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Abstract

Chip multiprocessors (CMPs) substantially increase capacity
pressure on the on-chip memory hierarchy while requiring fast
access. Neither private nor shared caches can provide both large
capacity and fast access in CMPs. We observe that compared to
symmetric multiprocessors (SMPs), CMPs change the latency-
capacity tradeoff in two significant ways. We propose three novel
ideas to exploit the changes: (1) Though placing copies close to
requestors allows fast access for read-only sharing, the copies
also reduce the already-limited on-chip capacity in CMPs. We
propose controlled replication to reduce capacity pressure by not
making extra copies in some cases, and obtaining the data from an
existing on-chip copy. This option is not suitable for SMPs
because obtaining data from another processor is expensive and
capacity is not limited to on-chip storage. (2) Unlike SMPs, CMPs
allow fast on-chip communication between processors for read-
write sharing. Instead of incurring slow access to read-write
shared data through coherence misses as do SMPs, we propose in-
situ communication to provide fast access without making copies
or incurring coherence misses. (3) Accessing neighbors’ caches is
not as expensive in CMPs as it is in SMPs. We propose capacity
stealing in which private data that exceeds a core’s capacity is
placed in a neighboring cache with less capacity demand.

To incorporate our ideas, we use a hybrid of private, per-pro-
cessor tag arrays and a shared data array. Because the shared
data array is slow, we employ non-uniform access and distance
associativity from previous proposals to hold frequently-accessed
data in regions close to the requestor. We extend the previously-
proposed Non-uniform access with Replacement And Placement
usIng Distance associativity (NuRAPID) to CMPs, and call our
cache CMP-NuRAPID. Our results show that for a 4-core CMP
with 8 MB cache, CMP-NuRAPID improves performance by 13%
over a shared cache and 8% over private caches for three com-
mercial multithreaded workloads.

1  Introduction

CMOS scaling trends are leading to greater numbers of smaller
transistors on a chip but a relative increase in wire delays. Chip
multiprocessors (CMPs) are an increasingly common architecture
for utilizing the numerous transistors to achieve high performance.
CMP substantially increases capacity pressure on the on-chip
memory hierarchy, which must now support multiple cores. At the
same time, CMP also requires its processors to have fast access to
data. The lowest-level on-chip cache not only needs to utilize its
limited capacity effectively but also has to mitigate the increased
latencies due to wire delays.

Two options for the lowest-level on-chip cache in CMPs are:
shared or private caches. A shared cache has a single copy for each
cache block and allows the cores to share the cache capacity. How-
ever, shared caches are slow because of the wire delays associated
with large caches. In contrast, private caches are faster because
they are smaller and can be located closer to each core. However
private caches provide limited capacity to each core. Thus, shared
or private caches can provide either capacity or fast access but not
both.

In this paper we explore the possibility of achieving both goals.
Symmetric multiprocessors (SMPs) and distributed shared-mem-
ory machines (DSMs) also target these goals. We make the key
observation that CMPs, however, change the latency-capacity
tradeoff in two significant ways. We propose three novel ideas to
exploit the changes: (1) Though placing copies close to requestors
allows fast access for read-only sharing, the copies also reduce the
effective on-chip capacity in CMPs. We propose controlled repli-
cation which avoids extra copies in some cases, and obtains the
data from an already-existing on-chip copy at the cost of some
extra latency. Because the copy is on-chip, the latency penalty is
small and is offset easily by the reduction in off-chip misses due to
reduced capacity pressure. In SMPs and DSMs, obtaining data
from another processor is expensive and capacity is not limited to
on-chip storage due to off-chip caching. Therefore, on-chip capac-
ity is a lesser concern in SMPs and DSMs, and trading off latency
for on-chip capacity is inappropriate. (2) Inter-processor commu-
nication induced by read-write sharing is on-chip in CMPs and
off-chip in SMPs and DSMs. Because on-chip communication is
faster than off-chip communication, there is a new opportunity to
optimize read-write sharing in CMPs. Rather than incur slow
access to read-write shared data through coherence misses as do
SMPs and DSMs, we propose in-situ communication which pro-
vides fast access to the data without making copies (via controlled
replication) or incurring coherence misses. (3) SMPs and DSMs
migrate private data (in the case of no sharing) close to the
requesting cores to allow fast access. While such migration is use-
ful for CMPs as well, it may result in inefficient use of the on-chip
capacity. For example, if one core exceeds the capacity of its pri-
vate cache, migrating new blocks closer to the core will cause
evictions even if there is unused on-chip capacity in a neighbor’s
private cache. We propose capacity stealing which enables a core
to migrate its less-frequently-accessed data to unused frames in
neighboring caches with less capacity demand. Thus, capacity
stealing dynamically customizes allocation of on-chip capacity.
Because neighboring cores are on-chip in a CMP, accessing neigh-
bors’ caches is not expensive as is the case in SMPs and DSMs.

Neither pure private nor pure shared cache can accommodate
our above ideas. Controlling replication in a pure private cache
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would result in slow accesses through the bus, if the block is often
reused. A pure shared cache as used in several previous designs
(e.g., [19,26,12,4, 25]) has latency problems. A recent paper [6]
proposes to alleviate shared cache’s latency by employing non-
uniform access. Non-uniform cache architecture (NUCA) [14]
reduces latency in large uniprocessor caches by allowing fast
access to the regions of the cache close to the processor and slow
access to farther regions. To reduce latency, NUCA aims to place
frequently-accessed cache blocks in the regions closest to the pro-
cessor. Applying NUCA to CMPs, [6] allows migration of blocks
close to the requestor. Otherwise, [6]’s design is still a pure shared
cache which does not allow replication or exploit our ideas. [6]
concludes that NUCA’s migration is ineffective in the presence of
sharing because each sharer pulls the block toward it, leaving the
block in the middle, far away from all the sharers.

Because neither pure shared nor pure private cache accommo-
date our ideas, we propose a hybrid of private, per-processor tag
arrays and a shared data array. Because the shared data array is
slow, we employ non-uniform access to hold frequently-accessed
data in regions close to the requestor. We extend the Non-uniform
access with Replacement And Placement usIng Distance associa-
tivity (NuRAPID) [8], which improves upon NUCA, from unipro-
cessors to CMPs. We call our cache CMP-NuRAPID. To provide
fast access to the tag, CMP-NuRAPID provides each core with its
own private tag array, which snoops on a bus for coherence like
SMPs. Though CMP-NuRAPID uses non-uniform access like [6]
there is one key difference: CMP-NuRAPID employs replication
in the shared data array to allow fast access for shared data, and
customizes its replication via controlled replication and in-situ
communication to exploit CMP’s latency and capacity characteris-
tics. In contrast, [6] inflexibly opts for disallowing replication alto-
gether and relying only on migration.

Exploiting its hybrid structure, CMP-NuRAPID employs con-
trolled replication for read-only sharing and in-situ communica-
tion for read-write sharing. For controlled replication, CMP-
NuRAPID forces multiple tag arrays to point to the same copy in
the data array. In contrast, controlled replication in a pure private
cache would imply that the processor that does not have a copy
has to incur cache miss overhead to locate the block. CMP-
NuRAPID avoids the overhead by allowing the sharers to keep tag
copies without making data copies.

For in-situ communication in read-write sharing, CMP-
NuRAPID uses controlled replication to force only one data copy.
The writer and the readers have tag copies which point to the sin-
gle data copy. To prevent the writer from invalidating the readers’
tag copies (like a pure private cache), CMP-NuRAPID employs a
new state, called the communication state, in its invalidation-based
protocol. In this state, the writer can write to the data copy and the
readers can read the copy without incurring coherence misses.
Though an update-based protocol could provide fast read-write
sharing, it incurs not only the overhead of the updates going
through the bus but also the capacity pressure of extra copies.

For capacity stealing of private data, CMP-NuRAPID exploits
non-uniform access and modifies NuRAPID’s promotion and
demotion policies to migrate frequently-accessed blocks close to
the core. These policies are especially beneficial for multipro-
grammed workloads which have non-uniform capacity demands.
The cores with more capacity demand can demote their less-fre-
quently-used data to unused frames in data arrays closer to the
cores with less capacity demands. Whereas pure private caches

blindly migrate private data, CMP-NuRAPID enables better utili-
zation of the shared capacity.

To summarize, the contributions of CMP-NuRAPID are:
• its hybrid private tag and shared data organization;
• its controlled replication, in-situ communication, and capacity

stealing;
• the results that for a 4-core CMP with 8 MB on-chip cache,

CMP-NuRAPID improves performance by 13% over a shared
cache and 8% over private caches for three commercial multi-
threaded workloads.
The rest of this paper is organized as follows. Section 2

describes CMP-NuRAPID’s organization. Section 3 explains con-
trolled replication, in-situ communication, and capacity stealing.
Section 4 describes methodology and Section 5 presents results.
Section 6 discusses related work. We conclude in Section 7.

2  Organization

Because CMP-NuRAPID relies on non-uniform cache access,
we provide a brief background on previous non-uniform caches.
Then we describe the changes for CMP-NuRAPID.

2.1 NUCA and NuRAPID

The key concept of Non-uniform cache architecture (NUCA)
[14] is to place frequently-accessed information in the region clos-
est to the core to allow fast access. NUCA distributes the tag and
data arrays throughout the cache and couples tag placement with
data placement. Because NUCA explicitly couples a cache block’s
set-associative way number to its distance from the processor,
NUCA can place only one or two ways in each set close to the
processor. However, if a “hot” set has more frequently-accessed
ways, the accesses are not all fast even though the fastest region is
large enough to hold all the ways of the set.

Non-uniform access with Replacement And Placement usIng
Distance associativity (NuRAPID) [8] improves upon NUCA by
decoupling the set-associative way number from data placement,
as proposed by [13]. This decoupling allows any number of cache
blocks within a set to be placed close to the processor. Like [13],
NuRAPID achieves this decoupling by leveraging sequential tag-
data access, a common technique to reduce energy and wiring
complexity in large caches [10,28]. In sequential tag-data access,
the tag array is probed prior to the data array, pinpointing the loca-
tion of the matching set-associative way and avoiding parallel
access of all the set-associative ways. Therefore, the exact location
in the data array can be determined even if there is no implicit cou-
pling between tag and data locations. NuRAPID exploits this level
of indirection provided by sequential tag-data access to implement
distance associativity where pointers kept in the tag and data array
allow blocks to be placed anywhere in the data array. NuRAPID
employs policies which promote frequently-accessed data closer
to the processor without being restricted like NUCA only to one or
two set-associative ways per set.

NuRAPID divides the cache data array into several large (hun-
dreds of KB to a few MB) distance groups, or d-groups. Each d-
group has a single uniform access latency. Using distance associa-
tivity, NuRAPID places data blocks in the appropriate d-groups.

NuRAPID uses pointers in tag and data array entries to imple-
ment distance associativity. The forward pointer is located in the
tag array and points to the specific frame in the data array where
the block is located. The reverse pointer is located in the data array
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and points back to the tag entry. The reverse pointer is used for
replacement, which we will discuss in detail in Section 3.3.

The forward pointer does not significantly increase latency
because conventional large caches already use sequential tag-data
access. The reverse pointer’s latency overhead is minimal because
the reverse pointer is much smaller than the block. The pointers do
add some overhead to the cache capacity. For example, in a 8-MB
cache with 128-B blocks, 16-bit forward and reverse pointers con-
stitute a 256-KB, or 3%, overhead [8]. [8] proposes ways to
reduce the overhead at the cost of some flexibility. This overhead
is offset by the fact that CMP-NuRAPID leverages the pointers to
enable better capacity utilization and faster communication.

2.2 CMP-NuRAPID

Like NuRAPID, CMP-NuRAPID (1) uses sequential tag-data
access; (2) divides the data array into several distance groups (d-
groups) and employs distance associativity; and (3) uses forward
and reverse pointers. Next, we describe how CMP-NuRAPID dif-
fers from NuRAPID.

2.2.1 Data Array
Unlike NuRAPID which specifies distances in terms of only

one core, CMP-NuRAPID must specify distances for all the cores.
Each data d-group has a different access latency for each core, as
shown in Figure 1 for a four-core CMP. The number of d-groups
need not equal the number of cores, but bandwidth considerations
make it preferable to have at least one d-group per core.

To exploit non-uniform access, each core must rank the d-
groups in terms of preference to place frequently-accessed blocks.
Obviously, the d-groups closest and farthest to a core have the
highest and lowest preference for that core. But the other rankings
are not obvious as multiple d-groups may have the same distance
from a core, such as d-groups b and c from P0 in Figure 1. The
rankings must avoid unnecessary contention among the cores. For
example, if P0 and P1 use each other’s first preference as their
second preference (d-groups b and a), the cores will compete in
these d-groups even if other d-groups (e.g., c and d) at the same
distance have space. Therefore, we stagger the rankings for each
d-group across the cores, as shown in Figure 1. This ranking is
important for capacity stealing discussed later in Section 3.3.

Like private caches, CMP-NuRAPID employs replication of
shared data in the data array to allow fast access. Each core can
keep its own copy in its closest d-group. Thus, there may be multi-
ple copies of the same block in different d-groups. We will discuss
the policies to control the replication in Section 3.1.

2.2.2 Tag Arrays and Pointers
While distance-associativity in the data array brings the fre-

quently-accessed data closer to the core, the tag also has to be
close to reduce latency. Consequently, CMP-NuRAPID replaces
NuRAPID’s single shared tag array with private per-core tag
arrays, placed close to each core. Figure 2 shows CMP-
NuRAPID’s organization. Like private caches, CMP-NuRAPID’s
tag arrays snoop on a bus to maintain coherence (discussed in
Section 3). The bus has separate wires for addresses and pointers.
The tag arrays access the d-groups through a crossbar (which is
also used in conventional banked caches and is acceptable due to
the small number of d-groups) or other interconnect.

In contrast, [6] uses NUCA’s tag arrays which are distributed
throughout the cache. Whereas [6] does not use any replication,
CMP-NuRAPID does; and using distributed tag arrays intercon-
nected by a switch network would require a directory-like scheme
to maintain coherence. Unfortunately, directory schemes are
harder to build than snoopy bus schemes. In addition to [6], sev-
eral commercial CMPs (e.g., [26,12,4, 25]) employing private L1s
and shared L2 use a directory scheme to keep the L1s coherent.
These CMPs accept the complexity of the directory because using
a snoopy bus for the L1s would overwhelm the bus due to the high
cache miss rates of the small L1s. The CMPs do not have the
option of using private L2s and snooping on the L2s instead of the
L1s to avoid the high miss rates because of lack of transistors. In
contrast, CMP-NuRAPID uses a hybrid organization which both
fits within the transistor budget and allows the bus to snoop on the
large L2 whose lower miss rate can be supported by the bus. Thus,
CMP-NuRAPID enables the use of the simpler snoopy scheme.

CMP-NuRAPID leverages the forward and reverse pointers for
controlled replication. Multiple tag arrays can share a single copy
of a data block by pointing to the same block in the data array.
Consequently, CMP-NuRAPID’s tag arrays contain more entries
than (e.g., twice as many as) the data arrays. We will describe our
policy for controlled replication in Section 3.1.

In the extreme case, every data block could be shared by all the
cores requiring that each private tag array be as large as the com-
plete tag array in a shared cache. However, the disadvantages of
this solution are the increased latency of the larger tag arrays and
an unacceptably large capacity overhead. For an 8-MB cache with
128B blocks in a 4-core CMP, this solution would amount to qua-
drupling the tag capacity for each of the core resulting in a 23%
increase in total cache size.

We propose a compromise by doubling each core’s tag capac-
ity, resulting in a 6% increase in total cache size. (We double the
number of sets while maintaining the same set associativity.) We
found that doubling the tag capacity performs almost as well as
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quadrupling. Note that the shared caches used in several previous
designs [26,4, 19] also incur a capacity overhead due to storing L1
tag copies at the L2 to keep L1 caches coherent. [4] showed that
the L1 tag copies in Piranha incur a 4% overhead in total on-chip
cache capacity. CMP-NuRAPID’s tag overhead is offset by the
fact that it allows the data array capacity to be utilized more effi-
ciently, reducing both capacity and coherence misses.

3  CMP-NuRAPID Optimizations

In this section, we discuss the CMP-NuRAPID optimizations
for shared and private data. CMP-NuRAPID extends the invalida-
tion-based 4-state MESI cache coherence protocol [21]. We first
describe the extensions needed in the cache coherence protocol to
implement controlled replication for read-only sharing, and in-situ
communication for read-write sharing. Then we explain the CMP-
NuRAPID policies to implement capacity stealing for private data.

3.1 Controlled Replication

The main goal of replication is to achieve fast access to shared
data by keeping separate copies of the shared block close to each
processor. Private caches attempt to achieve this goal by keeping
as many copies of a shared block as readers sharing the block.
Though always copying the block provides fast access on reuse,
such uncontrolled replication wastes precious on-chip capacity.
Private caches could save capacity by disallowing a reader from
copying a block to its private cache, if an on-chip copy already
exists in another processor’s private cache. However when the
block is re-read, the reader will incur cache miss overhead to
locate the block. The savings in capacity by controlling replication
in private caches may not offset the latency increases caused by
the overhead on reuse.

CMP-NuRAPID exploits the hybrid structure to perform con-
trolled replication (CR) without incurring cache misses on reuse.
Because CMP-NuRAPID uses private tag arrays and shared data
array, tag entries in multiple private tag arrays can point to the
same block in the data array. When a reader misses on a block
which is already present in the shared data array, the reader
obtains the data from the already-existing on-chip copy. The
reader makes a tag copy but not a data copy. We observe that many
blocks brought to the cache are not reused in commercial work-
loads. Not copying the block in data array on the first use saves
capacity for blocks which are never reused. However we observe
that most of the blocks that are reused have two or more reuses.
Therefore, on second use, a data copy is made in the reader’s clos-

est d-group to avoid slow accesses for future reuses. Because the
block is already present in the tag array, the second use does not
incur a coherence miss. Also, because the already existing copy is
on-chip, the latency penalty for second use is small and is offset
easily by the reduction in off-chip misses due to reduced capacity
pressure.

We illustrate CR in CMP-NuRAPID by an example in
Figure 3. P0 has a copy of the data block X in its closest d-group a
(Figure 3a). The tag entry for block X in P0’s tag array points to
the data block. P1 tries to access X and misses in its tag array. P1
sends a read request on the bus. Because P0 has a data copy, P0
responds by sending the forward pointer in its tag entry on the
pointer wires. This pointer return is unlike conventional cache-to-
cache transfers where the actual data and not a pointer is returned.
P1 does not create a copy of X in its closest d-group b. Instead, the
tag entry for X in P1 now points to the already-existing copy of X
in d-group a (Figure 3b). P1’s tag then accesses the d-group a
through the crossbar (this access is direct and does not go through
P0). The reverse pointer of X continues to point to P0’s tag array.
Reverse pointers are used for replacements and because our
replacement policy allows only P0 to replace X, the reverse
pointer need not change. Note that we do not need any new state in
the coherence protocol to identify the tag entries which are point-
ing to a data copy in some other processor’s closest d-group. The
shared state suffices because the forward pointer already identifies
the d-group that contains the data copy. If there is another access
to X by P1, this access hits in the tag array. P1 checks the forward
pointer and finds that the block is in the farther d-group a (by
examining the forward pointer, the tag array can determine
whether the d-group is close or far). Then, P1 makes a copy of X
in its closest d-group b and updates the forward pointer in its tag
entry for X to point to the newly-created copy (Figure 3c).

The replacement of shared blocks in CMP-NuRAPID may
cause a correctness problem. When a processor decides to replace
a data block which is present in the shared state in its tag array,
then due to CR, there is a chance that tag array entries in other
processor(s) may be pointing to the data block being replaced. If
these sharers are not informed about the replacement of data
block, their tag entries will contain dangling pointers to incorrect
data after replacement. To solve this problem, the processor
replacing the data block sends a special BusRepl transaction on the
bus before replacing the block. The sharers that observe the Bus-
Repl transaction will invalidate any tag array entry pointing to the
data block being replaced. Note that if a sharer has its own copy of
the data block in its closest d-group, the sharer does not need to

FIGURE 3: Controlled Replication Example for Block X
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invalidate its tag array entry. Thus, unlike private caches, CMP-
NuRAPID sends an invalidation on the bus every time a shared
block is replaced. It is possible to avoid sending invalidations for
those data blocks which are not pointed to by multiple tag arrays.
However, the information about multiple tag copies of read-shared
blocks is not available unless a new state is added to the coherence
protocol. Because of CMP-NuRAPID’s shared data array capac-
ity, replacements are not that frequent. Consequently, such invali-
dations are infrequent. Instead of adding a new state, we try to
minimize the number of the invalidations even further by decreas-
ing the possibility of a shared block being replaced. We will dis-
cuss the details of our replacement policy in Section 3.3

Due to rare timing issues, simply invalidating the tag copies of
the data block being replaced does not solve the problem entirely.
Because readers do not advertise that they are in the process of
reading (which would defeat the purpose of having the tag entry),
a replacement invalidation may occur in the middle of a read. That
is, there is a chance that one of the cores having a tag copy may
start to read the block before the invalidation and end reading after
the invalidation. Such a timing will result in a read hit in the tag
array followed by an access to a farther d-group. If the invalidation
is done and even the replacement finishes before the read com-
pletes, then the reader may read incorrect data of an unrelated
block that replaced the original block. We solve this problem by
requiring the tag for the block being read from a farther d-group
be marked busy, implying that a read is under progress. (As men-
tioned before, our replacement policy allows only the core closest
to a d-group to replace blocks from that d-group. Therefore, for
reads to the closest d-group there are no problems with replace-
ment because the reader and the replacer are the same). If any
replacement invalidations appear on the bus, they will be inhibited
until the read has completed. The busy bits are held in the cache
controller as part of the controller state and not in the tags as
coherence state. Such state in cache controllers is common. For
instance, transient states used in cache coherence protocols are
implemented in the controller.

Marking the block busy solves the problem only if the read
starts before the replacement invalidation. If the invalidation
occurs before the read, there is another problem in that the invali-
dation is not applied instantaneously. For instance, in multi-level
cache hierarchies, it may take several cycles for the invalidation to
reach all the way up to the L1 cache. Even though the read starts
after the invalidation appeared on the bus, the read may still go
ahead and get incorrect data. Delayed application of invalidations
also causes consistency-related problems for SMPs. SMPs use
queues in the cache hierarchy to hold the order of the bus transac-
tions until the transactions are applied to the caches. We solve our
problem by extending the queues and putting an entry in our
cache’s queue before sending a read request to a farther d-group.
When the read returns, the read data is returned to L1 cache in the
order of the queue. Because the outstanding invalidation precedes
the entry for the read, the tag for the data block being read is inval-
idated before the read data is returned. Accordingly, we require
that the tag array be probed once more before returning the read
data, so that the data is discarded if the tag has been invalidated.

3.2 In-situ Communication

Read-write sharing in multithreaded workloads involves com-
munication of data between the writers and the readers. For a read-
write-shared block, private caches using invalidation-based proto-

col invalidate the copy of the block in the reader’s cache on every
write. On a subsequent read, the reader incurs the penalty of a
coherence miss to obtain the data from the writer and makes a new
copy in its private cache. Thus, private caches incur slow access to
read-write shared data through coherence misses, and waste
capacity due to multiple copies. This approach is not suitable for
CMPs where on-chip communication is fast but on-chip capacity
is limited.

CMP-NuRAPID uses in-situ communication (ISC) which pro-
vides fast access to read-write shared data without making copies
or incurring coherence misses. To perform ISC, CMP-NuRAPID
utilizes the hybrid structure of the cache and employs CR to force
only one data copy for a read-write shared block. The writer and
the readers have their private tag copies which point to the single
data copy. Because we observe that each write is usually read
more than once by each reader in commercial workloads, CMP-
NuRAPID places the data copy close to (one of) the reader(s). To
prevent the writer from invalidating the readers’ tag copies (like a
pure private cache), CMP-NuRAPID employs a new state, called
the communication state, in its coherence protocol. In this state,
the writer can write to the data copy and the readers can read the
copy without incurring coherence misses. The CR used in ISC has
the same capacity advantages that we discussed for read-only
sharing in Section 3.1

It may seem that private caches can avoid coherence misses in
read-write sharing by using an update protocol, making the com-
munication state unnecessary. However, unlike ISC in CMP-
NuRAPID, an update protocol requires the updates to go through
the bus for copying the data to the reader’s caches, incurring an
overhead on every write. Furthermore, update protocols keep mul-
tiple copies of the read-write shared block giving rise to capacity
problems similar to the ones caused by uncontrolled replication in

FIGURE 4: Cache Coherence Protocol
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read-only sharing.
Next we discuss the changes in coherence protocol for ISC.

Figure 4a shows the state transition diagram for a 4-state MESI
protocol. (We do not include the transitions for replacements in
Figure 4.) The solid arcs represent the state transitions in the tag
arrays of the initiating processor, while the dotted arcs show the
transitions in the tag arrays which respond to observed bus trans-
actions. Figure 4b shows the changes in MESI for ISC. CMP-
NuRAPID adds one more state to the MESI protocol, the commu-
nication state (represented by C in Figure 4b) to obtain the 5-state
MESIC protocol. The C state allows multiple processors to share a
dirty block. The M state in MESI does not suffice for ISC, because
M indicates a dirty block with only one tag copy, while C repre-
sents a dirty block with multiple tag copies. Any transitions which
appear in Figure 4a for MESI but are not shown in Figure 4b also
take place in MESIC. The arc labelled x in Figure 4b shows the
transition in MESI which does not exist in MESIC. All the other
arcs represent the new transitions added to MESI for ISC. We dis-
cuss the added and deleted transitions next.

When a read miss occurs and a dirty copy (either M or C)
already exists, the reader makes a new copy of the block in its
closest d-group, and the previous data copy is invalidated. All the
sharers enter (or remain in) C and their tag entries point to the new
data copy. The transition from M to S does not exist in MESIC
protocol, because an M block transits to C, instead of going to S,
upon seeing a read request on the bus.

When a writer does not find the block in its tag array and the
block is present in C in other tag arrays, the writer does not make a
copy of the data block. Instead, the writer enters C pointing its tag
entry to the already-existing data copy, and writes to the copy.
Thus, the copy stays close to the reader.

The transition from I to C on a read/write miss requires that the
reader/writer knows whether a dirty copy of the block exists or
not. We add a dirty signal to detect the presence of another dirty
copy (similar to the shared signal used in MESI protocol to detect
a clean copy). The tag arrays carrying a dirty copy assert the dirty
signal to inform the reader/writer about the existence of a dirty
copy so that the reader/writer can decide whether to transit to C.

A read/write to a block in C does not generate any state transi-
tion. However the writer to a C block sends a BusRdX request on
the bus. Whenever a sharer in C state observes a BusRdX transac-
tion, it remains in the C state but invalidates the L1 copy of the
block, if one exists. This invalidation is necessary because other-
wise a sharer may read a stale value from the L1 cache. In a pri-
vate cache, repeated writes to the same block do not result in
repeated invalidations as long as the block remains in M. In CMP-
NuRAPID, however, the block remains in C and repeated invalida-
tions are needed. Nonetheless the reduction in coherence misses
due to C outweighs the increase in the number of invalidations.

Because ISC allows multiple cores to share the same dirty
block, pure write-back L1 caches cause coherence problems. If a
writer writes to an L1 cache block in C state without writing to the
L2 block, a reader reading the shared L2 copy may read the incor-
rect value. Therefore we use write-through for all the C blocks in
the L1 cache. Write through is not needed for E or M blocks
because no other tag copy exists. Many existing CMPs use write-
through L1 caches [26,4, 19] to avoid large coherence traffic from
their small L1 caches. Therefore, write through for C blocks is not
likely to cause bandwidth problems.

The replacements for ISC work in a similar manner as the

replacements for CR in read-only sharing. When a processor
decides to replace a data block which is present in the C state in its
tag array, the processor sends the BusRepl transaction on the bus.
The sharers that observe the BusRepl transaction invalidate their
tag copies. The timing issues that we discussed regarding replace-
ments in Section 3.1 also exist here. We use the solutions men-
tioned in Section 3.1 to solve these problems.

There are no transitions out of C other than those due to
replacements. Consequently, a read-write shared block may get
stuck in the d-group closest to a processor that never reuses the
block. In that case the other sharers will experience slow hits to
the block. However, we note that most of the read-write shared
blocks in commercial workloads are frequently read after being
written, thus decreasing the possibility of a C block getting stuck
close to a processor that never reuses it. Therefore, we adopt the
simple solution of having no exits out of C. We leave addressing
other workloads, where this issue may be a problem, to future
work.

3.3 Capacity Stealing

The main goal of capacity stealing (CS) is to bring frequently-
accessed data blocks close to the core. Private caches blindly
migrate data by bringing a new block to the cache at the cost of
evicting another block. This approach does not utilize the on-chip
cache capacity efficiently. For example, if one core needs more
capacity than provided by its private cache, it will incur capacity
misses even if there is unused capacity in another core’s private
cache.

CMP-NuRAPID exploits non-uniform access and modifies
NuRAPID’s promotion and demotion policies to bring frequently-
accessed blocks close to the core. Unlike private caches, the
shared data array in CMP-NuRAPID enables better utilization of
on-chip cache capacity. The cores with more capacity demand can
demote their less-frequently-used data to unused frames in the d-
groups closer to the cores with less capacity demands. Thus,
capacity stealing dynamically customizes allocation of on-chip
capacity. This strategy enables CMP-NuRAPID to incur fewer off-
chip capacity misses than private caches.

CS is less important for multithreaded workloads because
cores usually have uniform capacity demands. Due to similar
working set sizes for different threads, it is unlikely that a core
having no unused data blocks in its closest d-group may find
unused blocks in other cores’ closest d-groups. However, CS is
especially beneficial for multiprogrammed workloads which usu-
ally have non-uniform capacity demands. Multiprogrammed
workloads are important for multiprocessors [23].

Because distance associativity allows data to be placed in and
migrated (promoted or demoted) to any d-group, we need place-
ment, promotion, demotion, and replacement policies. Next, we
discuss how blocks are placed initially in the cache and how they
are promoted to closer d-groups. Then we discuss replacement and
demotion to farther d-groups.

3.3.1 Placement and Promotion Policies
The placement and promotion policies are different for private

(identified by the E state) and shared blocks. We discuss private
blocks first.

CMP-NuRAPID initially places all private blocks in the data d-
group closest to the initiating core. Space for cache misses is
cleared through replacement policies discussed in the next subsec-
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tion. Because each tag array is highly set-associative and place-
ment within the d-group is not restricted by set mapping, this
policy flexibly allows a large number of frequently-accessed
blocks to be placed in the closest d-group. If a tag hit occurs for a
private data block that is not present in the closest d-group, then
we “promote” that block to a closer d-group. After promotion, we
update the forward-pointer in the tag array to point to the new
frame.

We examine two policies for promotion. The first, next-fastest,
promotes the block to the next closest d-group from its current
location (Section 2.2.1). The second, fastest, promotes the block
directly to the closest d-group for the core. [8] found next fastest to
be most effective for uniprocessors. However, the environment in
a CMP is different because one core’s next-fastest d-group is
another core’s fastest d-group, and it may be undesirable to pollute
another core’s fastest d-group during the promotion process. We
found fastest to be more effective in CMPs than next fastest.

Shared blocks are placed as per CR or ISC, depending upon
whether the block is read-only shared or read-write shared. Shared
blocks do not need promotion because they are never demoted.
(We discuss the reasons for disallowing demotions of shared
blocks in next subsection.) Thus, shared blocks do not move
around in the cache, and we avoid the problems of sharers getting
incorrect data due to data movement.

3.3.2 Demotion and Replacement Policies
Distance-associative caches such as NuRAPID and CMP-

NuRAPID must address two forms of replacement: data replace-
ment and distance replacement. Data replacement is similar to
conventional caches, occurs upon cache misses, and evicts a block
from the cache. Distance replacement is unique to distance asso-
ciative caches, occurs upon demotion, and evicts a block from a d-
group but demotes it to another d-group instead of evicting it from
the cache. We discuss data replacement first.

In data replacement, CMP-NuRAPID replaces a block from the
same set as the cache miss. We prefer to replace in the order of
invalid, private, and shared because eviction of shared blocks
requires invalidations that we discussed in Section 3.1. We use
LRU within each category. Replacing an invalid block or a valid
(private and shared) block that points to a farther d-group creates
space only for tag but not for data within the closest d-group. If it
is a private block then the data block is evicted, but that creates
space in a farther d-group. Some block in the closest d-group is
then distance-replaced to that specific farther d-group. If it is a
shared block then the data block is not evicted and it is left for the
other sharers. Therefore, space needs to be created by distance-
replacing some block in the closest d-group to a non-specific far-
ther d-group. The same needs to be done for an invalid block.
Replacing a valid (private and shared) block that points to the
closest d-group creates space for both tag and data. Upon evicting
such a shared block, the other tag copies are invalidated.

In distance replacement to a non-specific d-group, if we keep
demoting from one d-group to its next neighbor then this process
will go into a cycle because eventually the demotions will loop
back to the first d-group. We break this cycle by choosing a d-
group at random to stop the demotions. In distance replacement to
a specific d-group, we stop the demotions at that d-group. From
the originating d-group to the d-group where demotions stop, dis-
tance replacement simply performs repeated demotions going
from one d-group to the next-fastest d-group. In each d-group, a

block is chosen to be demoted. This choice is at random as well
because LRU requires O(n2) hardware to track n frames and there
are too many frames in a large d-group (e.g., a 1MB d-group with
128B entries has 8192 frames). The reverse pointers of the chosen
blocks locate their tag entries whose forward pointers are updated
to point to the new, demoted location of the block.

If the chosen block is private then the demotions proceed as
mentioned, but if it is a shared block, we simply evict it instead of
demoting it, as we alluded to in Section 3.3.1. We do not demote
shared blocks due to the following possible scenario: suppose that
P0 in Figure 1 demotes a block X from its closest d-group a to its
next closest d-group b. When P0 accesses X next time, the tag
entry indicates that X is a shared block present in a farther d-
group. Due to the CR policy explained in Section 3.1, P0 makes a
copy of X in its closest d-group a and the tag entry for X now
points to the new copy. The old copy in d-group b now contains a
dangling reverse pointer. To avoid this problem, we evict shared
blocks upon replacement.

Finally, we note that the demotions are not frequent enough to
cause a bandwidth problem in the tag arrays or data d-groups. To
validate this claim, all our experiments assume that each private
tag array and data d-group is single-ported and not pipelined (the
crossbar in Figure 2 is for parallel accesses to different d-groups).
Thus, our aggregate bandwidth is the same as a single-ported pri-
vate cache and an n-banked shared cache in an n-CPU CMP.

4  Methodology

4.1 Simulation Environment

We use Simics [16] to perform a full-system simulation of a 4-
core CMP with x86 cores. Each CPU uses in-order issue, has 64
KB, 2-way L1 I and D caches with 64-byte blocks, 3-cycle
latency, and allows 1 outstanding miss. We assume 4 GB memory
with a 300-cycle latency.

Our simulated system runs the Debian GNU/Linux O/S “test-
ing” version 3.1 with SMP-enabled Linux kernel version 2.4.27
custom-compiled to interface with Simics. We compile the kernel
and other applications using gcc 3.3.4.

4.2 On-chip Latencies

We perform our simulations for 70 nm technology, with a 5
GHz clock frequency. with an 8 MB on-chip L2 cache. We main-
tain inclusion between L1 and L2 caches. Our L2 cache configura-

Table 1: 8 MB Cache and Bus Latencies
Cache and Component Latency (cycles)

Shared 8 MB 32-way, 4 ports (latency of 8-way, 1-port)

Tag (includes wire delay of central tag) 26

Data 33

Total 59

Private 2 MB 8-way, 1 port

Tag 4

Data 6

Total 10

CMP-NuRAPID with four 2 MB d-groups

Tag w/ extra tag space 5

Data d-groups (a,b,c,d) 6,20,20,33

Pipelined split-transaction bus (all designs with bus): 32
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tion is substantially more aggressive than existing CMP proposals,
such as Sun Gemini and IBM Power5, which have 1 MB and 1.9
MB capacity respectively for 2-core CMPs [25,12]. Because 2
MB private caches are adequate for most SPEC2K benchmarks,
comparing CMP-NuRAPID to that configuration actually makes
our results conservative for multiprogrammed workloads.

Our base configuration is a 4-core CMP with 8-MB, 32-way
conventional shared L2 cache (hereafter referred to as “uniform-
shared cache”) with 128-B blocks, and 4 ports to provide equal
bandwidth to private caches. To provide a conservative base case,
however, the latency of the uniform-shared cache is based on a
faster 8-way cache with only 1 port. For private caches, we use
four 2-MB, 8-way caches each with a single port. For CMP-
NuRAPID evaluation, we assume an 8 MB, 8-way CMP-
NuRAPID with 4 single-ported d-groups. We also show results for
CMP-SNUCA from [6] (hereafter referred to as “non-uniform-
shared cache”). CMP-SNUCA is similar to Piranha’s banked
cache [4]. We obtain the latencies for CMP-SNUCA from [14]
and [6]. We do not evaluate CMP-DNUCA from [6], because [6]
shows realistic CMP-DNUCA to perform worse than CMP-
SNUCA. We model both the bandwidth and latency of on-chip
caches carefully.

We modify Cacti [22] version 3.2 to derive the access times
and wire delays for our conventional caches and for each d-group
in CMP-NuRAPID. Because Cacti is not generally used for mono-
lithic large caches (e.g., greater than 4 MB), we make the follow-
ing modifications based on those proposed in [8]: 1) Treat each of
our d-groups (1 to 2 MB) as independent (although tagless) caches
and optimize for subarray geometry and access time; 2) Account
for the wire delay to reach each d-group based on the distance to
route around any closer d-groups using the RC wire-delay models
in Cacti; and 3) Separately optimize our split tag arrays (or unified
for the shared and private caches) for access time. We used our
modified Cacti to verify CMP-SNUCA latencies from [14,6].

The computed latencies for our caches are shown in Table 1
from the perspective of core P0 in Figure 1. (The results are sym-
metric for the other cores.) Note that the tag latency of the shared
cache is particularly high because of RC wire delay to reach the
shared tag, which must be placed centrally in the chip to minimize
latency among the cores. We aggressively assume the data from
the shared cache can be routed directly to the cores instead of
through a central controller (such as the tag), hence the compara-
tively low latency for the data arrays.

We model an on-chip split transaction bus. We assume that the
bus latency is the latency that would be required for a core to
access the farthest tag array, which involves a large, long, global
RC-wire delay. We ignore other overheads which may increase
bus latency. Because private caches have more frequent bus trans-
actions due to coherence misses than CMP-NuRAPID, ignoring
overheads in bus latency helps private caches.

4.3 Workloads

Details of our commercial and scientific workloads are shown
in Table 3. We account for the variability in multithreaded work-
loads [1] by doing multiple simulation runs for each benchmark in
each configuration and injecting random perturbations in memory
system timing for each run. We construct multiprogrammed work-
loads from 10 SPEC2K applications [27] as shown in Table 2. The
applications are compiled with the default options provided with
the SPEC tools. We found these workloads to be representative
among a broader set of simulations. For each workload, we run
until at least one core completes 1 billion instructions.

5  Results

In Section 5.1, we present the results for controlled replication
(CR) and in-situ communication (ISC) using our multithreaded
workloads. In Section 5.2 we evaluate the effectiveness of capac-
ity stealing (CS) using our multiprogrammed workloads.

5.1 Multithreaded Workloads

In this section, we first analyze the sharing characteristics of
our workloads and the opportunity for performance improvement.
Next, we discuss the results for CR and ISC separately. Finally, we
show performance results for the two together.

5.1.1 Workload Characteristics and Opportunity
In this section, we first characterize the cache access distribu-

tion in shared and private caches. Next, we quantify the opportu-
nity for performance improvement.

Figure 5 shows the distribution of L2 cache accesses. The bars
from left to right represent the different types of cache accesses as
fractions of overall cache accesses for shared and private caches
respectively. Note that the y-axis scale starts from 0.5 to show the

Table 2: Multiprogrammed Workloads
Workload Benchmarks

MIX1 apsi, art, equake, mesa

MIX2 ammp, swim, mesa, vortex

MIX3 apsi, mcf, gzip, mesa

MIX4 ammp, gzip, vortex, wupwise

Table 3: Multithreaded Workloads
Online Transaction Processing (OLTP): We use the Open
Source Development Labs Database Test 2 v0.23 (OSDL-
DBT-2) [20, 29, 30] which is derived from the TPC-C specifi-
cation revision 5.0. This test models many users performing 5
types of transactions with a wholesale supplier. We run the
PostgreSQL database server version 7.4.5 compiled from
source as specified for the DBT-2. We simulate 128 users,
with all keying and thinking times set to 0, accessing a 1.2
GB, 10-warehouse database. We simulate 100 transactions
after a 300-transaction warm-up.

Static Web Server: Apache: We run the Debian distribution
of apache 1.3.31. We use SURGE [3] to generate web requests
from a 30,000-file, 700MB repository. We simulate 128 users
and 500 requests after a 2000-request warm-up.

Java Server: SPECjbb2000: SPECjbb is a java-server work-
load focusing on online transaction processing in middleware.
We simulate 4-warehouses with a 30-second (simulated time)
warm-up and a 10-second sample. We use the Blackdown
JVM for Linux version 1.3.1.

SPLASH-2: We use two applications from SPLASH-2 [31],
ocean and barnes-hut, as representative scientific workloads.
These applications are compiled with a p-threads implementa-
tion of the PARMACS macros provide by [2]. We run barnes-
hut (16K bodies) and ocean (514 x 514) to completion.
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distributions clearly. We show workloads on the X-axis in a
decreasing order of sharing. Because commercial workloads have
more sharing, they appear before scientific workloads. This order-
ing makes it easier to show the effects of sharing trends. We also
show average across commercial workloads. We categorize the
cache accesses into: 1) hits, 2) misses due to read-only sharing
(ROS misses), 3) misses due to read-write sharing (RWS misses),
and 4) capacity misses. We count a miss as a ROS miss when
another copy of the block exists in shared state, and as a RWS
miss when a dirty copy of the block already exists. Shared cache
has only hits and capacity misses, while private caches have all
four types of accesses.

Private caches incur more capacity misses than shared caches
in all workloads. As mentioned in Section 3.1, the uncontrolled
replication of data in private caches decreases effective capacity,
causing more capacity misses than a shared cache. On average,
across all commercial workloads, shared and private caches have
3% and 5% capacity misses, respectively.

Private caches experience more ROS and RWS misses in com-
mercial workloads than in scientific workloads. The reason for this
trend is that commercial workloads have more extensive data shar-
ing. Among commercial workloads, misses in OLTP are domi-
nated by RWS misses, while apache and specjbb have all types of
misses. Because CR and ISC target ROS and RWS, they could
reduce these misses a lot.

Figure 6 shows the performance of non-uniform-shared, pri-
vate, and ideal caches normalized with respect to the conventional
uniform-shared cache. The ideal cache is a shared cache with the
same latency as that of each private cache. Thus the ideal cache
has the capacity advantages of shared and latency advantages of
private caches. The ideal cache results represent the upper bound
on performance improvement achievable by CMP-NuRAPID. As
mentioned in Section 4, the non-uniform-shared cache is like the
SNUCA design from [6].

There is significant performance improvement opportunity in
all the workloads. Commercial workloads exhibit more perfor-
mance improvement opportunity than scientific workloads. On
average, the ideal cache performs 17% better than the uniform-
shared cache in commercial workloads. The corresponding perfor-
mance improvements for non-uniform-shared and private caches
are 4% and 5% respectively. Compared to the uniform-shared
cache, both non-uniform-shared and private caches have latency
advantage. However, they fail to close the gap between the uni-
form-shared and ideal caches significantly.

The performance improvement for non-uniform-shared does
not change significantly as we move from commercial to scientific
workloads. Because non-uniform-shared only improves upon the
latency of uniform-shared, differences in sharing do not impact
the performance improvement for non-uniform-shared.

Private caches perform better in scientific workloads than in
commercial workloads due to more frequent ROS and RWS
misses as shown in Figure 5.

5.1.2 Controlled Replication and In-situ Communication
In this section, we analyze the effectiveness of CR and ISC.

First, we discuss the block reuse patterns for ROS and RWS data
to verify the decisions made for CR and ISC in Section 3.1 and
Section 3.2. Next, we analyze the tag and data arrays’ access dis-
tributions for the two optimizations.

Figure 7 shows the block reuse patterns for different types of
sharing. The left bars represent the fraction of all replacements
where the replaced block was brought into the private cache on an
ROS miss and the block was reused n times before being replaced;
n varies as 0, 1, 2 to 5, and more than 5. The right bars represent
similar information for invalidations where the invalidated block
was brought in on an RWS miss.

For ROS data, private caches replace many blocks before reus-
ing them even once. On average, across commercial workloads
42% blocks are replaced without reuse. Thus, controlling replica-
tion by not copying the data on the first use (Section 3.1) saves
capacity. Figure 7 also shows that 50% of the blocks are reused at
least twice. This result confirms CMP-NuRAPID’s approach of
copying the data on second use (Section 3.1).

For RWS data, most of the blocks are invalidated before five or
fewer reuses. On average, only 8% of the RWS blocks are reused
more than five times before being invalidated by a writer. These
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invalidations cause frequent RWS misses as shown in Figure 5. On
average, 69% of the blocks are reused between 2 and 5 times.
CMP-NuRAPID’s policy of keeping the read-write-shared block
close to the reader (Section 3.2) allows fast access to these blocks.

Figure 8 shows the distribution of tag array accesses. The bars
from left to right represent the access distribution as a fraction of
overall accesses for shared, private, CMP-NuRAPID with CR, and
CMP-NuRAPID with ISC respectively. Note that the y-axis scale
starts from 0.5 to show the distributions clearly. The numbers for
shared and private caches are the same as the ones already shown
in Figure 5.

CR decreases both capacity misses and ROS misses. Averaging
across commercial workloads, CR results in 3% capacity misses
as compared to 5% capacity misses in private caches (a 40%
reduction), and 2% ROS misses as compared to 4% ROS misses in
private caches (a 50% reduction). Better capacity utilization
allows CR to have almost the same number of capacity misses as
in the shared cache.

ISC significantly decreases RWS misses. On average across all
commercial workloads, private caches have 10% RWS misses,
while CMP-NuRAPID with ISC has only 2%; a reduction of 80%.
Because the RWS misses dominate ROS misses in most of the
workloads, and ISC targets RWS misses, ISC results in more hits
in the tag array than CR.

Figure 9 shows the distribution of data array accesses. as a
fraction of overall cache accesses for CR and ISC respectively.
The data array access distribution for private and shared caches
are the same as the tag array access distributions already shown in
Figure 5 and Figure 8, and are not repeated in Figure 9.

CR results in more accesses to the closest d-group than ISC.

On average, CR and ISC have 83% and 76% hits to closest d-
group for commercial workloads. In comparison, private caches
have 84% hits in the data array as shown in Figure 8. The reason
for more farther d-group accesses in ISC is that the writer needs to
access the block in a farther d-group on every write to RWS data.
However, this strategy results in reduced RWS misses in the tag
array, as we showed in Figure 8.

In the interest of space, we do not show the tag and data array
access distributions for CMP-NuRAPID with both the optimiza-
tions used together. We found that, when both the optimizations
are used together, ROS misses and capacity misses are almost
equal to those for CR in Figure 8, while RWS misses are equal to
those for ISC in Figure 8. The data array access distribution is the
same as that for ISC in Figure 9.

5.1.3 Performance
In this section, we evaluate the performance of CMP-

NuRAPID with both CR and ISC. We expect CMP-NuRAPID to
outperform shared and private caches because of less latency and
better capacity utilization respectively.

Figure 10 shows the performance of non-uniform-shared, pri-
vate, ideal, and CMP-NuRAPID normalized with respect to the
performance of uniform-shared cache. We use number of transac-
tions per second as our performance metric. We already discussed
the results for non-uniform-shared, private and ideal in
Section 5.1.1. We only focus on CMP-NuRAPID in this section.

CMP-NuRAPID outperforms both non-uniform-shared and
private caches in all the workloads. For commercial workloads,
CMP-NuRAPID performs 13% better than uniform-shared on
average. In comparison, the corresponding performance improve-
ments for non-uniform-shared and private caches are 4% and 5%
respectively. Non-uniform-shared does not work well because
there is no replication or migration (as mentioned before, [6]
shows that migration does not improve performance). In contrast,
CMP-NuRAPID employs CR. Indeed, [6]’s negative result on
migration is not surprising because replication is much more
important than migration for these workloads with heavy sharing.
Private caches do not perform well due to limited capacity.

The maximum performance improvement for CMP-NuRAPID
is in OLTP, where CMP-NuRAPID outperforms uniform-shared
by 16%. Non-uniform-shared and private caches perform 6% and
7% better than uniform-shared respectively.

The performance advantage of CMP-NuRAPID relative to the
private caches decreases as we move from commercial to scientific
workloads. Due to less sharing in scientific workloads as shown in
Figure 5, private caches have less ROS and RWS misses, decreas-
ing the opportunity for CMP-NuRAPID. For example, in barnes,
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both CMP-NuRAPID and private caches perform 10% better than
non-uniform-shared cache.

On average, CMP-NuRAPID performs within 3% of the ideal
cache performance across the commercial workloads. The maxi-
mum performance gap between CMP-NuRAPID and ideal is in
OLTP where CMP-NuRAPID performs 8% worse than ideal. The
main reason for this performance gap is the high percentage of
remote d-group accesses in OLTP, as was shown in Figure 9.
Despite the gap between CMP-NuRAPID’s and ideal’s perfor-
mance, CMP-NuRAPID significantly outperforms both non-uni-
form-shared and private caches in OLTP.

5.2 Multiprogrammed Workloads

In this section, we analyze CMP-NuRAPID for multipro-
grammed workloads. First, we evaluate CMP-NuRAPID’s capac-
ity utilization. Then, we compare the performance of CMP-
NuRAPID with other designs. We expect CMP-NuRAPID to have
performance advantage over shared caches (both uniform and
non-uniform) due to less latency and over private caches due to
CS. In the interest of space, we do not show results for the individ-
ual benchmarks in the workloads and only show overall results for
complete workloads.

5.2.1 Distribution of Cache Accesses
Figure 11 shows the distribution of cache accesses for shared,

private, and CMP-NuRAPID caches respectively. The right most
bars show the averages across all the workloads. We do not sepa-
rate ROS and RWS misses (We found such misses to be insignifi-
cant in multiprogrammed workloads due to negligible sharing).

CMP-NuRAPID incurs slightly more misses then shared
cache, but significantly less misses than private caches. On aver-
age, shared cache, private caches, and CMP-NuRAPID have
8.9%, 14%, and 9.7% miss rates respectively. CS and extra tag
space enable CMP-NuRAPID to utilize the cache capacity more
efficiently, resulting in less miss rates as compared to the private

caches. CMP-NuRAPID has slightly higher miss rates than shared
cache due to less tag capacity available to each core and the ran-
dom choice of d-group for distance replacement (Section 3.3).

We found that, on average, across all the multiprogrammed
workloads, 85% of accesses (93% of all hits) in CMP-NuRAPID
hit in the closest data d-group. We do not discuss these results in
detail in interest of space. However, these results demonstrate the
effectiveness of CS in keeping frequently-accessed data close to
the processor.

5.2.2 Performance
Figure 12 shows the performance for different designs in terms

of instructions per cycle (IPC). The bars from left to right repre-
sent the IPC for non-uniform-shared, private, and CMP-NuRAPID
caches with respect to the uniform-shared cache respectively.

CMP-NuRAPID is clearly the best. On average, non-uniform-
shared, private, and CMP-NuRAPID caches perform 7%, 19%,
and 28% better than the uniform-shared cache.

CMP-NuRAPID outperforms non-uniform-shared by 20% on
average across all the workloads. As shown in Figure 11, the miss
rates for CMP-NuRAPID are only slightly higher than shared
caches. But CMP-NuRAPID has significantly lower latency than a
non-uniform-shared cache. This lower latency allows CMP-
NuRAPID to outperform non-uniform-shared cache.

CMP-NuRAPID shows 8% performance improvement as com-
pared to private caches. Comparing Figure 10 and Figure 12, it is
worth noting that private caches have more performance advan-
tage over shared caches in multiprogrammed than in multi-
threaded workloads. The reason for this trend is that negligible
sharing in multiprogrammed workloads allows private caches to
avoid ROS and RWS misses. However, CMP-NuRAPID still out-
performs private caches in multiprogrammed workloads due to
better capacity utilization.

6  Related Work

We previously discussed [6], which analyzes non-uniform
shared cache designs. [19] is the first proposal of a CMP design
using a shared, on-chip L2 cache. Many commercial CMPs
[26,12,4, 25] use a shared L2 cache. Several papers have also
examined large caches in production uniprocessors. The Itanium
II uses a large, low-bandwidth L3 cache that is optimized for size
and layout efficiency [28, 18].

Many papers have proposed cache coherence protocols and
optimizations for SMPs (see [9] for details). Node capacity (not
on-chip capacity) versus latency tradeoff for DSMs has been
exploited by COMA[24] and R-NUMA[11].

Three recent proposals have examined uniform-access caches
in CMPs. [15] compares shared caches, private caches, and a soft-
ware-managed technique for partitioning capacity in a shared
cache. However, the paper does not address shared cache’s long
latency and uses coarse-grain partitions managed by the compiler
or OS. In contrast, CMP-NuRAPID uses fine-grain cache-block
granularity to allow flexible sharing transparent to software. [17]
evaluates migrating execution (as opposed to data) across cores to
improve throughput but assumes only one program running on a
4-core CMP with private caches (i.e. 3 cores are idle). [7] pro-
poses a conflict-predictor for multiprogrammed workloads run-
ning on a shared cache. Their technique does not address the
capacity-latency tradeoff that CMP-NuRAPID exploits.

FIGURE 11: Distribution of Cache Accesses
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Some recent papers have proposed designs to address the wire
delay problem in uniprocessor caches. We previously mentioned
NUCA [14] and NuRapid [8]. Transmission Line Cache (TLC)
proposes to replace long wires in large uniprocessor caches with
LC transmission lines for reducing wire delay [5, 6]. TLC
achieves latency reduction at the cost of substantial increase in
bandwidth requirement and added complexity. CMP-TLC is
orthogonal to CMP-NuRAPID.

7  Conclusions

Chip multiprocessors (CMPs) substantially increase capacity
pressure on the on-chip cache hierarchy, while requiring fast
access. Neither private nor shared caches can provide both large
capacity and fast access. CMPs create a new opportunity for
exploring capacity-latency trade-off which does not exist in SMPs
and DSMs. We proposed three novel ideas to exploit this opportu-
nity: (1) Though placing a copy close to each requestor allows fast
data access for read-only sharing, the copies increase pressure on
the already-limited on-chip capacity in CMPs. We propose con-
trolled replication to conserve capacity by not making copies in
some cases. (2) CMPs allow fast on-chip communication between
processors for read-write sharing. While private caches incur slow
accesses to read-write shared data through coherence misses, we
propose in-situ communication to provide fast access without
making copies or incurring coherence misses. (3) Accessing
neighbors’ caches is not expensive in CMPs. We propose capacity
stealing to place private data that exceeds a core’s capacity in a
neighboring cache with less capacity demand.

We proposed CMP-NuRAPID, a hybrid of private, per-proces-
sor tag arrays and a shared data array to incorporate the two ideas.
To mitigate the slow access to shared data array, we employ non-
uniform cache access and distance associativity from previous
proposals to keep frequently-accessed data in regions close to the
processor. Our results showed that for a 4-core CMP with 8 MB
on-chip capacity, CMP-NuRAPID improves performance by 13%
over a shared cache and by 8% over private caches for three com-
mercial multithreaded workloads. For four multiprogrammed
workloads, CMP-NuRAPID performs 28% better than a shared
cache and 8% better than a private cache.
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