multiple Threads and Inferring Data Races
The individual threads can be replayed in a multi-threaded ap-
plication using the procedure described in the previous section.
But, to debug multi-threaded programs we need to be able to re-
trieve a valid sequential order of memory operations across all
the threads. This is provided by all of the information logged in
the MRLs.

For each thread we have the FLLs and MRLs corresponding
to multiple checkpoint intervals to be replayed. We can associate
the FLL with the MRL that was collected during the same check-
point interval using the checkpoint interval ID and time stamp
stored in the header of these logs. Using the FLL, we generate
the trace of instructions executed during the FLL’s checkpoint
interval, just as in replaying a single threaded application, as
described above. This generates an instruction count for each
memory operation in each thread, and this is used to map the
MRL entries to synchronization points in each thread. Effec-
tively, the MRLs are used to infer the ordering constraints across
the threads for the memory operations. Using the checkpoint
identifier (remote.CID) and the thread ID (remote.T ID) in
the MRL, the checkpoint interval of the remote thread can be
identified. Then using the remote.IC, we can determine the

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

Application Bug Location Bug Description Window size

bc 1.06 storage.c line 176 Misuse of bounds variable corrupts heap objects 591
gzip 1.2.4 gzip.c line 1009 1024 byte long input filename overflows global variable 32209
ncompress- 4.2.4 compress42.c line 886 1024 byte long input filename corrupts stack return address 17966
polymorph-0.4.0 polymorph.c lines 193, 200 2048 byte long input filename corrupts stack return address 6208
tar 1.13.25 prepargs.c line 92 Incorrect loop bounds leads to heap object overflow 6634

ghostscript-8.12 ttinterp.c line 5108, ttobjs.c line 279 A dangling pointer results in a memory corruption 18030519
gnuplot-3.7.1 pslatex.trm line 189 Null pointer dereference due to not setting a file name 782

plot.c line 622 A buffer overflow corrupts the stack return address 131751
tidy 34132 istack.c at line 31 Null pointer dereference 2537326

parser.c at line 3505 Memory corruption 13
parser.c Memory corruption 59

xv-3.10a xvbmp.c line 168 Incorrect bound checking leads to stack buffer overflow 44557
xvbrowse.c line 956, xvdir.c line 1200 A long file name results in a buffer overflow 7543600

gaim-0.82.1 gtkdialogs.c line 759, 820, 862, 901 Buddy list remove operations causes null pointer dereference 74590
napster-1.5.2 nap.c line 1391 Dangling pointer corrupts memory when resizing terminal 189391
python-2.1.1 audioop.c line 939, line 966 Arithmetic computation results in buffer overflow 92

sysmodule.c line 76 A null pointer dereference leads to a crash 941
w3m-0.3.2.2 istream.c line 445 Null (obsolete) function pointer dereference causes a crash 79309

Table 1: Open source programs with known bugs. Window size between source of bug and crash is less than a million instructions
on an average. The first 5 programs are from the AccMon study, and the rest of the programs are from sourceforge.net. The last set
of 4 programs are multithreaded programs.

last committed instruction in the remote thread before the lo-
cal memory operation was executed. In this way we can de-
duce the ordering constraints for a memory operation in the local
thread relative to the instruction count found in the MRL entry
for the remote thread. Once a valid sequential order is retrieved,
we know how far to replay each thread before waiting on other
threads to get to the same synchronization point.

5.3 Replay Implementation Issues
One issue while replaying is that we need to ensure that the in-
structions of user and shared library code are loaded into the
same virtual addresses as when the FLL was generated. This is
required to guarantee that the program counter value recorded in
FLL references the right instructions. To provide this informa-
tion, the operating system driver used to manage the checkpoint
logs can be used to also hook the load library routine to record,
for a program’s execution, where the current starting location is
for the binary, each shared library, and user space operating sys-
tem code. This can be associated with the FLLs for a thread, so
that if a bug occurs this binary starting address log can be used
by the replayer to correctly set up the code in the virtual address
space before starting execution.

A related issue is in replaying self modifying code. Since
our checkpoint and memory race logs contain only the loaded
data, and not code, code that was modified outside the replay
interval cannot be regenerated. One solution would be to also
log the first-load of instructions. Another option would be to not
support self-modifying code, as is done by many profiling tools
in industry.

6 Results

BugNet is based on the principle that the bugs can be repro-
duced, isolated and fixed by replaying a window of execution
corresponding to the moments leading up to the program crash.
Though debugging by replaying the program is considered to
be an effective technique in the software engineering commu-
nity [19], there is no clear result on the length of the replay

window of execution that is required to capture the majority of
the bugs. In this section, we first try to quantify this length, by
studying popular desktop applications. We found that replaying
10 million instructions was adequate to characterize a significant
number of bugs. Based on this result, we will study the trace
sizes and the amount of hardware required in BugNet and also
draw a comparison with FDR [24].

6.1 Methodology
To evaluate BugNet, we use a handful of programs from the
SPEC 2000 suite to evaluate the online compressor and to ana-
lyze the size of the log required for different interval sizes. These
include art, bzip, crafty, gzip, mcf, parser and vpr.
These programs were compiled on x86 platform using -O3 opti-
mizations.

We also provide results for five programs used in the Ac-
cMon [26] study, and a handful of other programs that are in
the top 100 programs downloaded from the sourceforge.net web
site. The AccMon programs used are bc, gzip, ncompress,
polymorph, tar. The single threaded sourceforge programs
are ghostscript, gnuplot, tidy and xv. The multi-
threaded sourceforge programs are gaim, napster, python
and w3m.

We make use of Pin [12], an x86 binary rewriting tool, to
create the logs examined in this section.

6.2 Bug Characteristics
Table 1 lists the applications with known bugs that we studied.
One goal here was to quantify the number of instructions re-
quired to be replayed in order to reproduce and fix the bug. The
second column in the table gives the details about the location in
the source code of the applications which needed to be changed
in order to fix the bug. The third column describes the nature
of the bug. The fourth column quantifies the length of the re-
play window required to capture the bug. We determine the size
of this window by calculating the number of dynamic instruc-
tions executed between the point in the program that was the
root cause of the bug and the point where the program crashed.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

1

10

100

1000

10000

bc

gh
os

ts
cr

ip
t

gn
up

lo
t-

1

gn
up

lo
t-

2

gz
ip

nc
om

pr
es

s

po
ly

m
or

ph ta
r

tid
y-

1

tid
y-

2

tid
y-

3

xv
-1

xv
-2

ga
im

na
ps

te
r

py
th

on
-1

py
th

on
-2

w
3m

F
LL

 S
iz

e
in

 K
B

Figure 2: Size of FLLs that can replay the window of execution
required to capture the bugs listed in Table 1.

For this analysis, we assumed that the root cause of the bug in
the program execution would be the last dynamic instance of the
instruction corresponding to the bug fix (the source code location
listed in the second column).

The set of bugs listed in the Table 1 covers a large vari-
ety of bugs. It includes memory corruption bugs like dangling
pointer accesses (ghostscript), buffer overflow (gzip) and
null pointer dereferences (gnuplot). It also includes bugs
that result in arithmetic overflows (python). The worst case
in our study is the dangling pointer reference bug found in
ghostscript. To capture this bug we require a replay win-
dow of length 18 million instructions. However, a majority of
the other bugs listed in the Table 1 can be captured by having
support to replay less than 10 million instructions.

Figure 2 presents the sizes of FLLs that are needed to cap-
ture and replay the bugs listed in Table 1. These results assume
running BugNet with a 10 million checkpoint interval length.
The FLL sizes for several programs are below 1KB, because the
number of instructions that need to be replayed to reproduce the
bugs in them is only on the order of a few thousand instructions.
Except for three applications (ghostscript, tidy and xv),
the rest require less than 100KB of FLL information. In the
worst case, we require about 1MB of data.

6.3 Sensitivity Analysis
In this section we will discuss how the FLL sizes can vary
based upon the checkpoint interval lengths and the replay win-
dow lengths. Also, we will study the efficiency of the dictionary
based compression algorithm that we discussed in Section 4.3.1.
For this study we use SPEC programs, since they have standard
inputs, which are well analyzed.

Figure 3 presents the FLL sizes collected for a replay win-
dow of 100 million instructions using different checkpoint inter-
val lengths ranging from 10K to 100 million instructions repre-
sented along the x-axis. Clearly, as the interval size increases,
FLL sizes decrease. This is a result of applying our “first-load”
optimization described in Section 4.3. For longer checkpoint
interval lengths, it is more probable that a particular memory lo-
cation referenced by a load has already been recorded and hence
the frequency of recording a load instruction decreases resulting
in smaller FLL sizes.

Figure 4 shows the sizes of FLLs that are needed to replay a
window of 10 million to 1 billion instructions. For these results
we assume a constant checkpoint interval length of 10 million

0

5000

10000

15000

20000

25000

30000

35000

40000

10K 100K 1M 10M 100M

C hec kpoint Interval L ength

F
L

L
S

iz
e

fo
r

10
0M

in
st

r
in

K
B

art
bzip2
crafty
gzip
mcf
parser
vpr
Avg

Figure 3: Total size of FLLs required to replay 100 million in-
structions captured using different checkpoint interval lengths.

1

10

100

1000

10000

100000

1000000

10M 100M 1B
R eplay Window length

F
L

L
S

iz
e

in
K

B

art bzip2 crafty
gzip mcf parser
vpr Avg

Figure 4: Total size of FLLs required to replay a window of 10
million to 1 billion instructions. FLLs were collected using a 10
million checkpoint interval length.

instructions. On an average, FLLs of size 225 KB are required to
replay 10 million instructions and about 18.86 MB for replaying
1 billion instructions.

The results presented so far assume a 64-entry dictionary ta-
ble for compression. We will now discuss the efficiency of our
compression technique described in the Section 4.3.1. Figure 5
shows the percentage of values that were compressible (found in
the table) using our dictionary table approach varying the dic-
tionary size. A dictionary of size 64 is capable of compressing
50% of the values on average, which is the size used for the rest
of the results in this paper.

Figure 6 shows the compression ratio of FLLs we achieve for
various dictionary sizes. On average, we achieve about a 50%
compression using a 64-entry dictionary. While a larger dictio-
nary table results in higher compression ratio, it would increase
the hardware costs, especially given that the dictionary table is
fully associative.

Finally, we used SimpleScalar x86 [2] to examine the perfor-
mance overhead of BugNet and found it to be less than 0.01%
for these SPEC programs. We found for the SPEC programs
that the overhead of BugNet is less than 0.01% due to (a) the
fact that we use an incremental compression scheme that allows
us to lazily write the compressed log entries to memory when
the bus is free, and (b) the SPEC programs do not have a lot of
interrupts or system calls.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

0

10

20

30

40

50

60

70

80

90

8 16 32 64 128 256 1024

Dictionary S ize

%
of

V
al

ue
s

F
ou

nd
in

D
ic

tio
na

ry
.

art bzip2
crafty gzip
mcf parser
vpr Avg

Figure 5: Percent of load values found in the dictionary table of
various sizes.

0

0.5

1

1.5

2

2.5

art bzip2 crafty gzip mcf pars er vpr Avg

C
om

pr
es

si
on

ra
tio

8 16 32 64 128 256 1024

Figure 6: Compression ratios achieved while compressing FLLs
using different sizes for the dictionary table. The results are
gathered using 10 million checkpoint interval length.

6.4 Complexity of FDR Vs BugNet
FDR’s proposal is to have the ability to replay the last 1 second
of execution, which can be approximated to a replay window of
length one billion instructions, which will vary depending on the
processor speed and also the IPC of the program. For a fair com-
parison with FDR, we discuss using the BugNet architecture to
also capture 1 billion instructions. But from the results shown in
the Table 1, a replay interval of 10 million instructions should be
sufficient to fix many of the bugs in the applications we exam-
ined. We therefore also discuss using BugNet to generate logs to
replay 10 million instructions.

For the rest of this section all the results presented for
BugNet assume a checkpoint interval of size 10 million instruc-
tions. Note, a checkpoint interval is different from a replay win-
dow. To replay a window of execution, we will use the logs from
multiple checkpoints if the checkpoint interval length is less than
the desired replay window length. Also on encountering an in-
terrupt we terminate and create a new checkpoint as described in
Section 4.4.

6.4.1 Log Size Complexity
Table 2 compares the sizes of BugNet and FDR logs. We com-
pare the amount of memory storage required for replaying 10
million and 1 billion instructions in BugNet. The result for re-
playing 1 billion instructions in FDR corresponds to replaying
one second of execution [24]. If an entry is NIL in the table,
then it implies that the log is not used in the mechanism.

The FLL sizes required to replay 10 million and 1 billion
instructions are about 225 KB and 18.86 MB on average for the

Log size BugNet Vs FDR
BugNet:10M BugNet:1B FDR:1B

FLL 225 KB 18.86 MB NIL
Memory Race log =FDR =FDR 2 MB
Cache Chk-pnt Log NIL NIL 3 MB
Mem Chk-pnt log NIL NIL 15 MB
Core Dump NIL NIL 128MB-1 GB
Interrupt Log NIL NIL Depends
Prg I/O Log NIL NIL Depends
DMA Log NIL NIL Depends

Table 2: Comparison of log sizes in FDR and BugNet. Interrupt,
Program I/O and DMA log sizes will depend on the characteris-
tic of the program. I/O intensive applications will require large
sizes for these logs.

Hardware Complexity: BugNet Vs FDR

BugNet:10M BugNet:1B FDR:1B
CB 16 KB 16 KB NIL
MRB 32 KB 32 KB 32 KB
Compression 64-entry CAM 64-entry CAM LZ HW
Chk-pnt Interval 10M instr 10M instr 1/3 sec.
Cache Chk-pnt Buf NIL NIL 1024 KB
Mem Chk-pnt Buf NIL NIL 256 KB
Interrupt Buffer NIL NIL 64 KB
Input Buffer NIL NIL 8 KB
DMA Buffer NIL NIL 32 KB
Total HW Area 48 KB 48 KB 1416 KB

Table 3: Comparison of hardware complexity in FDR and
BugNet. For BugNet we consider support for replaying 10 mil-
lion instructions as it is adequate to capture the replay window
for most of the programs in Table 1. Hardware complexity is also
shown for BugNet to capture a 1 billion replay window, which is
the window size assumed for FDR.

SPEC applications. This assumes a checkpoint interval length
of 10 million. In addition, to debug data races we will require
memory race logs which should be roughly of the same size as
in FDR.

FDR to support replaying 1 billion instructions would re-
quire 18 MB of cache and memory logs as described in [24],
plus memory race logs of size 2 MB. The combined size of these
is roughly the same as the sizes of using FLLs for capturing 1
billion instructions. However, FDR requires additional informa-
tion to enable full system replay. FDR records Interrupt, I/O
and DMA logs whose sizes may vary widely depending on the
nature of the application. For I/O intensive applications, these
logs might have prohibitive sizes. In addition, FDR requires a
core dump image whose size can range up-to 1GB, based on the
application’s memory footprint and the main memory size.

Our results show that a log of size 225 KB can replay 10
million instructions of an application’s execution. This should be
enough to reproduce and debug a majority of the bugs, at least
for the program’s we examined. In addition, BugNet’s small
traces (sometimes on the order of only hundreds of KB) should
encourage users to communicate the logs back to the developer.

6.4.2 Hardware Complexity
Table 3 compares the hardware complexity of BugNet and
FDR [24]. Like in the previous section, here again we compare
the configuration of BugNet to capture 10 million and 1 billion
instructions.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

The main hardware structures used in BugNet are the CB,
MRB hardware buffers and a fully associative 64-entry dictio-
nary table as shown in the Figure 1. The size of the CB needs
to be only large enough to tolerate bursts in our logging. In ad-
dition, we perform incremental compression of each log entry,
which allows us to lazily write the logs into main memory and
free up space in the CB. The sizes of the CB, MRB and dictio-
nary table will be a constant irrespective of the length of replay
window that we are trying to capture, since the logs are memory
backed.

In comparison, FDR requires about 1416 KB of on-chip
hardware to record enough information for full system replay.
FDR assumes hardware implementation of LZ [28] compres-
sion. The LZ compressor is block-based, so the hardware buffer
size needs to be large enough to collect a block of information
before compressing and storing it back to main memory, and
it also needs to be large enough to tolerate bursts. Cache and
Memory checkpoint buffers are used to record information re-
quired by the SafetyNet checkpoint mechanism, whose sizes are
1 MB and 256 KB respectively. Since FDR aims to achieve full
system replay it has to record all the external inputs for which
it requires three additional buffers - 64 KB interrupt buffer to
record interrupts, 8 KB input buffer to record program I/O and
a 32 KB DMA buffer to record DMA writes. In summary, the
total on-chip hardware requirement for BugNet is about 48 KB,
whereas FDR requires 1416 KB.

7 Limitations

In this section we will discuss the limitations of our BugNet ar-
chitecture in providing support to capture bugs in released soft-
ware. The primary limitation is that bugs that occur due to the
complex interactions of the application program and the system
code will be difficult to fix, since we track only the application
code. The other limitation is that the amount of memory space
devoted for BugNet is limited, and bugs that require a large re-
play window may not be captured.

7.1 Debugging
The focus of BugNet is to assist debugging user code that does
not have complex interactions with operating system routines
like drivers and interrupt handlers. Therefore, our approach
would not be useful to debug problems in drivers or the oper-
ating system, or complex interactions between these and user
code.

Even though BugNet cannot replay the system code, it still
provides deterministic replay of program execution before and
after servicing interrupts and context switches. Hence, the user
can examine the values of the parameters passed to the inter-
rupts, and the values loaded and consumed after servicing the
interrupt. This, along with the trace, can allow the user to debug
some bugs that have interrupt and operating system interactions.
Also, we replay all of the operating system shared library code.
The user code along with the OS library code consist of a sig-
nificant portion of the program’s execution, and this should be
sufficient to track down the majority of application-level bugs.

Note that BugNet logs do not contain a core dump repre-
senting the final state of the entire system/main memory. As a

result, one cannot examine arbitrary memory locations or data
structures. If the memory location was not accessed during the
instruction window being replayed, its value cannot be examined
during replaying. This might cause slight inconvenience in in-
ferring the cause of a bug, but it should not prevent the user from
isolating the bug, since we expect that the memory addresses un-
touched by the program’s execution prior to the crash were not
responsible for the faulty behavior.

BugNet can detect a bug only when the operating system or
the application itself can identify that the program has encoun-
tered a fault or exception. For example, bugs resulting in incor-
rect results would not be captured through BugNet, since it does
not know the right time to capture the bug.

7.2 Replay Window Size
Another potential issue is the replay window size, if it turned
out to be too small to capture the bug. The replay window size
is a knob that can be tuned by the operating system or the user.
The replay window size is essentially dependent on the amount
of main memory space that can be allocated for storing all of the
FLLs and MRLs used to capture the desired number of instruc-
tions for replay. The user should be able to specify a desired
replay window size and the maximum performance penalty that
they are willing to pay for it. Based on this input, the operat-
ing system can dynamically tune the memory space allocation.
If the OS can determine that the applications running at a par-
ticular instant of time are not memory intensive and that con-
siderable amount of free space is available, then it can increase
the memory space allocation to BugNet. On the other hand, if
the performance degradation goes above the tolerable limits it
can tune down the space allocated. In addition, the customer
using the application can specify a minimal replay window size
that can capture a majority of the bugs. We found that a replay
window of size 10 million instructions is enough to capture the
majority of bugs. If a bug occurred, but not enough state was
kept to track down the bug, then the customer may be asked to
increase the replay window size.

8 Conclusion

The computer industry has long realized the fact that released
software is bound to contain bugs. One of the key challenges
faced today by the software developers is in reproducing the
bugs that manifest themselves at the customer site. To address
this problem, we proposed the BugNet architecture that contin-
uously records information during production runs. Recorded
information (less than 1MB) can be communicated back to the
developer and used by them to characterize the bug by determin-
istically replaying the program’s execution before the crash.

BugNet focuses on replaying only user code and shared li-
braries to find application level bugs. To achieve this, BugNet’s
logs for a checkpoint interval contain the register state at the
start of the interval and a trace of first load memory accesses.
This is enough information to achieve deterministic replay of a
program’s execution, without having to replay what goes on dur-
ing interrupts and system calls. This results in small log sizes,
where a log size of around 500KB is enough to capture a replay
window size of 10 million instructions. This is small enough

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

to motivate users to communicate the log back to the developer.
We found that BugNet has very little performance overhead, and
the area overhead is around 48 KB for the few hardware buffers
required.

Acknowledgments

We would like thank Yuanyuan Zhou and her students for pro-
viding us with a set of programs with known errors and inputs
that expose them. We would also like to thank Jack Sampson
and the anonymous reviewers for providing useful comments on
this paper. This work was funded in part by grants from ST Mi-
croelectronics, Intel and Microsoft.

References
[1] D. F. Bacon and S. C. Goldstein. Hardware assisted replay of multiprocessor

programs. In Proceedings of the 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging, pages 194–206. ACM Press, 1991.

[2] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June
1997.

[3] M. Burtscher and N. B. Sam. Automatic generation of high-performance
trace compressors. In Proceedings of the International Symposium on Code
Generation and Optimization, pages 229–240, Washington, DC, USA,
2005. IEEE Computer Society.

[4] G. Candea. Enemies of dependability software (lecture notes: Cs444a).

[5] J. Choi and H. Srinivasan. Deterministic replay of java multithreaded ap-
plications. In Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools, pp. 48-59, Welches, Oregon, 1998.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. Low-overhead interactive debug-
ging via dynamic instrumentation with dise. In Proceedings of 11th In-
ternational Symposium on High-Performance Computer Architecture, Feb
2005.

[7] Netscape Communications Corp. Netscape quality feedback system.
http://wp.netscape.com/.

[8] Microsoft Corporation. Dr. watson overview.
http://oca.microsoft.com/en/dcp20.asp.

[9] W. R. Dieter and J. E. Lumpp Jr. A user level checkpointing library for posix
threads programs. In Proceedings of the Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, page 224. IEEE Computer Soci-
ety, 1999.

[10] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing
Survey, 34(3):375–408, 2002.

[11] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs
with instant replay. IEEE Transaction on Computers, 36(4):471–482, 1987.

[12] C. K Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Programming Language Design and
Implementation, Chicago, IL, June 2005.

[13] S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full sys-
tem simulation platform. IEEE Computer, 35(2):50–58, 2002.

[14] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory
parallel programs. In Proceedings of the 1993 ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 1–11. ACM Press, 1993.

[15] M. Prvulovic and J. Torrelas. Reenact: Using thread-level speculation
mechanisms to debug data races in multithreaded codes. In 30th Annual
International Symposium on Computer Architecture, San Diego, CA, June
2003.

[16] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost effective architec-
tural support for rollback recovery in shared-memory multiprocessors. In
Proceedings of the 29th Annual International Symposium on Computer ar-
chitecture, pages 111–122. IEEE Computer Society, 2002.

[17] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ecc-memory for de-
tecting memory leaks and memory corruption during production runs. In
Eighth International Symposium on High Performance Computer Architec-
ture, February 2005.

[18] M. Ronsse and K. De Bosschere. Non-intrusive on-the-fly data race detec-
tion using execution replay. In Proceedings of Automated and Algorithmic
Debugging, Nov 2000.

[19] M. Ronsse and K. De Bosschere. Debugging backwards in time. Proceed-
ings of the Fifth International Workshop on Automated Debugging (AADE-
BUG), Sep 2003.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. ACM Transac-
tions on Computer Systems, 15(4):391–411, 1997.

[21] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Safetynet:
Improving the availability of shared-memory multiprocessors with global
checkpoint/recovery. In Proceedings of the 29th Annual International Sym-
posium on Computer Architecture, pages 123–134. IEEE Computer Society,
2002.

[22] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback:
A lightweight extension for rollback and deterministic replay for software
debugging. In USENIX Annual Technical Conference, General Track, pages
29–44, 2004.

[23] Geodesic Systems. Geodesic traceback - application fault management
monitor., 2003.

[24] M. Xu, R. Bodik, and M. Hill. A flight data recorder for enabling full-
system multiprocessor deterministic replay. In 30th Annual International
Symposium on Computer Architecture, San Diego, CA, 2003.

[25] J. Yang and R. Gupta. Energy efficient frequent value data cache design.
In IEEE/ACM 35th International Symposium on Microarchitecture, pages
197–207, 2002.

[26] P. Zhou, W. Liu, F. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Tor-
rellas. Accmon: Automatically detecting memory-related bugs via program
counter-based invariants. In 37th International Symposium on Microarchi-
tecture (MICRO), Nov 2004.

[27] P. Zhou, F. Qing, W. Liu, Y. Zhou, and J. Torrellas. iwatcher: Efficient
architecture support for software debugging. In 31st Annual International
Symposium on Computer Architecture, June 2004.

[28] J. Ziv and A. Lempel. A universal algorithm for sequential data compres-
sion. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

