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Abstract

Improved branch prediction accuracy is essential to sus-
taining instruction throughput with today’s deep pipelines.
We introduce piecewise linear branch prediction, an ideal-
ized branch predictor that develops a set of linear func-
tions, one for each program path to the branch to be pre-
dicted, that separate predicted taken from predicted not
taken branches. Taken together, all of these linear functions
form a piecewise linear decision surface. We present a limit
study of this predictor showing its potential to greatly im-
prove predictor accuracy.

We then introduce a practical implementable branch pre-
dictor based on piecewise linear branch prediction. In mak-
ing our predictor practical, we show how a parameterized
version of it unifies the previously distinct concepts of per-
ceptron prediction and path-based neural prediction. Our
new branch predictor has implementation costs compara-
ble to current prominent predictors in the literature while
significantly improving accuracy. For a deeply pipelined
simulated microarchitecture our predictor with a 256KB
hardware budget improves the harmonic mean normalized
instructions-per-cycle rate by 8% over both the original
path-based neural predictor and 2Bc-gskew. The average
misprediction rate is decreased by 16% over the path-based
neural predictor and by 22% over 2Bc-gskew.

1. Introduction

Deeper pipelines improve overall performance by al-
lowing more aggressive clock rates. However, some po-
tential performance is lost due to the resulting increase
in branch misprediction latencies. Indeed, branch mispre-
diction latency is the most important component of per-
formance degradation as microarchitectures become more
deeply pipelined [20]. Branch predictors must improve to
avoid the increasing penalties of mispredictions.

In this paper, we introduce piecewise linear branch pre-
diction that works by learning a set of linear functions for
each branch that together comprise a piecewise linear sur-

(a) (b)

Figure 1. The XOR function cannot be learned
by a perceptron (a), but can be learned using
a piecewise linear decision surface (b).

face in a space of branch outcome pattern histories. This
surface separates predicted taken branches from predicted
not taken branches. A piecewise linear surface allows the
predictor to learn the behavior of certain linearly insepa-
rable branches that previous neural predictors were unable
to learn [12]. Figure 1 shows examples of decisions sur-
faces learned by the perceptron predictor (a) and piece-
wise linear branch prediction (b) for the linearly inseparable
exclusive-OR (XOR) function. The two input variables are
represented by the x and y axes, negative for false and posi-
tive for true. The output is represented by the color white for
false and black for true. XOR cannot be learned by the per-
ceptron predictor, but it is easily learned by piecewise linear
branch prediction.

We first describe an idealized version of piecewise lin-
ear branch prediction, giving algorithms to explain the con-
cepts but paying no attention to microarchitectural imple-
mentation constraints. In the context of a boundless hard-
ware and computational budget, we give the results of a
limit study comparing piecewise linear branch prediction to
idealized versions of previous prediction mechanisms. We
show that piecewise linear branch prediction reduces mis-
predictions by an average of 16% over the next best predic-
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tor.

We then derive a practical piecewise linear branch pre-
dictor suitable for microarchitectural implementation by
constraining the state used by the idealized predictor and us-
ing ahead-pipelining to mitigate its latency. Using a cycle-
accurate microarchitectural simulator, we show that the
practical piecewise linear branch predictor improves nor-
malized harmonic mean instructions-per-cycle rate (IPC) by
8% over both 2Bc-gskew [16] and the path-based neural pre-
dictor [9] for a 256KB hardware budget. At lower hardware
budgets the new predictor also yields a significant speedup.

2. Background and Related Work

In this section, we discuss related work in branch pre-
diction. The predictor we introduce in this paper is an ex-
tension of neural branch predictor, so we focus on neural
branch prediction research.

2.1. The Perceptron Predictor

The perceptron predictor [11] uses a simple linear neu-
ron known as a perceptron [2] to perform branch di-
rection prediction. The most accurate single-component
branch predictors in the literature are neural branch predic-
tors [14, 12]. Unfortunately, the high latency of the original
perceptron predictor and makes it impractical for improv-
ing performance.

2.2. Research Related to Neural Branch Predic-
tion

Many studies have extended the perceptron predictor.
Loh and Henry use the perceptron predictor as a compo-
nent of a larger hybrid predictor [14]. Thomas et al. find
salient history bits for the perceptron predictor using dy-
namic data-flow analysis. Akkary and Srinivasan adapt the
perceptron predictor to provide confidence estimates for
speculation control [1]. Intel includes the perceptron pre-
dictor in one of its IA-64 simulators for researching future
microarchitectures [3]. Falcon et al. use a perceptron pre-
dictor as a component of a prophet/critic hybrid predictor
that runs the branch predictor ahead to second-guess previ-
ous predictions and possibly reverse them [7].

2.3. Neural Branch Prediction Background

Neural branch predictors keep a table of weights vec-
tors, i.e., vectors of small integers that are learned through
the perceptron learning rule [11, 2]. As in global two-level
adaptive branch prediction [22, 15], a shift register records a
global history of outcomes of conditional branches, record-
ing true for taken, or false for not taken.

To predict a branch outcome, a weights vector is selected
by indexing the table with the branch address modulo the
number of weights vectors. The dot product of the selected

vector and the global history register is computed, where
true in the history represents 1 and false represents -1. If
the dot product is at least O, then the branch is predicted
taken, otherwise it is predicted not taken.

2.4. Path-Based Neural Branch Prediction

In a recent paper, we describe a neural predictor that
achieves lower latency and improved accuracy over previ-
ous neural branch predictors [9] by staggering computations
in time, predicting a branch using a weights vector selected
dynamically along the path to that branch. The path-based
neural branch predictor has improved accuracy over previ-
ous neural predictors because it is able to find correlations
with path history as well as pattern history. In this paper, we
present a new neural predictor that achieves even better ac-
curacy at much the same latency.

3. Piecewise Linear Branch Prediction

This section introduces our new predictor, the piecewise-
linear branch predictor. We discuss the intuition behind the
idea, then give the algorithm. It is important to note that, at
this point, we are presenting an idealized predictor without
concern for its implementation since we are only concerned
with its predictive power. In Section 5, we derive a practical
branch prediction from this idealized predictor.

3.1. Intuition

Branch predictors exploit the correlation between the
history of a branch and its outcome. One way to concep-
tually organize the notion of branch history is to consider
all of the program paths of a given length h ending in a
branch B. For our purposes, a path is a dynamic sequence
of branches ending in B. The identities, positions, and out-
comes of such a path usually correlate highly with the out-
come of a branch. For each branch B, our predictor tracks
the elements of every path leading to B. The predictor keeps
track of the tendency of a given branch in a given position in
the history to agree with the outcome of B. That is, for ev-
ery component of every path, the predictor tracks the corre-
lation of that component with the outcome of B. To make
a prediction, the correlations of each component of the cur-
rent path are aggregated to form a prediction.

3.1.1. What is “Piecewise Linear?” This aggregation is
a linear function of the correlations just for the current path.
This linear function induces a hyperplane that is used to
decide whether to predict taken or not taken: if the global
branch outcome pattern history lies on one side of the hy-
perplane, the branch is predicted taken, otherwise it is pre-
dicted not taken. Since there are many paths leading to B,
there are many different linear functions used to predict B.
Taken as a whole, the linear functions used to predict B
form a piecewise-linear surface separating paths that lead

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



to predicted taken branches from paths that lead to pre-
dicted not taken branches. In machine learning terminol-
ogy, such a separating surface is called a decision surface.
In Section 6 we will show that piecewise linear branch pre-
diction is a generalization of neural branch prediction [11],
which uses a single linear function for a given branch, and
path-based neural branch prediction [9], which uses a sin-
gle global piecewise-linear function to predict all branches.
As a perceptron-like algorithm, the predictor finds the sum
of weights or their negations based on whether the corre-
sponding history bits represent taken or not taken branches.

3.2. Description of the Algorithm

The algorithm has two components: a prediction func-
tion and an update procedure. The following variables are
used by the algorithm:

W A three-dimensional array of integers. The indices of
this array are the branch address, the address of a branch
in the path history, and the position in the history. W keeps
track of correlations for every branch in the program. We
can think of W as a set of matrices, one for each branch,
whose columns correspond to branches in the path his-
tory and whose rows correspond to positions in the history.
W|[B,0,0] is the weight that keeps track of the tendency
of branch B to be taken. This weight is the bias weight for
B. Addition and subtraction on elements of W saturate at
+127 and -128. The dimensions of the array are arbitrar-
ily large, i.e., large enough to accommodate any access that
might be made during the algorithm. This fact alone makes
the predictor infeasible for actual implementation. Never-
theless, we constrain the storage in our practical version of
the predictor presented later.

h The global history length. This is a small integer.

GHR The global history register. This vector of bits ac-
cumulates the outcomes of branches as they are executed.
Branch outcomes are shifted into the first position of the
vector.

GA An array of addresses. As branches are executed, their
addresses are shifted into the first position of this array.
Taken together, GH R and G A give the path history for the
current branch to be predicted.

output An integer. This integer is the value of the linear
function computed to predict the current branch.

Figure 2 shows the function predict that computes the
Boolean prediction function. The function accepts as a pa-
rameter the address of the branch to be predicted. The
branch is predicted taken if predict returns true, not taken
otherwise. Figure 3 shows the procedure train used to up-
date the predictor. It accepts as parameters the address and
Boolean outcome of the branch. It assumes that all variables
retain the values they had at the end of the invocation of pre-
dict for this branch. The training algorithm uses a threshold
parameter 6 to decide when to stop updating the predictor;

when the magnitude of the output of the predictor exceeds
6, the predictor has learned the behavior of the branch suf-
ficiently well. Without such a threshold parameter, the pre-
dictor might overtrain and be slow to respond to changes
in branch behavior. This algorithm is similar to other neu-
ral predictors such as the perceptron predictor [11] and the
path-based neural predictor [9]. We choose the value of §
using the same formula from the path-based neural predic-
tor paper, 6 = 2.14(h + 1) + 20.58.

4. Limit Study

This section presents a limit study of branch prediction
using piecewise linear branch prediction as well as idealized
versions of other predictors. We show that our new predic-
tor is able to achieve very low misprediction rates compared
with other idealized predictors.

4.1. Predictors Simulated

We simulate the following predictors to compare with
our new predictor:

2Bc-gskew We simulate 2Bc-gskew, a hybrid predic-
tor combining a bimodal component with egskew that
predicts using the majority of three components: the bi-
modal predictor and two global history predictors indexed
by special hash functions that mitigate destructive interfer-
ence. A version of this predictor was planned for the Alpha
EVS processor [16]. We have observed that 2Bc-gskew is
the most accurate branch predictor based on two-level adap-
tive prediction in the academic literature.

Perceptron Predictor We simulate a version of the percep-
tron predictor that combines global and per-branch history
information [12]. This predictor has been shown to be more
accurate than even the most aggressive multi-component
hybrid predictor [12]. Thus, it would be superfluous to com-
pare against other combined global and per-branch hybrid
predictors. For this study, a history length of h for the
global/local perceptron means that i global and & local his-
tory bits are used.

Path-Based Neural Predictor We simulate the path-based
neural predictor [9]. As in piecewise linear branch predic-
tion, this predictor aggregates weights from the elements of
the path to the branch to be predicted, but the weights are
shared globally among all branches instead of being asso-
ciated with a particular branch. This path-based predictor is
highly accurate. Thus, we do not include other, less accu-
rate path-based techniques.

4.2. Limit Study Methodology

In this paper, we present the results of two sets of ex-
periments. In this section, we present a limit study focused
only on accuracy. In Section 8, we present a study of our
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function predict (address: integer): boolean
begin
output := W laddress, 0, 0]
for7in 1..h do
if GHR[i] = true then

output := output + W [address, GA[i], i]

else
output := output — W [address, GA[i], i
end if
end for
predict .= output > 0

end

(* Output is initialized to bias weight *)

(* Find the sum of weights (or their negations) chosen *)
(* using the addresses of the last h branches *)

(* If the ith branch in the history was taken, *)

(* add the chosen weight *)

(* otherwise subtract it *)

(* Predict the branch taken if the output is at least 0 *)

Figure 2. Prediction algorithm

procedure train (address: integer; taken: boolean)
begin
if |output| < 6 or predict # taken then
if taken = true then
W [address, 0, 0] := W [address, 0,0] + 1
else
W [address, 0, 0] := W |address,0,0] — 1
end if
foriin1..h

if GHR[i] = taken then
W laddress, GAli), i] := W [address, GA[i], ] + 1
else
W laddress, GAli], 1] := W [address, GA[i], ] — 1
end if
end for
end if
GA[2..h] := GA[L..h — 1]
GA[1] := address
GHR[2..h] := GHR[1..h — 1]
GHR([1] := taken
end

(* If magnitude of output is less than 6 or prediction was *)
(* incorrect then update the weights *)

(* If branch was taken, then increment the bias weight, *)
(* otherwise decrement it (with saturating arithmetic) *)

(* For each address and branch outcome in recent history... *)

(* If the i most recent outcome is equal to current outcome *)
(* then increment the weight that contributed to this prediction *)

(* otherwise decrement it (with saturating arithmetic) *)

(* Shift the current address into the global address array *)

(* Shift the current outcome into the global history register *)

Figure 3. Training algorithm

proposed practical branch predictor in a cycle-accurate mi-
croarchitectural framework. For this limit study, we use
traces generated by SimpleScalar/Alpha on the same 15
SPEC CPU integer benchmarks we use for Section 8.

To isolate the predictive power of each prediction mech-
anism from the effects of branch interference, each predic-
tor is allowed to use an arbitrary amount of storage. For the
perceptron predictor and path-based neural predictor, one
weights vector is allocated to each static branch. For 2Bc-
gskew, each table in the predictor is given a virtual 48-bit
address space. In other words, the 2Bc-gskew predictor is
given a virtual hardware budget of 256 terabytes. The sim-
ulation of this budget is facilitated through the use of a data
structure that brings a predictor entry into existence only
when it is first accessed.

Branch predictor accuracy is highly sensitive to history
length [6]. We simulate each predictor on all of the traces
for a variety of history lengths. For each predictor except

for piecewise linear prediction, we simulate a large enough
range of history lengths to show that there is a best history
length delivering the lowest misprediction rate for that pre-
dictor. For piecewise linear prediction there does not seem
to be a best history length; accuracy continues to improve
with longer histories.

Figure 4 shows the average misprediction rate for each
predictor at various history lengths. For history lengths of
up to 30, the 2Bc-gskew mechanism delivers the best accu-
racy. After that point, piecewise linear branch prediction is
the best.

Figure 5 shows the misprediction rate for each bench-
mark as well as the arithmetic mean. The chart shows
the misprediction rates for each predictor using the history
length that yields the best average misprediction rate for that
predictor. The values of these best history lengths are given
in the legend of the graph. Each of these predictors is one of
the very best predictors in recent literature. Still, the piece-
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wise linear branch predictor manages to outperform them
all. The next best predictor, 2Bc-gskew, gives an average
misprediction rate of 3.81%. Piecewise linear branch pre-
diction gives an average misprediction rate of 3.21%, a re-
duction of 16%. It reduces mispredictions by 26% over the
third most accurate predictor, a global/local perceptron pre-
dictor, which yields a misprediction rate of 4.33%. Piece-
wise linear branch prediction gives the lowest misprediction
rate on 13 out of the 15 benchmarks. It yields the second
lowest misprediction rate on the other 2 benchmarks, and
on those 2 benchmarks 2 different predictors are the best.
Thus, without regard to implementation concerns, piece-
wise linear branch prediction is a consistently better pre-
diction mechanism than any of the other predictors.

5. A Practical Piecewise Linear Branch Pre-
dictor

In this section, we present a practical version of piece-
wise linear branch prediction with implementation con-
straints similar to other practical predictors. There are two
constraints on a practical predictor that the idealized ver-
sion presented so far does not satisfy: limited area and lim-
ited latency.

5.1. Limiting Area of the W Array

The indices of the W array must be limited to keep them
from exceeding the practical bounds of an implementable
branch predictor. We limit the first two indices by taking
them modulo two integers n and m. In a realistic implemen-
tation, n and m would be chosen as powers of 2 to make the
modulo operation a simple mask. We limit the third index
by choosing an appropriate value h for the history length.
Thus, W becomes an n x m x (h + 1) 3-dimensional array
of 8-bit weights. Limiting the second array index to 0..n—1
also reduces the bits required to store the GA array since

each address can be represented modulo n requiring at most
log, n + 1 bits.

5.2. Limiting Latency of the Prediction

Computing the output used to predict the branches re-
quires adding & + 1 numbers each retrieved from dif-
ferent, possibly non-adjacent positions in W. We use
ahead pipelining to mitigate the latency of this computa-
tion. Ahead pipelining means the computation is pipelined
and begins before the branch to be predicted is fetched.
It has been applied to traditional two-level branch predic-
tors [8, 17] as well as neural branch predictors [9, 21].

5.3. An Ahead-Pipelined Piecewise Linear Branch
Predictor

Branch predictions speculatively drive partial computa-
tions of the outputs of h future branches. The W array is
now an nxmX (h+1) 3-dimensional array of 8-bit weights.
The bias weight for a branch with address B is now kept
in W[b mod n, b mod m, 0] providing a more uniform uti-
lization of the now limited number of weights in W. The
W array is indexed by the branch address modulo n. Since
this index is not known ahead of time, the algorithm keeps
n copies of the speculative predictor state to drive n possi-
ble predictions. Once the branch address becomes known, it
is used to select one of the n predictions. Little extra specu-
lative state is required for small values of n.

5.3.1. Extra State for the Ahead-Pipelined Predictor
Ahead-pipelining the predictor requires additional state to
store intermediate results of computations. R and SR are
n X h 2-dimensional arrays of small integers used as in-
termediate storage for computing the output of the predic-
tor. SRJ[i, j] holds the speculative partial sum for predict-

ing the j th branch in the future whose address modulo n is
1. Extending terminology from the original path-based neu-
ral predictor [9], SR and R are shift matrices composed of
n shift vectors. SR is like a queue through which partial
sums proceed. Partial sums enter the queue as 0, are added
to while in the queue, and on exiting are added to the bias
weight and used to compute the prediction. SR is specula-
tive since it assumes the correctness of predictions for unre-
solved branches. R is a duplicate of SR that is maintained
non-speculatively when a branch is resolved so that the pre-
dictor state can be restored on a misprediction. We have ob-
served that 10 bits are sufficient for the elements of the R
and SR arrays.

5.3.2. Making a Prediction Figure 6 shows the new pre-
diction algorithm for piecewise linear branch prediction
with ahead-pipelining. To predict a branch that will occur
h branches in the future, the algorithm starts a partial sum
for the output for that prediction with the value 0. Each time
abranch is predicted, its result is used to add another term to
the partial sum to predict i future branches. When a branch
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Figure 5. Misprediction rate per benchmark with the best history for each predictor

needs to be predicted, a partial sum is selected from one of
n candidate partial sums and added to the bias weight for
that branch. Thus, the critical path for making a prediction
is a table lookup, a multiplexer, and an addition. This incurs
a delay comparable to other branch predictors, in particu-
lar the ahead-pipelined path-based neural branch predictor
that is estimated to have a delay of from 2 to 3 cycles [9].

5.3.3. Updating the Predictor The algorithm for updat-
ing the predictor when a branch is executed is similar to the
algorithm for the idealized predictor described in Section 3
with an extra step. The non-speculative shift matrix R is up-
dated in the update phase using the outcome of the branch.
Updating R is similar to updating S R except that the branch
address and outcome are non-speculative.

5.3.4. Misprediction Recovery On a misprediction, the
speculative contents of SR must be overwritten with the
non-speculative version kept in R. This copying can be ac-
complished with low latency in parallel to other recovery
activities taking place in the processor, such as restoring the
register file from non-speculative state. Indeed, we can think
of the n vectors in SR as long registers in a special register
file and apply known microarchitectural techniques to man-
aging the speculative and non-speculative versions of regis-
ter files. In Section 8, we see that the size of SR in terms of
numbers of bits is no more than the size of a typical physi-
cal register file.

5.3.5. Implementation of Shift Matrix It has been ob-
served that partial sums for computing neural branch pre-
dictor outputs require no more than 11 bits to represent each
partial sum [9]. We find the 10 bits are sufficient for the
piecewise linear branch predictor. Thus, an n x h shift ma-
trix requires n x h 10-bit adders as well as 10 x n x h
latches to store each partial sum. We propose an imple-
mentation that would use fast ripple-carry adders (RCA),
which provide the best area and delay trade-off for small bit
widths [5].

5.3.6. Implementation of W Weights for neural branch
prediction require no more than 8 bits to provide high accu-
racy [12, 9]. The path-based neural predictor proposed us-
ing h+ 1 independently addressable tagless memories, each
eight bits wide, to implement the W matrix. For the piece-
wise linear predictor, we propose using i+ 1 independently
addressable tagless memories that are arranged as n 8-bit
words wide. That is, W is organized as h + 1 memories
with n blocks each with m bytes. Thus, the training algo-
rithm can update in parallel each of the h + 1 weights re-
sponsible for predicting the branch.

5.3.7. Implementation of Parallel Algorithm The pre-
diction algorithm requires a large number of operations to
occur in parallel. On each cycle, the speculative shift ma-
trix receives n x h results in parallel, so n x h 10-bit adders
are required. For example, our most aggressive predictor de-
sign has n = 8 and h = 51, so it would require 408 10-bit
adders.

The non-speculative version of the shift matrix, R, may
be filled from the contents of the speculative version for
right-path branches whose outcomes become known. This
technique obviates the need for a second set of adders to
maintain non-speculative results.

Each byte of a block in each of the h + 1 independently
addressable memories corresponds to a different combina-
tion of lower address bits. Accessing the entire block once
provides input to every iteration of the 1..n loop in the al-
gorithm for making a prediction. Thus, each memory is ac-
cessed only once for each prediction, and once again for
each update.

6. Piecewise Linear Branch Prediction is a
Generalized Neural Predictor

A happy consequence of parameterizing piecewise lin-
ear branch prediction with n and m is that the new predic-
tor becomes a generalization of concepts found in previous
neural predictors. The perceptron predictor [11] and path-
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function predict (address: integer): boolean
begin
i := address mod n
7 := address mod m
output :== SR[i, h] + Wi, j,0]
if output > O then
predict := taken
else
predict := not_taken
end if

(* First index in W and SR is the branch address modulo n *)
(* Second index in W is the branch address modulo m *)
(* Complete the computation for this prediction *)

(* Predict taken if output is at least 0 *)

(* Predict not taken otherwise *)

(* This point in the algorithm is the end of the critical timing path for making a prediction *)
(* The rest of the algorithm updates speculative state for making the next h predictions *)

for 7 in 1..n in parallel do
for k in 1..A in parallel do
ar = h—k
if predict = taken then
SR'[i,ar + 1] := SR[i, ax] + Wi, 5, k]
else
SR'[i,ar + 1] := SR[i, ax] — Wi, j, k]
end if
end for
SR[i,0..h] :== SRJ[i,0..h)’
end for
for 7 in 1..n in parallel do
SR[:,0]:=0
end for
end

(* For each of the shift vectors in SR... *)

(* For each partial sum in the i row of SR... ¥)

(* ay, is an index in the i[h shift vector *)

(* If there is positive correlation between history *)

(* and outcome, then add the i, j, kth weight to the *)
(* partial sum in SR *)
(* otherwise subtract instead of adding *)

(* Copy results of computations to SR *)

(* For each of the n speculative shift vectors, *)
(* reinitialize the first partial sum *)

Figure 6. Ahead-pipelined prediction algorithm

based neural prediction [9] turn out to be extreme ends of
a family of parameterized piecewise linear branch predic-
tors. Thus, piecewise linear branch prediction unifies pre-
viously distinct predictors and allows them to be studied in
the same conceptual framework.

6.1. With m = 1, Piecewise Linear Prediction is
the Perceptron Predictor

The perceptron predictor keeps an array of n weights
vectors, each with h + 1 integer weights. One weight in
each vector is a bias weight and the other h track corre-
lation with branch outcome pattern history [11]. When a
branch is predicted, the branch address modulo n is used to
select a weights vector that is then used to compute the out-
put of the predictor as the dot product of the weight vector
and the branch history register.

In the piecewise linear branch predictor, if we let m = 1,
then every bit in the G A array is 0. The resulting piecewise
linear branch predictor is equivalent to a perceptron predic-
tor with n perceptrons and a global history length of h. This
is because letting m = 1 effectively removes the second in-
dex of W, so W collapses into a matrix whose n rows rep-
resent perceptron weights vectors and whose i + 1 columns
correspond to the bias weights and weights correlating with
branch outcome pattern history.

6.2. With n = 1, Piecewise Linear Branch Predic-
tion is Path-Based Neural Branch Prediction

The path-based neural predictor keeps an array of m
weights vectors, each with i + 1 integer weights, again a
bias and h weights to correlate with history. However, un-
like the perceptron predictor, the path-based neural predic-
tor uses the path history to select weights from up to h + 1
distinct weights vectors for each prediction [9].

In the piecewise linear branch predictor, letting n = 1 ef-
fectively removes the first index of the W and collapse W
into an m X (h + 1) matrix of weights. The m rows cor-
respond to the m weights vectors of the path-based neu-
ral predictor. The first column again corresponds to the bias
weights for each branch address modulo m. The rest of the
h columns correspond to the correlating weights chosen by
path history. Since n = 1, only the global path history is
used to choose weights to make a prediction, which is just
what path-based neural prediction does.

6.3. Illustration of Generalized Predictor

Figure 7 shows the results of experiments performed us-
ing our limit study infrastructure for piecewise linear branch
predictors with a constant history length of h = 63 and
varying n and m such that their product is always 65,536.
Thus, the number of elements in the W array is kept at a
constant 64 x 65,536 = 4MB, but the first and second di-
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Figure 7. Misprediction rates with values of n
and m whose product is a constant 64K.

mensions of the W array are varied to represent different
points in the space of neural predictors. The misprediction
rates are averaged across all 15 benchmarks.

At the left end of the graph, we have n = 1 and m =
65, 536. This predictor is equivalent to path-based neural
prediction with 64K weights vectors. It achieves a mispre-
diction rate of 4.9%. At the right end of the graph, we have
n = 65,536 and m = 1, equivalent to a perceptron predic-
tor with 64K weights vectors. It achieves a misprediction
rate of 5.1%. In between these extrema are different config-
urations of piecewise linear branch predictors. Each of them
outperforms both the perceptron predictor and path-based
linear predictor. Thus, the neural predictors so far presented
in the literature are the two worst-case examples of a bet-
ter predictor! The minimum misprediction rates are slightly
below 3.7%, achieved when n and m are both between 128
and 512. With a value of n = 8 suitable for ahead-pipelined
implementation, the misprediction rate is 3.9%.

7. Methodology for Performance Results

This section describes the experimental methodology for
obtaining simulated results for the realistic, ahead-pipelined
version of piecewise linear branch prediction using a cycle-
accurate simulator.

7.1. Microarchitectural Framework

We use 15 SPEC CPU integer benchmarks running under
MASE/Alpha [13], a significantly modified version of Sim-
pleScalar/Alpha [4], a cycle-accurate out-of-order execu-
tion simulator that has been enhanced to include our branch
predictors and to simulate overriding predictors at various
latencies. We simulate all of the SPEC CPU 2000 integer
benchmarks, and all of the SPEC CPU 95 integer bench-

Parameter Configuration
L1 I-cache | 16 KB, 64B blocks, 2-way
L1 D-cache | 16 KB, 64B blocks, 4-way
L2 unified cache | IMB, 128B blocks, 4-way
BTB 4096 entry, 2-way
Fetch/Decode/Issue/Commit 16 wide
Pipeline depth 40
Reorder buffer size 512
LSQ entries 128
L2 hit latency 7 cycles
L2 miss latency 500 cycles

Table 1. Microarchitectural parameters

marks that are not duplicated in SPEC CPU 2000, except
for 130.11i and 124 .m88ksim because they would not
work under our checkpoint-based simulation framework.
The benchmarks are compiled with the CompaQ GEM
compiler with the optimization flags - fast -04 -arch
eveé.

We use SimPoint 1.1 to identify regions of the exe-
cution of each benchmark that characterize the entire run
of the program on a given input. By analyzing statistics
gathered from a functional simulation of the entire run
of a benchmark on a given input, SimPoint finds simula-
tion points, i.e., regions of 100 million instruction execu-
tions [18]. We simulate these regions with MASE, record-
ing statistics such as instructions-per-cycle rates and branch
misprediction rates. We then aggregate these numbers in
a weighted average to give a precise estimate of what the
statistics would have been if the benchmarks had been run
to completion.

Table 1 shows the base microarchitectural parameters
used for the simulations. We started with a configuration
loosely based on the Intel Pentium 4, but with an issue width
of 16 and a deeper pipeline of 40 stages to provide a rea-
sonable model of a future aggressively clocked microar-
chitecture. A recent study from Intel’s Pentium Processor
architecture group concludes that performance of aggres-
sively clocked microarchitectures continues to improve un-
til pipelines reach a depth of 52 [20]. Since that study was
presented, Intel has increased the depth of its Pentium 4
pipeline from 20 to 31 stages in a microprocessor named
Prescott available for purchase as of this writing. Thus,
while our 40-stage pipeline is aggressive for current tech-
nology, it is conservative with respect to what is possible in
future technologies.

7.2. Branch Predictors Simulated

We simulate the same predictors used in the limit study
that appears earlier in this paper. We simulate realistic,
resource-bounded versions of 2Bc-gskew, a global/local
perceptron predictor, the path-based neural predictor, and

0-7695-2270-X/05/$20.00 (C) 2005 |IEEE



the piecewise linear predictor. Since each predictor has a
certain delay associated with it, even with ahead-pipelining,
we use a two-level overriding organization [10] to miti-
gate predictor latency: A first-level 2K-entry bimodal pre-
dictor gives a prediction in a single cycle and instructions
are fetched down the predicted path. If the second-level pre-
dictor disagrees with the initial prediction, the instructions
fetched so far are dropped and fetching continues from the
other path. We also simulate an oracle branch predictor that
always predicts correctly as well as the idealized version of
piecewise linear branch prediction.

7.3. Tuning The Predictors

Using the train inputs of the benchmarks along with
SimPoint and trace-driven simulation, we find the history
lengths that minimize the average misprediction rate for
each hardware budget and branch predictor. We use these
history lengths in the execution-driven simulations on the
ref inputs. For 2Bc-gskew, we test history lengths exhaus-
tively, keeping the lengths that results in the lowest aggre-
gate misprediction rate. For the global/local perceptron pre-
dictor, we exhaustively tune the global history, keeping the
local history at a constant 10 and the percentage of the hard-
ware budget allocated to the local history tables at approxi-
mately 35%. Keeping the best global histories, we then tune
the local histories exhaustively. For the path-based neural
predictor, we tune the history length exhaustively. We use
the formula 6 = 2.14(h + 1) + 20.58 to set the threshold
parameter 6 in the path-based neural algorithm. We found
this formula to give optimal accuracy at all history lengths
in previous research.

For piecewise linear branch prediction, we tune history
length as well as n and m, the moduli for the first and
second indices of the W array, exhaustively. However, we
constrain n to be a power of two such that the number of
bits required to store each of the SR and R, matrices, i.e.,
10 x n x h, never exceeds 2,048. Thus, restoring the S R ma-
trix from the R matrix is comparable to restoring a register
file of 32 64-bit registers after a mis-speculation. We use
the same formula for 6 as for the path-based neural predic-
tor. Table 2 shows the tuned history lengths for each hard-
ware budget for each predictor as well as values for n and
m for the piecewise linear predictor. For many of the neu-
ral predictors, the chosen history lengths and hardware bud-
gets would lead to a number of weights vectors that is not a
power of 2. We assume that a real design would use a power
of 2 number of weights vectors for easy implementation. We
present results with these configurations so that they may be
compared against one another and against traditional table-
based branch predictors using the same amount of state.

7.4. Estimating Branch Predictor Latency

We use CACTI 3.0 [19] to estimate the latencies of
the various memories accessed by the predictors. We use

Hard- global/ path- piecewise
ware 2Bc- local based linear
Budget | gskew | perceptron | neural | h | n | m
4 KB 10 34/12 19 19 | 1] 215
8 KB 11 34/12 19 19 2] 176
16 KB 14 38/14 24 23 | 4 | 138
32KB 15 40/14 31 26 | 8 | 118
64 KB 16 50/18 34 43 | 8 | 151
128 KB 17 54/19 38 50 | 8 | 288
256 KB 18 64/23 40 51| 8| 603

Table 2. Tuned history lengths for the predic-
tors and values of n and m for piecewise lin-
ear prediction

HSPICE along with a custom logic design program to es-
timate the latency of the circuits used to compute the per-
ceptron output for the perceptron predictor, the path-based
neural predictor, and piecewise linear prediction. For rea-
sons of limited space we omit details of this estimation ex-
cept to say that it is similar to our previous work [9].

8. Results from Microarchitectural Simula-
tion

This section presents results of detailed microarchitec-
tural simulation. Our main results compare the practical ver-
sions of piecewise linear branch prediction against practical
versions of other branch predictors. We characterize the per-
formance of these predictors using misprediction rates as
well as instructions-per-cycle (IPC).
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Figure 8. Average misprediction rates per
hardware budget
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8.1. Misprediction Rates

Figure 8 shows the arithmetic mean misprediction rate
of each predictor over all 15 benchmarks at hardware bud-
gets from 4KB to 256KB. It also shows the misprediction
rate using the same cycle-accurate simulation methodology
for the idealized piecewise linear predictor with a history
length of 128. As the hardware budget is increased, the ad-
vantage of the piecewise linear predictor over the other pre-
dictors increases. On average, at a 32KB hardware budget,
piecewise linear prediction mispredicts 5.1% of the time.
That is 9% more accurate than path-based neural predic-
tion which mispredicts 5.6% of the time and is the most
accurate of the other predictors. At an aggressive 256KB
hardware budget, piecewise linear prediction with a 4.6%
misprediction rate is 16% more accurate than path-based
neural prediction with a 5.5% misprediction rate, and 22%
more accurate than 2Bc-gskew with a 5.9% misprediction
rate. It is important to note that this improvement repre-
sents a departure from previous improvements in branch
prediction accuracy — while all the other predictors in Fig-
ure 8 seem to approach an asymptotic misprediction rate of
about 5.5%, piecewise linear prediction continues getting
better. The idealized piecewise linear predictor with a his-
tory length of 128 achieves a misprediction rate of just be-
low 4.0%. As we can see from the graph, the practical ver-
sions of this predictor reach within 15% of this limit. In-
deed, the misprediction rate of piecewise linear branch pre-
diction with a 256KB hardware budget is closer to the ide-
alized predictor’s misprediction rate than it is to the other
predictors’ rates.

Figure 9 shows the misprediction rates for 256KB branch
predictors broken down by benchmark. Piecewise linear
branch prediction yields the best accuracy for every bench-
mark except for 176 .gcc, on which it achieves a 2.1%
misprediction rate compared with a 2.0% misprediction rate
for the global/local perceptron predictor. On 252 . eon the
improvement is particularly good: piecewise linear predic-
tion has a misprediction rate of 0.67%, an improvement of

31% over 2Bc-gskew at 0.97%, 56% over path-based neu-
ral prediction at 1.52%, and 74% over the perceptron pre-
dictor at 2.57%.

Absolute IPC

1.0 T T T T T 1
4KB 8KB 16KB 32KB 64KB 128KB 256KB

Hardware Budget (Bytes)

—— Idealized Piecewise Linear Prediction
—=— Piecewise Linear Predictor

-=- Path-Based Neural Predictor

-+ 2Bc-gskew

--x-- Global/Local Perceptron Predictor

Figure 10. Instructions per cycle

8.2. IPC

Figure 10 shows a graph giving the IPC for each predic-
tor at hardware budgets ranging from 4KB to 256KB. The
graph shows the harmonic mean of the raw IPCs. Many fac-
tors independent of the branch predictor, such as locality,
instruction mix, etc., affect the IPCs of benchmarks with re-
spect to one another. To isolate the effect of the branch pre-
dictor on performance, Figure 11 shows the harmonic mean
of IPCs that have been normalized with respect to the IPC
given by an oracle branch predictor that always predicts di-
rections and targets correctly. Again, as with misprediction
rates, the [PCs given by piecewise linear prediction improve
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pipeline depth

with respect to the other predictors as the hardware bud-
get increases. At a 16KB hardware budget, piecewise linear
prediction gives a speedup of 7% over 2Bc-gskew.

Figure 13 shows the normalized IPCs for each bench-
mark using branch predictors with a hardware budget
of 256KB. Piecewise linear branch prediction outper-
forms the other branch predictors on every benchmark ex-
cept for 175.vpr, for which 2Bc-gskew yields a 2%
speedup over piecewise linear prediction, most likely be-
cause of the higher latency of piecewise linear prediction
compared with that of 2Bc-gskew, and 176.gcc. Al-
though there is a significant variance among the IPCs given
by the various branch predictors, all of them but piece-
wise linear branch prediction yield a harmonic mean
normalized IPC of no more than 0.53. Piecewise lin-

ear branch prediction gives a harmonic mean normalized
IPC of 0.57, a speedup of 8% over the other predic-
tors. In the case of 186 . crafty, piecewise linear branch
prediction gives a speedup of 8% over path-based neu-
ral prediction, 20% over 2Bc-gskew, and 15% over the
perceptron predictor.

8.3. Moderate Pipeline Depths

Figure 12 shows the normalized IPCs achieved by sim-
ulating the various predictors for a machine with a more
moderate pipeline depth of 20 stages. At a hardware bud-
get of 64KB, piecewise linear branch prediction yields an
improvement of 5% over 2Bc-gskew and 4% over the path-
based neural predictor. The gains are more modest because
of reducing the pipeline depth reduces the penalty of mis-
predicted branches and also allow increases the relative im-
pact of branch predictor latency, which is highest for the
piecewise linear branch predictor.

9. Conclusions and Future Work

Our practical piecewise linear branch prediction gener-
alizes previous work on neural branch prediction. In doing
so, it expands the design space of neural predictors giving
rise to more accurate predictors that yield significantly bet-
ter performance.

In future work, we plan to improve upon piecewise linear
branch prediction by finding ways to reduce the extra hard-
ware it requires and reduce the latency. We also plan to gen-
eralize this idea further by incorporating, for instance, per-
branch history information into the piecewise linear predic-
tor.

The normalized IPCs in Section 8 demonstrate that there
is ample room for improvement in the performance de-
livered by branch predictors. We believe piecewise linear
branch prediction will be a driving force for achieving this
improvement.
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